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Sea Level Rise refers to the long-term increase of sea level. This phenomenon is primarily driven by 
the melting of ice caps and the thermal expansion of the oceans. Extreme Sea Level Rise (ESLR) 
events occur when SLR combines with temporary phenomena such as storm surges, tides, and waves, 
creating potentially damaging coastal flooding. The accelerating impact of climate change has raised 
the attention on ESLR and its effects on coastal regions. This study focuses on ESLR and its potential 
impacts on Europe and North Africa up to 2100, with particular attention to agriculture. Utilising Joint 
Research Centre (JRC) Global Extreme Sea Level projections and fine-scale DTM, we mapped areas 
vulnerable to ESLR under Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5. Through 
a topological approach, we generated spatially explicit maps of at-risk regions. Then, the magnitude 
of ESLR’s impact on local agricultural systems was estimated by overlaying crop production data from 
FAO (GAEZ 2015+) with different flood scenarios. Findings reveal that ESLR can severely affect coastal 
agriculture, suggesting significant potential agricultural losses (from $800 million up to $1.5 billion per 
year in the next 100 years), impacting food security and economic stability. This research underscores 
the urgent need for adaptive strategies, including the construction of dykes and sea barriers and the 
shift of agriculture to salt tolerant crops to mitigate ESLR impacts.

In recent years, the study of Sea Level Rise (SLR) has gained an unrivalled priority driven by the accelerating 
impact of climate change on our planet’s oceans1. The term SLR broadly refers to the gradual increase in the 
average level of planetary open water bodies1,2. Relative Sea Level Rise (RSLR) and Extreme Sea Level Rise 
(ESLR) are two critical concepts to this field, each representing a unique declination of the phenomenon2. While 
they are often discussed in tandem, their distinctions and interactions hold the key to understanding of the 
future of coastal environments and the broader implications for climate adaptation strategies3.

Relative Sea Level Rise (RSLR), often colloquially referred to as SLR, describes the change in sea level in 
relation to adjacent land surfaces4,5. This concept encapsulates both the absolute rise in global sea levels driven 
by the thermal expansion of seawater, the melting of ice sheets and local changes in land elevation4. Extreme Sea 
Level Rise (ESLR)5 as defined by the Intergovernmental Panel on Climate Change (IPCC), represents the upper 
limit of the projected sea level rise throughout the 21st century6. This upper limit is determined by amalgamating 
the highest estimates from all contributing factors with the additional effect of extreme events such as storms, 
surges, and high tides, which are predicted (with some degree of uncertainty) to become more severe and 
frequent in the future5,6. These extreme events, capable of causing catastrophic flooding, have become a focal 
point for researchers and policymakers, as they pose immediate and tangible threats to coastal communities and 
ecosystems7. The estimation for RSLR for the next ~100 years ranges from 0.2 to over 2 metres in the worst-case 
scenario2,8. The occurrence of an ESLR event can more than quadruple this value, potentially raising the sea level 
up to a maximum of 8 m9.

Global warming, primarily driven by the emission of greenhouse gases (GHGs), is the main cause of SLR. 
Increased GHG concentrations in the atmosphere lead to higher global temperatures, which in turn cause the 
melting of ice caps and the thermal expansion of ocean waters2,7–9. Recent research indicates that accelerated 
melting of the Greenland and Antarctic ice sheets may contribute more substantially to extreme sea level rise 
than thermal expansion alone, particularly under warming scenarios exceeding 1.5 °C8,9. Elevated temperatures 
also enhance the frequency and intensity of extreme weather events, including cyclones and storm surges, 
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which amplify ESLR’s devastating effects on vulnerable coastal regions (e.g. higher risk of coastal flooding and 
erosion)10.

Overall, SLR, in both its Extreme and Relative forms, is poised to exert substantial impacts on global coastal 
regions, with the extent of these effects contingent upon various factors, including SLR rates, local infrastructure 
susceptibility, geomorphological characteristics, land use patterns, population growth trends, and community 
adaptive capacities1,2,5,6,11. While diverse sectors face vulnerability11–14, agriculture in low-lying coastal areas 
is particularly at risk12. Moreover, flooding in particular, can damage crops, reduce yields, and have long-term 
consequences for food security and economic stability15–20.

While we recognize that ESLR is not the only threat facing coastal agriculture, it is widely acknowledged in 
literature as one of the principal drivers of long-term land degradation, resulting in relevant productivity loss 
in low-lying regions. Hence, this work focuses on Extreme Sea Level Rise (ESLR) due to its potential to cause 
significant casualties and economic loss21. Our scope is to map areas vulnerable to ESLR in Europe and the 
Mediterranean basin to provide an initial assessment of the economic impacts on agriculture22,23. By considering 
different scenarios3 and vulnerability levels, we develop a comprehensive risk assessment to inform policy 
localization and effective mitigation strategies22. Unlike most studies that emphasize urban and infrastructure 
damage24,25, this research highlights the unique and enduring impacts of ESLR on croplands and food systems.

Results
Estimate ESLR vulnerability areas extent
The areas prone to ESLR in Europe and along the coast of North Africa are modelled making use of the Joint 
Research Centre (JRC) Global Extreme Sea Level projections, while the morphological analysis is based on 
DeltaDTM26 and AHN DEM (Actueel Hoogtebestand Nederland- Dutch National Elevation Dataset)27,28. 
The JRC defines ESLR as the sum of RSLR and Extreme Sea Levels (ESL) driven by tides, waves, and storm 
surges. All these factors are incorporated into both the Baseline Scenario, which is constructed using observed 
data from the period 1980–2014, and into four forward-looking climate projections that account for varying 
greenhouse gas emission pathways and timeframes. Specifically, the analysis explores two distinct climate change 
trajectories based on established Representative Concentration Pathways (RCPs): RCP 4.5, which represents a 
moderate emissions scenario assuming stabilization through mitigation efforts, and RCP 8.5, which reflects a 
high-emissions scenario consistent with limited or no climate policy intervention. These RCPs scenarios are 
used to model projected ESLR impacts under different and contrasting assumptions. The 4.5 RCP scenario 
conveys a moderate increase in global temperatures where the climate effect of human activities is dampened 
by effective mitigation actions21. Conversely, the RCP 8.5 is a more severe scenario in which emissions continue 
to rise throughout the twenty-first century. RCP 8.5 is generally used as the basis for worst-case climate change 
scenarios, it was initially based on what proved to be an overestimation of projected coal outputs29. The baseline 
scenario, derived from the work of Vousdoukas et al.21, represents present-day sea-level conditions for the 
reference period 1980–2014. During this period, tidal elevations along the global coastline were obtained using 
the FES2014 model, which combines tidal harmonics with ocean circulation and barotropic atmospheric forcing 
to generate a detailed depiction of current sea-level dynamics. This baseline provides the foundational reference 
for evaluating future impacts of Extreme Sea Level Rise (ESLR). By comparing future projections against this 
present-day benchmark, assessing changes in the extent and severity of coastal inundation under different 
climate scenarios is hence enabled. The two timeframes for which the effects of human activities are measured 
are 2050 and 2100, thus resulting in considering a total of 5 different scenarios For each scenario, three levels 
of inundation severity are considered, corresponding to the 5th, 50th, and 95th percentiles of the Extreme Sea 
Level Rise (ESLR) projections derived from Monte Carlo simulations, following the seminal work of Vousdoukas 
et al.21. These percentiles capture the range of potential outcomes, from a conservative lower-bound estimate 
at the 5th percentile, representing minimal sea level rise and limited inundation, through the 50th percentile, 
which reflects the median and most probable projection under current climate modelling assumptions, to the 
95th percentile, which depicts a worst-case scenario with extreme sea level rise and widespread inundation. We 
assume the uncertainty as a proxy for vulnerability to generate spatial maps indicating the likelihood of specific 
regions being impacted by ESLR in the future8,20. In this work we assume “vulnerability” as the combination of 
geographical suitable conditions (i.e. low DEM—Digital Elevation Model—coupled with the span of probability 
of ESLR given the available projections).

