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In response to the challenges of multi-object fish tracking in complex underwater environments, 
where performance is easily affected by illumination changes, suspended particles, occlusion, and 
high inter-target visual similarity, this paper proposes a unified Transformer framework that integrates 
cross-frame spatiotemporal encoding with trajectory-aware decoding. In the encoding stage, temporal 
difference and frame position embeddings are introduced and combined with a residual motion 
enhancement mechanism to explicitly align appearance, scale, and displacement across frames. In 
the decoding stage, trajectory extrapolation priors and temporal association attention are employed 
to restrict cross-frame feature aggregation within reasonable candidate regions, achieving joint 
optimization of detection and association. On our self-constructed underwater fish tracking dataset, 
the proposed method achieves MOTA, IDF1, and Recall scores of 0.719, 0.693, and 0.742, improving 
over the strong baseline model GTR (0.688, 0.671, 0.720) by 0.031, 0.022, and 0.022 absolute points. 
On the UOT32 dataset, it attains 0.697, 0.680, and 0.730, surpassing ByteTrack (0.675, 0.650, 0.700) 
by 0.022, 0.030, and 0.030 absolute points, respectively. These results demonstrate that the proposed 
approach effectively integrates cross-frame spatiotemporal modeling with trajectory-guided decoding, 
enabling accurate detection and reliable identity association even under occlusion and dense target 
conditions. The method exhibits strong robustness and generalization in complex underwater 
environments, outperforming existing state-of-the-art approaches in both tracking accuracy and 
stability.
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Multi-object fish tracking technology holds significant application value in fields such as aquaculture, fishery 
resource monitoring, fish passage assessment, and underwater ecological behavior research1. By achieving 
accurate detection and continuous tracking of individual fish within a school, researchers and industry 
practitioners can estimate population size, evaluate migration efficiency in fishways, assess individual health 
conditions, and analyze behavioral patterns. Such capabilities provide a scientific basis for intelligent farming 
management, disease prevention, ecological conservation, and the design of more effective fish passage facilities2.

In complex underwater environments, fish often exhibit dense distributions, rapid movements, and highly 
variable postures, which impose stringent requirements on the robustness and real-time performance of multi-
object tracking algorithms3. However, existing methods still face numerous challenges. First, illumination 
changes, suspended particles, and water surface reflections degrade image quality, making target detection 
susceptible to interference. Second, frequent occlusions among fish and their high visual similarity often lead to 
errors in cross-frame identity association, resulting in drift and ID switching4. Third, many tracking frameworks 
designed for generic scenarios struggle to effectively model global motion patterns over long temporal 
sequences, leading to suboptimal performance in complex motion and trajectory prediction tasks. Furthermore, 
some approaches fail to fully exploit temporal information and motion priors, causing a disconnect between the 
detection and association stages, which adversely affects overall performance5.

To address these issues, this paper proposes a unified Transformer-based framework with cross-frame 
spatiotemporal encoding and trajectory-aware decoding. On the encoding side, we introduce a joint embedding 
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of temporal difference and frame position information, combined with a residual motion enhancement 
mechanism, to explicitly align appearance, scale, and displacement across frames. On the decoding side, we 
employ trajectory extrapolation to generate spatial priors, together with a temporal association attention 
mechanism, to restrict cross-frame feature aggregation within reasonable candidate regions, thus achieving joint 
optimization of detection and identity preservation. This method not only enhances robustness under occlusion 
and illumination variations but also effectively reduces drift and ID switching in long-sequence tracking, thereby 
supporting reliable monitoring of fish schools in natural habitats and engineered environments such as fishways. 
This article also provides a comparison table with other Transformer architecture methods, as shown in Table 1.

The main contributions of this work are as follows:

•	 We propose a cross-frame spatiotemporal encoding strategy that fuses appearance, displacement, and tem-
poral information within a unified feature space, enhancing the model’s long-term motion perception and 
occlusion recovery capabilities.

•	 We design a trajectory-aware decoding module with a temporal association attention mechanism, which 
leverages extrapolated trajectory priors and candidate region masking to effectively constrain the cross-frame 
association range, improving the consistency between detection and association.

•	 We conduct comprehensive experiments on a self-constructed underwater fish tracking dataset and the 
UOT32 dataset, demonstrating the superiority of our method in multiple metrics, including MOTA, IDF1, 
and Recall.

•	 Through trajectory overlay and Grad-CAM visualization, we illustrate the model’s ability to focus on key 
regions and capture motion directions in complex underwater scenes, further enhancing the interpretability 
of the method.

Related work
Visual transformer related research
Visual Transformers have rapidly emerged as a prominent research direction in computer vision since the 
introduction of the Vision Transformer (ViT) model by Dosovitskiy et al.9. This approach partitions an image 
into fixed-size patches and maps them into a sequence for Transformer processing, enabling global feature 
modeling without convolutional operations. Subsequently, Touvron et al.10 proposed DeiT, which significantly 
reduced the training cost of ViT by introducing a data-efficient distillation mechanism; Liu et al.11 introduced 
the Swin Transformer, employing a shifted window mechanism to achieve hierarchical feature extraction that 
balances computational efficiency and multi-scale modeling capability; Wang et al.12 proposed the Pyramid 
Vision Transformer (PVT) and Wu et al.13 developed the Convolutional Vision Transformer (CvT), both of 
which integrate the strengths of convolution and Transformer architectures to enhance performance in dense 
prediction tasks. More recently, He et al.14 proposed Masked Autoencoders (MAE) and Oquab et al.15 developed 
DINOv2, both demonstrating superior generalization in self-supervised visual representation learning and 
providing high-quality features for downstream tasks.

In the domain of video understanding, the spatiotemporal modeling capabilities of Transformers have 
been extensively validated. Bertasius et al.16 introduced TimeSformer, which employs a space-time factorized 
attention mechanism to efficiently capture dynamic information in videos; Arnab et al.8 proposed ViViT, 
exploring various spatiotemporal attention architectures for video feature encoding; Liu et al.17 extended the 
Swin architecture to the video domain with the Video Swin Transformer, achieving state-of-the-art performance 
in video action recognition and video object detection. These methods have effectively improved cross-frame 
feature association, providing methodological foundations for cross-frame encoding in multi-object tracking 
tasks.

In the field of object detection, Carion et al.18 pioneered the use of Transformers for end-to-end object 
detection with DETR, which eliminates handcrafted components of traditional detectors through set-based 
prediction; more recently, Zhao et al.19 proposed RT-DETR, achieving real-time inference while maintaining 
detection accuracy, thus offering a promising solution for detection and tracking in real-time scenarios. 
Collectively, these advances form a solid technical foundation for the proposed framework that integrates cross-
frame encoding and trajectory-aware decoding for multi-object fish detection and tracking.

