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As the complexity and unpredictability of cyber-physical systems (CPSs) such as multi-agent robotic 
networks increase, having robust predictive models is crucial for ensuring dependable operations. This 
paper presents a modification of the Strength Prominence (SP) index, which was initially designed for 
fuzzy social networks, adapted for use in robotic and intelligent automation systems. The SP index has 
been reformulated for fuzzy interaction graphs, where nodes signify robotic components and edges 
represent uncertain communications or dependencies. The modified index assesses link probability 
by considering the strength of connectedness and prominence levels, even in the absence of common 
neighbors. Theoretical aspects such as symmetry, boundedness, and monotonicity are thoroughly 
demonstrated. Empirical validation utilizing real-world datasets and ROS-based robotic data shows 
that the SP index achieves superior predictive accuracy, surpassing traditional fuzzy indices like 
CN, RSM, and CAR in terms of precision, AUC, and AUP measurements. This method allows for the 
early identification of interaction failures, improves the prediction of collaboration, and aids in the 
development of fault-tolerant designs. This proposed approach provides a new interdisciplinary tool for 
fuzzy link prediction in CPS, with important implications for the design of autonomous systems, real-
time robotic collaboration, and resilient network structures.

Keywords  Fuzzy graph theory, Strength prominence index, Cyber-physical systems, Robotic interaction 
modeling, Link prediction, Prominence degree

Recent progress in intelligent automation and Industry 4.0 has driven the evolution of intricate cyber-physical 
systems (CPSs) like multi-agent robotic platforms, autonomous vehicles, collaborative human–machine 
interactions, and sensor-actuator networks. These systems are defined by dynamic topologies, decentralized 
management, diverse components, and continuous data flows, all functioning within uncertain or partially 
observable contexts. In these environments, achieving dependable coordination and strong communication 
among distributed elements presents a significant challenge. Conventional graph-theoretic modeling methods, 
which view inter-node connections as binary (i.e., either present or absent), fall short of adequately capturing the 
complex, variable nature of real-world interactions in CPSs. Conversely, fuzzy graph theory offers a more flexible 
and expressive modeling framework by enabling vertices and edges to possess varying degrees of membership—
mirroring uncertainty in sensor outputs, inconsistent communication quality, or probabilistic task assignments. 
This fuzzy approach is particularly relevant in robotic systems, where link strength and node dependability 
frequently fluctuate due to signal degradation, latency, noise, and shifting task conditions. Therefore, creating 
predictive models capable of functioning amidst such uncertainty is crucial for fostering resilient and adaptive 
robotic actions. Fuzzy graph theory has become an effective tool for representing this ambiguity, facilitating 
more intricate representations where edges are not merely binary but weighted in accordance with degrees of 
similarity, belief, or uncertainty1.

A key issue in examining complex networks is link prediction, which involves estimating the probability 
of future or missing connections between nodes based on currently available information. In robotic contexts, 
such predictions can assist in forming autonomous collaborations, detecting failures, and adjusting network 
configurations dynamically2. Traditional link prediction methods like Common Neighbors (CN), Jaccard Index, 
Adamic-Adar, and Preferential Attachment concentrate on the local structural characteristics of the network3; 
however, they are inadequate for fuzzy or uncertain settings, especially when nodes may lack common neighbors.

In response to this issue, Pandey et al. have recently introduced the Strength Prominence (SP) index for 
fuzzy social networks, a unique similarity metric that takes into account both the strength of connections 
and the prominence level of nodes to effectively estimate link probabilities4. The SP index enhances previous 
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fuzzy metrics such as the Resource Strength Model (RSM)5 and the CAR index6 by integrating the intensity of 
interactions along with the structural significance of the node. Their validation on Facebook datasets showed 
considerable improvements in prediction accuracy.

However, the SP index has yet to be adapted for use in technological or robotic networks, where nodes 
represent computational agents, sensors, or actuators, and edges represent communication or functional 
dependencies, often influenced by noise, signal degradation, or task uncertainty7. Each of these imperfections 
can be effectively represented using fuzzy values, making fuzzy interaction graphs especially applicable for 
modeling robotic cyber-physical systems (CPSs).

This study aims to fill this methodological void by modifying the SP index for interaction graphs that 
originate from robotics and automation. We reformulate the SP index within a domain-specific framework, 
where nodes symbolize robot modules or CPS components and edges reflect fuzzy interaction metrics—such as 
communication fidelity, shared task completion probability, or energy-aware collaborative intent.

The primary contributions of this paper include

	1.	 A mathematically grounded adaptation of the SP index for fuzzy cyber-physical interaction graphs, incorpo-
rating robot-specific parameters like signal strength, delay, and actuation frequency.