The maps of the impacted areas are generated by subtracting the Digital Elevation Model (DEM) with the 
ESLR projections with 100-year return period. ESLR projections are presented as points on the coastline. Each 
point contains the sea level in metres for an extreme event that has the 1% possibility to occur each year. The 
projections intersect 5 climate scenarios and 3 inundation severity classes for a total of 15 possible combinations30. 
The spatial association of terrestrial locations with the nearest ESLR estimates along the coast, accomplished 
through Thiessen tessellation, identifies all raster inland elevation pixels associated with a specific ESLR sample 
value. Subsequently, subtracting elevation values from projected ESLR estimates allows for the determination 
of the geographical extent of regions likely to be impacted by future rising oceans31. The magnitude of the 
inundation was estimated by considering both the coastline distance and the slope of the terrain. Slope is indeed 
an accurate proxy for terrain hydrology32,33, allowing it to factor in floodwater pathways. Then, an exponential 
decay function is applied, and areas that don’t have pixels exhibiting spatial contiguity with the coastline or with 
permanent water bodies directly connected to it are identified as isolated and eliminated32. As a result, we obtain 
inundation maps in which each 30 m×30 m cell ranges from 0 to 100. This value points to the area of each cell 
being submerged and allows to create site-specific estimations of flood vulnerability.
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Historical insights and future projections
The first result stemming from our projections (Fig. 1) is that a higher exposure to ESLR is not linearly linked to 
a larger area of impacted land. This is due to the morphology and hydrology of the coastline. For example, in the 
west coast of Ireland ESLR projections are very severe but due to very high and steep cliffs the areas vulnerable to 
an extreme event are smaller34. On the contrary there are areas in which the magnitude of the projected extreme 
phenomenon is not among the most severe, but the consequences can be disastrous, such as in the Nile delta. 
Figure 1a outlines that there are 5 macro-areas showing a significant vulnerability to ESLR events. The first and 
most notable one groups the coasts of (i) Belgium, Netherlands, Germany, and Denmark facing the North Sea. 
This region has a long history of coastal flooding besides the already mentioned and famous North Sea Flood 
of 195335 other events of similar magnitude have occurred over the centuries causing the spread of death and 
devastation. Notable among these are the St. Lucia’s flood of 1287, the St. Marcellus flood of 1362, the 1530 St. 
Felix’s flood, and the Christmas Flood of 171736, each illustrating the lethal potential of North Sea storm surges. 
These events affected a broad swath of Northwest Europe, collectively resulting in approximately 14,000 deaths35. 
Many of these storm surges have also had disastrous consequences across the English Channel, identifying the 
(ii) United Kingdom as another high-risk area. Following this are the (iii) Po Valley, the (iv) western coast of 
France, and the (v) Nile delta37.

These regions are experiencing an increased vulnerability to ESLR due to a confluence of environmental 
and anthropogenic factors. In the North Sea region and United Kingdom, enhanced storm surges frequently 
exacerbate sea level rise, compounding the risks to coastal infrastructure and habitats. On the contrary, in the Po 
Valley and the Nile Delta37, subsidence due to natural and human-induced processes has resulted in significantly 
lower land elevations relative to sea level, heightening their vulnerability to flooding. Additionally, these areas 
suffer from varying degrees of inadequate coastal management, which fails to mitigate the effects of rising sea 
levels effectively. These factors combine to increase the frequency and severity of flooding38, posing substantial 
risks to ecological systems, economic stability, and human populations in these regions33,36,39.

Figure 1.  Area under the threat of an ESLR event and magnitude of the event with 100-year return period 
in 2100 RCP8.5 scenario (A). Zoom in the Po Delta region showing the medium vulnerability RCP8.5 2100 
(B) scenario. Bar graph showing the total area vulnerable to ESLR in the different scenarios and for the three 
vulnerability levels (C). Map created by the authors using QGIS (3.40, url: https://qgis.org/)) and Python 
(3.15).
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Considering the five climate change scenarios previously mentioned, we observe that the area under threat 
of an ESLR event increases with the severity of the climate projection and the time frame considered. Thus—as 
reasonably expectable—the RCP8.5 scenario is much more severe than the RCP4.5, and similarly30, projections 
for 2100 are worse than those for 2050 and the Baseline scenario29. In the Baseline scenario, the estimated total 
area under the threat of ESLR along the coasts of Europe and North Africa ranges from 44,014 to 49,849 km2, 
with a median of 46,614 km2. These values remain relatively stable, with minor increases of 8% and 11% for the 
RCP4.5 and RCP8.5 scenarios, respectively, averaged across the three risk levels in the 2050 projection timeframe. 
However, more significant increases are observed in the projections for 2100. Specifically, the exposed area 
increases by 18% from the Baseline for the RCP4.5 scenario and by 35% for the RCP8.5 scenario 38. Although 
the Baseline scenario is preferable, we note a minor increase in 2050 without significant differences between 
the two RCP scenarios across the three risk levels. On the other hand, in the 2100 timeframe, we observe the 
most notable differences between the RCP8.5 and RCP4.5 scenarios, especially for the most severe events that 
are unlikely but can have the most destructive effects, leading to an increase of 24% in areas of low vulnerability. 
Given the escalation of these risks, it is imperative to integrate robust, forward-thinking coastal management 
strategies that incorporate both mitigation and adaptation measures tailored to these vulnerabilities, ensuring 
the resilience of affected communities against impending SLR, and associated extreme events8.

From land cover to crop losses
Once the areas affected by ESLR have been estimated, further analysis to explore the economic and social impacts 
were performed. To this end, the ESLR areas are overlaid with Corine Global Land Cover40, and intersections 
are computed.