Method Modeling Paradigm
Spatiotemporal Information 
Utilization Association Constraint Mechanism Main Innovation

TrackFormer6 End-to-end joint modeling of detection 
and association based on DETR

Single-frame feature encoding + 
temporal query propagation

Attention-based implicit matching 
without motion prior

Unified framework but 
insufficient for long-term motion 
modeling

MOTR7 Transformer-level joint learning for 
detection and tracking

Multi-frame feature fusion with shallow 
temporal modeling

Dynamic query initialization without 
explicit trajectory extrapolation

Emphasizes end-to-end reasoning 
but unstable under occlusion

ViViT8 Video-level Transformer architecture Global spatiotemporal attention with 
implicit frame relations No explicit association mechanism

Strong spatiotemporal awareness 
but unsuitable for target-level 
association tasks

Ours
Unified cross-frame spatiotemporal 
encoding + trajectory-aware decoding 
framework

Cross-frame differential embedding 
+ residual motion enhancement for 
explicit motion alignment

Incorporates trajectory extrapolation 
priors and temporal association 
attention to explicitly constrain 
association range

Enhances long-term motion 
modeling and occlusion 
robustness, adapted to complex 
underwater environments

Table 1.  Comparison of core differences with existing transformer-based tracking methods.
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Research on target tracking algorithms
Single target tracking algorithm
Single Object Tracking (SOT) aims to accurately and efficiently predict the location of a given target in 
subsequent video frames, given its initial position in the first frame. Early methods primarily relied on similarity 
matching based on convolutional features. Bertinetto et al.20 first applied a fully convolutional Siamese network 
to visual tracking in SiamFC, achieving an end-to-end framework for feature extraction and matching. Li et 
al.21 introduced the Region Proposal Network (RPN) into the Siamese architecture with SiamRPN, effectively 
improving localization accuracy and bounding box regression. SiamRPN++22 further incorporated deeper 
backbone networks and multi-scale feature fusion strategies, achieving a better balance between accuracy and 
speed. In addition, Zhang et al.23 proposed the Structured Siamese Network (StructSiam), which enhanced 
matching robustness through structured feature modeling.

To further improve discriminative capability and adaptability, researchers have incorporated online updating 
and discriminative model prediction mechanisms. Danelljan et al.24 proposed ATOM, which integrates IoU 
prediction with a classification branch and achieves superior localization accuracy. Bhat et al.25 introduced 
DiMP, which learns a generalizable discriminative model predictor with stronger adaptability across diverse 
scenarios. Wang et al.26 explored the integration of natural language and visual tracking, constructing multimodal 
benchmarks and algorithms that support both target localization and semantic conditional constraints, thus 
opening new research directions for interactivity and flexibility in tracking.

In recent years, Transformer architectures have been introduced into SOT, significantly enhancing cross-
frame feature modeling. Chen et al.27 proposed TransT, which leverages attention mechanisms to fuse template 
and search region features, thereby improving the discriminative power of feature representations. Yan et al.28 
developed STARK, which models spatial and temporal dependencies simultaneously through a spatiotemporal 
Transformer, enabling end-to-end tracking prediction. Chen et al.29 further introduced the “Backbone is 
All You Need” simplified architecture, which employs an efficient backbone network to substantially reduce 
computational complexity while maintaining accuracy. More recently, Hoanh and Pham30 proposed a density-
guided query selection strategy to enhance Transformer-based detection of small objects, while Than et al.31 
introduced a long-range feature aggregation and occlusion-aware attention mechanism to improve detection 
robustness in autonomous driving scenarios. These studies collectively provide a solid foundation for subsequent 
tracking frameworks that integrate spatiotemporal information with efficient decoding mechanisms.

Moreover, since the proposed framework demonstrates strong adaptability across diverse underwater 
environments, it also shows potential for future extension to domain adaptation tasks, where models trained 
on one underwater scene can generalize to others with different visual domains. Related research on semi-
supervised and multi-source domain adaptation provides valuable references for this direction, such as Kim et 
al.32, Ngo et al.33, and Ngo et al.34, which explore domain-specific knowledge distillation, trico-training strategies, 
and divide-and-conquer approaches for robust cross-domain generalization.

Multi-target tracking algorithm
Multi-Object Tracking (MOT) aims to simultaneously localize multiple targets in a video sequence while 
maintaining consistent identities over time, and is commonly implemented under the tracking-by-detection 
paradigm. Representative early works include SORT35, which achieves efficient online tracking via Kalman 
filtering and the Hungarian matching algorithm; Deep SORT36 extends this framework by incorporating deep 
appearance features for similarity measurement, significantly improving identity preservation under occlusions 
and appearance variations. Subsequently, CenterTrack37 integrates object detection and short-term association 
into a single-stage prediction framework, reducing intermediate processing steps, while FairMOT38 further 
addresses the imbalance between detection and re-identification (Re-ID) branches in traditional pipelines by 
jointly optimizing both tasks within a unified network.

With the growing application of Transformers in vision tasks, researchers have explored their potential for 
MOT. Sun et al.39 first introduced Transformers into MOT with TransTrack, jointly modeling detection results 
and tracking queries through an encoder-decoder structure. Meinhardt et al.6 proposed TrackFormer, which 
unifies object detection and trajectory association within a DETR-style end-to-end framework, eliminating 
the need for post-hoc association. Zeng et al.7 developed MOTR, which employs a query dynamic updating 
mechanism to maintain consistent identities across frames, thereby enhancing long-term tracking capability. Xu 
et al.40 proposed TransCenter, which leverages dense representations to improve robustness in crowded scenes.

In recent years, MOT algorithms have made substantial progress in both robustness and real-time performance. 
Zhang et al.41 proposed ByteTrack, which improves recall by associating all detected bounding boxes, including 
those with low confidence, while maintaining high precision. Cao et al.42 introduced Observation-Centric SORT, 
which adopts an observation-driven matching strategy to achieve stable performance under occlusion and 
missing detection conditions. Luiten et al.43 proposed Track to Reconstruct, which combines three-dimensional 
reconstruction with tracking, exploiting spatiotemporal consistency to improve overall tracking accuracy. 
Collectively, these studies provide a solid technical foundation for integrating spatiotemporal Transformers with 
real-time detection models, such as RT-DETR, to achieve high-precision multi-object tracking. Moreover, recent 
advances in graph-based and knowledge distillation approaches, such as HiGDA44 and Cross-domain Knowledge 
Distillation45, offer promising directions for enhancing domain adaptability and representation generalization, 
which could inspire future extensions of our framework toward cross-domain underwater tracking scenarios.

