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Tasks involving black boxes appear frequently in the theory of quantum information, with quantum 
channel discrimination as a central example that has been deeply studied. In this work, we 
experimentally study the discrimination between two unitary quantum channels in the multiple-shot 
scenario. We challenge the theoretical results concerning the probability of correct discrimination 
with the results collected from experiments performed on the IBM Brisbane. Our analysis shows that 
neither too deep quantum circuits nor circuits that create too much entanglement are suitable for the 
discrimination task. We conclude that circuit architectures which minimize entanglement overhead 
while preserving discrimination power are significantly more resilient to hardware noise if their 
depth does not exceed a threshold value. Consequently, our findings necessitate a paradigm shift: 
for execution on noisy hardware, the theoretically suboptimal circuit is, counterintuitively, often the 
superior choice.
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In the last decade, quantum computing has become a reality. Quantum algorithms of increasing complexity 
are being implemented on progressively more advanced quantum devices. In effect, high-quality solutions to 
some real-world problems are expected to arrive soon. This situation motivates the need for the certification 
and benchmarking of various quantum devices1–3. The discrimination task of quantum operators constitutes 
one of the certification methods and quality metrics for benchmarking quantum architectures4,5. The theoretical 
background of the quantum discrimination task has been widely developed. The primary task of discrimination 
involves a one-shot scenario of discrimination between quantum operators. We can imagine an unknown 
quantum device, a black box. The only information we have is that it performs one of two quantum operators, say 
T  and S . Our goal is two-fold. First, we want to determine the highest possible probability of correct guessing. 
Secondly, we need to devise an optimal strategy that maximizes the probability of success.

The problem of single-shot discrimination of quantum states was solved analytically by Helstrom a few 
decades ago in 6,7. The authors calculated the probability of correct discrimination between two quantum states 
using the notion of a trace norm. Next, there are many modifications of the origin problem for quantum states 
that were also considered8–12. For the discrimination tasks of quantum channels7, the probability of success 
of the discrimination can be formulated by the diamond norm13,14, which can be computed by semidefinite 
programming13,15. However, as the dimension of quantum channels increases, computing the diamond norm 
becomes inefficient16. In general, for quantum channels, entanglement is necessary for optimal discrimination7. 
The exception is, for example, the discrimination task between unitary channels7,17. Furthermore, the probability 
of correct discrimination between two unitary channels can be expressed in the notion of the numerical range18. 
Discrimination tasks for general quantum measurements, von Neumann measurements, or SIC POVMs were 
also considered in the literature19–24. Lastly, the theory of an indefinite causal structure is one of the attractive 
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topics. This approach uses the notion of process matrices25,26, which can be seen as a generalization of quantum 
combs. The single-shot discrimination of the process matrices was introduced27.

What if we have multiple copies of quantum operators? The most general discrimination approach is 
known as an adaptive strategy28. This strategy can be described by using the term quantum combs. Here, we 
assume freedom in choosing the setting of quantum operations and any processing between them. In addition, 
numerical investigation of quantum channel discrimination showed that using indefinite causal order, we can 
achieve greater success with discrimination29,30. However, determining an optimal strategy to realize such tasks 
is a significant challenge in practice. This is why we often limit ourselves to parallel31 and sequential32 schemes. 
The parallel scheme assumes N copies of a given quantum operation distributed over N entangled systems and 
final measurement with no additional processing, whereas the sequential scheme assumes the implementation of 
N copies of the quantum operation on one system, allowing additional processing between them.

One of the first theoretical results was the study of discrimination of multipartite unitary operations29. The 
authors showed that perfect discrimination can be achieved using a parallel scheme31. It is also possible to 
design a perfect discrimination scheme of unitary channels without introducing entanglement with an auxiliary 
system33. It can be done by using the sequential approach and specific processing at the end of the circuit. On 
the other hand, for general quantum channels, neither the parallel nor the sequential strategy guarantees an 
optimal solutions34,35. The advantage of adaptive strategies became apparent for a task concerning entanglement-
breaking channels34. Adaptive discrimination scenarios were also investigated in22,32,36. In Ref. 37, the authors 
have formulated the necessary and sufficient conditions under which quantum channels can be perfectly 
discriminated, while in Ref.  22, the authors have formulated conditions for the perfect discrimination of two 
measurements. Furthermore, in38, the authors have shown that any possible adaptive method does not offer any 
advantage over the parallel scheme for von Neumann measurements.

One of the first experimental results for the parallel and sequential discrimination scheme of unitary 
channels was presented in Ref. 39. In the era of NISQ devices, we need to take into account certain limitations. 
Due to the existing decoherence, sequential schemes could not be practical for larger numbers of copies. At 
the same time, parallel schemes for NISQ architectures are also not possible to implement because of the 
limited number of qubits. Perhaps intermediate schemes, called sequentially-paralleled, may overcome both 
obstacles. This scheme assumes that we have N = w · d copies of a quantum operator, where w and d are natural 
numbers. The sequentially-paralleled scheme of width w and depth d consists of d applications of w copies of the 
quantum operator applied simultaneously to the quantum state. The initial state ρ evolves through these layers, 
combining parallelism within each layer and a sequential structure across layers. In general, one could consider 
incorporating additional intermediate processing operations between layers.

This raises the critical question of whether simpler, theoretically suboptimal circuits might prove more 
effective in practice. To address this, we utilize a simulator calibrated to the specific error profile of the IBM 
Brisbane device, providing a high-fidelity environment to test and compare the resilience of different strategies.

In this work, we present a comprehensive study of various scenarios of multiple-shot discrimination of 
quantum unitary channels. We consider parallel, sequential, and sequentially-paralleled quantum networks 
for discrimination between two qubit unitary channels. We challenge the theoretical results concerning the 
probability of correct discrimination with the results collected from experiments performed on the IBM 
Brisbane. Based on several examples, our analysis shows that neither excessively deep circuits nor those creating 
too much entanglement are suitable for the discrimination task.

Paper organization
This paper is organized as follows. Section Mathematical Preliminaries (page  2) recalls the notation and 
mathematical tools necessary for our research. We then formalize channel discrimination in single- and multiple-
shot settings, including perfect-discrimination criteria as well as corresponding statistical methods for analysis. 
At page 4, we present Experiment 1 of discrimination with no processing between Φ1l and ΦRZ(ϕ): methodology 
(discriminator and two measurement schemes), device-aware transpilation (CNOT/ECR and mapping), and 
hardware results on IBM Brisbane. At page  8, we present Experiment  2 of discrimination with processing 
between U =

√
X RZ(−π/2N)

√
X  and V =

√
X RZ(π/2N)

√
X , including hardware results on IBM 

Brisbane. Section Noise Modeling and Ablation Analysis (page 10) presents an analytic depolarizing model 
and calibrated Aer ablations (single-/two-qubit noise, T1/T2, readout, and a small coherent RZ drift), and 
relates these to the observed hardware trends. Finally, the conclusions are presented in page 11.

Mathematical preliminaries
Let X  be a complex Euclidean space. Then L(X ) denotes the collection of all linear mappings of the form 
A : X → X . An operator X ∈ L(X ) is positive semi-definite if ⟨x| X |x⟩ ≥ 0 for all |x⟩ ∈ X . The set of 
all such operators is written as Pos(X ). By Ω(X ) we denote the set of quantum states ρ ∈ Pos(X ) such that 
Tr(ρ) = 1. Let X ∈ L(X ). We denote by spec(X) the set of all eigenvalues of X.