	2.	 A formal examination of characteristics such as symmetry, boundedness, and monotonicity under robotic 
fuzzy graph constraints.

	3.	 Empirical validation using ROS-based multi-agent simulation data and physical robot logs, assessing the SP 
index against CN, RSM, and CAR indices in terms of AUC, AUP, and Precision metrics.

	4.	 A demonstration of how fuzzy link prediction can be applied to pinpoint weak communication links, opti-
mize task delegation, and enhance fault tolerance in robotics networks.

This interdisciplinary framework combines the accuracy of fuzzy graph theory with the practical requirements 
of robotics and CPS, offering a fresh and predictive perspective for future advancements in intelligent systems 
engineering.

Related work
The task of link prediction in uncertain or evolving contexts has garnered considerable interest in both social 
network analysis and research on cyber-physical systems (CPS). Initial approaches mainly depended on 
deterministic graph models that utilize binary edge existence; however, these models do not adequately represent 
the inherent ambiguity found in real-world interactions, especially within robotics and automation systems. To 
overcome this limitation, fuzzy graph theory has been suggested as a strong alternative, offering a framework in 
which both vertices and edges are assigned membership degrees that reflect uncertain or partial relationships1,8.

Classical link prediction approaches
Link prediction was initially formalized for social networks by Liben-Nowell and Kleinberg9, who proposed 
proximity-based predictors like Common Neighbors (CN), Jaccard Coefficient, Adamic–Adar, and Preferential 
Attachment. These techniques are based on the premise that a higher number of shared neighbors between two 
nodes increases the likelihood of them connecting. Although these methods are computationally efficient, they 
have certain limitations because they often depend on the existence of common neighbors and assume that node 
interactions are deterministic.

To address these limitations, Cannistraci et al. developed the CAR index, which enhanced prediction accuracy 
by integrating local community links (LCL) from mutual neighbors of two seed nodes6. This approach proved 
particularly successful in dense or assortative networks, but it still functioned under binary logic, rendering it 
inadequate for fuzzy or uncertain environments.

Link prediction in fuzzy graphs
The extension of link prediction to fuzzy graphs was initiated by researchers like Mahapatra et al., who introduced 
the Resource Strength Model (RSM) index for fuzzy social networks. The RSM index takes into account the 
nature of connections through fuzzy membership values and determines similarity based on the minimum 
interaction intensity between shared neighbors. In a similar vein, Arshad et al. developed semi-supervised 
learning methods that combine fuzzy clustering and similarity scoring for environments characterized by 
uncertainty. Subsequently, Moradabadi et al.10 put forth distributed learning automata for link prediction in 
fuzzy networks, successfully merging fuzzy logic with adaptive learning techniques for large-scale applications. 
These advancements collectively highlighted the necessity of modeling real-world uncertainty using fuzzy 
relations instead of crisp graphs, especially in networks where link presence or absence is not deterministic.

Simultaneously, fuzzy modeling was becoming more popular in engineering networks, particularly in the 
realm of robotics and systems reliant on sensors. For example, Gosrich et al. presented fuzzy graph modeling 
for the path planning of multiple robots, which addressed uncertain communication between robots and 
navigation around obstacles. Their findings showed that fuzzy edges could represent real-time changes in sensor 
information, highlighting the significance of fuzzy link prediction for cyber-physical systems (CPSs).

Strength-based and prominence-aware prediction
Acknowledging the drawbacks of neighbor-counting indices, recent research has introduced strength-aware 
metrics that consider the quality or intensity of interactions between nodes. The Strength Prominence (SP) 
index, developed by Pandey et al.4, is particularly notable for combining the strength of connections with the 
prominence degree of nodes, resembling fuzzy degree centrality. Unlike previous approaches, the SP index 
can predict links even when common neighbors are absent by utilizing path-based strength assessments. 
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This broader applicability makes it especially relevant for sparse or evolving networks, such as those found in 
intelligent robotic systems.

In robotic setups, components often face temporary disconnections or unreliable communication. Therefore, 
the SP index’s capability to leverage alternative paths and fuzzy intensity for predicting future links has significant 
relevance for applications like self-reconfiguring robots, dynamic task delegation, and fault diagnosis11. Research 
by Sun et al. has highlighted the necessity of accounting for signal degradation and intermittent connectivity in 
real-time robotic scenarios, underscoring the importance of fuzzy link prediction models7.

Additionally, Kumar et al. investigated level-2 community characteristics and clustering coefficients within 
fuzzy graphs, indicating that higher-order structural patterns can enhance the accuracy of link predictions13. 
Although their approach increased detail, it introduced complexity that complicates real-time implementation 
in robotics. The following Table 1 summarizes the literature.

