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For individuals with dyskinesia, postoperative walking rehabilitation is crucial, and lower limb
exoskeletons provide effective training assistance. This paper proposes a method for designing

a lower limb exoskeleton based on sensor feedback and human-robot gait simulation. Firstly, a
mathematical model of lower limb motion and an exoskeleton robot model are designed based on
hip/knee joint motion and gait mechanisms. Secondly, gait simulation is performed via human-robot
coupling, with a comparative analysis of lower limb muscle dynamics during walking. Hip/knee motion
data is converted into motion function curves for dynamic simulation verification. Subsequently, a
brushless motor drive control system for the lower limb exoskeleton is developed using Simulink, and
simulation experiments are conducted for position, speed, and torque control. Finally, patient walking
experiments using membrane pressure and pose sensors analyze hip/knee and plantar pressure data,
enabling output adjustment feedback and closed-loop torque control of the exoskeleton.

Keywords Assistive rehabilitation robotics, Gait kinematics analysis, Gait simulation, Film pressure gait

sensor, OpenSim, Fuzzy PID

Femoroacetabular Impingement (FAI) syndrome is characterized by structural abnormalities of the hip joint,
leading to persistent pain and restricted mobility. It is a significant contributor to hip discomfort and early-onset
osteoarthritis, particularly in the young and middle-aged population'2. Given its high prevalence and notable
clinical impact3, targeted lower limb rehabilitation is crucial. However, traditional rehabilitation tools, such as
crutches and rehabilitation handrails, rely heavily on upper limb strength. The weakness of the upper limbs in
patients often results in excessive weight-bearing on the lower limbs, weakening the rehabilitation effect and

failing to meet the precise rehabilitation needs of FAI patients.

In contrast, active exoskeleton robots can adapt to environmental changes and effectively assist individuals
with lower limb dysfunction in improving mobility, enhancing muscle strength, and maintaining bone density.
This technology has made significant progress in the medical field*, with representative products including
HAL®, ReWalk®, Honda SMA’, and the lightweight and efficient GEMS II. The driving technology has evolved
from hydraulic/pneumatic systems to electric and intelligent systems, from Hardiman I° and EXPOS!? to Series

Elastic Actuator (SEA) robots!!, ultimately achieving mechatronic intelligent contro

112

. These developments

provide technical support for precise lower limb rehabilitation. Modern powered exoskeletons are rapidly

advancing towards intelligence, lightweight design, and precision.
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Fig. 1. Gait analysis.
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Fig. 2. Skeletal structure of the hip and knee joints.
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This study aims to design an intelligent lower limb rehabilitation robot tailored for FAI patients based on
OpenSim gait simulation software. On one hand, it will simulate the movement dynamics and gait muscle strength
characteristics of FAI patients to explore the efficacy of assistive forces. On the other hand, the integration of
sensors will create a specialized gait database for FAI, enhancing the device’s adaptability to individual patient
differences.

Lower limb movement mechanism

Gait motion and spatio-temporal characterization

Gait, which describes walking posture, provides insights into body configuration and dynamics. In this study,
we will focus on analyzing the sagittal plane’® gait trends of the lower limbs, noting their periodic characteristics
during stable walking!“. As illustrated in Fig. 1.

Gait cycles are defined as the movement from one foot’s heel making contact with the ground to the ground
once more, primarily involving two stages: support and swing'®. Approximately 60% of the cycle is dedicated to
the support phase, which encompasses both single and double-foot support, with the single-foot support being
divided into intermediate and final stages. Two instances of bipedal support take place, each constituting roughly
10% of the cycle. The swing stage, constituting roughly 40% of the cycle, spans from toe elevation to heel contact
with the ground, segmented into three stages: initial, intermediate, and concluding phases'.

Characterization of hip and knee motion
The fundamental structure of the hip joint, akin to a standard ball and socket joint, is found at the tight junction
of the femoral head and the acetabulum!”.As illustrated in Fig. 2.

Comprising the distal femur, proximal tibia, and patella, the knee joint is a multifaceted hinge joint. Accurately
depicting the movement path of the human lower limb’s gait depends on the coordinated movement of the hip
and knee. As depicted in Fig. 3.