In Fig. 2.A, we observe a significant prevalence of vulnerable cropland (Fig. 2.A and 2.C), which accounts 
for 49.7% of the total, in comparison to natural (47.8%) (Fig. 2.A and 2.D) and urban (2.5%) areas (Fig. 2.A 
and 2.B). Different patterns of changes in LC of affected area are also shown in Fig. 3.A. Cropland exhibits 
the least variability across different scenarios (Fig. 3.A and 3.C). This pattern can be explained by the spatial 
distribution of agricultural land, which is typically located in low-lying coastal areas close to river mouths and 
estuaries—regions historically favoured for their fertile soils, easy irrigation access, and transport connectivity41. 
Consequently, croplands are exposed even to moderate ESLR events, highlighting their persistent vulnerability. 
In contrast, urban areas exhibit a higher vulnerability to extraordinary events24 (Fig. 3.B)—which, although less 
likely, can have a more severe impact42—a different vulnerability profile: while their absolute exposure is lower, 
their sensitivity to catastrophic ESLR events is significantly higher. This reflects long-standing strategic urban 
planning practices that tend to locate cities slightly inland or to protect them via engineered defences such 

Figure 2.  Pie graph showing the distribution of Land-Cover (3 classes) of the Impacted Areas (A). Bar graph 
showing the differential among the different scenarios, timeframes and vulnerability levels (expressed through 
the confidence intervals) for Urban (B), Cropland (C) and Natural (D) classes.
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as levees, seawalls, and storm surge barriers43,44. This observation is consistent with strategic urban planning 
perspectives that position urban areas away from the coast or in locations protected by natural or artificial 
barriers45. Although cities are better shielded under moderate sea-level conditions, they remain critically 
exposed to extreme scenarios that can overwhelm both natural and artificial protections, leading to substantial 
damage to infrastructure and heightened risks to human lives46. Thus, our results underscore two distinct but 
complementary vulnerabilities: (i) cropland faces chronic exposure under a wide range of ESLR scenarios, posing 
systemic risks to food production; whereas (ii) urban areas face acute exposure during rare, extreme events, with 
potentially devastating social and economic consequences. The heightened vulnerability of cropland to ESLR 
poses a serious threat to European food security, due to the potential loss of agricultural production resulting 
from the flooding of high-value coastal farmland42,44 (Fig. 3.C). Many of Europe’s fertile regions, such as the 
river deltas in Italy, the Netherlands, and Egypt, are located near seacoasts. As ESLR continues to intensify with 
climate change, the potential for reduced agricultural output and compromised food supply chains could lead to 
increased food insecurity across the continent, highlighting the urgent need for resilient agricultural practices 
and enhanced coastal defences45.

Assessing the agricultural impact of ESLR on coastal lands
Delving deeper into the economic analysis, we quantified the impacts of an ESLR event on agricultural production 
across various climate change scenarios. Utilising the GAEZ 2015 dataset48, which provides productivity data for 
26 crops with a resolution of approximately 8.5 km2, we estimated the potential loss in agricultural production 
that could result from such an event49. By overlaying ESLR projections onto the GAEZ dataset, we calculated the 
percentage of each cell vulnerable to ESLR.

We assumed no production in the year of the event and a uniform crop distribution within each cell, 
which enabled us to estimate the overall loss of agricultural productivity. The accompanying graph illustrates 

Figure 3.  Plot of average percentage of national area under ESLR threat for 3 land cover classes (A). Map 
showing average percentage of area loss for built up (BA), cropland (CB) and natural land (DC) cover classes. 
Map created by the authors using QGIS (3.40, url: https://qgis.org/)) and Python (3.15).
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the average loss of agricultural productivity for each nation (Fig. 4.A). Notably, the Netherlands exhibits the 
highest percentage loss, ranging from % under the Baseline Scenario to 18.81% in the worst-case scenario. Other 
countries like Libya, Portugal, Italy, France, Germany, and Albania show losses ranging between 1 and 10%50.

Discussion
Our projections suggest that the economic impact of ESLR on agriculture could be severe, particularly in 
regions where agricultural lands are near the coast. Specifically, the situation in Egypt illustrates how even 
modest exposure to ESLR can lead to disastrous impacts, given the region’s morphology and land use. The 
Nile delta, a densely populated and highly modified area, concentrates nearly all the country’s agricultural and 
other productive activities. An extreme ESLR event in this region would have catastrophic consequences, as 
reflected in our analysis. To estimate the economic impact of the phenomenon, the productivity data for each 
cell (measured in 1000 tonnes) is multiplied by the price per tonne as recorded by FAOSTAT for each nation51. 
This analysis yields intriguing results, revealing nations that may not appear highly impacted at first glance. 
Although Egypt remains the foremost in terms of total agricultural losses, The Netherlands, Turkey, France, 
and Germany also emerge as significantly affected, alongside the United Kingdom and Belgium, primarily due 
to the specific crops likely to be impacted by ESLR. The Netherlands due to its particular geomorphology is 
significantly affected despite the mitigation strategies adopted. These strategies include the construction of sea 
walls and dikes to protect, primarily the population and the major infrastructures, by ESLR events.

Turkey presents a notable case52, with certain areas showing vulnerability to ESLR, such as the district of 
Bafra. Situated in a low-lying region near the Black Sea coast and traversed by the Kızılırmak River, Bafra is 
minimally affected by storm surges from the Black Sea51. However, projections indicate that some areas are 
still at risk of flooding. Given that these lands are among Turkey’s most fertile and are utilised for growing 
high-quality tobacco, the economic repercussions could be substantial. When considering the total value of 
production vulnerable to ESLR across all crops and nations for the next 100 years53 the total amount spread from 
$800 million in the best-case scenario up to $1.5 billion in the worst-case scenario (Fig. 5).

These findings underscore the urgent need for proactive measures to safeguard agricultural productivity 
in the face of increasing risks from Extreme Sea Level Rise11. The experience of the Netherlands illustrates 
that it requires 25 to 50 years to get agreement and implement large scale coastal protection schemes12. The 
disparities in potential loss across different nations highlight the importance of region-specific strategies that 
consider local agricultural practices54, crop types, and the geographic vulnerabilities of each area. For nations 
like the Netherlands, where significant losses are projected even in less severe scenarios, the improvement of 
robust coastal defences and the development of salt-tolerant crop varieties could mitigate some of the negative 

Figure 4.  Average Percentage Loss of Agricultural Productivity on the total for each Nation (A). Line 
Graph showing the eight most vulnerable nations and their percentage across each scenario, timeframe and 
vulnerability level (reported as error bar) (B). Map created by the authors using QGIS (3.40, url: ​h​t​t​p​s​:​/​/​q​g​i​s​.​o​r​
g​/​​​​​)​) and Python (3.15).
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impacts51. Additionally, enhancing early warning systems and improving regional planning can help to reduce 
the economic burden on nations with high-risk zones like the Nile delta and Bafra. Furthermore, recent research 
revealed that certain species known for biofuel potential cannot solely enable highly adaptive mechanisms to 
salinity stress (very high on land affected by ESLR), but even thrive in saline soils (i.e. Schrenkiella parvula of 
the Brassicaceae family)55, hence being an indication that agricultural strategies aiming at adapting to climate 
change adaptation may stimulate to reconsider current agricultural pattern, favouring biofuel crops on saline 
soils, so to reserve non-saline arable lands for cash crops.