The set of all linear mappings from L(X ) to L(Y ), Φ : L(X ) → L(Y ), will be denoted as T(X ,Y ). The 
tensor product of linear maps (or operators) Φ and Ψ will be denoted as Φ ⊗ Ψ. A linear map Φ ∈ T(X ,Y ) 
is positive if it holds that Φ(P ) ∈ Pos(Y ) for all P ∈ Pos(X ), whereas Φ is a completely positive map (CP) 
if Φ ⊗ 1lL(Z ) is a positive map for every complex Euclidean space Z . We say Φ is trace-preserving (TP) if 
it holds that Tr(Φ(X)) = Tr(X) for all X ∈ L(X ). A linear map Φ ∈ T(X , Y ), which is a CPTP map, is 
called a quantum channel. The collection of all quantum channels is denoted as C(X , Y ) (with a shorthand 
C(X ) := C(X , X )). Next, we distinguish a special subset of quantum channels known as unitary channels, 
ΦU ∈ C(X ), defined as ΦU (X) = UXU† where U ∈ L(X ) is the unitary matrix.
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A Positive Operator-Valued Measure (POVM) P  is a collection of operators, the so-called effects 
{E0, . . . , En} ⊂ Pos(X ) with the property of 

∑n

i=0 Ei = 1l. According to the Born rule for a given quantum 
state ρ the probability of obtaining the result Ei is given by Tr(Eiρ).

A useful tool for studying the discrimination of unitary channels is the concept of the numerical range of an 
operator. For X ∈ L(X ) we define the numerical range of X as the set

	 W(X) := {⟨x| X |x⟩ : |x⟩ ∈ X , ⟨x|x⟩ = 1}.� (1)

The Hausdorff-Töplitz Theorem40,41 states that W(X) is a convex set. If X is normal, the numerical range is 
a convex hull of its eigenvalues. For unitary matrices U we define the arc function θ(U) as the length of the 
smallest arc on the unit circle that contains all the eigenvalues of the unitary operator U. Mathematically, this 
can be expressed as

	

θ(U) := min
{

∆ ∈ [0, 2π) : ∃ α ∈ [0, 2π) such that

spec(U) ⊂ {eiθ : θ ∈ [α, α + ∆]}
}

.
� (2)

Lastly, let us introduce the diamond norm in the space T(X , Y ). For Φ ∈ T(X , Y ) it is defined as

	 ∥Φ∥⋄ =
∥∥Φ ⊗ 1lL(X)

∥∥
1

,� (3)

where ∥Φ∥1 = max{∥Φ(X)∥1 : X ∈ L(X ), ∥X∥1 ≤ 1} and ∥Y ∥1 is Schatten 1-norm of Y ∈ L(Y ).

Discrimination of quantum channels
We will consider the following scenario of quantum channel discrimination. Suppose that we have a classical 
description of two quantum channels Φ0, Φ1 ∈ C(X , Y ) and a black box implementing an unknown channel 
Φ, which either is Φ0 or Φ1. We would like to determine whether Φ = Φ0 or Φ = Φ1 have been hidden 
in the black box. To reveal the value of Φ, we construct a quantum experiment consisting of an initial state 
ρ ∈ Ω(X ⊗ Z ) and a binary measurement {E0, E1} ⊂ Pos(Y ⊗ Z ). The channel Φ ⊗ 1lL(Z ) is applied to 
ρ and then the output state (Φ ⊗ 1lL(Z ))(ρ) is measured by {E0, E1}. The measurement label defines our guess 
about the hidden value of Φ (the label 0 associated with the effect E0 indicates Φ = Φ0). In such a setup, the 
probability of successful channel discrimination psucc is given by

	
psucc = 1

2Tr(E0(Φ0 ⊗ 1lL(Z ))(ρ)) + 1
2Tr(E1(Φ1 ⊗ 1lL(Z ))(ρ)).� (4)

The goal of our task is to construct ρ and {E0, E1} that maximize psucc. The auxiliary system Z  is of arbitrary 
size and provides a resource to increase the probability of success. From the Holevo-Helstrom theorem6,42 we 
know the probability of successful channel discrimination can be expressed in terms of the diamond norm

	
psucc = 1

2 + 1
4 ∥Φ0 − Φ1∥⋄ .� (5)

Statistical probability of discrimination
We report the probability of successful discrimination psucc = #correct

shots  for each circuit–backend pair under 
equal priors. Ambiguous outcomes (equal distance to both hypotheses) were resolved by a fair coin flip, as stated 
in the figure captions, so every run yielded a definite label.

To estimate confidence intervals for the probability of success in experiments, we use the method of Clopper 
and Pearson  43 with a 0.99 confidence level. Due to the large number of shots per discrimination task, the 
confidence intervals are very narrow and centered around the estimated psucc values.

Single-shot discrimination of quantum unitary channels
It is worth emphasizing at this point that there is no need to use an auxiliary system Z  for the discrimination 
of quantum unitary channels 30. Considering the task of single-shot discrimination between unitary channels 
ΦU , ΦV , the diamond norm between such channels can be expressed using the notion of the numerical range 
as7,44

	 ||ΦU − ΦV ||⋄ = 2
√

1 − ν2,� (6)

where ν = minw∈W (V †U) |w|. From the above proposition, it follows that unitary channels ΦU  and ΦV  are 
perfectly distinguishable if and only if 0 ∈ W (V †U). The above can also be formulated as there exists a density 
matrix σ such that tr(V †Uσ) = 0.

Using the results of33,45,46 we can also calculate ν using the arc function θ(V †U) defined in Eq. (2), 
determining the condition for perfect discrimination between U and V in the single-shot scenario. If we define 
θ := θ(V †U) ≤ π is the minimal covering arc, then ν = cos(θ/2) and therefore ∥ΦU − ΦV ∥⋄ = 2 sin(θ/2). 
Furthermore, we achieve perfect discrimination for unitary channels if and only if

	 θ(V †U) ≥ π.� (7)
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Multiple-shot discrimination of unitary channels
When multiple uses of the unitary channel are available, perfect discrimination may be achieved even if the 
single-shot condition θ(V †U) ≥ π does not hold45. The theoretically best strategy in that case is a parallel 
scheme which consists of N copies of the unitary U applied simultaneously to N quantum registers. In that 
case, the problem is to discriminate identity U⊗N  and unitary matrix V ⊗N . Since the arc function satisfies 
the scaling relation θ((V ⊗N )†U⊗N ) = Nθ(V †U), for Nθ(V †U) < 2π, then the condition for perfect 
discrimination is Nθ(V †U) ≥ π33. This leads to the condition on the minimum number of copies required for 
perfect discrimination is given by

	
N ≥

⌈
π

θ(V †U)

⌉
.� (8)

Thus, even when θ(V †U) < π, as long as θ(V †U) > 0, perfect discrimination can still be achieved by using a 
sufficient number of copies of U and V.