Method
Overall model architecture
This study addresses the task of multi-object fish tracking. Given a video sequence {It}T

t=1, the objective is 
to output, for each frame t, a set of targets Yt = {yi

t}Nt
i=1, where yi

t = (bi
t, ℓi

t, idi
t) denotes the bounding box 
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parameters (center, scale, or four vertices), the class label, and the identity identifier, respectively. The overall 
architecture employs a real-time detector as the backbone, integrating cross-frame encoding and trajectory-
aware decoding to enable end-to-end set prediction. The overall model architecture is shown in Fig 1.

First, a multi-scale backbone network extracts features Ft(l)l = 1Ls ; for each scale, the features are 
partitioned into patches and linearly projected into tokens, to which spatial positional encodings Psp(l) and 
temporal encodings Ptm(t) are added, forming the cross-frame input sequence. The formula is as follows:

	 Xτ (l) = Π!
(
Fτ (l)) + Psp(l) + Ptm(τ) τ ∈ [t − L + 1, t]� (1)

where Π(·) denotes flattening and linear projection and L is the temporal window length. Here, Psp(l) is the 
scale-specific spatial positional encoding added to each token at scale l, and Ptm(τ) is the temporal positional 
encoding that injects the frame index τ  into the token representation to preserve temporal order.

A long-term motion-aware encoder operates on 
∪t

τ=t−L+1

∪Ls

l=1 Xτ (l) via cross-frame self-attention and 
multi-scale interaction, producing a spatiotemporal memory representation, The formula is as follows:

	
Zt = E θ!

(∪
τ = t − L + 1t

Ls∪
l=1

Xτ (l)

)
� (2)

which explicitly aligns appearance, scale, and displacement information across frames within a unified latent 
space. This memory retains multi-scale contextual information essential for detection while encoding temporal 
motion patterns, thereby providing a unified spatiotemporal feature foundation for subsequent decoding. Here, 
E θ(·) denotes the encoder with learnable parameters θ, and 

∪
 indicates concatenation/aggregation of tokens 

across the frames τ ∈ [t − L + 1, t] and scales l ∈ 1, . . . , Ls before attention-based fusion.
On the decoding side, the model maintains the trajectory set from the previous frame 

T t − 1 = (bt − 1j , idj , ht − 1j)j = 1Mt−1 , where ht − 1j  denotes the trajectory hidden state. Based on 
the historical position sequence Pj = bt − kjk = 1K , motion priors are computed and extrapolated as, The 
reasoning is as follows:

	 c̃t|t − 1j = ct − 1j +
(
ct − 1j − ct − 2j

)
s̃t|t − 1j = st − 1j � (3)

from which trajectory-guided queries are constructed:

Fig. 1.  Overall framework structure. The model employs a long-term motion-aware encoder to fuse cross-
frame temporal information with multi-scale features, and leverages a trajectory-guided decoder to achieve 
joint target detection and association within a unified spatiotemporal modeling framework.
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	 qtj = Wq!
[
PE!

(
b̃t|t − 1j

)
⊕ g(Pj, ht − 1j)

]
� (4)

and combined with a set of empty queries for discovering new targets to form Qt. Here, ct − 1j − ct − 2j  is 
the frame-to-frame displacement (the minus sign denotes subtraction of the two most recent centers to estimate 
velocity under a constant-velocity prior), c̃t|t − 1j  is the extrapolated center at time t, and s̃t|t − 1j  keeps the 
previous scale st − 1j  unchanged. In addition, PE(·) encodes the extrapolated box b̃t|t − 1j , g(·) fuses the 
historical positions Pj with the hidden state ht − 1j , ⊕ denotes vector concatenation, and Wq  is a learnable 
projection that maps the concatenated features to the query space.

The trajectory-aware decoder takes Zt as keys and values and Qt as queries, applying cross-attention and 
feed-forward updates to produce the set prediction:

	 Y t = Dϕ(Qt, Zt) = (b̂i

t, ℓ̂i
t, îdti)i = 1Nt � (5)

which is then used in a one-to-one set assignment and identity inheritance rule to update the trajectory set 
T t = Ψ(T t − 1, Y t). Here, Dϕ(·) denotes the decoder with parameters ϕ, b̂

i

t is the predicted bounding box 
(center and size), ℓ̂i

t is the class label, îdi
t is the predicted identity, and Ψ(·) updates trajectories by matching 

predictions to prior tracks with a one-to-one assignment.
The coupling of cross-frame encoding and trajectory-guided decoding enables detection and association to 

benefit jointly from the same attention computation: the encoder aggregates and aligns features across frames 
in space and time, while the decoder leverages intrinsic motion priors to guide target queries toward the correct 
instances, thereby maintaining stable output Y tt = 1T  even in underwater scenes characterized by crowding, 
occlusion, and scale variation.

Cross-frame temporal encoding in transformer for long-term motion awareness transformer
To achieve accurate detection and identity preservation of underwater multiple fish targets over long temporal 
spans this study incorporates a Cross-Frame Temporal Encoding mechanism in the encoder to fully exploit 
motion patterns and appearance variations within long-term sequences The architecture of this module is 
illustrated in Fig. 2.

Given a video sequence Itt = 1T , the multi-scale feature extractor produces feature maps for each frame as:

	 F(l)
t ∈ RHl×Wl×C , l = 1, . . . , Ls.� (6)

where Hl and Wl denote the spatial resolution at scale l, C is the channel dimension, and Ls is the number of 
scales. The features are first flattened and linearly mapped into a d-dimensional embedding space:

Fig. 2.  The schematic illustrates the cross-frame temporal feature modeling process of the long-term motion-
aware encoder. By integrating frame-level positional information with temporal encoding and incorporating 
residual connections and feature enhancement mechanisms this module effectively extracts and aligns spatial 
and motion information across frames providing the decoder with spatiotemporally consistent multi-scale 
representations.
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X(l)

t = Π!
(
F(l)

t

)
WE + bE , X(l)

t ∈ RNl×d.� (7)

where Nl = HlWl, Π(·) denotes flattening (patch vectorization), WE ∈ RC×d is the projection matrix, and 
bE ∈ Rd is the bias term added per token.

To capture long-term dependencies, a temporal window W t = Xτ (l)τ = t − L + 1t is provided as encoder 
input, and both frame-level and temporal positional information are explicitly injected into each token. The 
frame-level positional encoding is defined as:

	
Pframe(τ) = MLPf!