Research on human anatomy'® has meticulously detailed that the hip joint is capable of executing three
fundamental types of movement: flexion and extension, which typically span from 0° to 120° internal and
external rotation, ranging approximately from — 45° to 45°% and abduction and adduction, which can vary
between — 30° to 30° and — 20° to 20°, respectively. In contrast, the movement pattern of the knee joint is
relatively uniform, primarily characterized by its substantial range of flexion and extension, which can reach up
to 135° from full extension (0°). This flexibility is vital for facilitating lower extremity activities such as walking
and jogging.

Minor movements or degrees of freedom (DOFs) at the hip and knee, such as circumduction or axial
rotation beyond the aforementioned ranges, generally exert minimal influence on standard walking and
movement patterns, and therefore, they are not typically regarded as primary DOFs in biomechanical analyses.
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Fig. 3. Hip/knee movement patterns.

Join Motion status | Flexion angle range | Extension angle range | Abduction/ Adduction angle range | Internal/External rotation angle range
Walking 30°~45° 0°~15° 0°~5° 0°~5°
Hip joint
Running 45°~60° 0°~20° 5°~15° 5°~15°
K Walking 60°~70° 0°~5° Not significant (<5°) Not significant (<5°)
nee
Running 70°~90° 0°~10° Not significant (<5°) Not significant (<5°)

Table 1. Angles of motion of the hip and knee joints in the walking and running states.

As quantitatively depicted in Table 1, the hip and knee joints exhibit distinct and substantial ranges of motion in
every direction of freedom, highlighting the complexity and diversity of human locomotor kinematics.
According to the preceding chart, the hip joint predominantly undergoes flexion and extension while walking
and running, along with minor abduction, adduction, and rotation. Flexion and extension should be confined
to a 60° range, with minimal movement in other directions. Flexion and extension primarily control the knee
joint, yet the magnitude is greater, allowing for the disregard of both internal and external rotational movements.

Motion mathematical modeling of intelligent lower limb exoskeleton systems
Modified D-H method of motion model construction
The purpose of analyzing the kinematic model of the lower limb exoskeleton is to determine and scrutinize the
operational link between the angles of joints and the spatial locations of moving linkage mechanisms!®. Typically,
gait analysis occurs in a two-dimensional framework, with all kinematic analysis computations confined to
the sagittal plane. For determining kinematics, the MDH (Modified D-H coordinate system) technique was
employed. The movement of the human lower extremity is reduced to a sequential linkage of three connecting
joints, with the parameters linking these two joints depicted in Fig. 4.

The human lower limb is simplified to a tripartite link as shown in Fig. 5.

In Fig. 5:

XoYpX,Y X, X5y ;——global, Hip joint, Knee joint, Ankle joint coordinate system.

» 9y 3——hip, knee, and ankle rotations in the sagittal plane.

L1,L2,L3——thigh, calf, foot segment.

Y——Angle between ankle-hip and thigh L1.

¢——Angle between the sole of the foot and x0y0.

P——the sole of the foot.

Positive kinematics analysis of lower limb intelligent lower limb exoskeleton systems
FK involves deducing the end-effector’s movement from the robot’s joint motion, specifically its position and
orientation based on joint coordinates.

In the Table 2:

« j—1(rad)——Around the x;_; axis, Z;_; rotates to the angle Z;.

a;—1(mm)——From the axis, moves the distance to Z;.

d;(mm)—— Along the axis, move the distance to ;.

0 ;(°)—— Around the axis, the angle of rotation to ;.

Table 2’s data is integrated into the transformation matrix equation for the adjacent coordinate system in the
enhanced DH parameter approach.
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Table 2. Improved D-H parameters.