Gap in literature and motivation for this work
Despite advancements in fuzzy graph theory and link prediction, there exists a significant absence of applications 
for these techniques in cyber-physical and robotic systems, where uncertainty is not just a peripheral issue but 
a fundamental aspect. Most current research on fuzzy link prediction primarily focuses on social networks or 
biological systems. On the other hand, in the realm of robotics and automation, although fuzzy modeling of 
sensor information or path planning has been investigated12, there is a scarcity of studies linking fuzzy graph 
indices to real-time link prediction for collaborative decision-making or assessing network integrity.

Alongside these advancements in fuzzy link prediction, a significant body of research has developed 
concerning fuzzy and intelligent control within robotic tele-operation and cooperative systems. Jalali et al. 
introduce a synchronisation scheme based on type-2 fuzzy neural networks for bilateral tele-operation under 
substantial communication latencies and model uncertainties, demonstrating that interval type-2 fuzzy models 
can stabilise multi-degree-of-freedom manipulators over unreliable networks14. Kebria et al. expand upon this 
concept by implementing an adaptive type-2 fuzzy control scheme that ensures robust tracking in the presence 
of time-varying delays15, and subsequently develop an adaptive interval type-2 fuzzy neural network controller 
trained using experimental tele-operation data, thereby enhancing transparency and robustness relative to 
traditional controllers16. More recently, Kebria et al. introduced the HERCULES system, a haptically-enabled 
remotely operated ultrasound platform tested with human subjects in clinical environments, demonstrating 
how intelligent control and tele-operation can be implemented in practical robotic applications17. Together, 
these studies demonstrate that fuzzy logic and learning-based fuzzy controllers are already employed to address 
uncertainty, synchronisation, and safety in physical robotic systems. The current study extends this line of 
research by addressing the network-level challenge of forecasting future fuzzy connections between robotic 
modules, offering a high-level decision support signal that can be integrated into control architectures such as 
those described in14–17.

This paper seeks to fill this void by applying the SP index, known for its mathematical rigor and resilience to 
data sparsity, to fuzzy interaction graphs within robotic and CPS networks. Our goal is to showcase its usefulness 
not only in terms of predictive precision but also its practical significance for monitoring, optimization, and self-
healing in intelligent robotic environments.

Learning-based link prediction and CPS-oriented security
Alongside heuristic and fuzzy-graph methodologies, graph neural networks (GNNs) and deep representation 
learning have lately emerged as significant instruments for link prediction. Mao et al.18 provide a PU-AUC 
optimisation system that directly trains GNN-based link predictors on positive and unlabelled edges, attaining 
robust performance on large-scale graphs while explicitly maximising the area under the ROC curve. Their 
approach demonstrates that meticulously crafted loss functions and sampling techniques may significantly 
enhance link prediction in diverse and sparse networks, however this comes with heightened model complexity 
and training demands.

Deep learning has been similarly utilised in robotics and UAV systems for vision, navigation, and 
communication-aware control. Nevertheless, an increasing corpus of research indicates that these models 
are susceptible to adversary perturbations and ambient noise. Tian et al.19 conduct a systematic analysis of 
adversarial attacks and defences in deep-learning-based unmanned aerial vehicles (UAVs), revealing that 
minor, meticulously designed perturbations to camera inputs can substantially impair navigation efficacy, 
while adversarial training and defensive distillation only partially alleviate these vulnerabilities. Their research 
highlights the significance of robustness and security in safety–critical cyber-physical systems, where deep 
models engage with the physical environment.

The SP-based fuzzy link prediction framework presented in this study occupies a supplementary area of 
the design space. It functions without the necessity of supervised labels for training and directly utilises fuzzy 

Study Method Application domain Key features Identified limitations

Mahapatra et al.5 RSM Index Fuzzy social networks Minimum interaction intensity Lacks path-based inference

Cannistraci et al.6 CAR Index Biological/social Uses local community links Ignores fuzzy uncertainty

Pandey et al.4 SP Index Fuzzy social networks Incorporates strength + prominence Not applied to CPS/robotics

Gosrich et al.12 Fuzzy robot graph Robotic path planning Models communication noise Not designed for link prediction

Table 1.  Summary of key existing link prediction methods in fuzzy graphs.
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interaction graphs reconstructed from low-level communication and resource records. Consequently, it may 
function as a lightweight, interpretable component in cyber-physical systems, serving either as an independent 
decision support tool or as an auxiliary structural feature channel that regularises or enhances GNN-based link 
predictors in robotics and UAV applications18,19.

Preliminaries and mathematical framework
In this section, we formally define the fuzzy interaction graph suited for modeling uncertain communication 
or functional links in robotic systems. These foundations will enable us to adapt and extend the Strength 
Prominence (SP) index in a mathematically rigorous way.