(
τ

T

)
∈ Rd,� (8)

where Pframe(τ) denotes the frame-level positional encoding at time step τ , MLPf(·) is a learnable multi-
layer perceptron used to map normalized temporal indices into the d-dimensional embedding space, and τ

T  
represents the normalized frame index, ensuring that positional embeddings remain scale-invariant with respect 
to the total sequence length T. Furthermore, the time-difference encoding is given by:

	 Ptime(τ, t) = MLPt! (t − τ) ∈ Rd,� (9)

where Ptime(τ, t) denotes the time-difference positional encoding that models the relative temporal distance 
between the current frame t and a past frame τ . These encodings are subsequently added to the token 
representations to jointly encode spatial and temporal positional dependencies. These encodings are added to 
the token representation:

	 X̃τ (l) = Xτ (l) + Pframe(τ) + Ptime(τ, t).� (10)

In the long-term motion-aware encoder, the first step involves computing the self-attention operation on X̃τ (l) in 
order to capture dependencies both within the current frame and across the temporal window. This mechanism 
allows each token representation to attend to all other tokens from different frames and scales, thereby enabling 
the encoder to aggregate relevant spatial and motion cues from historical observations before subsequent feature 
enhancement and decoding.

	
Attn(Q, K, V) = Softmax!

(
QK⊤
√

dk

)
V,� (11)

where

	 Q = X̃τ (l)WQ, K = X̃τ ′(l′)WK, V = X̃τ ′(l′)WV ,� (12)

with τ, τ ′ ∈ [t − L + 1, , t] and l, l′ ∈ [1, , Ls]. Here dk  is the key dimensionality, and WQ, WK , WV ∈ Rd×dk  
are learnable projection matrices. Such cross-frame, cross-scale attention allows the query frame to directly 
aggregate relevant motion information from historical frames.

To further enhance the discriminability of motion features, a residual motion enhancement module 
is incorporated into the encoder. This module is designed to explicitly model the temporal changes in both 
appearance and spatial configuration of targets, thereby complementing the contextual dependencies captured 
by the attention mechanism and improving cross-frame alignment. Specifically, cross-frame feature differences 
are first computed to measure the variation between the current frame t and a historical frame τ , effectively 
capturing displacement patterns and local appearance shifts that may occur over time:

	 ∆X(l)
τ→t = X(l)

t − X(l)
τ ,� (13)

where ∆X(l)
τ→t encodes the directional change from frame τ  to frame t at scale l.

The resulting difference features, which reflect both the magnitude and direction of temporal variations, are 
then processed by a dedicated feature extractor G (·) to generate motion embeddings:

	
M(l)

τ→t = G
(

∆X(l)
τ→t

)
.� (14)

Here, G (·) denotes a learnable motion feature extractor that maps difference tokens to motion-aware embeddings 
in RNl×d. These motion embeddings highlight regions exhibiting significant temporal variation and suppress 
redundant static background responses, thus guiding the encoder to align object representations across frames 
more effectively and to enhance tracking stability under occlusion and illumination changes.

The motion embeddings are added to the attention output:

	 Zt(l) = Attn(·) + Mτ → t(l).� (15)

Finally, spatiotemporally enhanced features from all scales are concatenated and fed into the subsequent 
decoding module:
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Zt = Concat!

(
Z(1)

t , . . . , Zt(Ls)
)

∈ RN×d,� (16)

where N =
∑

l = 1Ls Nl. This cross-frame temporal encoding approach preserves global spatial context 
consistency while explicitly integrating temporal displacement and motion-difference information, enabling the 
model to maintain awareness of fish motion trajectories over long time spans. Even under underwater conditions 
with target occlusion, illumination variation, and background clutter, the method achieves stable detection and 
association prediction.

Trajectory-guided decoder with temporal association attention
In multi-object fish tracking, underwater environments are often accompanied by complex factors such as 
target occlusion, scale variation, background clutter, and unstable illumination, all of which impose higher 
demands on detection and association. Although conventional Transformer decoders are capable of modeling 
global dependencies, they lack explicit utilization of historical trajectory information, which can lead to 
frequent identity switches during long-term tracking. To address this issue, this study introduces a Trajectory-
Guided Decoder and a Temporal Association Attention (TAA) mechanism within the Transformer decoding 
framework. By explicitly incorporating motion priors and temporal modeling, the proposed approach achieves 
joint optimization of detection and association. Its module architecture is shown in Fig. 3.

Let the set of existing trajectories at time t be defined as:

	 Tt−1 = {(bj
t−1, idj , hj

t−1)}Mt−1
j=1 ,� (17)

where bj
t−1 ∈ R4 denotes the bounding box parameters (center coordinates and width/height) in the previous 

frame, idj  is the trajectory identity, and hj
t−1 represents the hidden state encoding of the trajectory. To predict 

the target location in the current frame, short-term motion extrapolation is first computed based on the positions 
from the two most recent frames:

	 c̃j
t|t−1 = cj

t−1 + α
(
cj

t−1 − cj
t−2

)
, s̃j

t|t−1 = sj
t−1,� (18)

where c denotes the bounding box center coordinates, s the bounding box scale, and α the extrapolation 
coefficient. This extrapolation leverages short-term velocity trends to provide prior positional information for 
the query, thereby narrowing the attention search space and improving association accuracy.

The extrapolated trajectory results are encoded into positional embedding vectors:

Fig. 3.  The schematic of the Trajectory-Guided Decoder with Temporal Association Attention. This module 
leverages historical trajectory priors to generate queries, aggregates trajectory-related features through 
an attention mechanism, and fuses them with local appearance information before feeding them into the 
Transformer decoder, thereby enabling unified modeling of detection and association.

 

Scientific Reports |         (2026) 16:1997 7| https://doi.org/10.1038/s41598-025-31686-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
pj

t = PE
(
b̃j

t|t−1

)
∈ Rd,� (19)

and fused with the historical trajectory hidden state through a fusion function g(·):

	 qj
t = Wq

[
pj

t ⊕ g(Pj , hj
t−1)

]
,� (20)

where Pj = {bj
t−k}K

k=1 is the trajectory position sequence and ⊕ denotes the concatenation operation. This 
design ensures that the query vector carries both spatial positional information and motion history, thereby 
enabling spatiotemporal constraints in cross-frame association.

The Temporal Association Attention mechanism takes the trajectory-guided query qj
t  as input and performs 

attention computation over the current frame’s encoded features Zt ∈ RN×d:

	 Qj = qj
tWQ, K = ZtWK , V = ZtWV ,� (21)

	
Aj = Softmax

(
QjK

⊤

√
dk

+ Mj
mask

)
,� (22)

where Mj
mask is constructed according to the trajectory’s prior location to suppress attention responses unrelated 

to the trajectory region. This process directs the attention to focus on areas adjacent to the historical trajectory 
location, thereby reducing interference from global searches.