Scientific Reports|  (2026) 16:1926 | https://doi.org/10.1038/s41598-025-31657-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/
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cos (0 ;) —sin (6 ;) 0 Li—1
_ | sin(@i)cos(awi—1) cos(@i)cos(ai—1) —sin(ai—1) —disin(ai—1) (1)
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1

By substituting the improved parameters in the D-H table into Formula 1, the rotation matrix 17" can be
obtained, which is shown as follows:

cos§1 —sinf; 0 O
o — sinb 1 cost 1 0 0
L= 0 0 1 0
0 0 0 1
The transformation matrix (_3/0)T for the whole system is:
nl n2 0 nd
4 5 0 6
T ="' r= | Y] 2)
0 0o 0 1

(5) The parameters in Eq. 2 are:

nl=cos(@1+602+03)
n2:—sin(01+92+93)
n3 = Licos (0 1) + Lacos (61 + 0 2) 3)
n4:sin(01+02+6’3)
n5:(;os(¢91—|—02—|—93)
n6=Llsin(9 1)+L2sin(01+92)

The information about the position of the endpoint P on the bar 3 is
F:’: = [L37070} (4)

Py, Py of endpoint P in XY, can be deduced from Eq. 5.

{ Pz:L1COS(91)+L2COS(01+92)+L3COS(91+92+93) (5)
Py:L1sin(01)+Lgsin(01+92)+L3sin(01+02+03)

Preceding analysis indicates precise inference of human plantar position/posture from hip/knee movement
details.

Inverse kinematics analysis of lower limb intelligent lower limb exoskeleton systems
IK calculates robot’s joint coords based on end-effector’s pos/orient in a triangle formed by thigh, calf to initial
endpoints® (Fig. 6). Cosine theorem aids derivation/analysis (Eq. 6).

2?4+ 9% = L1? 4 Lo? — 2L Lacos (m — 0 2) ©)
Ly? = 2% + 9% — 24/a2 + y2Lycosy

In Eq. 6, 0, & y values are determined, Since 6, represents the rotation angle of the lower leg joint relative to the
thigh joint, with counterclockwise rotation defined as the positive direction, anatomical considerations dictate
that 6, should assume a negative value. 6, & 0; are then inferred via trigonometric geo relations in Eq. 7.
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Fig. 6. Matlab triple link motion model.
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Fig. 7. Intelligent lower limb exoskeleton robot assembly diagram. (1) Weight-bearing backpack (2) Hip joint
(3) Knee joint (4) Brushless motor (5) Controller (6) Power supply.

,

Fig. 8. Hip/knee joint modeling diagram.
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L,,L,——The length of the thighs and calves.
» 8,——The rotational angles of the hip joint and knee joint on the sagittal plane.

x, y——The coordinate position at the end of the ankle.

Y——Angle between ankle-hip and thigh L1.

¢——The angle between the foot base and the hip reference coordinate system.

From Eq. 7, analyzing P’s global (x, y) infers joint angles accurately. MATLAB modeled tripartite system,
validating FK & IK as shown in Fig. 6.

The model sets the hip joint rotation anglef; = —20°,knee joint rotation
anglef; = 20°,and ankle joint rotation anglefs = —25°. Combined with the characteristic link length
parametersL; = 0.5m,La2 = 0.3m,L3 = Om, these values are substituted into formula 5 to obtain the
coordinate of the end effectorX = 0.7698m,Y = 0.1294m.This result is consistent with the experimental
resultsX = 0.772m,Y = 0.127m, thereby proving the correctness of the model.This methodology ensures
precise control over the motion process, thereby facilitating high-precision tracking and adjustment of the
motion trajectories of robotic arms or robots.

Structure of intelligent lower limb exoskeleton system

Structural design and optimization

Based on human motion analysis & triple-link lower limb model, we developed an intelligent lower limb
exoskeleton robot (Fig. 7).

The lower limb exoskeleton robot consists of 5 parts: backpack, hip/knee actuation, control, & power units.
STM32F4 drives HT6010-J36 motor for thigh reciprocal/rotational motion (20°-75°) in hip joint. Rotary vice
allows inward thigh rotation & abduction. STM32F4 MCU controls motor drive based on sensor signals. Made
of lightweight Al alloy 6061 & carbon fiber (Fig. 8).