Given the economic stakes involved, international cooperation and funding for research into resilient 
agricultural practices15 and climate adaptation technologies will be critical46. These collaborative efforts should 
aim not only to prevent immediate losses but also to ensure the long-term sustainability56 of food production 
systems globally, protecting them against future ESLR events and other climate-related challenges48.

Methods
ESLR vulnerable area identification
In this study, we utilised the ESLR projections developed by Vousdoukas et al.21 to delineate areas vulnerable 
to Extreme Sea Level Rise (ESLR) events across Europe and North Africa. ESLR projections by Vousdoukas et 
al.21 were selected because they offer the most up-to-date and spatially comprehensive estimates, grounded in 
a robust climatological framework. Their dataset distinguishes between Relative Sea Level Rise and extreme 
events, while also providing unified ESLR metrics and 100-year return period values in meters—facilitating 
direct integration with elevation data and enabling consistent risk and economic loss assessments. A raster map 
with a resolution of 90 metres was produced to highlight these regions at risk. The spatial model developed 
incorporates the DeltaDTM26, a coastal elevation dataset with an approximate resolution of 30 metres (for Europe 
and North Africa), and the AHN DEM, a 0.5 DTM (0,5 metre spatial resolution) only for the Netherlands. 
Hence, a finer dataset is used for the Netherlands (AHN, 0.5 m resolution), where detailed elevation data and 
extensive protective infrastructure are available. This allows for a more accurate representation of human-made 
barriers such as dikes and sea walls. For other countries, we include major coastal protection elements using 
data from the Climate Technology Centre & Network (CTCN), which provides global information on coastal 
defenses. This is because the Netherlands, since the devastating North Sea flood of 1953, is the only country that 
has implemented extensive flood protection measures, allowing the country to effectively mitigate the impacts 
of sea level rise and extreme sea level events, to safeguard not only agricultural land, but also densely populated 
areas, socio-economic activities, and critical infrastructure.

Other countries like United Kingdom, Italy, Germany and United State have implemented a few sea barriers 
and dikes’ systems which are not comparable with the integrated Netherlands’ system. Nonetheless, to consider 
these elements also for other countries an original dataset with dikes and sea barriers based on Climate 
Technology Centre & Network60 was created and then merged with the DTM. In this way we ensure to consider 
within the analysis human made adaptation structures that massively reduce the impact of ESLR in coastal areas 
in which they are presents. Consequently, our assessment should be interpreted as reflecting a no-adaptation 

Figure 5.  Average Percentage of Agricultural Economic loss on the total by nation for 6 categories of crops: 
Cereals and Grains (A), Roots and Tubers (B), Oils and Nuts (C), Legumes and Pulses (D), Vegetables and 
Fruits (E) and other crops (F). Map created by the authors using QGIS (3.40, url: https://qgis.org/)) and Python 
(3.15).
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baseline for most countries, with limited exceptions where data permit. While this approach enables partial 
integration of large-scale structural measures, we acknowledge that localized or smaller-scale protections may 
not be fully captured due to the absence of harmonized and high-resolution data across the entire study area. 
Therefore, future efforts should prioritize the integration (which is easily implementable in our model) of more 
complete datasets on coastal protection to better represent adaptation scenarios at finer localized scale when 
these will become available. To this end, individual tiles in .tif format, were processed in Google Earth Engine 
using JavaScript scripts.

While the ESLR projections we employ already reflect dynamic interactions between tides, waves, and storm 
surges in open coastal waters, our modelling approach translates these projected sea levels into spatially explicit 
land impacts. To do so, we use a hydrological connectivity method that takes into account not only absolute 
elevation but also topographic flow paths and slope. This method improves upon simple “bathtub” models by 
preventing unrealistic inland spread of water over isolated basins and offers a practical compromise between 
physical realism and scalability. While it does not simulate the full complexity of coastal hydrodynamics or wave 
run-up, it provides a reliable and repeatable framework for assessing flood exposure across large geographic 
areas and under different future ESLR scenarios.

To integrate ESLR scenarios with a 100-year return period provided by the Joint Research Centre (JRC) in 
.csv format, we converted these files into .shp point format. Spatially distributing the point data required a lattice 
of Thiessen polygons, constructed through Voronoi diagram. This methodological approach ensures that each 
area within the model is associated with the nearest coastal projection point, facilitating a continuous spatial 
analysis59. The Thiessen polygons were generated using ArcGIS Pro and subsequently rasterized and uploaded 
in Google Earth Engine (GEE) for further processing.

The rationale to identify the ESLR vulnerable areas is1:

	

R(x, y) =





0 if (x, y) ∈ L and DEM(x, y) ≤ ESLR(x, y)

1 − exp
(

−
min

∑
i∈ϵ

(1+Slope(DEM(x,y)))∗d(x,y)

σ

)
if (x, y) ∈ L and DEM(x, y) > ESLR(x, y)

0 if (x, y) ∈ S

where
ESLR(x, y) = ESLR(pi)
(x, y) ∈ Vp(pi)
Vp(pi) = {q ∈ R2 : d(q, pi) ≤ d(q, pj), ∀j ̸= i

Given L and S, the two sets representing points on the land and in the sea, respectively, and having defined 
the functions: DEM (x, y), which identifies the elevation above sea level for each pair of coordinates, and 
ESLR (pi), which associates each point on the coast, pi, with the relative value of the height of the extreme 
sea level event, we defined the risk function R function of DEM (x, y) and ESLR (x, y) the Voronoi 
transformation of ESLR (pi). This function identifies vulnerable areas, assigning them a value between 0 and 1, 
while non-vulnerable areas and open waters are considered Null. The risk function is defined as the inverse of the 
exponential of the cost distance function R(x,y). The cost function is a function that quantifies the resistance or 
difficulty of the sea level event to propagate inland, depending on local topographic gradients, surface roughness, 
and the continuity of low-lying terrain. In other words, areas with low elevation and high connectivity to the 
coastline will have a lower cost and therefore higher risk values, while areas at higher altitudes or separated by 
significant topographic barriers will present higher costs and consequently lower risk scores. In this way distance 
from the coast, terrain morphology and exponential decay of the flood are while considered. To do so the GEE 
(an Arcpy Python library used for displaying map tiles and printing rich representations of Earth Engine) was 
used to compute the differences between the DEM and the ESLR projections. Cells yielding a positive difference 
were assigned a null value, indicating areas not affected by ESLR, whereas those holding negative values were 
given value equal to 1, eliciting areas likely to be impacted by ESLR. Then, these areas were used to spatially mask 
Slope raster layers derived using the TAGEE package in GEE. These raster strata were exported and processed in 
ArcGIS Pro. The previously defined risk function was implemented in the ESRI environment using the Distance 
Accumulation tool, where the slope layers served as the cost raster, the OpenStreetMap (OSM) coastline was set 
as the source of flooding while the original Sea Barriers shapefile was set as inundation barrier. This operation 
is critical, because it excludes false positive results, such as depressed areas below sea level, with no spatial 
connection with open waters whatsoever, and/or situated hundreds of kilometres from the coast. Lastly, an 
inverse exponential function was applied according to Boettle et al. (2016) to model inundation expansion58.This 
procedure was run for all the possible permutations of: climate change scenarios, timeframes, and vulnerability 
levels. Thus, the procedure resulted in 15 single band tif rasters. Each raster has pixels with values ranging from 
0 to 100, eliciting the area of each pixel under the threat of an ESLR event. In this way, we produce spatially 
explicit maps showing the spatial extent of an ESLR event happening with a marginal incremental probability 
of 1% each year.