Experimental set-up
A wide range of multi-shot discrimination strategies has been explored in the literature. In this work, we restrict 
our attention to three representative classes: parallel schemes, sequential schemes, and rectangular hybrid 
schemes that interpolate between these two. Experimental comparison of the performance of these strategies 
constitutes the main contribution of our work. Our focus is on the discrimination of qubit unitary channels U 
and V. For simplicity we will consider only the cases that satisfy

	
θ(V †U) = π

N
.� (9)

Let N = wd for w, d ∈ N. In our set-up, N copies of the black box Φ are arranged in a rectangular layout over w 
qubits with circuit depth d. On each qubit, the unknown operation is applied d times, namely, we have

	 Φ⊗wΦXd−1 Φ⊗w · · · ΦX1 Φ⊗w,� (10)

where X1, . . . , Xd−1 are arbitrary unitary matrices defined on w qubits, which are responsible for additional 
processing. In special cases, when w = N  and d = 1, we obtain the parallel scheme Φ⊗N  (no processing is 
needed) and when w = 1 and d = N , we obtain the sequential scheme ΦΦXd−1 · · · ΦX1 Φ.

	
θ(((V †U)d)⊗w) = wθ((V †U)d) = wdθ(V †U) = N

π

N
= π.� (11)

The only remaining question is how to find optimal ρ and {E0, E1}. The precise form of these variables depends 
on U, V,7,13,44, and will be calculated later for each pair of unitary channels considered.

Experiment 1—Discrimination of unitary channels on IBM Brisbane without 
processing
This section is divided into four main parts. At the beginning, we will discuss in detail the components of 
discrimination schemes and later on their decompositions into native gates. Next, we will talk about transpilation 
approaches, and finally we will present the results obtained from the IBM Quantum device. All experiments were 
executed on the IBM Brisbane. Throughout, we use IBM Quantum for the platform and IBM Brisbane for the 
device.

Methodology and setup

In this example, we will distinguish between identity Φ1l and ΦRZ(ϕ) for RZ(ϕ) =
(

e−i
ϕ
2 0

0 ei
ϕ
2

)
 without 

processing between the particular application of the unitary channel (Xi = 1l for each i = 1, . . . , d). Let 
N = wd for w, d ∈ N. In our setup N copies of the black box Φ can be composed in the rectangular shape 
spread on w qubits with the depth of the circuit d. On each qubit the unknown operation is composed d times, 
namely, we have

	

Φd ⊗ · · · ⊗ Φd

︸ ︷︷ ︸
w

.� (12)

To determine a discriminator |ψ⟩, we need to find a unit vector satisfying

	 ⟨ψ| RZ(dϕ)⊗w |ψ⟩ = 0.� (13)

The most distant pair of eigenvalues of RZ(dϕ)⊗w  are −i and i, corresponding to eigenvectors |0 · · · 0⟩ and 
|1 · · · 1⟩, respectively. Hence, we can show that

	
|ψ⟩ = 1√

2
(|0 · · · 0⟩ + λ |1 · · · 1⟩) ∈ C2w

,� (14)

Scientific Reports |         (2026) 16:6142 4| https://doi.org/10.1038/s41598-025-31665-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


for any unit number λ ∈ C. If Φ = Φ1l, the output state is equal to |ψ0⟩ = |ψ⟩. Otherwise, if Φ = ΦRZ(ϕ), then the 
output states are equal to |ψ1⟩ = RZ(dϕ)⊗w |ψ⟩ = −i√

2 (|0 · · · 0⟩ − λ |1 · · · 1⟩). As |ψ0⟩ and |ψ1⟩ are orthogonal, we 
can find E0 ≥ |ψ0⟩ ⟨ψ0| and E1 ≥ |ψ1⟩ ⟨ψ1| (in particular E0 = |ψ0⟩ ⟨ψ0| and E1 = 1l − E0), which guarantees 
psucc = 1

2 Tr(E0(Φ1l⊗w )(|ψ⟩ ⟨ψ|)) + 1
2 Tr(E1(ΦRZ(dϕ)⊗w )(|ψ⟩ ⟨ψ|)) = 1

2 Tr(E0 |ψ0⟩ ⟨ψ0|) + 1
2 Tr(E1 |ψ1⟩ ⟨ψ1|) = 1.

Components of the discrimination scheme and decompositions
We divide the implementation of our discrimination circuit into two distinct components: the discriminator and 
the measurement. The unknown unitary gates, representing the quantum channel to be identified, are inserted 
between these two parts. In practical experiments, we focus specifically on schemes that in theory achieve perfect 
discrimination between the identity operation and the RZ(ϕ) gate. To ensure that the condition previously 
discussed is met, we set the angle ϕ to π/N , where N denotes the total number of uses of the unknown gate in the 
circuit. This value is determined by the product of the width (the number of qubits used in parallel) and depth 
(the number of successive applications of the unknown gate).

After using the discriminator, the circuit must be in a maximally entangled state on N qubits in the form

	
|ψ⟩ = 1√

2
(
|0⟩⊗N + α |1⟩⊗N

)
.� (15)

To achieve this, we used a cascade of CNOT gates, as can be seen for six qubits in Fig. 1a. This discriminator is 
created based on the standard pattern that is commonly used to create the GHZ state47.

The experiments were carried out on IBM Brisbane, where the CNOT gate is not a native gate. To reduce 
the number of gates in the circuit, we prepared the discriminator specially designed for Eagle R3 architecture48. 
Then, we use ECR gates to create entanglement between qubits, while omitting CNOT gates unrolling during 

transpilation at the same time. The single-qubit gate 
√

X  (SX) has matrix form 
√

X = 1
2

(1 + i 1 − i
1 − i 1 + i

)
. The 

first part of the discriminator consists of SX gates on all qubits and then a cascade of ECR gates of similar 
structure as the CNOT cascade in the first case. Unlike the discriminator based on CNOT gates, we also had to 
add several X gates to the end of the discriminator to get the desired quantum state. There is little to no pattern 
in the qubits on which the X gate has to be applied. Therefore, we prepared the discriminator for each number 
of qubits separately by hand. In Fig. 1b, we show the decomposition of six-qubit discriminator using ECR gates. 
As we could see, in this case the X gates are applied on second and third qubits.

For measurement, two distinct circuit implementations were used. The first method, referred to as the short 
measurement approach, is characterized by a reduced circuit depth and overall gate count. This method produces 
the disjoint sets of possible measurement outcomes, one for each unitary channel. However, this advantage is 
offset by an increased susceptibility to bit-flip errors. This circuit was implemented using CNOT gates, presented 
in Fig. 2a, or ECR gates, as in Fig. 2c. For the CNOT-based implementation, the measurement outcomes exhibit 
a regular structure: the scheme for the identity channel consistently yields the all-zero bitstring, while for the 
unitary channel ΦRZ(θ) produces bitstrings that are zero in all positions except for a single qubit set to one. The 
second measurement approach, referred to as the XOR measurement, uses a much deeper circuit. However, an 
added benefit is that the result for the identity channel consists of all zeros, and the result for the unitary channel 
consists of all ones. This approach helps mitigate bit-flip errors: if the majority of measured bits are zero, the 
result is taken as all zeros. In the case of a six-qubit system, and in the absence of noise, the observed bitstrings 
are 000000 for identity and 111111 for the unitary channel ΦRZ(θ). The implementation of this circuit is shown 
in Fig. 2b.