Internal limiters in hip joints restrict max rotational angle. Knee joint uses torsion spring for assisted
movement.
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Control system design

According to Brannstrom’s staging theory?!, the rehabilitation process progresses through three sequential
phases: the flaccid phase (initial stage) characterized by complete loss of voluntary control in the affected lower
limb requiring full external assistance; the spastic phase (intermediate stage) marked by partial voluntary
movement control necessitating repetitive gait training with rehabilitation devices to enhance central pattern
generation and gradual motor function recovery; and the recovery phase (final stage) featuring significantly
reduced spasticity, improved range of motion, and therapeutic focus on muscle strengthening and gait refinement
for advanced functional restoration.

As illustrated in Fig. 9.The system employs a hierarchical control architecture comprising supervisory,
execution, and sensory layers for multidimensional robotic rehabilitation control. The supervisory layer serves as
the central decision-making unit for human-machine interaction and data management, transmitting commands
to the execution layer. The execution layer decomposes motion trajectories and drives joint movements using
biomechanically-adjusted motion profiles with fuzzy PID control for precise torque/speed regulation. The
sensory layer integrates hip/knee position data, plantar pressure, and motor parameters to provide real-time
feedback, ensuring training safety and efficacy. This architecture enables intelligent human-robot interaction
and novel control methodologies for lower-limb exoskeletons.

Gait simulation experiment of intelligent lower limb exoskeleton system

Simulation and analysis of hip and knee gait based on open sim

OpenSim, an open-source platform, specializes in developing, sharing, & analyzing musculoskeletal & dynamic
motion simulations, widely applied in medical device design, orthopedics, & rehab science?2.The Open Sim gait
simulation process is illustrated in Fig. 10.

This study adopts gait2392 model for lower limb kinematics simulation, with model scaling involving precise
mass adjustments?. Figure 11 depicts model adaptation from 1.75 m/75kg to 1.73 m/65kg, with marker points
fine-tuned for accuracy. RMS < 0.04 & max error < 0.05 significantly enhance model practicality & precision.

Within OpenSim, IK aims to infer joint angles from experimental data?®. IK Tool** loads kinematic data
onto the scaled model, accurately replicating experimental body coordinates. This method mirrors joint angle
variations. IK analysis, followed by OpenSim’s Plot function, visualizes hip, knee, & ankle angles over time,
enabling dynamic angle observation (Fig. 12).

3-sec IK analysis illustrates hip, knee, & ankle angle dynamics. Sharp markers indicate modeling & placement
issues. Static optimization & residual reduction boost precision. By decomposing joint moments into muscle
forces & minimizing activations, optimization enhances inverse dynamics®®. Residual reduction aims to eliminate
non-physical balancing forces stemming from modeling & processing errors?’. The algorithm refined IK curves
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Fig. 11. gait2392 model scaling.

Hip knee ankle Angle over time in three seconds

—Hip flexion r

——Knee angle r

Angle

—Ankle angle r

000 025 050 075 100 125 150 175 200 225 250 275 3.00
Time

Fig. 12. Dynamic variation of lower limb triple joint angles at three seconds.
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Fig. 13. Comparison of triple joint angles before and after trans-RRA.

by error elimination. Pre- & post-optimization comparisons (Fig. 13) underscore its impact on precision &
reliability.

The RRA eliminates GRF imbalance, enhancing model dynamic coherence. Post-RRA, joint angle curves
refine, aligning with real motion patterns.The 3-second simulation revealed periodic motion patterns in the
hip (-28° to 13°) and knee joints (-67° to 3.5°), with the proposed method demonstrating significantly higher
precision than conventional tabular estimation approaches, thereby offering more reliable data for robotics
research.

Human-machine coupling modeling of intelligent lower limb exoskeleton system

For human-robot model coupling, revising the 2392 model’s source code to incorporate an exoskeleton geometric
model is crucial. Integration is facilitated by the bodyset and attach commands?®. The integration process is
outlined in Fig. 14. Precise adjustments to positional parameters and scaling factors are essential for alignment
with human anthropometrics, as shown in Fig. 15.
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Fig. 15. Opensim human-machine coupling diagram.
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Fig. 16. Opensim wearable lower extremity intelligent exoskeleton robot walking.

The walking data was input into the human-machine coupling model for simulation verification, and the
results are shown in Fig. 16.