Land cover assessment
Vulnerability mapping offers significant insights for environmental and socio-economic analysis, particularly 
through the exploration of land cover within areas susceptible to ESLR. Our initial approach involves a detailed 
examination of land cover characteristics47. We employed a methodology that overlays the projected geographic 
extent of future ESLR projections onto current land-use maps, enabling the assessment of potential impacts across 
different land-use categories. Specifically, we utilised the Corine Global Land Cover40, which we reprojected into 
EPSG:3035, featuring a resolution of approximately 100 metres23. To streamline the analysis, we consolidated 
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the 20 classes representing natural elements—excluding those designated as ‘Built Up’ (code 40) and ‘Croplands’ 
(code 50)—into a single ‘Natural’ class, resulting in three primary categories: Built Up, Cropland, and Natural10.

Subsequently, assuming land-use patterns and associated values would remain constant in the future, the 
reclassified Corine layer is overlaid with the 15 distinct ESLR projection scenarios. This integration assigns 
land cover values to the corresponding ESLR layers, facilitating the classification of each pixel based on its 
vulnerability to sea level rise. Then the Arcpy ‘Tabulate Area’ function is used to calculate the area covered by the 
pixels within each class. The results of this spatial analysis were meticulously compiled and stored in a tabular 
format29. This refined approach not only enhances our understanding of the potential spatial distribution and 
intensity of ESLR impacts but also supports robust decision-making for mitigation and adaptation strategies in 
vulnerable coastal regions highlighting the importance of adopting it also in the agricultural sector.

Agricultural production losses and economic impacts
Given that 49.7% of the land affected by extreme sea level rise (ESLR) is agricultural, we proceeded to assess 
potential land-capability and crop value losses due to such events. For this analysis, we utilised the Global Agro-
Ecological Zones (GAEZ) 2015 dataset. This dataset offers global, gridded data (at 5-arcminute resolution) on 
irrigated and rainfed crop areas, production, and yield across 26 different crops and crop categories, based on 
national statistics. Firstly, the .tif files from GAEZ 2015 were reprojected into the ETRS 1989 LAEA (EPSG: 3035) 
coordinate system. Using the Python GDAL library, we quantified the ESLR vulnerable cells (~30m) within each 
GAEZ cell (~8.6km). Then we calculate the complement of the percentage for each GAEZ cell vulnerable to 
ESLR. This results in a raster ranging from 0 to 1 where cells with value 1 indicate no ESLR impact, whereas 
those with value 0 would be completely affected by an ESLR event. This derived raster was then multiplied by the 
GAEZ productivity raster to estimate agricultural productivity losses for each of the 15 climate change scenarios 
and across the 26 crops47. This calculation assumes a uniform distribution of cultivated areas within each cell 
and a constant crop mix over time. These assumptions enabled us to estimate, with reasonable accuracy, the total 
agricultural production for each nation and the corresponding losses attributable to ESLR events43.

To estimate the economic impact of an ESLR event, we multiplied the raster of the agricultural productivity 
(in 1000 tonnes per pixel) for each of the 15 scenarios by the producer price per tonne of each crop by nation. 
The price of the 26 crops—or group of crops—are downloaded by FAOSTAT, and the crop categories are created 
following the GAEZ 2015 metadata. Then, zonal statistics are calculated to aggregate the data at the national 
level (NUTS-0). These crops are also grouped in 6 major classes according to FAO classification. This enables 
a better understanding of agricultural macro trends and sector specific elaborations (Fig. 6). Other descriptive 

Figure 6.  Methodological procedure followed to achieve the 4 products elaborated in this work.
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statistics are calculated to complete the analysis and the results are displayed in maps. Interesting results come 
out in poorer regions that with good coastal land management could lower the risks linked to an ESLR event18.

Future perspectives and key limitations
This study has crucially delineated the regions vulnerable to Extreme Sea Level Rise (ESLR), fostering a deeper 
understanding of the potential risks and enabling the development of targeted strategies for coastal land 
management and mitigation12. Through meticulous analysis using cutting-edge geographic and economic 
models, our findings highlight the profound impacts of ESLR on coastal regions, with a particular focus on 
agricultural lands, which encompass 58% of the areas at risk. Our research underscores the critical need for 
efficient mitigation strategies to reduce exposure and enhance resilience, particularly in agricultural zones that 
sustain significant economic and social value. The integration of ESLR projections with the GAEZ dataset has 
provided a novel perspective on the potential economic impacts, illustrating not only the immediate threats 
but also the long-term challenges to food security and regional economic stability. These impacts are especially 
pronounced in regions like the Nile Delta, where even modest ESLR events can have catastrophic consequences 
due to the area’s dense population and agricultural reliance13.

Furthermore, the methodological advancements in this study offer a robust framework for future research 
and policymaking. By combining high-resolution DTM, sea barriers data with detailed crop and economic data, 
we have enabled more precise mapping of ESLR vulnerability and its economic implications. Additionally, the 
study uses a comprehensive methodological approach which takes into consideration morphological aspects and 
flood hydrology that was never applied at large scale. This approach not only enhances our understanding of the 
spatial distribution of risks but also supports the formulation of region-specific adaptation strategies, which are 
essential in the face of increasing ESLR incidents. However, the study is not without limitations18. The resolution 
of the global DTM employed, while among the highest currently available, may inadequately represent smaller-
scale geographic features that influence vulnerability assessments, particularly anthropogenic structures such 
as embankments, dykes, and water gates designed to prevent seawater intrusion. Using 0.5 meters DTM for the 
Netherlands and creating a dataset with human made features we believe to have addressed this issue effectively; 
yet, extremely localized case studies aiming at mimicking the proposed methodology may further benefit from 
the adoption of place-based higher resolution DTM and infrastructure data.

Another important methodological point concerns the flood modelling approach adopted in our study. We 
recognize that our topographic model does not simulate complex hydrodynamic processes such as storm surge 
interactions, wave run-up, or tidal amplification. However, the ESLR projections we used as inputs—particularly 
those from Vousdoukas et al. (2018)—already account for these dynamic drivers, offering a robust estimation 
of the expected extreme sea levels at the coastline under different climate scenarios. Our model builds on these 
projections by translating them into inland exposure patterns, using a cost-distance approach that incorporates 
elevation, slope, and proximity to the shoreline. While not hydrodynamic, this method allows for the realistic 
approximation of overland flood extent at the continental scale, and strikes a balance between accuracy and 
computational feasibility. It offers a substantial improvement over static “bathtub” models, while remaining 
applicable to large spatial domains where high-resolution hydraulic simulations are not feasible. This modelling 
framework, while simplified, provides an effective and replicable approach for identifying exposure hotspots and 
supporting regional-scale adaptation planning.