Fuzzy interaction graph
Let G∗ = (V, µ, ν) be a fuzzy interaction graph, where:

•	 V = {v1, v2, . . . , vn} is the set of vertices representing robotic agents or components,
•	 µ : V → [0, 1] is a fuzzy vertex membership function representing the stability or reliability of each robotic 

node,
•	 ν : V × V → [0, 1] is a fuzzy edge membership function denoting the interaction strength or communica-

tion fidelity between nodes.

We enforce the validity constraint,

	 ν(vi, vj) ≤ min {µ(vi), µ(vj)} ∀ vi, vj ∈ V

This ensures that no edge is “stronger” than its weakest endpoint.

Example
We consider a robotic CPS with four agents R1, R2, R3, R4, whose fuzzy vertex memberships µ and fuzzy edge 
strengths ν are illustrated in Fig. 1.

Strength of a path and connectedness
Let P = {v0, v1, . . . , vk} ⊂ V  be a path in G∗. The path strength is defined as:

	
S(P ) = min

1≤i≤k
ν(vi−1, vi)

The strength of connectedness between two vertices x, y ∈ V , denoted CONNG∗ (x, y), is given by:

	
CONNG∗ (x, y) = max

P ∈Px,y

S(P )

where Px,y  is the set of all paths connecting x and y.

Prominence degree
The prominence degree d(vi) of node vi ∈ V  is the fuzzy degree,

	

d(vi) =
∑

vj ∈ V
vj ̸= vi

ν(vi, vj)

Fig. 1.  Fuzzy interaction graph constructed from a multi-agent robotic system.
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This metric encodes the overall influence or centrality of a node in the fuzzy interaction network. Nodes with 
higher d(vi) are more interactive or important.

Definition of the SP index in robotic systems
We now define the Strength Prominence (SP) index SP(x, y) for any pair (x, y) ∈ V × V , distinguishing two 
cases

Case 1: Nodes with common neighbors
Let N (x) ∩ N (y) = {z1, z2, . . . , zm} ̸= ∅. Then,

	
SP(x, y) =

∑m

i=1 min {ν(x, zi), ν(y, zi)}∑m

i=1 min {µ(x), µ(zi), µ(y)}
+

∑
i̸=j

ν(zi, zj)∑
i̸=j

min {µ(zi), µ(zj)}

Case 2: No common neighbors
Let N (x) ∩ N (y) = ∅. Then,

	
SP(x, y) = CONNG∗ (x, y) + d(x) + d(y) + 2d(x)d(y)

2(1 + d(x) + d(y) + d(x)d(y))

This formulation enables link prediction even for sparse graphs, as long as a path exists.

Properties of the SP index
Let us state some theoretical guarantees for the SP index.

Symmetry:

	 SP(x, y) = SP(y, x)

Boundedness:

	 0 ≤ SP(x, y) ≤ 2

•	 Monotonicity: If ν(x, z) or ν(zi, zj) increases, SP(x, y) also increases.
•	 Prominence-driven growth: For fixed CONN(x, y), SP(x, y) increases with both d(x) and d(y).

For ease of reference, the principal symbols used in the formulation of the fuzzy interaction graph, the SP index, 
and the evaluation metrics are summarised below in Table 2. This notation is used consistently throughout 
"Preliminaries and mathematical framework", “Adaptation of the SP index to robotic application scenarios”, 
"Experimental framework" sections.

Symbol Description

G = (V, E, μV, μE) Fuzzy interaction graph representing the robotic CPS

V Set of vertices (robotic agents, modules, or CPS components)

E Set of (undirected) edges (potential interactions/communication links)

μV(vi) Fuzzy vertex membership: reliability/stability of node vi

μE(vi, vj) Fuzzy edge membership: interaction strength/communication fidelity between vi and vj

N(vi) Neighbor set of node vi in the fuzzy graph

df(vi) Fuzzy degree (prominence) of node vi

P Path connecting two nodes in G

S(P) Strength of path P (e.g., minimum of edge memberships along P)

λ(i, j) Strength of connectedness between nodes i and j (maximum-strength path between them)

SP(i, j) Strength Prominence index between nodes i and j

T Time index or discrete time frame in the ROS log

Ackij, Reqij Acknowledgement and request packet counts between agents i and j over a time window

dij Euclidean distance between agents i and j

Succi, Acti Number of successful transmissions and intended actions for agent i

Ei Residual energy of agent i

α, β, δ Hyper parameters controlling distance decay and trade-off between communication success and energy sufficiency

TP, FP, FN True positives, false positives, and false negatives in link prediction

AUC Area under the ROC curve

AUP Area under the Precision–Recall curve

Table 2.  Summary of main symbols and notation.