Based on the attention weights, the features are aggregated to obtain trajectory-related contextual 
representations:

	 f̂
j

t = AjV.� (23)

To further enhance appearance discriminability, a convolution-linear branch extracts local features fjloc, which 
are then fused with the attention results via a residual connection:

	 uj
t = f̂

j

t + fjloc.� (24)

This fusion complements position-based constraints with appearance cues, mitigating the risk of confusion with 
visually similar distractors.

The updated feature set for all trajectory queries {uj
t }, together with new target detection queries Qnew, is 

fed into the subsequent decoder layers to produce the set-based prediction:

	 Yt = Dϕ

(
{uj

t } ∪ Qnew, Zt

)
= {(b̂i

t, ℓ̂i
t, îd

i
t)}Nt

i=1.� (25)

Finally, the trajectory update function

	 Tt = Ψ(Tt−1, Yt)� (26)

is applied to ensure identity continuity and register new targets.
In summary, the proposed Trajectory-Guided Decoder, coupled with the Temporal Association Attention 

mechanism, tightly integrates historical trajectory priors with current frame features within the Transformer 
framework. This design enables effective handling of challenges such as long-term occlusion, dense target 
distribution, and appearance variation in underwater fish tracking. Its core contribution lies in the unified 
modeling of detection and tracking association, achieving end-to-end optimization while enhancing identity 
stability and overall tracking accuracy.

Method explanation
Existing multi-object tracking tasks still suffer from significant limitations in association robustness under 
long-term motion modeling and occlusion scenarios, making it difficult to achieve stable tracking in complex 
underwater environments. To address this issue, this paper introduces a temporal difference embedding 
and trajectory-aware decoding mechanism within a unified Transformer framework to explicitly enhance 
spatiotemporal dependency modeling and motion consistency. The temporal difference embedding module 
computes cross-frame feature differentials combined with residual motion enhancement to effectively capture 
target displacement patterns and local appearance variations, thereby maintaining motion representation 
continuity under dynamic backgrounds and illumination disturbances. The trajectory-aware decoding module 
employs trajectory extrapolation priors to generate temporal queries and leverages temporal association attention 
to constrain cross-frame feature aggregation, achieving stable identity association under occlusion conditions. 
This design enables the model to maintain detection accuracy and identity consistency even during rapid fish 
movements, posture variations, and dense interactions, significantly improving the robustness and reliability of 
underwater multi-object tracking.
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Dataset and experimental setup
Dataset
Self-built dataset
To meet the specific requirements of underwater multi-object detection and tracking of fish, this study 
independently constructed a highly targeted underwater video dataset. The data were collected in a customized 
experimental tank with water conditions closely resembling real aquaculture environments. Various interference 
factors such as turbidity, bubbles, and surface reflections were comprehensively considered to simulate the visual 
challenges of complex underwater scenes. The collected videos cover diverse fish postures, varying swimming 
speeds, and mutual occlusion scenarios, ensuring that the dataset contains rich motion patterns and interaction 
behaviors. Examples of the dataset are shown in Fig. 4.

In addition to high-resolution video frames, each fish target in every frame was precisely annotated with 
bounding box coordinates, class labels, and identity IDs, providing complete supervision signals for multi-
object detection and tracking tasks. All annotations were performed by aquaculture professionals and verified 
through repeated labeling and consistency testing (Kappa coefficient) to ensure annotation reliability, thereby 
guaranteeing data quality and result reproducibility. The detailed experimental parameters are shown in Table 2.

By introducing this dataset, the proposed method can be comprehensively validated in complex underwater 
environments, enabling systematic evaluation of the model’s robustness and generalization capability under 
multiple interference conditions. This establishes a solid foundation for its future applications in real-world 
aquaculture monitoring and ecological behavior analysis.

Attribute Description

Number of video sequences 32 clips

Average frames per clip 1,200 frames

Total frames 38,400 frames

Fish species Single species (experimental fish)

Number of identity IDs 7 individual IDs (ID1–ID7)

Average targets per frame 3.2 fish

Occluded frame ratio Approximately 28.4%

Interference type distribution Turbidity (35%), bubbles (27%), reflection (22%), composite interference (16%)

Turbidity range (NTU) 2.5–8.0 NTU

Average bubble density (count/m2) 120–180

Annotation consistency (Kappa coefficient) 0.93

Image resolution 1920 × 1080

Frame rate 30 fps

Table 2.  Statistics of the self-constructed underwater fish multi-object tracking dataset.

 

Fig. 4.  Examples from the self-constructed underwater fish dataset.
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UOT32
In addition to the self-constructed dataset, this study also incorporates the publicly available UOT32 dataset to 
enhance experimental diversity and ensure result comparability. UOT32 is a high-quality dataset specifically 
designed for underwater object detection and tracking tasks, encompassing multiple fish species and other 
aquatic organisms. The recording scenarios cover a variety of water qualities, illumination conditions, and 
background environments, fully reflecting the complexity and variability of underwater vision. The dataset offers 
richer motion patterns, target densities, and occlusion scenarios, which facilitate the evaluation of the model’s 
generalization capability across diverse conditions.

For each video sequence, UOT32 provides frame-by-frame precise annotations, including bounding box 
locations, class labels, and cross-frame identity information, enabling effective training and evaluation of multi-
object tracking algorithms. By combining UOT32 with the self-constructed dataset, the proposed method can 
be assessed not only in controlled experimental settings but also under more challenging real-world conditions, 
thereby providing a comprehensive validation of the model’s adaptability and potential for practical deployment. 
An example of the dataset is shown in Fig. 5.

Experimental setup
The experiments in this study were conducted on a workstation equipped with an NVIDIA RTX 3090 GPU, an 
Intel Xeon Gold 6226R CPU, and 128 GB of RAM, running Ubuntu 20.04 with PyTorch 2.1 as the deep learning 
framework. To ensure fairness and reproducibility, all experiments were executed under the same hardware 
and software environment with identical random seed initialization. Both training and testing were performed 
on the self-constructed fish tracking dataset and the UOT32 dataset, using identical data preprocessing and 
augmentation strategies to maintain consistent data distributions.

During training, input images were subjected to multi-scale resizing and random flipping to enhance the 
model’s robustness. The AdamW optimizer was employed in conjunction with a cosine annealing learning rate 
scheduler to achieve smooth convergence. Key hyperparameters, including batch size, initial learning rate, and 
number of training epochs, were kept consistent across all experiments. The specific settings are summarized 
in Table 3. This configuration ensures stable training while effectively balancing accuracy and computational 
efficiency. Finally, the training validation test set is divided into 7:1:2

Evaluation metric
To comprehensively evaluate multi-object tracking performance, five quantitative metrics are employed in 
this study: Multiple Object Tracking Accuracy (MOTA), Identification F1 score (IDF1), Recall, Identification 
Precision (IDP), and Identification Recall (IDR). MOTA jointly accounts for the effects of false negatives (FN), 
false positives (FP), and identity switches (IDSW), and is defined as:

	
MOTA = 1 − FN + FP + IDSW

GT
,� (27)

where GT denotes the total number of ground-truth targets. A MOTA value closer to 1 indicates higher overall 
tracking accuracy.