Furthermore, we acknowledge that one potential limitation of our analysis is the assumption of static crop 
distribution, which holds the spatial allocation and composition of agricultural land constant over time. As such, 
our economic loss estimates do not account for potential future adaptations in cropping patterns or land-use 
changes that may occur in response to climate pressures, market shifts, or technological developments. While 
we fully agree that these dynamics are important and merit exploration in future work, their inclusion would 
require spatially explicit projections that are not currently available at the resolution and scope of our study. 
But more importantly, a key objective of our work is to provide a clear and tangible risk assessment for policy 
makers and local stakeholders based on the agricultural systems that exist today. We believe that referencing 
current crop distributions allows for a more immediate and relatable understanding of what is at stake under 
(ESLR) scenarios. In contrast, presenting outcomes based on hypothetical future agricultural systems—while 
scientifically valid—would risk obscuring the direct implications for today’s communities, food systems, and 
regional economies; not to mention that these forward-looking scenarios also carry considerable uncertainty and 
depend on assumptions that would amplify the aggregate uncertainty of the results produced. For these reasons, 
we have chosen to ground our analysis in present-day agricultural configurations, providing a conservative yet 
policy-relevant estimate of potential ESLR impacts. This choice supports the study’s core aim: to raise awareness 
of the risks posed to current agricultural landscapes and to inform timely and targeted adaptation strategies.

Considering these findings and limitations, it is imperative for future research to continue in refining the 
spatial and economic models of ESLR impact19. Enhanced modelling precision, coupled with dynamic economic 
and agricultural data, will be crucial in developing more effective adaptation and mitigation strategies. A higher 
resolution DTM that would also consider artificial dykes and sea walls would return more faithful and current 
predictions (although, to the best of our knowledge, this is not available for the scale of analysis implemented 
in this work). These strategies must be tailored not only to the physical and economic landscapes but also to the 
socio-cultural contexts of the affected regions, ensuring that the most vulnerable communities are equipped to 
withstand the challenges posed by climate change. While this study does not conduct a full cost–benefit analysis 
of adaptation options, we caution that narrowly framing such comparisons around agricultural value may be 
misleading. Coastal areas often concentrate multiple vital assets beyond cropland, including densely populated 
settlements, infrastructure, and cultural heritage sites. Therefore, protective measures should be evaluated not 
only for their economic return, but also for their societal necessity. Nevertheless, by reporting national-level 
cropland exposure rates, this study offers a preliminary yet policy-relevant tool for identifying regions where 
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adaptation planning may be most urgently required. Therefore, our investigation, by providing a comprehensive 
assessment of the risks and a detailed blueprint for mitigation, contributes a critical piece to the puzzle of climate 
resilience58. It calls for an integrated approach that combines scientific inquiry with practical policymaking59, 
leveraging international cooperation and innovation to safeguard our most vulnerable coastal regions against 
the impending challenges of Extreme Sea Level Rise21,61.

Data availability
Raster files of the mapped vulnerability to ESLR according to the climate change scenarios considered, and 
shapefiles containing vulnerable areas to ESLR and the related agricultural losses (both in square meters and 
percentage) are accessible and available for download at the following link: ​h​t​t​p​s​:​/​/​d​a​t​a​.​m​e​n​d​e​l​e​y​.​c​o​m​/​d​a​t​a​s​e​
t​s​/​9​3​2​r​z​c​s​c​h​f​/​1​​​​ . Additionally, result maps can be visualized and queried through the online platform GEE at 
the following link ​h​t​t​p​s​:​​/​/​g​e​e​-​​e​c​o​g​e​o​​.​p​r​o​j​e​​c​t​s​.​e​​a​r​t​h​e​n​​g​i​n​e​.​a​​p​p​/​v​i​e​​w​/​e​l​s​r​-​v​u​l​n​e​r​a​b​i​l​i​t​y. Further information and 
dataset can be provided by contacting the corresponding author at federico.martellozzo@unifi.it.

Received: 11 June 2025; Accepted: 4 December 2025

References
	 1.	 Becker, M., Karpytchev, M. & Hu, A. Increased exposure of coastal cities to sea-level rise due to internal climate variability. Nat. 

Clim. Change 13, 367–374 (2023).
	 2.	 Horton, B. P. et al. Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey. NPJ Clim. 

Atmos. Sci. 3, 18 (2020).
	 3.	 Taherkhani, M. et al. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 10, 6466 (2020).
	 4.	 Becker, M., Karpytchev, M. & Papa, F. Hotspots of relative sea level rise in the tropics. In Tropical Extremes 203–262 (Elsevier, 

2019). https://doi.org/10.1016/B978-0-12-809248-4.00007-8.
	 5.	 Rashid, Md. M., Wahl, T., Chambers, D. P., Calafat, F. M. & Sweet, W. V. An extreme sea level indicator for the contiguous United 

States coastline. Sci. Data 6, 326 (2019).
	 6.	 Tebaldi, C. et al. Extreme sea levels at different global warming levels. Nat. Clim. Change 11, 746–751 (2021).
	 7.	 Dang, A. T. N., Reid, M. & Kumar, L. Assessing potential impacts of sea level rise on mangrove ecosystems in the Mekong Delta, 

Vietnam. Reg. Environ. Change 22, 70 (2022).
	 8.	 Vousdoukas, M. I. et al. Economic motivation for raising coastal flood defenses in Europe. Nat. Commun. 11, 2119 (2020).
	 9.	 Stokes, C. R. et al. Warming of +1.5 °C is too high for polar ice sheets. Commun. Earth Environ. 6, 351. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​

3​2​4​7​-​0​2​5​-​0​2​2​9​9​-​w​​​​ (2025).
	10.	 Gregory, J. M. et al. Concepts and terminology for sea level: Mean, variability and change, both local and global. Surv. Geophys. 40, 

1251–1289 (2019).
	11.	 de Ruig, L. T. et al. An economic evaluation of adaptation pathways in coastal mega cities: An illustration for Los Angeles. Sci. Total 

Environ. 678, 647–659 (2019).
	12.	 Wassmann, R., Hien, N. X., Hoanh, C. T. & Tuong, T. P. Sea level rise affecting the Vietnamese Mekong Delta: Water elevation in 

the flood season and implications for rice production. Clim. Change 66, 89–107 (2004).
	13.	 Nazarnia, H., Nazarnia, M., Sarmasti, H. & Wills, W. O. A systematic review of civil and environmental infrastructures for coastal 

adaptation to sea level rise. Civ. Eng. J. 6, 1375–1399 (2020).
	14.	 Dawson, D., Shaw, J. & Roland Gehrels, W. Sea-level rise impacts on transport infrastructure: The notorious case of the coastal 

railway line at Dawlish, England. J. Transp. Geogr. 51, 97–109 (2016).
	15.	 Du, S. et al. Hard or soft flood adaptation? Advantages of a hybrid strategy for Shanghai. Glob. Environ. Change 61, 102037 (2020).
	16.	 Ann Conyers, Z., Grant, R. & Roy, S. S. Sea level rise in Miami Beach: Vulnerability and real estate exposure. Prof. Geogr. 71, 

278–291 (2019).
	17.	 Corwin, D. L. Climate change impacts on soil salinity in agricultural areas. Eur. J. Soil Sci. 72, 842–862 (2021).
	18.	 Negacz, K., Malek, Ž, de Vos, A. & Vellinga, P. Saline soils worldwide: Identifying the most promising areas for saline agriculture. 