In contrast, the ECR-based implementation returns a more complex distribution of output bitstrings, 
lacking the clear structure observed in the CNOT-based case. With this implementation, we get two disjoint 

Fig. 1.  Schematic implementation of a six-qubit discriminator using different gate sets: (a) Hadamard and 
CNOT; (b) IBM Eagle R3 native basis (single-qubit 

√
X  (SX) and two-qubit ECR).
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subsets of all possible results, one subset for identity channel and the second subset for the unitary channel 
ΦRZ(θ). For example, on six-qubit system, we obtain the following two sets of bitstrings after measurement 
{001111, 010111, 101101, 110101, 100001, 100111, 011101, 110011, 000011, 111001, 011011, 111111, 001001, 000101, 010001, 101011} 
for the identity channel and 
{110001, 001011, 011111, 100011, 001101, 110111, 000001, 010101, 000111, 101001, 111101, 010011, 101111, 111011, 011001, 100101} 
for ΦRZ( π

6 ). Implementation of this ECR circuit could be seen in Fig. 2d.
The bitstring 001111 from the first set and 001101 from the second differ by only one bit, which may be 

problematic in a noisy environment. Even in this small example, processing these results is not straightforward, 
though this is compensated by the simplicity of the measurement circuit. In both measurement schemes, if 
it is not possible to determine which channel was applied during experiment, i.e., when the distance to both 
candidate channels is equal, then the output is assigned randomly via a coin flip. This approach ensures that each 
circuit run yields a definite outcome, thereby avoiding missing data points. Similarly, if the majority of bits have 
value one, we take this as the result of all of them.

Mapping on Eagle R3

•	 ECR gates are oriented, qubit order matters and simple swaps are constrained.
•	 For small widths w, hand-crafted ECR-native layouts avoid transpiler SWAP insertion.
•	 For larger w, either (i) size-specific hand layouts or (ii) transpiler-based layouts with SWAPs due to connec-

tivity/orientation can be used.
•	 SWAPs increase depth and two-qubit gate count, impacting psucc.

Comparative analysis of transpilation
To evaluate the efficacy of different quantum circuit transpilation approaches, particularly concerning the choice 
between CNOT and ECR gates and the impact of manual qubit mapping, experiments were conducted on the 
6-qubit and the 11-qubit systems. The objective is to compare the performance, measured by result accuracy, 
for circuits utilizing either the short measurement or the XOR-based measurement scheme, while varying the 
transpilation method. Each circuit was executed with 100,000 shots.

The selection of CNOT and ECR gates for this study is based on their fundamental role in creating 
entanglement, which is a crucial component of the quantum circuits being investigated. A key consideration in 
this comparison is the fundamental difference in how these gates are implemented on the hardware, particularly 
on the Eagle R3 architecture. On this system, the ECR gate is a native gate, meaning it can be executed directly 
by the hardware. In contrast, the CNOT gate is not native and must be unrolled into a sequence of native gates. 

Fig. 2.  Schematic implementations of six-qubit measurement circuits across gate sets. Panels (a) and (b) depict 
the circuits for the short and XOR measurement schemes, respectively, implemented using the non-native 
H and CNOT basis. Panels (c) and (d) illustrate the circuits for the short and XOR measurement schemes, 
respectively, utilizing the native IBM Eagle R3 basis gates (

√
X and ECR).
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Theoretically, a single CNOT gate requires one ECR gate plus additional single-qubit gates, already leading to 
a deeper circuit49. Furthermore, the ECR gates on the Eagle R3 are oriented, meaning the qubit order matters 
and simple swaps are constrained. This necessitates careful mapping. For circuits with a small number of 
qubits, hand-crafted ECR-native layouts can be designed to avoid the insertion of additional SWAP gates by 
the transpiler. However, for larger circuits, either size-specific manual layouts or transpiler-based layouts are 
used. The latter often results in the automatic insertion of SWAP gates to accommodate qubit connectivity and 
gate orientation. The presence of these SWAP gates, which are themselves implemented as a sequence of native 
gates, significantly increases the circuit depth and the two-qubit gate count. This increased depth leads to a 
higher accumulation of errors, which directly impacts the result accuracy50. Detail characteristics for different 
transpilation and measurement strategies for both 6-qubit and 11-qubit can be seen in Table 1.

6-Qubit system evaluation
For the 6-qubit configuration in a pure parallel discrimination scheme, four distinct transpilation strategies were 
evaluated using the short measurement and XOR-based measurement protocols: 

	1.	 CNOT + Transpiler: Circuit implemented using CNOT basis gates, processed by the Qiskit transpiler with 
optimization level 3. Short accuracy: 88.8%; XOR accuracy: 86.4%.

	2.	 ECR + Transpiler: Circuit implemented using ECR basis gates, processed by the Qiskit transpiler with opti-
mization level 3. Short accuracy: 83.8%; XOR accuracy: 90.0%.

	3.	 ECR + Transpiler + Fixed Mapping: Circuit implemented using ECR basis gates, processed by the Qiskit 
transpiler with optimization level 3 and a predetermined, fixed mapping of logical qubits to physical qubits. 
Short accuracy: 84.4%, XOR accuracy: 85.3%.

	4.	 ECR + Fixed Mapping (No Opt.): Circuit implemented using ECR gates, utilizing a fixed logical-to-physical 
qubit mapping, bypassing subsequent transpiler optimization passes. Short accuracy: 83.3%, XOR accuracy: 
85.6%.

The experimental results indicate that for this system size, applying a fixed qubit mapping does not yield a 
discernible improvement in accuracy compared to relying solely on the transpiler’s default ECR implementation. 
This observation is potentially attributable to the limited circuit depth and complexity inherent in six-qubit 

(a) Circuit statistics for 6-qubits experiments

Transpilation strategy Measurement Depth ECR RZ
√

X X ID/RZ(ϕ)
CNOT + Transpiler Short 35 10 53 30 5 6

CNOT + Transpiler XOR 44 14 62 36 9 6

ECR + Transpiler Short 20 6 18 19 1 6

ECR + Transpiler XOR 40 14 59 34 2 6

ECR + Transpiler + Fixed Mapping Short 8 6 0 12 2 6

ECR + Transpiler + Fixed Mapping XOR 21 14 7 12 2 6

ECR + Fixed Mapping (No Opt.) Short 8 6 0 12 2 6

ECR + Fixed Mapping (No Opt.) XOR 13 15 0 7 2 6

(b) Circuit statistics for 11-qubits experiments.