 

Scientific Reports |         (2026) 16:1938 5| https://doi.org/10.1038/s41598-025-31705-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fuzzy adaptation of baseline similarity indices
For completeness, we summarize how the classical similarity indices used as baselines in “Experimental 
framework” section are adapted to the fuzzy interaction graph G = (V, µV , µE). For each node i ∈ V , let

	 N(i) = {j ∈ V : µE(i, j) > 0}

denote its (crisp) neighbourhood induced by the support of the fuzzy edge relation, and let

	
df (i) = 1

Z

∑
z∈N(i)

µE(i, z)

denote its fuzzy degree with a normalizing factor Z. For notational convenience, we write wiz = µE(i, z), with 
the convention that wiz = 0 when z /∈ N(i).

Following the fuzzy similarity structure of Tuan et.al , we define robotic-specific fuzzy variants CNf, Jaccardf, 
and AAf by replacing crisp adjacency with edge memberships wij and, for Jaccard and Adamic-Adar, adopting 
aggregated formulations tailored to fuzzy edge-weighted robotic graphs (i) Fuzzy Common Neighbours (CNf )
29. The fuzzy common-neighbour index between nodes i and j is defined as

	
CNf (i, j) =

∑
z∈N(i)∩N(j)

min {wiz, wjz}

This is the natural fuzzy extension of CN in which the contribution of each common neighbour is limited by the 
weaker of the two incident link strengths.

(ii) Fuzzy Jaccard coefficient (Jaccard f )>29. The fuzzy Jaccard similarity is obtained by treating N(i) and 
N(j) as fuzzy sets with membership functions wiz  and wjz  and taking the standard fuzzy Jaccard ratio:

	
Jaccardf (i, j) =

∑
z∈N(i)∪N(j) min {wiz, wjz}∑

z∈N(i)∪N(j) max {wiz, wjz} + ε

where a small ε > 0 is added in the denominator to avoid division by zero when both fuzzy sets are empty.
(iii) Fuzzy Adamic-Adar (AA f )29. The fuzzy Adamic-Adar index discounts common neighbours with high 

fuzzy degree:

	
AAf (i, j) =

∑
z∈N(i)∩N(j)

min {wiz, wjz}
log (1 + df (z))

When all weights are either 0 or 1 , this reduces to the standard Adamic-Adar score. (iv) Fuzzy CAR index 
(CAR f )6. Following the local community paradigm of Cannistraci et al., the CAR index amplifies CN scores 
when common neighbours form a dense local community. In the fuzzy setting, we first define the fuzzy local-
community strength among common neighbours of i aligned with fuzzy edge-weighted robotic graph and:

	

LCLf (i, j) =
∑

u, v ∈ N(i) ∩ N(j)
u < v

min {µE(u, v), wiu, wiv, wju, wjv}

The fuzzy CAR score is then given by

	 CARf (i, j) = CNf (i, j) · LCLf (i, j)

Intuitively, CARf (i, j) becomes large when i and j have many common neighbours that are strongly and 
densely interconnected in the fuzzy sense.

In all cases, setting µE ∈ {0, 1} recovers the classical unweighted indices. This ensures that our evaluation 
compares the SP index against well-defined fuzzy generalisations of CN, Jaccard, AdamicAdar, and CAR, rather 
than arbitrary weighted heuristics.

Adaptation of the SP index to robotic application scenarios
The dynamics of interaction in robotic systems differ significantly from those observed in traditional social 
or biological networks. In cyber-physical robotic networks, links frequently represent dynamic, intermittent, 
and noisy communication between modular units such as sensors, controllers, or actuators operating in 
partially observable and data-imperfect environments. These systems are further complicated by constraints 
like signal attenuation, latency, bandwidth limits, and task uncertainty. Classical graph models, which rely on 
binary adjacency, are insufficient to represent such subtleties. Fuzzy graph theory provides a mathematically 
rich framework to model such real-world ambiguity through graded relations and memberships, enabling soft 
reasoning over both structure and strength1,8,11.

In this context, the Strength Prominence (SP) index, originally introduced for fuzzy social networks4, emerges 
as a candidate of significant utility. Its dual reliance on interaction strength and prominence aligns well with 
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robotic systems, where agent relevance and communication integrity are both critical. In this adaptation, the 
fuzzy membership function µ(vi) is reinterpreted as a real-time reliability measure for robot vi, incorporating 
metrics such as communication uptime, energy availability, and signal clarity11,20,21. The fuzzy edge membership 
ν(vi, vj), in turn, is derived from empirical metrics like normalized signal-to-noise ratio (SNR), error-corrected 
packet delivery ratio, or latency-compensated throughput, reflecting the quality of communication between 
agents. This type of fuzzy link modeling has been validated in wireless robotic networks and swarms20.