The IDF1 metric measures the degree of identity-level correspondence between tracking results and ground-
truth trajectories, computed as the harmonic mean of identity precision and identity recall:

Fig. 5.  UOT32 dataset example.
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IDF1 = 2 × IDTP

2 × IDTP + IDFP + IDFN
,� (28)

where IDTP, IDFP, and IDFN represent the number of identity-level true positives, false positives, and false 
negatives, respectively. A higher IDF1 score indicates greater stability in maintaining target identities.

Recall measures the proportion of ground-truth targets that are correctly detected, defined as:

	
Recall = TP

TP + FN
,� (29)

where TP denotes the number of true positives. A higher Recall indicates stronger target coverage capability.
Identification Precision (IDP) measures the proportion of predicted trajectories with correct identities:

	
IDP = IDTP

IDTP + IDFP
,� (30)

which reflects the purity of identity consistency within the predicted trajectories.
Identification Recall (IDR) measures the proportion of ground-truth trajectories whose identities are 

correctly recognized:

	
IDR = IDTP

IDTP + IDFN
,� (31)

where a higher IDR indicates stronger capability in preserving target identities across frames.

Experiment result
Comparative experimental results
To validate the effectiveness of the proposed method, a diverse set of representative multi-object tracking 
algorithms were selected for comparison, including traditional detection-and-association-based methods 
(SORT35, DeepSORT36, ByteTrack41), one-stage joint detection and tracking methods (CenterTrack37, FairMOT38, 
TraDes46, QDTrack47), and Transformer-based end-to-end approaches (TransTrack39, MOTR7, GTR48). These 
methods exhibit distinct characteristics in terms of architectural design and spatiotemporal modeling strategies, 
providing comprehensive reference baselines for evaluating the performance of the proposed approach on 
metrics such as MOTA, IDF1, Recall, IDP, and IDR. First, the experimental results on the self-built dataset are 
given, as shown in Table 4.

The experimental results demonstrate that the proposed method outperforms all existing multi-object 
tracking approaches across all evaluation metrics, achieving scores of 0.719, 0.693, and 0.742 in the three core 
metrics MOTA, IDF1, and Recall, respectively. These results significantly surpass those of the best-performing 
comparison methods, GTR and ByteTrack. This indicates that the introduced cross-frame spatiotemporal 
modeling and trajectory-guided decoding mechanisms can not only accurately detect target locations but also 
effectively maintain identity consistency, thereby achieving superior overall tracking performance.

Furthermore, the proposed method attains IDP and IDR scores of 0.700 and 0.690, respectively, indicating 
that the model excels not only in overall recall but also in both the precision and coverage of identity 
preservation. This performance gain can be attributed to the model’s ability to fully exploit cross-frame motion 
information during the feature encoding stage and to guide attention aggregation through trajectory priors 
during the decoding stage, enhancing its capability to handle target occlusion, appearance variation, and dense 
target distributions in complex underwater scenarios. At the same time, this article also provides an image of the 
changes in training indicators over epochs on the self-built dataset, as shown in Fig. 6.

Furthermore, the experimental results on the UOT32 dataset are given, and the experimental results are 
shown in Table 5.

Hyperparameter Value

Batch size 16

Initial learning rate 1e-4

Optimizer AdamW

Weight decay 0.05

LR scheduler Cosine Annealing

Epochs 200

Input resolution 1280 × 720

Flip probability 0.5

Multi-scale range [0.8, 1.2]

Dataset Split [7:1:2]

Table 3.  Key hyperparameter settings used in the experiments.
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The comparison results on the UOT32 dataset demonstrate that the proposed method also achieves the 
best performance across all evaluation metrics, with MOTA, IDF1, and Recall reaching 0.697, 0.680, and 0.730, 
respectively, surpassing the existing state-of-the-art methods. This indicates that the proposed approach not only 
enhances the overall accuracy of object detection and tracking in complex underwater environments, but also 
achieves balanced optimization in identity precision and identity recall. These results highlight the advantage 
of integrating trajectory-guided decoding with cross-frame spatiotemporal feature modeling in improving the 
robustness of multi-object tracking. Similarly, this article also provides an image of the changes in training 
indicators on UOT32 with epochs, as shown in Fig. 7.

The figure depicts the variations in the loss function and multiple evaluation metrics during the training 
process on the UOT32 dataset, reflecting the progressive optimization of different metrics over continuous 

Fig. 6.  This figure shows the experimental results of the loss function and the changes of various indicators 
with epochs on the fish dataset built in this paper.

 

Method MOTA IDF1 Recall IDP IDR Params(M) FPS

SORT35 0.511 0.543 0.620 0.520 0.480 42.1 107.6

DeepSORT36 0.592 0.612 0.660 0.600 0.580 45.3 95.4

ByteTrack41 0.701 0.664 0.710 0.660 0.620 43.7 98.9

CenterTrack37 0.614 0.598 0.680 0.590 0.570 47.5 86.3

FairMOT38 0.655 0.642 0.700 0.630 0.610 49.2 83.7

TraDes46 0.628 0.606 0.690 0.600 0.580 50.6 79.4

QDTrack47 0.641 0.649 0.690 0.640 0.630 46.8 84.2

TransTrack39 0.663 0.661 0.710 0.650 0.620 53.9 68.1

MOTR7 0.676 0.668 0.720 0.660 0.640 55.4 61.7

GTR48 0.688 0.671 0.720 0.670 0.650 57.8 59.3

Ours 0.719 0.693 0.742 0.689 0.676 51.2 76.5

Table 4.  Performance comparison of different multi-object tracking methods combined with the RT-
DETR-R50 detector on an RTX 3090 GPU. Params indicate the total model size including the detector. All 
baseline methods were reproduced according to the official implementations or descriptions in their original 
papers to ensure fair comparison.
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iterations. Overall, the trends of the training and validation curves are largely consistent, indicating that the 
model demonstrates stable generalization performance.