Evaluation of the effectiveness of coupled model muscle control

This study applies CMC to decipher muscle excitation, enabling dynamic musculoskeletal model movements to
precisely track predefined kinematic paths under external loads?. Analysis compares muscle force variations in
lower limbs during walking (Fig. 17).

As shown in Fig. 17, soleus & gastrocnemius muscles exhibited robust activation during gait, contrasting the
strength of biceps femoris & R. gluteus maximus. Figure 18 presents a simulation comparing pre- & post-human
usage muscle forces.

As shown in Fig. 18, the intelligent lower-extremity exoskeleton markedly reduced primary muscle strength,
indicating effective force reduction during walking and essential mobility assistance. Pre- vs. post-robot use
analysis indicated ~ 60% muscle force reduction.

Research on dynamic simulation of intelligent lower limb exoskeleton system
Construction of human hip and knee joint kinematics function

In OpenSim, IK captured hip & knee joint angle data, transferred to Matlab for curve fitting, elucidating temporal
functional relationships. Compared with polynomial interpolation, the eight-term Fourier series demonstrates
superior performance in fitting periodic curves, as evidenced by adjusted R values exceeding 0.99 for all four
fitted curves. This indicates excellent model-data agreement, as depicted in Fig. 19.
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Fig. 19. Fitted functions for right hip and knee joints.
The eight-term Fourier function formula is presented in Eq. 8.
8 8 .
f(z)= A0+ E oaicos (wzx) + g obisin (wz) (8)

Using the right hip joint as a case study, we present its corresponding fitting function.
8
f(Hip R)= Ao+ Z a; cos (wz) + Z b; sin (wz) 9)

The coefficients are as follows: A0 is -3.079. a0 to a8 are —0.2911, -1.576, -3.536, 0.2471, 0.794, 0.8891, -0.7193,
and 0.5661, respectively. b0 to b8 are —0.9948, 6.44, 17.61, -5.08, 5.609, 0.4399, 0.3051, and 2.285, respectively.
wis 1.651.

The Adjusted R-square method modifies the standard R-square value by incorporating adjustments for
sample quantity and the count of independent variables, enhancing the accuracy of the model’s fit*°. Research
found modified R-squared > 0.99 for all four curves, indicating strong model-data alignment.
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Fig. 20. Gait progression of the lower-limb exoskeleton (0-3 s).
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Fig. 21. Time profiles of lower limb joint moments during a gait cycle.
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Fig. 22. Time profile of hip joint motor power.

Dynamic simulation of intelligent lower limb exoskeleton system

We initialized the system state using the hip and knee joint configurations derived from the fitted function at
t=0 s as the reference starting point. The model was configured with revolute joints at both the hip and knee,
while the lumbar segment remained fixed. Under natural gravitational acceleration (g=9.81 m/s?), we simulated
3 s of dynamic motion and quantitatively analyzed the resulting kinematic variations.(Fig. 20).

ADAMS post-processing analyzed hip and knee moment dynamics, validating the method’s effectiveness
(Fig. 21). Peak moments were: left hip 65.724 Nm (avg. 7.292 Nm), right hip 59.583 Nm (avg. 10.430 Nm), left
knee 16.377 Nm (avg. 5.362 Nm), right knee 23.259 Nm (avg. 7.104 Nm). Max torques were below motor torque,
ensuring sufficient power, with max avg. power P=13.612 W <motor’s rated power. Peak immediate power
outputs of left and right hip joints were 88.177 W and 90.645 W, respectively, aligning with motors’ max power
(Fig. 22). Avg. The simulation results are consistent with the peak torque of human joints ranging from 60 to 80
NM, and during walking, the peak power is approximately 60 to 150 W.

Simulation of lower limb exoskeleton control system based on fuzzy PID
Construction of lower limb exoskeleton control simulation system

The lower-limb rehabilitation robot uses a brushless DC (BLDC) motor, comprising three main components:
the motor body (stator and rotor), the electronic commutation circuit (logic commutation and position signal
units), and position sensors (stator and rotor sensors)*!. The system’s equivalent circuit is shown in the Fig. 23.
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Fig. 23. Y-type brushless motor equivalent circuit diagram.
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Fig. 24. Fuzzy rule design diagram.