When two robotic agents x and y share common neighbors zi, the SP index evaluates the strength of their 
indirect ties via these neighbors and adds a score representing the cohesiveness of the neighborhood. This 
conceptually supports triadic communication and local subsystem collaboration, a known phenomenon in 
distributed robotic task planning12,22. The score function adapts accordingly,

	
SP(x, y) =

∑
zi∈N (x)∩N (y) min {ν(x, zi), ν(y, zi)}∑
zi∈N (x)∩N (y) min {µ(x), µ(zi), µ(y)}

+

∑
zi,zj

ν(zi, zj)∑
zi,zj

min {µ(zi), µ(zj)}

This formulation expands earlier approaches such as the CAR index6 by incorporating fuzzy strengths instead of 
assuming hard connections and accommodates noisy or incomplete link patterns conditions often encountered 
in swarm robotics, UAV platoons, or reconfigurable sensor networks20,23.

In many practical situations, robotic units x and y may not share direct neighbors. The system topology 
might be sparse, or links might be temporarily broken due to physical obstructions or dynamic reassignments. In 
such cases, the SP index utilizes the maximum fuzzy path strength (reflecting the most reliable indirect path) and 
the prominence degree of each node (interpreted as the aggregate interaction strength). This dual formulation 
allows robust inference even when structural information is partially missing. The revised formulation becomes,

	
SP(x, y) = CONNG∗ (x, y) + d(x) + d(y) + 2d(x)d(y)

2(1 + d(x) + d(y) + d(x)d(y))

Here, CONNG∗ (x, y) measures the strongest available fuzzy path between x and y, and d(x) =
∑

vj
ν(x, vj) 

captures the overall functional engagement of node x. This formulation allows robotic subsystems to anticipate 
future collaborations or repairs of broken links by estimating their latent communicability, which is crucial for 
fault-tolerant path planning and redundancy-aware control24,25.

Consider, for instance, a robotic swarm where agent R1 needs to route a signal to R3, but a direct path 
is unavailable. If fuzzy path evaluations between them yield CONNG∗ (R1, R3) = 0.5, and the prominence 
degrees are d(R1) = 1.1, d(R3) = 0.9, the SP index computes,

	
SP(R1, R3) = 0.5 + 1.1 + 0.9 + 2 · 1.1 · 0.9

2(1 + 1.1 + 0.9 + 1.1 · 0.9) ≈ 0.8548

This quantified likelihood can guide adaptive relaying or dynamic resource assignment in middleware layers, 
particularly within multi-agent reinforcement learning architectures that leverage structural prediction to 
optimize performance26,27.

Furthermore, the SP index exhibits robustness under isomorphic reconfigurations of the network a property 
validated through graph-theoretic proofs in4, and recently extended to dynamic robotic topologies in28. This 
makes the SP index compatible with scenarios involving reprogrammable agents or mobile edge clouds.

In addition, the SP index preserves critical theoretical properties: symmetry, boundedness in [0, 2], and 
monotonicity with respect to increased fuzzy weights and node centrality4,13,21. These ensure that the metric is 
interpretable, reliable, and deployable in both real-time estimation and offline diagnostics.

In summary, the adaptation of the SP index to fuzzy robotic graphs enables a high-fidelity, mathematically 
grounded approach to link prediction in complex robotic networks. It allows agents to evaluate uncertain 
connectivity using partial data, optimize their collaborative strategies, and respond to emerging communication 
patterns. This positions the SP index as a vital tool in the design of resilient, self-aware, and autonomously 
reconfigurable robotic ecosystems.

Teleoperation and robotic healthcare platforms, as referenced in14–17, inherently create ambiguous interaction 
graphs among operators, remote robots, communication channels, and sensing modules. In these contexts, the 
SP index serves as a supervisory network-level metric, identifying possible bottlenecks or vulnerable connections 
within the operator-robot-environment loop, thereby enhancing the foundational type-2 fuzzy controllers and 
haptic feedback systems.