Ablation experiment results
To verify the effectiveness of each key component in the proposed model, systematic ablation experiments were 
conducted on both the self-constructed dataset and the UOT32 dataset. We sequentially removed or replaced 
core modules, including the long-term motion-aware encoder, the trajectory-guided decoder, and the temporal 
association attention mechanism, and evaluated the variations in MOTA, IDF1, Recall, IDP, and IDR under 
identical training and testing conditions. These comparisons enable a quantitative analysis of the contribution of 

Fig. 7.  This figure shows the experimental results of various indicators and loss functions on the UOT32 
dataset as the epoch changes.

 

Method MOTA IDF1 Recall IDP IDR Params(M) FPS

SORT 0.482 0.525 0.590 0.510 0.470 42.1 107.6

DeepSORT 0.561 0.588 0.640 0.580 0.550 45.3 95.4

ByteTrack 0.675 0.650 0.700 0.645 0.610 43.7 98.9

CenterTrack 0.593 0.574 0.650 0.570 0.540 47.5 86.3

FairMOT 0.622 0.618 0.670 0.610 0.590 49.2 83.7

TraDes 0.601 0.595 0.660 0.590 0.565 50.6 79.4

QDTrack 0.613 0.626 0.670 0.620 0.600 46.8 84.2

TransTrack 0.637 0.641 0.690 0.635 0.605 53.9 68.1

MOTR 0.652 0.655 0.710 0.645 0.625 55.4 61.7

GTR 0.664 0.661 0.710 0.650 0.625 57.8 59.3

Ours 0.697 0.680 0.730 0.670 0.650 51.2 76.5

Table 5.  Comparison results on the UOT32 dataset with existing multi-object tracking methods (higher is 
better). Bold and underlined values indicate the best and second-best results in each column, respectively.All 
baseline methods were reproduced according to the official implementations or descriptions in their original 
papers to ensure fair comparison.
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each module to the overall performance, thereby clarifying the role of each component in improving detection 
accuracy, identity preservation capability, and overall tracking stability.

The ablation study results on the self-constructed dataset demonstrate that the proposed long-term motion-
aware encoder, trajectory-guided decoder, and temporal association attention each play a critical role in 
enhancing the overall performance of the model. Removing any of these modules weakens the spatiotemporal 
modeling capability, leading to a noticeable decline in both the stability of object detection and the continuity 
of identity preservation. Using only single-scale feature inputs limits the ability to fuse multi-scale information, 
thereby reducing the model’s adaptability to fish of varying sizes and shapes. The complete model, through cross-
frame temporal feature aggregation and trajectory prior guidance, not only strengthens target perception in 
complex underwater environments but also significantly improves identity consistency and occlusion recovery 
capability during long-term tracking.

The experimental results of UOT32 are further given, and the experimental results are shown in Table 7.
The ablation results on the UOT32 dataset demonstrate that the proposed core components maintain 

substantial effectiveness across diverse underwater scenarios. Removing the long-term motion-aware encoder 
weakens the model’s ability to capture cross-frame motion information, making targets more prone to loss under 
illumination changes and background disturbances. Eliminating either the trajectory-guided decoder or the 
temporal association attention reduces the stability of identity preservation, particularly in scenes with dense fish 
interactions and partial occlusions. Furthermore, restricting the model to single-scale feature input diminishes 
its adaptability to fish of varying sizes and poses. The complete model consistently achieves stable detection and 
accurate association in a wide range of challenging conditions, highlighting the synergistic contribution of all 
modules in enhancing the model’s robustness and generalization capability.

Trajectory overlay visualization
In the qualitative analysis, we performed trajectory overlay visualization on key frames from the same sequence 
to intuitively illustrate the trajectory continuity and identity stability of different methods during the object 
tracking process. By annotating the detected bounding boxes with fixed-color trajectory polylines and conducting 
a column-wise comparison of GTR, MOTR, TransTrack, QDTrack, and our proposed method, the performance 
differences in underwater scenarios can be clearly observed. The experimental results are shown in Fig. 8.

From the trajectory overlay visualization results, our proposed method maintains high trajectory continuity 
and stability across different frame sequences, accurately preserving identity consistency throughout the target 
motion process. In contrast, methods such as GTR, MOTR, TransTrack, and QDTrack exhibit trajectory breaks, 
bounding box misalignments, or identity switches in certain frames, which become more pronounced in 
scenarios involving rapid target motion or partial occlusion. This indicates their limited robustness in long-term 
target association.

Furthermore, our method demonstrates superior performance in spatial localization and shape fitting, 
with bounding boxes consistently aligning closely with the target positions and trajectory polylines remaining 
smooth without noticeable jumps. Such stable tracking not only reduces the occurrence of false positives and 
missed detections but also ensures high tracking accuracy in complex backgrounds, thereby providing more 
reliable inputs for subsequent trajectory-based behavior analysis and higher-level tasks.

This paper further gives the qualitative display results of the UOT32 dataset trajectory, and the experimental 
results are shown in Fig. 9.

From the visualization results, the GT column presents the ground-truth trajectory distribution, which 
is smooth and highly consistent with the scene layout. In comparison, GTR and MOTR are generally able to 

Method MOTA IDF1 Recall IDP IDR

Without long-term motion-aware encoder 0.669 0.655 0.702 0.652 0.630

Without trajectory-guided decoder 0.661 0.648 0.695 0.645 0.625

Without temporal association attention 0.664 0.650 0.698 0.647 0.627

Single-scale feature input only 0.653 0.642 0.690 0.640 0.620

Ours 0.697 0.680 0.730 0.670 0.650

Table 7.  Ablation study results on the UOT32 dataset (higher values indicate better performance). Bold and 
underlined numbers denote the best and second-best results in each column, respectively.

 

Method MOTA IDF1 Recall IDP IDR

w/o Long-Term Motion-Aware Encoder 0.701 0.668 0.722 0.675 0.655

w/o Trajectory-Guided Decoder 0.689 0.660 0.715 0.665 0.645

w/o Temporal Association Attention 0.695 0.664 0.718 0.670 0.650

Single-Scale Feature Input Only 0.684 0.652 0.710 0.660 0.640

Ours 0.734 0.702 0.750 0.700 0.690

Table 6.  Ablation study results on the self-constructed dataset (higher is better). Bold and underlined values 
indicate the best and second-best results in each column, respectively.
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follow the target motion trend in most cases. However, in complex interaction regions, they exhibit unnatural 
trajectory bends or brief drifts. TransTrack produces relatively long trajectory extensions, but tends to suffer 
from trajectory jumps and identity switches at target intersection points, leading to reduced path continuity.

Our method achieves trajectory patterns that are closer to the GT in all three keyframe sets, with overall 
smoothness and consistent identity preservation. Notably, even in multi-target interaction or turning scenarios, 
it maintains stable path continuity. These results indicate that our approach outperforms other compared models 
in both target localization accuracy and long-term tracking consistency, enabling better motion pattern capture 
while reducing false detections and trajectory interruptions.