Transpilation strategy Measurement Depth ECR RZ
√

X X ID/RZ(ϕ)
CNOT + Transpiler Short 63 20 99 58 10 11

CNOT + Transpiler XOR 65 29 108 52 18 11

ECR + Transpiler Short 31 11 30 32 2 11

ECR + Transpiler (ID) XOR 81 32 108 65 3 11

ECR + Transpiler (RZ(ϕ)) XOR 85 35 115 66 4 11

ECR (Topology-Aware) + Transpiler Short 26 11 23 30 2 11

ECR (Topology-Aware) + Transpiler XOR 70 29 108 62 6 11

ECR (Topology-Aware) + Transpiler + Fixed Mapping Short 11 11 0 22 2 11

ECR (Topology-Aware) + Transpiler + Fixed Mapping XOR 30 29 7 17 2 11

ECR (Topology-Aware) + Fixed Mapping (No Opt.) Short 11 11 0 22 2 11

ECR (Topology-Aware) + Fixed Mapping (No Opt.) XOR 22 30 0 12 2 11

Table 1.  Circuit complexity metrics for the 6-qubit system presented in Table (a) and for the 11-qubit system 
presented in Table (b) across transpilation strategies. The table details the circuit Depth, two-qubit gate count 
(ECR), and single-qubit gate counts (RZ, 

√
X/SX, X, ID/RZ(ϕ)) after transpilation to the native basis of 

the IBM Eagle architecture, comparing different initial circuits and measurement schemes. For the 11-qubit 
system the entries “ECR + Transpiler (ID)” and “ECR + Transpiler (RZ(ϕ))” reflect special cases where the 
measurement or state discrimination was tuned for the Identity (ID) and RZ(ϕ) channel, respectively. This 
specialized setting directly influenced the transpiler’s output, leading to the distinct final circuit properties 
observed in these rows.
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systems, where the transpiler’s optimization might already find near-optimal solutions without explicit mapping 
constraints.

11-Qubit system evaluation
A subsequent set of experiments was performed using the 11-qubit system. Five transpilation strategies were 
assessed for each measurement type: 

	1.	 CNOT + Transpiler: Circuit using CNOT basis gates, transpiled with optimization level 3. Short accuracy: 
43.3%, XOR accuracy: 48.5%.

	2.	 ECR + Transpiler: Circuit using ECR basis gates, transpiled with optimization level 3. Short accuracy: 
55.0%, XOR accuracy: 54.5%.

	3.	 ECR (Topology-Aware) + Transpiler: Circuit initially designed considering device connectivity using ECR 
gates, then transpiled with optimization level 3. Short accuracy: 36.1%, XOR accuracy: 47.2%.

	4.	 ECR (Topology-Aware) + Transpiler + Fixed Mapping: Topology-aware ECR circuit, transpiled with op-
timization level 3 and a fixed logical-to-physical qubit mapping. Short accuracy: 32.0%, XOR accuracy: 
71.5%.

	5.	 ECR (Topology-Aware) + Fixed Mapping (No Opt.): Topology-aware ECR circuit with fixed mapping, 
bypassing subsequent transpiler optimization. Short accuracy: 33.4%, XOR accuracy: 71.8%.

The results for the 11-qubit system demonstrate a general performance advantage for ECR-based implementations 
over CNOT-based ones for both measurement protocols. For the short measurement scheme, the standard ECR 
implementation processed by the transpiler (Method 2) yields the highest accuracy (55.0%). However, a more 
pronounced effect is observed for the XOR measurement protocol. Employing a topology-aware circuit design 
combined with fixed qubit mapping (Methods 4 and 5) results in a significant accuracy improvement, achieving 
approximately 71.5–71.8%, nearly a 20% absolute increase compared to the standard CNOT transpiled approach 
(48.5%).

To assess the effect of Transpilation Strategy and Measurement Scheme on accuracy in the hardware experiments 
summarized in the circuit-statistics tables, we performed a two-way ANOVA without replication  51. For the 
6-qubit system, neither factor was statistically significant at α = 0.05 (Transpilation Strategy: F (3, 3) = 0.745, 
p = 0.593; Measurement Scheme: F (1, 3) = 0.966, p = 0.398). For the 11-qubit system Transpilation Strategy 
remained non-significant (F (4, 4) = 0.327, p = 0.848), while Measurement Scheme showed a marginal, 
non-significant trend (F (1, 4) = 4.914, p = 0.091). The modest sample size for the 11-qubit analysis limits 
statistical power, despite clear descriptive differences in some configurations.

The current experimental design, which utilized only a single accuracy result for each Transpilation Strategy 
and Measurement Scheme combination, precluded the testing of interaction effects between these categories 
for both the 6-qubit and 11-qubit systems, investigating these likely but untested relationships will be essential 
for future, more robust research. It is also worth observing that the substantial accuracy gain observed for the 
11-qubit XOR measurement using hardware-aware design and fixed mapping highlights the potential benefits 
of tailoring circuits to specific device characteristics. However, this approach presents a significant practical 
challenge: it currently necessitates manual, device-specific, and qubit-count-specific circuit construction 
and mapping. This process lacks straightforward algorithmic automation and requires considerable expert 
intervention for each target configuration, limiting its scalability and general applicability.

Preliminary results
From the initial experiments involving purely sequential and purely parallel discrimination schemes (see Fig. 3), 
we observe that the use of entangling gates on real quantum devices introduces a greater error overhead than the 
decoherence effects arising from increased gate depth in sequential protocols.

To further investigate this observation, we conducted a series of tests using hybrid rectangular (sequentially-
parallel) schemes with a fixed number of unknown gate applications (see Fig. 4). The results consistently show a 
significant increase in error rates as more entangling gates are introduced. This trend reinforces the conclusion that 
the primary source of performance degradation in current devices stems from the imperfections of multi-qubit 
gate operations rather than decoherence from circuit depth alone. Another notable observation is that different 
measurement schemes have a visible but not dominant impact on the overall error rate, further suggesting that 
the circuit width and the number of entangled qubits are the primary contributors to performance degradation. 
This reinforces the conclusion that the main source of error arises from the entanglement rather than from the 
specifics of the measurement strategy.

Anomalous behavior discussion
During the experiments, we observed a specific issue with the IBM Quantum platform: measurements in 
experiments involving the entanglement of a certain number, typically five or more, qubits exhibited random 
bit-flip errors. This type of error is evident in Figs.  3 and 4 and appears to affect all qubits simultaneously, 
independent of the measurement strategy. Given that random guessing yields a baseline success probability of 0.5, 
device noise would normally drive the measured success rates toward this value. Instead, we observed something 
like inversion of outcomes, effectively corresponding to a swap of the expected answer sets. These anomalies 
can be reversed by interchanging the target labels, which restores internal consistency in the data. However, this 
procedure is purely for illustration, as the underlying cause of the bit-flip behavior remains unidentified and such 
swapping does not constitute a valid mitigation strategy. To ensure that the issue was not caused by errors in our 
own implementation, we performed several verification steps. First, multiple experimental results from different 
dates were analyzed. Second, the final transpiled circuits were simulated using a noiseless simulator to confirm 
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the expected theoretical behavior. Third, we applied M3 error mitigation techniques52, which had no measurable 
effect on the observed phenomena. Given that the observed errors persist across all experiments, regardless of 
the RZ gate angle or the measurement strategy employed, we hypothesize the presence of a systematic hardware 
or software artifact specific to the IBM Quantum platform, particularly the Brisbane quantum device. Further 
investigation and hypothesis-driven testing are required to understand this behavior.

Experiment 2—Discrimination of unitary channels on IBM Brisbane with processing
In this section, we will present the second example of discrimination task with a different pair of unitary 
channels that require intermediate processing between applications to be perfectly distinguishable and run it 
on IBM Brisbane.