J. Arid Environ. 203, 104775 (2022).
	19.	 Arabadzhyan, A. et al. Climate change, coastal tourism, and impact chains—A literature review. Curr. Issues Tour. 24, 2233–2268 

(2021).
	20.	 Hinkel, J. et al. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. 111(9), 3292–

3297 (2014).
	21.	 Vousdoukas, M. I. et al. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. 

Commun. 9, 2360 (2018).
	22.	 Monioudi, I. Ν et al. Climate change impacts on critical international transportation assets of Caribbean Small Island Developing 

States (SIDS): The case of Jamaica and Saint Lucia. Reg. Environ. Change 18, 2211–2225 (2018).
	23.	 Calafat, F. M., Wahl, T., Tadesse, M. G. & Sparrow, S. N. Trends in Europe storm surge extremes match the rate of sea-level rise. 

Nature 603, 841–845 (2022).
	24.	 Ataie-Ashtiani, B., Werner, A. D., Simmons, C. T., Morgan, L. K. & Lu, C. How important is the impact of land-surface inundation 

on seawater intrusion caused by sea-level rise?. Hydrogeol. J. 21, 1673–1677 (2013).
	25.	 Eini, M., Kaboli, H. S., Rashidian, M. & Hedayat, H. Hazard and vulnerability in urban flood risk mapping: Machine learning 

techniques and considering the role of urban districts. Int. J. Disast. Risk Reduct. 50, 101687 (2020).
	26.	 Pronk, M. et al. DeltaDTM: A global coastal digital terrain model. Sci. Data 11, 273. https://doi.org/10.1038/s41597-024-03091-9 

(2024).
	27.	 Meadows, M., Jones, S. & Reinke, K. Vertical accuracy assessment of freely available global DEMs (FABDEM, Copernicus DEM, 

NASADEM, AW3D30 and SRTM) in flood-prone environments. Int. J. Digit. Earth 17, 2308734 (2024).
	28.	 Riahi, K. et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).
	29.	 Kim, J., Choi, J., Choi, C. & Park, S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on 

streamflow in the Hoeya River Basin, Korea. Sci. Total Environ. 452–453, 181–195 (2013).
	30.	 Poulter, B. & Halpin, P. N. Raster modelling of coastal flooding from sea-level rise. Int. J. Geogr. Inf. Sci. 22, 167–182 (2008).
	31.	 Tromble, E. et al. Aspects of coupled hydrologic-hydrodynamic modeling for coastal flood inundation. In Estuarine and Coastal 

Modeling (2009) 724–743 (American Society of Civil Engineers, Reston, 2010). https://doi.org/10.1061/41121(388)42.
	32.	 Poulter, B. & Halpin, P. N. Raster modelling of coastal flooding from sea-level rise. Int. J. Geogr. Inf. Sci. 22(2), 167–182. ​h​t​t​p​s​:​/​/​d​o​

i​.​o​r​g​/​1​0​.​1​0​8​0​/​1​3​6​5​8​8​1​0​7​0​1​3​7​1​8​5​8​​​​ (2008).
	33.	 Mehta, D., Dhabuwala, J., Yadav, S. M., Kumar, V. & Azamathulla, H. M. Improving flood forecasting in Narmada river basin using 

hierarchical clustering and hydrological modelling. Results Eng. 20, 101571 (2023).

Scientific Reports |         (2026) 16:1939 11| https://doi.org/10.1038/s41598-025-31630-w

www.nature.com/scientificreports/

https://data.mendeley.com/datasets/932rzcschf/1
https://data.mendeley.com/datasets/932rzcschf/1
https://gee-ecogeo.projects.earthengine.app/view/elsr-vulnerability
https://doi.org/10.1016/B978-0-12-809248-4.00007-8
https://doi.org/10.1038/s43247-025-02299-w
https://doi.org/10.1038/s43247-025-02299-w
https://doi.org/10.1038/s41597-024-03091-9
https://doi.org/10.1061/41121(388)42
https://doi.org/10.1080/13658810701371858
https://doi.org/10.1080/13658810701371858
http://www.nature.com/scientificreports


	34.	 Brázdil, R., Kundzewicz, Z. W. & Benito, G. Historical hydrology for studying flood risk in Europe. Hydrol. Sci. J. 51, 739–764 
(2006).

	35.	 Gerritsen, H. What happened in 1953? The Big Flood in the Netherlands in retrospect. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 
363, 1271–1291 (2005).

	36.	 Blöschl, G. et al. Current European flood-rich period exceptional compared with past 500 years. Nature 583, 560–566 (2020).
	37.	 Kellner, A., Brink, G. J. & El Khawaga, H. Depositional history of the western Nile Delta, Egypt: Late Rupelian to Pleistocene. Am. 

Assoc. Pet. Geol. Bull. 102, 1841–1865 (2018).
	38.	 Vousdoukas, M. I. et al. Developments in large-scale coastal flood hazard mapping. Nat. Hazards Earth Syst. Sci. 16, 1841–1853 

(2016).
	39.	 Kemp, A. C. & Horton, B. P. Contribution of relative sea-level rise to historical hurricane flooding in New York City. J. Quat. Sci. 

28, 537–541 (2013).
	40.	 Büttner, G. CORINE land cover and land cover change products. 55–74 (2014). https://doi.org/10.1007/978-94-007-7969-3_5.
	41.	 Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and 

coastal flooding—A global assessment. PLOS ONE 10(3), e0118571. https://doi.org/10.1371/journal.pone.0118571 (2015).
	42.	 Hanson, S. et al. A global ranking of port cities with high exposure to climate extremes. Clim. Change 104(1), 89–111. ​h​t​t​p​s​:​/​/​d​o​i​.​

o​r​g​/​1​0​.​1​0​0​7​/​s​1​0​5​8​4​-​0​1​0​-​9​9​7​7​-​4​​​​ (2011).
	43.	 Brath, A., Montanari, A. & Moretti, G. Assessing the effect on flood frequency of land use change via hydrological simulation (with 

uncertainty). J. Hydrol. (Amst.) 324, 141–153 (2006).
	44.	 Hallegatte, S., Green, C., Nicholls, R. J. & Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Change 3(9), 

802–806. https://doi.org/10.1038/nclimate1979 (2013).
	45.	 Wolff, C., Nikoletopoulos, T., Hinkel, J. & Vafeidis, A. T. Future urban development exacerbates coastal exposure in the 

Mediterranean. Sci. Rep. 10, 14420 (2020).
	46.	 Naef, F., Scherrer, S. & Weiler, M. A process based assessment of the potential to reduce flood runoff by land use change. J. Hydrol. 