The mathematical model of the Y-connected brushless DC motor system is represented by its Laplace-
transformed transfer function2.

G(s) = 28 _ K (10)
Ud(s) LgJs? + (TdJ+LdB)S+ (T'dB+KeKT)
Where:
L d—Single-phase equivalent inductance,L 7~ 2L
J—Rotor moment of inertia,kgmz;
r,—Equivalent circuit resistance,r =2R ;
B—Viscous friction coeflicient;
KT—Motor torque constant;
K —Back electromotive force constant.
The transfer function can be derived from the specific parameters of the brushless motor HT6010-]36.
Gls) = an

s2 +151s+ 175

Tracking experiment of lower limb exoskeleton motion signal based on fuzzy PID

This study employs a seven-level fuzzy set {NB, NM, NS, ZO, PS, PM, PB} to construct a dual-input triple-output
fuzzy PID controller based on error E (discretized over [-6,6]) and its rate of change E_. The system utilizes
Gaussian membership functions for inputs to achieve rapid response, while adopting triangular membership
functions for outputs to ensure regulation precision. Through 49 fuzzy rules, the controller realizes adaptive
tuning of PID parameters (Kp, Ki, Kd), with Kp sharing the domain of E, and K/K linked to E,As shown in
Fig. 24. This hybrid membership function design effectively balances dynamic response speed and steady-state
accuracy.

As shown in Fig. 25. Based on the above transfer function, a brushless DC motor system was constructed.
The tracking performance of the right hip joint position angle and step signals under fuzzy PID and traditional
PID control was compared, as shown in the figure, to evaluate the performance of both control strategies®.
The simulated right hip joint position function was incorporated into the simulation model, establishing a
comparative simulation platform for fuzzy PID and PID control systems.
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Fig. 26. Step response diagram and position tracking diagram.

As shown in Fig. 26.Both conventional and fuzzy PID controllers achieved a 0.06 s settling time. The
conventional PID exhibited ~ 5% overshoot, while the fuzzy PID achieved zero overshoot with negligible steady-
state error. Though sharing similar rise times (~0.04 s), the fuzzy PID demonstrated smoother dynamics by
eliminating initial overshoot.

As shown in Fig. 27 the conventional PID showed +5° peak tracking error with 0.05 s phase lag, whereas
the fuzzy PID reduced errors to within +2° and virtually eliminated lag (<0.01 s). During rapid transitions
(0.8-1.0 5), oscillation amplitudes decreased by > 60%. Results confirm the fuzzy PID’s adaptive tuning enhances
nonlinear system precision (60% error reduction) and response (80% lag improvement), proving ideal for high-
accuracy motion control.

Simulation experiment of lower extremity exoskeleton motor system
The exoskeleton operating conditions are set for the brushless motor to start and reach a constant speed, with
the speed maintained during load increase. A brushless motor control system is built in Simulink, as shown in
the Fig. 28. The experiment is set with a rated speed of 50 rpm, and the load is increased from 5 N-m to 10 N-m
within 0.04 s.

The results, as shown in the Fig. 29, demonstrate that after fuzzy PID control, the motor torque response is
smoother, the speed reaches the rated value faster, and the driving performance is more precise and stable.

Membrane pressure gait sensor system

Structure of membrane pressure gait sensor system

The system utilizes the Gaitboter module from ICC, CAS* for lower limb gait analysis, incorporating advanced
sensor technology (Fig. 30). Core components include thin-film pressure sensors, accelerometers, and
gyroscopes®. Eight plantar sensors capture pressure variations, six-axis inertial sensors®track foot speed and

Scientific Reports |

(2026) 16:1926 | https://doi.org/10.1038/s41598-025-31657-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

20 -~ ~Classical PID ! .
—— Fuzzy PID
——Right hip motion function

Angle

0 0.2 0.4 0.6 0.8 . ) 1.2 14 16 18 2
Time(s)

Fig. 27. Step response diagram and position tracking diagram.

Tm <Rotor speed wm (rad/s)>
1A
] _|l> we (rad/s)
<Rolor angle thetam (rad)>
<Electromagnetic torque Te (N*m)> D

Inverter Te (N.m)

Speed Ref

Fig. 28. Torque and speed simulation block diagram.