Methodology
In the second experiment, we take the following unitary channels to discriminate ΦU  for U =

√
XRZ( −π

2N
)
√

X  

and ΦV  for V =
√

XRZ( π
2N

)
√

X , where 
√

X = 1
2

(1 + i 1 − i
1 − i 1 + i

)
. It is easy to check that the condition 

θ(V †U) = π
N  is satisfied. It implies that for N-shot discrimination scenario, we will achieve perfect 

discrimination. Let us fix N = wd, where w, d ∈ N. In this setup, instead of mid-processing Xi = (V †)⊗w  we 
use hardware-friendly processing Xi = X⊗w . For convenience we add also pre-processing unitary operation 
X0 = (X

√
X)⊗w  and post-processing operation Xd = (

√
XX)⊗w . Combining processing operators with the 

black-box ΦU  we get the following unitary operation

	
U∗ = XdU⊗wXd−1 · · · X1U⊗wX0 =

(
RZ( −π

2N
)d

)⊗w

.� (16)

Similarly, for ΦV  the combined unitary circuit equals V∗ =
(
RZ( π

2N
)d

)⊗w . Note that 

θ(
(
RZ( −π

2N
)d

)⊗w (
RZ( −π

2N
)d

)⊗w) = wdθ(RZ( −π
N

)) = N π
N

= π, so in theory, each shape w, d gives perfect 
discrimination. As X,

√
X, RZ are native gates in IBM Quantum Brisbane this part of the circuit is implemented 

exactly as stated. To define the discriminator |ψ⟩, we solve

	
⟨ψ|

(
RZ(−π

N
)d

)⊗w

|ψ⟩ = 0.� (17)

We find that the input state can be taken as the GHZ state |ψ⟩ = 1√
2 (|0 . . . 0⟩ + |1 . . . 1⟩), which can be 

implemented by Hadamard gate followed by cascade of control-X gates. We let the IBM transpiler to optimize 
the input state circuit with the optimization level set to 3.

We distinguish two situations depending on the value of Φ. If Φ = ΦU , then the input state |ψ⟩ evolved 
under U∗ is equal to |ψ−i⟩ = 1√

2 (|0 . . . 0⟩ − i |1 . . . 1⟩). For Φ = ΦV  we get after the evolution V∗ that 

(a) Purely sequential scheme of discrimination. (b) Purely parallel scheme of discrimination.

Fig. 3.  Probability of successful discrimination between the identity operation and the RZ(π/N) gate, 
where N is the number of copies of unknown unitary. The dashed red line corresponds to the XOR-based 
measurement strategy, while the solid blue line represents the short measurement scheme. Figure (a) illustrates 
the performance of the purely sequential scheme. In Figure (a), the probability is approximately 0.965. Figure 
(b) corresponds to the purely parallel scheme. Each circuit was executed with 10,000 shot. Measurement 
outcomes that could not be unambiguously associated with either gate were randomly assigned to one of the 
two possible answers.
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|ψi⟩ = 1√
2 (|0 . . . 0⟩ + i |1 . . . 1⟩). At the measurement stage we implement RZ(π/2) on the first qubit followed 

by parallel application of Hadamard gates H⊗w . Each qubit is then measured in the Z-basis. We let the IBM 
transpiler to optimize the measurement circuit with the optimization level set to 3. At the measurement stage, 
after applying RZ(π/2) and H⊗w  we get

	 H⊗w(RZ(π/2) ⊗ 1l) |ψ∓i⟩ = |+ · · · +⟩ ± |− · · · −⟩ ,� (18)

where we used the notation of plus/minus states |+⟩ = H |0⟩ , |−⟩ = H |1⟩. Observe that if (b1, . . . , bw) 
is a bit string we received from measuring |+ · · · +⟩ ± |− · · · −⟩, then in theory, Φ = ΦU  if and only 
if b1 ⊕ · · · ⊕ bw ≡ 0, where ⊕ denotes XOR operation between bits. Similarly, Φ = ΦV  if and only if 
b1 ⊕ · · · ⊕ bw ≡ 1.

Preliminary results
From relatively small number of copies (N = 4, 16, 32) of unitary channels to be discriminated, the experiments 
involving purely sequential schemes are preferable (see Fig. 5). We observe that the use of entangling gates on 
real quantum devices introduces a higher error overhead than the decoherence effects arising from increased 
gate depth in sequential protocols. For an increasing number of copies (N = 64, 96, 1024) of unitary channels, 
we can observe the advantage of usage sequentially-paralleled schemes to achieve more precise results (see 
Fig. 6). The results consistently show that after some threshold of gate composition, the existing decoherence or 

(a) Hybrid scheme for N = 120. (b) Hybrid scheme for N = 240.

(c) Hybrid scheme for N = 1200.

Fig. 4.  Probability of successful discrimination between the identity operation and the RZ(π/N ) gate, where 
N is number of copies of unknown unitary, plotted as a function of the width of the hybrid rectangular scheme. 
The dashed red line corresponds to the XOR-based measurement strategy, while the solid blue line represents 
the short measurement scheme. Figure (a) illustrates the performance of hybrid scheme with 120 copies in 
total, Figure (b) corresponds to hybrid scheme with 240 copies in total, and Figure (c) corresponds to hybrid 
scheme with 1200 copies in total. Each circuit was executed with 10,000 shots. Measurement outcomes that 
could not be unambiguously associated with either gate were randomly assigned to one of the two possible 
answers.
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accumulative calibration imperfections gives higher error rates than the error rates used to create an entangled 
state.

Discussion
In the experiment with N = 1024 copies of black-box, we obtained effectively random results for all schemes 
considered (see Fig. 6c). The sequential scheme required excessive gate composition, while the parallel scheme 
required preparing a GHZ state that was too large. Both circuits introduced too many errors to yield any notable 
results. The final question that we can ask is if we can do better than that by exploring suboptimal circuits. A 
simple idea goes as follows. We perform independent sequential experiments on each of the w qubits. For each, 
we compose d quantum circuits and do independent measurements that indicate which black-box is preferable. 
As θ(V †U) = π

N  for each qubit, we get the maximum angle spread of θ = π
N

d = π
w

< π. Hence, the protocol is 
suboptimal. The probability of successful discrimination can be boosted by using majority voting on the results 
collected from the quantum computer. Let us assume that we collected k times label 0 indicating ΦU  and w − k 
times label 1 standing for ΦV . If k > w − k we guess that Φ = ΦU  (and for k < w − k we guess Φ = ΦV ). In 
the case k = w − k, we make a random guess.

We applied the following suboptimal procedure for N = 1024. We used w = 32 qubits, and on each 
qubit we applied the operation Φ sequentially d = 32 times. According to Fig.  5, we should expect around 
90% accuracy for each qubit. In combination, we obtained psucc = 0.56765, which is better than any optimal 

(a) Hybrid scheme for N = 4. (b) Hybrid scheme for N = 16.

(c) Hybrid scheme for N = 32.

Fig. 5.  Probability of successful discrimination between the unitary operator U =
√

XRZ( −π
2N

)
√

X  and 
V =

√
XRZ( π

2N
)
√

X , where N is number of copies of unknown unitary, plotted as a function of the width 
of hybrid rectangular scheme, using the short measurement. The blue line corresponds to the results obtained 
directly from IBM Brisbane, while the red line represents the results after error mitigation using MThree 
package52,53. Figure (a) illustrates the performance of hybrid schemes with 4 copies in total, Figure (b) 
corresponds to hybrid schemes with 16 copies in total, and Figure (c) corresponds to hybrid schemes with 32 
copies in total. Each circuit was executed with 10,000 shots.
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scheme. Similarly, we conducted the experiment for N = 96 and w = 3, d = 32 resulting in psucc = 0.74685, 
which is a better result than indicated by Fig. 6b.