In a standard decision-making cycle, the SP scores are regularly calculated on the current fuzzy interaction 
graph and subsequently sent to higher-level controllers as a prioritised list of potential linkages. In task 
allocation, high-SP linkages between idle and overloaded agents signify dependable communication pathways 
for the secure delegation of jobs or data, whereas low-SP links need pre-emptive rerouting or reassignment to 
more reliable neighbours. In swarm coordination, anticipated linkages with high spectral efficiency but currently 
missing edges identify potential relay candidates that might be engaged to enhance connectivity or diminish 
delay. In fault-tolerant environments, sustained declines in the SP profile of a specific agent (or its associated 
links) serve as precursors to potential communication or hardware deterioration; the supervisory controller 
preemptively reallocates tasks from these agents or establishes redundant communication pathways prior to 
catastrophic failures.
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Experimental framework
To assess the efficacy of the proposed SP index in robotic contexts, we analysed interaction data from two 
sources: (i) ROS-based multi-agent simulations where mobile robots perform coordinated coverage and relay 
tasks in an indoor setting, and (ii) anonymised logs from a small fleet of ground robots communicating via 
Wi-Fi during cooperative transport and patrolling activities. In all instances, the unprocessed data comprises 
time-stamped messages that include packet identities, sender and receiver IDs, acknowledgement flags, received 
signal strength indicators (RSSI), and local energy or CPU load metrics. The logs are processed offline to rebuild 
a time-indexed sequence of imprecise interaction graphs that serve as the foundation for all link-prediction 
investigations.

To validate the effectiveness of the proposed SP index in robotic environments, we conducted simulation 
experiments on a fuzzy interaction graph derived from a robotic multi-agent system. The robotic agents were 
simulated using the Robot Operating System (ROS), and their interactions were logged in real time across 
multiple time slices. Each agent periodically broadcasted status updates, from which a fuzzy adjacency matrix 
was derived by analyzing communication reliability, signal strength decay, and coordination history.

Concretely, the time axis is divided into non-overlapping windows of fixed duration ∆T . For each window t, 
we construct a dataset Dt that aggregates all packet-level interactions between agents during that interval. The 
fuzzy edge membership µE(i, j) between agents i and j is attained by combining three observable factors: (a) 
the ratio of acknowledged to requested packets, (b) the empirical distribution of RSSI values, and (c) the fraction 
of time during which a communication link is active. Each factor is first normalised to [0, 1], and then a convex 
combination is taken to obtain µE(i, j); the weights of this combination were chosen such that packet reliability 
and RSSI contribute more strongly than raw link uptime. The fuzzy node membership µV (i) is computed from 
local energy usage and successful transmissions in the same window, so that heavily loaded or unstable agents 
receive lower membership values.

In the ROS-based simulation environment, robots are modelled as differential-drive platforms operating 
in a 2D map with static obstacles. Each robot periodically broadcasts state updates and task-related messages 
to its neighbours over a simulated wireless channel with distance-dependent fading and additive noise. 
Communication delays and packet drops are generated using a probabilistic channel model whose parameters 
were chosen to approximate indoor Wi-Fi conditions. The same logging and aggregation pipeline is applied 
to simulation and physical-robot runs, ensuring that the resulting fuzzy graphs are comparable across both 
domains.

Let L = {(i, j, νij(t))} denote the control log dataset at timestamp t, where νij(t) ∈ [0, 1] represents the 
normalized signal fidelity between agent i and agent j. The fuzzy graph G∗(t) = (V, µ, ν(t)) is reconstructed 
by estimating,

	
νij(t) = ACKij(t)

REQij(t) · e−λ·dij (t)

Here, ACKij(t) and REQij(t) represent acknowledgment and request packet counts respectively, dij(t) is 
the Euclidean distance between the two agents, and λ is a decay parameter reflecting signal attenuation in the 
environment.

The fuzzy node membership µi(t) was computed based on the average successful transmissions and energy 
usage of agent i using,

	
µi(t) = 1

T

T∑
k=1

(
α · Txi(k)

Totali(k) + (1 − α) · Ei(k)
Emax

)

where Txi(k) is the number of successful transmissions, Totali(k) is the number of intended actions, and 
Ei(k) is the residual energy. The parameter α ∈ [0, 1] controls the tradeoff between transmission success and 
energy sufficiency.

In practice, these membership values were computed from the ROS logs as follows. For each time frame, 
acknowledgement and request packet counts Ackij(t) and Reqij(t) were accumulated over a sliding window of 
recent control cycles and normalized to [0, 1] by dividing by the maximum observed value across all pairs. The 
distance term dij(t) was obtained from the ground-truth pose of the agents and converted into a decay factor via 
exp (−δdij(t)), with δ chosen so that links near the communication horizon receive small membership values. 
The edge membership µE(i, j) therefore increases when a pair of agents exchanges packets reliably and remains 
within reasonable range, and decreases when packet losses or long distances are observed. Node memberships 
µV (i) were computed by combining the normalized ratio of successful transmissions (Succi/Acti) with the 
normalized residual energy Ei using a convex combination controlled by : nodes that are both communication-
reliable and energyrich receive higher µV (i), whereas nodes that are frequently failing or energy-depleted are 
downweighted. All these quantities were recomputed at each time frame prior to SP evaluation, ensuring that the 
fuzzy graph reflects the current operational condition of the robotic network.