80 ————
~—Fuzzy PID
—PID
260
s 3 ;
b 8 o
2| @40 r
S 5
g :
e 50
°
10+ 4
0
-20 1 | 1 | |
0.01 002 003 004 0.05 0.06 0 001 002 003 0.04 0.5
Time(s) Time(s)

Fig. 29. Torque and speed simulation results.

Fig. 30. Gaitboter gait analysis diagrams.
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angular velocity, and hip and knee sensors collect posture data. MCU and BLE facilitate real-time data reception
and processing, ensuring comprehensive gait analysis*.

Experimental methods and procedures

To ensure the reliability of gait data, the experiment was conducted in a smooth corridor measuring 12 min length
and 2.2 m in width. Participants included one healthy individual and three patients with lower limb injuries (age
265 years, BMI 22.8+1.5) from Peking University Third Hospital. Due to space constraints, the analysis was
conducted based on data from one patient.All participants wore standardized plantar pressure shoes and were
equipped with 9-axis inertial sensors on their hip/knee joints. Data were processed using a three-dimensional
gait analysis system, which synchronously captured dynamic parameters from plantar pressure sensors and
pose parameters from joint sensors, ultimately generating a gait database. The database was constructed using
extensive clinical experimental data. This study specifically analyzes three representative postoperative patients
alongside healthy control subjects, with the experimental results demonstrating gait characteristics typical of
normal-stature patients following surgery, thereby ensuring generalizability.

The original clinical data collection protocol was approved by the Medical Ethics Committee of Beijing
Chaoyang Hospital. The experimental gait data were sourced from the “Clinical Application of Gait Analysis
Technology for Brain Stroke Using Integrated Sound and Motion Sensors” project, with the corresponding
ethical approval obtained. Since this study only utilized fully anonymized secondary data without involving new
participant interventions, no additional ethical approval was required for the analysis.

Analysis of experimental results

Plantar pressure data analysis

Figure 31 depicts the pressure variation curves within the left and right foot segments of an average individual
over 0.8 s during normal walking. In standard walking, the support points are primarily at the heel and toe,
with peak pressures denoted as Pliefi, P2ieft , P3iese and Plyignt, P2right, P3rignifor the left and right
heel, mid-foot, and toe, respectively. To evaluate plantar pressure variation, Eq. 10 presents the differential ratio
formula for the left foot heel, mid-foot, and toe. Peak pressures for heels, midfeet, and toes are established, and
pressure difference weights are computed to assess sole pressure distribution. The auxiliary drive demand is
assessed by examining the pressure proportion between left and right foot segments, with a specific formula
provided for the left foot heel, midfoot, and toe.

flleft _ 1PYiept=Plrignel < 100%

P21 B i

— left — 4 4right

[2pepe = PRefEorantl o 100% (12)
_ |P3left7P37"ight|

FBrepe = Ttehimmriahtl 5 100%

The left-right foot discrepancy is measured as an f-9fraction compared to a standard value spectrum, with
deviations indicating stress that may cause pelvic tilt. A flexible moment-drive is applied to the affected hip
motor. Figure 31 compares the plantar pressure curves between three patient groups and healthy subjects.

Figure 32 shows irregular plantar pressure fluctuations in the patient, with notable heel-midfoot pressure
disparity between left & right feet. Outcomes derived using the formula are presented in Table 3.

Analysis of the data in Table 3 reveals significant abnormalities in the plantar pressure distribution of Patient
1. The differential percentages for the left forefoot (21.7%), midfoot (55.5%), and heel (53.3%) markedly exceed
the normal reference values (forefoot: 11.4%; midfoot: 28.6%; heel: 8.5%), while the right midfoot and heel show
relatively smaller deviations. This pressure pattern indicates a pronounced bilateral lower-limb load imbalance,
with excessive weight-bearing on the left side, suggesting potential left pelvic tilt and compensatory loading
on the left limb. Based on these biomechanical characteristics, it is recommended to adjust the lower-limb
exoskeleton assistance strategy by enhancing left hip joint torque output and optimizing hip fixation parameters
to improve bilateral load distribution.