Fig. 9.  Qualitative display results of UOT32 dataset trajectory.

 

Fig. 8.  Trajectory overlay visualization compared with other models.
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Grad-Cam heat nap analysis
In this section, we also use Grad-CAM to present the experimental results of heat maps on a self-built dataset. 
The main analysis model focuses on the thermal areas of interest, which can provide a better display of the 
model’s interpretability analysis. The experimental results are shown in Fig. 10.

From the visualization results in Fig.  8, the Grad-CAM heatmaps consistently concentrate around the 
annotated regions across different samples, forming distinct high-response areas along the fish contours and 
key motion positions. This indicates that, during feature extraction and attention aggregation, the model 
effectively captures discriminative regions related to the target. Even in cases with complex background textures 
or pronounced water-surface reflections, the high-confidence regions remain tightly focused on the detected 
objects. Such spatial focus is crucial for reducing false positives and enhancing association accuracy in multi-
object tracking.

Further inspection of the overlay maps reveals that, in some samples, the model not only covers the main 
body of the fish but also produces extended responses along the tail and in the direction of motion. This reflects 
its sensitivity to temporal motion information, which aligns with the design philosophy of the proposed cross-
frame encoding and trajectory-guided decoding. By incorporating motion differences and prior constraints on 
top of spatial localization, the model maintains robust detection and identity consistency under occlusions, pose 
variations, and densely populated scenes. These visualizations validate the model’s strong target-focused stability 
and robustness in complex underwater environments.

Temporal modeling hyperparameter sensitivity experiments
To further investigate the robustness of the proposed spatiotemporal modeling scheme, we conducted a series of 
hyperparameter sensitivity experiments focusing on temporal modeling configurations. In particular, we varied 
key parameters such as temporal window length, and attention head configuration to examine their influence 
on tracking accuracy and association stability. These experiments provide insights into the trade-off between 
long-term motion awareness and computational efficiency, guiding the selection of optimal settings for practical 
deployment. First, the experimental results of the time window length are given on the UOT32 dataset, and the 
experimental results are shown in Fig. 11.

From the figure, it can be observed that different time window lengths have a significant impact on the 
performance of multi-object fish tracking. As the time window increases, the model is generally able to 
capture long-term motion patterns of targets more effectively, resulting in more stable performance in terms of 
association accuracy and trajectory continuity. However, when the time window becomes excessively long, the 
accumulation of redundant information and feature noise can interfere with detection and association, leading 

Fig. 10.  Experimental results of grad-cam on self-built datasets. The experimental results are shown in the 
group of images. From left to right, they are the original image, the annotated area, the heat map visualization, 
and the overlay image.
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to a slight decline in certain metrics. This observation aligns with the principle emphasized in this work of 
balancing long-term information and immediate responsiveness in spatiotemporal feature modeling.

Specifically, a medium-length time window offers advantages in enhancing cross-frame feature consistency 
and reducing identity switches caused by occlusion, enabling the model to maintain high robustness even in 
complex scenes. In contrast, shorter time windows, while achieving lower latency, fail to fully utilize historical 
trajectory information and are more prone to tracking loss in situations with occlusion or dense target 
distributions. These experimental results validate the effectiveness of the proposed cross-frame encoding and 
trajectory-aware decoding strategy in temporal modeling, and provide guidance for selecting an appropriate 
time window during the deployment phase. Furthermore, the experimental results of the attention head are 
given, as shown in Fig. 12.

From the figure, it can be seen that variations in the number of attention heads exert a relatively moderate 
influence on the overall performance of multi-object fish tracking. Increasing the number of heads within a 
certain range can enhance the model’s representational capacity during cross-frame feature alignment. However, 
it also introduces additional computational overhead and accumulates noise, leading to a slight decline in some 
metrics once the optimal configuration is exceeded. These results indicate that an appropriate head configuration 
can achieve a balance between capturing global spatiotemporal dependencies and maintaining operational 
efficiency, which is consistent with the design objectives of the proposed cross-frame encoding and trajectory-
aware decoding strategy.

Specifically, when the number of attention heads is set to a moderate scale, the model exhibits strong 
performance in both detection accuracy and association stability, suggesting that the multi-head mechanism 
at this configuration can effectively allocate attention to capture target information across different scales and 
motion patterns. Conversely, too few heads limit the diversity of feature modeling, while too many may dilute 
the effective information utilization of each head. This finding provides practical guidance for selecting an 
appropriate attention head configuration in real-world deployment and further validates the robustness of the 
model with respect to structural parameter adjustments.

Conclusion
This paper addresses the challenges of accuracy and stability in multi-object fish tracking under complex 
underwater scenarios by proposing a unified Transformer framework that integrates cross-frame spatiotemporal 
encoding with trajectory-aware decoding. In the encoding stage, temporal difference and frame position 
embeddings, together with a residual motion enhancement mechanism, are employed to effectively improve 
cross-frame feature alignment and long-term motion pattern modeling capabilities. In the decoding stage, 
trajectory extrapolation priors and temporal association attention are introduced to explicitly constrain the 
range of cross-frame feature aggregation, thereby achieving unified optimization of detection and identity 
association. Evaluations on both our self-constructed dataset and the UOT32 benchmark demonstrate that the 

Fig. 11.  Results of time window hyperparameter sensitivity experiments.
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proposed method significantly outperforms current state-of-the-art tracking algorithms in key metrics such as 
MOTA, IDF1, and Recall, while exhibiting superior robustness in occlusion recovery and trajectory continuity. 
Ablation studies and visualization analyses further validate the effectiveness and complementarity of each 
module, confirming the overall advantage of our approach for underwater multi-object tracking tasks.

Future work will focus on further enhancing the model’s real-time performance and cross-domain 
generalization capabilities. Specifically, lightweight optimization strategies such as Transformer structure 
simplification, model pruning, and knowledge distillation will be explored to reduce inference latency and 
improve deployment efficiency on edge devices. In addition, adaptive time-window mechanisms and dynamic 
attention allocation strategies will be introduced, enabling the tracker to automatically adjust association policies 
according to scene complexity and target motion dynamics. Furthermore, cross-modal fusion with multimodal 
data–such as sonar imaging and underwater environmental parameters–will be considered to enhance perception 
under extreme illumination and high turbidity. By combining these improvements with real-time experimental 
validation, the future work will also conduct comprehensive assessments of the model’s deployment value in 
practical aquaculture monitoring systems, aiming to achieve efficient, stable, and scalable underwater tracking 
for intelligent fishery management.

Data availability
All data in this study can be obtained by sending an email to the corresponding author
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