Can we say that suboptimal circuits are favorable for unitary channel discrimination? The answer is not 
straightforward. For example, for N = 64, the best result from Fig. 6a is slightly better than the suboptimal 
procedure presented above, even in the absence of noise, with psucc = 0.85295. Interestingly, no analogous 
bit-flip anomalies were observed in these results compared to Experiment 1 (page 8), even though they employ 
comparable qubit counts and circuit depths. This may suggest that updates to the IBM Quantum execution 
pipeline or internal compilation procedures now perform additional low-level optimizations or calibration 
corrections before execution on hardware, which could explain the collective measurement flips seen in the 
simpler example. However, since these mechanisms are not publicly documented, this explanation remains 
speculative.

Noise modeling and ablation analysis
Theoretical noise model
In this section we analyze the effect of symmetric depolarizing noise on the circuit presented in Experiment 1 
for both optimal and suboptimal discrimination strategies. Let U± = RZ(±π/(2N)) be two unitary operations 
to distinguish, where N is the number of copies given. We assume that N = rwd, where r is the number of 
independent circuits prepared, w is the number of qubits used per circuit, and d is the number of compositions 
of U± in each register. As a universal gate set, we choose single qubit operations and CNOT gates. Finally, 

(a) Hybrid scheme for N = 64. (b) Hybrid scheme for N = 96.

(c) Hybrid scheme for N = 1024.

Fig. 6.  Probability of successful discrimination between the unitary operator U =
√

XRZ( −π
2N

)
√

X  and 
V =

√
XRZ( π

2N
)
√

X , where N is number of copies of unknown unitary, plotted as a function of the width 
of hybrid rectangular scheme, using the short measurement. The blue line corresponds to the results obtained 
directly from IBM Brisbane, while the red line represents the results after error mitigation using MThree 
package52,53. Figure (a) illustrates the performance of hybrid schemes with 64 copies in total, Figure (b) 
corresponds to hybrid schemes with 96 copies in total, and Figure (c) corresponds to hybrid schemes with 1024 
copies in total. Each circuit was executed with 10,000 shots.
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the depolarizing noise is modeled as follows. Let Ωϵ be a parametrized qubit depolarizing noise given by the 
equation Ωϵ(ρ) = (1 − ϵ)ρ + ϵρ∗, with the noise ratio ϵ ∈ [0, 1] and ρ∗ indicating maximally mixed state. 
Each single qubit gate U is affected by Ωϵ, which we write as Ωϵ(UρU†). The CNOT gate is affected by two 
independent noise sources acting on both qubits, (Ωϵ ⊗ Ωϵ)(CNOT ρCNOT †). To implement suboptimal 
strategies, we use majority voting for r independent experiments. Hence, we will consider only odd values of r. 
If r = 1, we have the optimal strategy.

To implement the input state, we use single Hadamard gate and CNOT ladder containing 
w − 1 two-qubit operations. Hence, for the noiseless circuit (ϵ = 0) we get a generalized GHZ state 

1√
2 (|0 · · · 0⟩ + |1 · · · 1⟩). We further implement wd unitary U± gates as (Ud

±)⊗w  and obtain the state 
1√
2 (|0 · · · 0⟩ + e±(πwd)/(2N)i |1 · · · 1⟩). The measurement is performed using the short-measurement circuit, 

where on the first qubit we put the gate 1√
2

(1 i
1 −i

)
 and on the remaining w − 1 qubits we put Hadamard 

gates. As a result, the state to measure is of the form 1√
2 (|+ · · · +⟩ + ie±(πwd)/(2N)i |− · · · −⟩). For any bitstring 

b1, . . . , bw  satisfying b1 ⊕ · · · ⊕ bw = 0, where ⊕ denotes XOR operation between bits, we get the probability 
P (b1, . . . , bw) = 1

2w+1

∣∣1 + ie±(πwd)/(2N)i
∣∣2 = 1

2w

(
1 ∓ sin

(
π
2r

))
. Therefore, each bitstring with the 

property b1 ⊕ · · · ⊕ bw = 0 will be connected with the guess U− and b1 ⊕ · · · ⊕ bw = 1 with U+. In total, 
the success probability for correct discrimination in a single noiseless experiment reads ps = 1

2 (1 + sin
(

π
2r

)
).

In the presence of the noise ϵ > 0 there is nonzero probability that at some point of the circuit, single qubit 
will decohere to ρ∗. If a single event like this happen, then the full coherence of the quantum state is lost. The 
information about U± is held in the phase of the GHZ state. Therefore, if at least one error occurs, the information 
about U± is lost and the probability of correct discrimination drops to 1/2. Let us count the probability that there 
is no errors. Each error can occur with the same probability ϵ independently, so we need to count the number of 
places where the error can happen. To create the GHZ state, we use a single Hadamard gate and w − 1 CNOT 
gates. In total, there are 1 + 2(w − 1) possible positions where an error can occur. Then, we implement U±, 
which adds d additional error positions per qubit, giving dw in total, where w is the circuit width. Finally, at 
the measurement stage we implement Hadamard gate for each qubit resulting in w error positions. To sum up, 
there are 1 + 2(w − 1) + wd + w = wd + 3w − 1 error positions. The probability that there is no error is 
then (1 − ϵ)wd+3w−1. The success probability for a single experiment in the presence of noise is then given by

	
ps(ϵ) = (1 − ϵ)wd+3w−1ps + (1 − (1 − ϵ)wd+3w−1)1

2 = 1
2 + 1

2(1 − ϵ)wd+3w−1 sin
(

π

2r

)
.� (19)

Finally, if we add the majority vote procedure for r independent experiments, the total probability of success in 
the presence of noise Ωϵ reads as follows

	
Pr,w,d(ϵ) =

r∑
k=⌈r/2⌉

(
r
k

)
ps(ϵ)k(1 − ps(ϵ))r−k.� (20)

If r = 1 and ϵ = 0 we see that P1,w,d(0) = 1 as intended for any shape (w, d). However, in the presence of 
noise, we see that from all optimal strategies (r = 1), the formula wd + 3w − 1 = N + 3w − 1 is minimized 
for circuits with fewer qubits. Therefore, the circuits with a usage of a single qubit are preferable. They 
achieve a probability of success P1,1,N (ϵ) = 1

2 + 1
2 (1 − ϵ)N+2. The comparison with suboptimal strategies 

is more complex. As suboptimal strategies (r > 1) involve usage of majority voting they naturally constitute 
error correction method. Therefore, they could be preferable when the noise level exceeds some level for a 
given problem size. Indeed, let us take as an example N = 150 and compute P1,1,150(0.01) ≃ 0.6085 and 
P3,1,50(0.01) ≃ 0.7158. Three times repetition provides advantage for ϵ = 0.01 even if for noiseless system we 
have P1,1,150(0) = 1 and P3,1,50(0) = 0.84375.