(Amst) 267, 74–79 (2002).
	47.	 Dar, M. H. et al. Transforming rice cultivation in flood prone coastal Odisha to ensure food and economic security. Food Secur. 9, 

711–722 (2017).
	48.	 Global Agro-Ecological Zone V4—Model Documentation. (FAO, 2021). https://doi.org/10.4060/cb4744en.
	49.	 Grogan, D., Frolking, S., Wisser, D., Prusevich, A. & Glidden, S. Global gridded crop harvested area, production, yield, and 

monthly physical area data circa 2015. Sci. Data 9, 15 (2022).
	50.	 Hunter, J. Estimating sea-level extremes under conditions of uncertain sea-level rise. Clim. Change 99, 331–350 (2010).
	51.	 Reed, C. et al. The impact of flooding on food security across Africa. Proc. Natl. Acad. Sci. 119, e2119399119 (2022).
	52.	 Aksoy, H., Demirel, H. & Seker, D. Z. Exploring possible impacts of sea level rise: the case of Izmir, Turkey. Int. J. Glob. Warm. 13, 

398 (2017).
	53.	 Hall, J. W., Sayers, P. B., Walkden, M. J. A. & Panzeri, M. Impacts of climate change on coastal flood risk in England and Wales: 

2030–2100. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364, 1027–1049 (2006).
	54.	 Raihan, A. A review of the global climate change impacts, adaptation strategies, and mitigation options in the socio-economic and 

environmental sectors. J. Environ. Sci. Econ. 2, 36–58 (2023).
	55.	 Sun, Y. et al. Divergence in the ABA gene regulatory network underlies differential growth control. Nat. Plants 8, 549–560. ​h​t​t​p​s​:​/​

/​d​o​i​.​o​r​g​/​1​0​.​1​0​3​8​/​s​4​1​4​7​7​-​0​2​2​-​0​1​1​3​9​-​5​​​​ (2022).
	56.	 Wahl, T. et al. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Commun. 8, 16075 

(2017).
	57.	 Yunus, A. et al. Uncertainties in tidally adjusted estimates of sea level rise flooding (bathtub model) for the Greater London. Remote 

Sens. (Basel) 8, 366 (2016).
	58.	 Boettle, M., Rybski, D. & Kropp, J. P. Quantifying the effect of sea level rise and flood defence—A point process perspective on 

coastal flood damage. Nat. Hazards Earth Syst. Sci. 16(2), 559–576. https://doi.org/10.5194/nhess-16-559-2016 (2016).
	59.	 Wrathall, D. J. et al. Meeting the looming policy challenge of sea-level change and human migration. Nat. Clim. Change 9, 898–901 

(2019).
	60.	 Gallien, T. W., Sanders, B. F. & Flick, R. E. Urban coastal flood prediction: Integrating wave overtopping, flood defenses and 

drainage. Coast. Eng. 91, 18–28 (2014).
	61.	 The Climate Technology Centre & Network. Storm-surge barriers and closure dams. CTC-N. Available at: ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​c​t​​c​​-​n​.​o​​r​g​/​​

t​e​c​h​n​​o​l​o​g​​i​e​​s​/​s​t​​o​​r​m​-​s​​u​​r​g​e​-​b​a​r​r​​i​e​r​​s​-​a​n​d​-​c​l​​o​s​u​r​e​-​d​a​m​s. Accessed 19 Sept 2025.

Author contributions
All authors have contributed to the development of the manuscript and support its conclusions; however, their 
contributions differ in nature and extent, as detailed below. Federico Martellozzo: Conceptualization, Method-
ology, Formal analysis, Investigation, Data curation, Writing—original draft, Visualization, Supervision. Matteo 
Dalle Vaglie: Data curation, Methodology, Model Implementation and Validation, Formal analysis, Visualiza-
tion, Writing—original draft, Writing—review and editing. Carolina Falaguasta: Methodology, Model Imple-
mentation, Writing—review and editing. Katarzyna Negacz: Funding acquisition, Project administration, Writ-
ing—review and editing. Filippo Randelli: Writing—review and editing. Pim van Tongeren: Writing—review 
and editing. Bas Bruning: Writing—review and editing. Pier Vellinga: Writing—review and editing. All authors 
have read and approved the final version of the manuscript.

Funding
We would like to acknowledge that the data and results generated in this study are available upon request, free of 
charge, to all non-profit scientists and academics. Please contact the corresponding author for access. This work 
was supported by the SALAD project, funded by the ERA‐NET Cofund FOSC program, which has received 
funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agree-
ment No 862555 (https://www.saline-agriculture.com/en), and by the EUniWell Well-Being Research Incubator 
Programme and Seed Funding Programme of the EUniWell Consortium (European Universities for Wellbeing, 
https://www.euniwell.eu/) within the European Union’s Horizon 2020 research and innovation programme ​u​n​d​
e​r Grant Agreement No 101035821.

Scientific Reports |         (2026) 16:1939 12| https://doi.org/10.1038/s41598-025-31630-w

www.nature.com/scientificreports/

https://doi.org/10.1007/978-94-007-7969-3_5
https://doi.org/10.1371/journal.pone.0118571
https://doi.org/10.1007/s10584-010-9977-4
https://doi.org/10.1007/s10584-010-9977-4
https://doi.org/10.1038/nclimate1979
https://doi.org/10.4060/cb4744en
https://doi.org/10.1038/s41477-022-01139-5
https://doi.org/10.1038/s41477-022-01139-5
https://doi.org/10.5194/nhess-16-559-2016
https://www.ctc-n.org/technologies/storm-surge-barriers-and-closure-dams
https://www.ctc-n.org/technologies/storm-surge-barriers-and-closure-dams
https://www.saline-agriculture.com/en
https://www.euniwell.eu/
http://www.nature.com/scientificreports


Declarations

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​
0​.​1​0​3​8​/​s​4​1​5​9​8​-​0​2​5​-​3​1​6​3​0​-​w​​​​​.​​

Correspondence and requests for materials should be addressed to F.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and 
indicate if changes were made. The images or other third party material in this article are included in the article’s 
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy 
of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025 

Scientific Reports |         (2026) 16:1939 13| https://doi.org/10.1038/s41598-025-31630-w

www.nature.com/scientificreports/

https://doi.org/10.1038/s41598-025-31630-w
https://doi.org/10.1038/s41598-025-31630-w
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/scientificreports

	﻿Assessing extreme sea level rise impacts on coastal agriculture in Europe and North Africa
	﻿Results
	﻿Estimate ESLR vulnerability areas extent
	﻿Historical insights and future projections
	﻿From land cover to crop losses
	﻿Assessing the agricultural impact of ESLR on coastal lands

	﻿Discussion
	﻿Methods
	﻿ESLR vulnerable area identification
	﻿Land cover assessment
	﻿Agricultural production losses and economic impacts
	﻿Future perspectives and key limitations

	﻿References