Hip and knee gait assessment

By utilizing the positional data from the hip/knee sensor, the movement amplitude of the hip/knee joint can be
determined in each direction of freedom. To facilitate the analysis, a collection of standard human motion trend
data is chosen for comparative purposes, as depicted in Fig. 33.

Plantar pressure Heat map
—— heel

e—t0e

Mid-foot

Time(sec)

Fig. 31. Plantar pressure diagram for normal human walking on legs.
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Fig. 32. Comparison of plantar pressure with normal plantar pressure in three groups of patients. (a) Normal
human body (b) Patient #1 (c) Patient #2 (d) Patient #3.

Percentage of difference (%) | Normal person | 1 2 3
Left heel 11.4 533 | 6.23 | 149
Left midfoot 28.6 55.5 6.9 (4.9
Left toe 8.5 21.7 | 70.2 | 133.8
Right heel 10.3 352 6.6 | 129
Right midfoot 40 35.7 7.4 | 4.7
Right toe 9.3 27.7 | 2355 | 57.2
Heel difference 1.1 181 | 037 |2
Midfoot difference 11.4 19.8 0.5 0.2
Toe difference 0.8 6 165.3 | 76.6

Table 3. Patient difference percentage table.
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Fig. 33. Normal human hip and knee joint position information.

Analysis of Fig. 33 demonstrates close alignment between measured left/right foot trajectories and reference
values, confirming normal gait coordination. Hip extension angles (20° left, 30° right; reference: 40°) showed
reduced but physiological ranges, while flexion peaks matched the 40° reference. Knee extension (10° left, 20°
right; reference: 30°) exhibited conservative yet functional ranges, with left flexion (60°) matching and right
flexion (50°) approaching the reference (60°). These results validate the system’s accuracy in capturing normative
gait kinematics within clinically acceptable tolerances. Figure 34 presents hip and knee posture data obtained
from a patient at Beijing Third Hospital using the device.

Analysis of Fig. 34 identifies three key gait abnormalities: reduced left hip abduction, elevated right knee
valgus, and delayed left knee extension, suggesting gluteal weakness and ligament laxity that compromise stability
and load distribution. Corresponding exoskeleton optimizations include: progressive hip abduction assistance
for pelvic stability, real-time feedback-controlled valgus damping to prevent overcorrection, and phase-delay
compensation algorithms for normalized knee extension timing. These adaptive modifications synchronize with
gait cycles to enable precise biomechanical compensation while maintaining na tural movement patterns.
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Fig. 35. Normal human walking gait data.

Spatiotemporal parameter analysis of gait
During the Gaitboter study, we collected spatio-temporal walking parameters (Fig. 35). Using these & patient’s
lower limb data, joint torsion velocity was recalculated for precise motor speed calibration.

The Jacobi matrix inverse calculates theoretical hip joint velocity from foot velocity, establishing a database.
Analysis compares patients’ foot speed to database’s velocity, aiding in fine-tuning drive motor speed.

Conclusion

This paper presents a design methodology for a lower limb exoskeleton targeting rehabilitation of patients
with movement disorders. Through systematic investigation of dynamic gait mechanisms in lower extremities,
a corresponding mathematical model was established and analyzed to develop an intelligent lightweight
exoskeleton. Innovatively integrating human biomechanical models with exoskeleton prototypes through the
OpenSim platform enabled precise quantification of assistance effects on lower limb muscle groups. A transfer
function was derived based on brushless motor kinematic models, with comparative simulations demonstrating
superior trajectory tracking performance of fuzzy PID algorithms over classical PID controllers, as evidenced
by torque and rotational speed curves. The system incorporates thin-film pressure gait sensors for real-time data
acquisition, enabling active exoskeleton assistance and intelligent functionality. A comprehensive gait motion
database was concurrently established to support adaptive rehabilitation strategies. The proposed framework
demonstrates significant potential in enhancing assistive device responsiveness and rehabilitation efficacy
through systematic electromechanical integration and data-driven control optimization.

Data availability
All data associated with this study are available in the GitHub repository at https://github.com/CppHardLearne
r/lower-Limb-intelligent-Rehabilitation-Robot-codes.git.
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