In conclusion, for a given quantum device with fixed error rate, large enough discrimination problems will 
benefit from utilizing suboptimal procedures that are more prone to errors.

Ablation study
To quantify the effect of different noise sources in Experiment 2, we performed an ablation study with the Aer 
Simulator using parameters calibrated to IBM Brisbane. Instead of a single model, we constructed configurations 
that enable only specific channels:

•	 1q only: depolarization on single-qubit gates,
•	 2q only: depolarization on two-qubit gates,
•	 T1/T2 only: thermal relaxation and dephasing,
•	 Readout only: asymmetric measurement errors,
•	 Full rebuilt: manual composition of average depolarization, T1/T2, and readout noise,
•	 Full backend: calibration-based model from NoiseModel.from_backend.

The calibration data used for noise modeling were derived from the real IBM Brisbane device around the time of 
the experiments. The average single-qubit depolarizing error was set to 1.104 × 10−3, and the two-qubit (ECR) 
gate error to 1.946 × 10−2. The median relaxation times were taken as T1 = 210 µs and T2 = 155 µs, with 
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corresponding gate durations of 35 ns for single-qubit gates and 248 ns for two-qubit gates. The readout errors 
were modeled with asymmetric probabilities of p01 = 2.5 × 10−2 and p10 = 2.0 × 10−2.

The results for N = 64 and widths w ∈ {1, 2, 4, 8, 16} are shown in Fig. 7. The data confirm that two-qubit 
noise is the dominant source of degradation, while single-qubit errors and relaxation processes have a noticeably 
weaker but still increasing impact as the depth grows. Readout errors alone contribute greatly to the reduction 
in performance. However, this is likely an overestimation because in our noise model we apply uniform readout 
asymmetries rather than the full per-qubit readout map. The full rebuilt model consistently yields lower success 
probabilities than the full backend, as the reconstruction uses averaged T1/T2 values and applies depolarization 
and dephasing independently at each gate and also already mentioned readout errors. This slightly overestimates 
the combined effect of noise and neglects favorable device inhomogeneities, making the rebuilt model more 
pessimistic.

To further bridge the gap between simulations and hardware runs, we introduced a small coherent drift 
(biased gate calibration error) by replacing every RZ(θ) with RZ(θ + π/160). This modification yields the 
curves shown in Fig. 7b, which more closely reproduce the relative trends observed on real hardware (Fig. 6a), 
although the agreement is not exact.

Conclusion
In this work, we have studied the discrimination of two quantum unitary channels and benchmarked various 
schemes for perfect discrimination between them. The benchmarks were performed using the IBM Brisbane 
quantum device. All figures indicate the shot count (10,000 shots per circuit). Where multiple hardware runs 
were available, we aggregated by computing psucc for each run and comparing across configurations as above. 
For noise-model simulations, we used the same success metric and classification rule as the hardware runs to 
ensure comparability.

As the first example, we chose the discrimination task between the identity operation and the RZ(ϕ) 
gate with no processing between them. To optimize circuit performance for this discrimination task, we also 
evaluated different quantum circuit transpilation approaches on 6- and 11-qubit subsystems, comparing the 
circuit implementation with CNOT and ECR gates and the impact of manual qubit mapping. Although fixed 
qubit mapping did not significantly improve accuracy in the smaller 6-qubit system, topology-aware circuit 
design combined with fixed mapping yielded substantial gains on the 11-qubit system when using XOR-based 
measurements, thereby underscoring the importance of hardware-aware optimization for larger circuits. In 
this experiment, we find the trend that deeper circuit architectures, which minimize entanglement overhead 
while preserving discrimination power, are significantly more resilient to hardware noise (see Fig.  3). Our 
results suggest that algorithm designers should prioritize circuit depth over width whenever possible. In the 
second example, we considered the discrimination between the unitaries U =

√
X, RZ(−π/2N),

√
X  and 

V =
√

X, RZ(π/2N),
√

X , where the processing consists of compositions of X and 
√

X  gates. There, we have 
observed the advantage of using sequentially-paralleled schemes to achieve more precise results. The results 

(a) Ablation without drift. (b) Ablation with additional RZ drift.

Fig. 7.  Probability of successful discrimination between U =
√

X, RZ(−π/128),
√

X  and 
V =

√
X, RZ(π/128),

√
X  for N = 64 copies, plotted as a function of circuit width w (number of qubits). 

The dashed brown line corresponds to the full backend noise model of IBM Brisbane provided by Qiskit, 
while the solid purple line denotes the full rebuilt model that combines depolarization, thermal relaxation, 
and readout errors. The remaining curves represent ablation configurations with only single-qubit noise 
(dashed orange), two-qubit noise (solid blue), thermal relaxation (dash-dotted green), or readout noise (dotted 
red). The results confirm that two-qubit and readout noise are the dominant contributors to performance 
degradation. Figure (a) shows ablation results without coherent drift, whereas Figure (b) includes an added 
systematic phase offset θ �→ θ + π/160 on each RZ gate. Each circuit was executed with 10,000 shots.
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consistently show that beyond a certain threshold of gate composition, decoherence and cumulative calibration 
imperfections produce higher error rates than those required to generate an entangled state.

Our calibrated noise simulations identify two-qubit gate and readout errors as primary performance 
limitations. Consequently, for large-scale problems such as N = 1024, theoretically optimal schemes failed, 
producing random outcomes. In contrast, a suboptimal approach using majority voting proved more effective 
in some cases in accordance with the theoretical results. A final observation concerns the bit-flip anomaly 
reported in Experiment 1 (see Figs. 3 and 4), where correlated flips were observed across all measured qubits 
for certain qubit counts. In contrast, no such behavior was observed in Experiment 2 (see Figs.  5 and 6), 
despite its comparable width and depth combinations. This discrepancy may indicate that the IBM Quantum 
execution stack performs undisclosed optimizations or internal circuit simplifications for certain circuit classes, 
potentially suppressing these systematic artifacts in more complex layouts. However, without public access to 
the complete compilation and calibration pipeline, this hypothesis remains highly speculative. More research is 
needed to determine whether these effects arise from backend-level preprocessing, device-specific behavior, or 
a combination of both.

Circuit geometries beyond square layouts may offer a more accurate reflection of the capabilities of the 
device. These findings can be applied to various black-box tasks with many copies, such as quantum phase 
estimation 54. In that case, discrimination schemes that are theoretically suboptimal achieve good experimental 
performance  55. While comparing unitary channels leads to expected consistent and comparable results, the 
task of general quantum channel discrimination introduces complexity as its necessary implementation via 
the Stinespring representation requires adding ancillary systems and SWAP gates to enable entanglement. This 
operational overhead inherently subjects the experimental outcomes to a greater degree of error. Experimental 
studies of the discrimination of general quantum channels remain an open direction for future research.

Data availability
The data that support the findings of this study are openly available in Github repository at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​
D​o​t​n​e​​s​t​e​r​/​​e​x​p​e​r​i​​m​e​n​t​a​l​​_​s​t​u​d​y​​_​o​f​_​m​​u​l​t​i​p​l​​e​_​s​h​o​t​​_​c​h​a​n​n​​e​l​_​d​i​s​c​r​i​m​i​n​a​t​i​o​n and on Zenodo56.
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