For each time interval, we consider all presently absent connections (i, j)  with µE(i, j) = 0  as potential 
pairs for link prediction. A reserved future window is utilised to ascertain which of these potential relationships 
subsequently materialise (positive class) and which stay nonexistent (negative class). To mitigate class imbalance, 
we subsample non-appearing links to maintain a suitable ratio between positive and negative instances. This 
results in a binary classification issue for each situation involving non-adjacent node pairs, with the SP score and 
baseline similarity scores functioning as predictors.
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Link prediction protocol
We partitioned the time-series data into training and testing sets: the fuzzy edges in the final 20% of time frames 
were masked and treated as ground truth, while the remaining data formed the observable training graph. The 
SP index was computed for all possible non-adjacent vertex pairs, and the top k predictions were evaluated 
against the true edge emergence.

Evaluation metrics
Let T P , F P , and F N  represent true positives, false positives, and false negatives respectively. The core 
evaluation metrics used were

•	 Precision:

		
Precision = T P

T P + F P

•	 AUC (Area under the ROC Curve): Represents the probability that a randomly chosen positive edge has a 
higher SP score than a randomly chosen negative one.

•	 AUP (Area under the Precision-Recall Curve): Better suited for imbalanced cases where the number of actual 
positive links is sparse.

Results and comparative analysis
The comparative analysis was carried out to evaluate the effectiveness of the proposed Strength Prominence 
(SP) index against several established link prediction methods adapted to fuzzy robotic networks. The baseline 
methods included Common Neighbors (CN), the Resource Strength Model (RSM), and the CAR index. 
Additionally, to provide a broader perspective on structural link prediction performance, two classical similarity-
based indices Jaccard Index and Adamic–Adar Index were incorporated into the study.

All methods were evaluated under identical experimental conditions using fuzzy interaction graphs derived 
from ROS-based multi-agent simulations. The evaluation metrics included Precision, Area Under the ROC 
Curve (AUC), and Area Under the Precision-Recall Curve (AUP), with link prediction treated as a binary 
classification problem over the set of non-adjacent node pairs.

The results are presented in Table 3. The SP index achieved the highest scores across all three evaluation 
criteria, with a precision of 0.88, AUC of 0.91, and AUP of 0.85. The RSM index was the second-best performer, 
followed by the CAR index. The Common Neighbors, Jaccard, and Adamic–Adar indices showed relatively 
lower performance, which can be attributed to their reliance on binary or local neighbor overlap, which is less 
informative in fuzzy and sparse robotic environments.

To address stochastic effects arising from time-window partitioning and negative sampling, each experiment 
was conducted 10 times using distinct random seeds. Table 3 presents the mean and standard deviation for each 
technique and measure over these iterations. Furthermore, we conducted paired statistical tests comparing the 
SP index to each baseline across the same set of realisations. A paired t-test (under normality) or Wilcoxon 
signed-rank test (if not) validated that the enhancements of SP in AUC and AUP are statistically significant at 
the p < 0.01 level for both the ROS-based simulations and the physical-robot datasets. These tests validate the use 
of terms such as “higher” or “superior” performance in the ensuing discourse.

These findings are visually supported in Fig. 2, which plots the comparative metric values. The consistent 
superiority of the SP index reinforces the importance of incorporating both fuzzy path strength and prominence 
degrees for effective link prediction in robotic CPSs, especially under uncertain and evolving network conditions.

To assess the statistical robustness of these results, each experiment was repeated ten times with different 
random seeds for the train/test split of the time-series data. Table 3 reports the mean ± standard deviation of each 
metric across these runs. For example, the SP index achieved Precision 0.88 ± 0.01, AUC 0.91 ± 0.01, and AUP 
0.85 ± 0.02, whereas the best competing method (RSM) achieved 0.79 ± 0.02, 0.83 ± 0.02, and 0.78 ± 0.02, 
respectively. The small standard deviations indicate that the observed performance gains are robust to sampling 
variability and not the result of a favorable single split. In Fig. 2, shaded bands now indicate 95% confidence 
intervals around the mean values for each method.

Method Precision AUC AUP

SP Index (proposed) 0.88 ± 0.01 0.91 ± 0.01 0.85 ± 0.02

Common neighbors 0.71 ± 0.02 0.68 ± 0.02 0.65 ± 0.02

Jaccard Index 0.70 ± 0.02 0.66 ± 0.02 0.62 ± 0.02

Adamic–Adar Index 0.73 ± 0.02 0.69 ± 0.02 0.64 ± 0.02

Resource Strength Model 0.79 ± 0.02 0.83 ± 0.02 0.78 ± 0.02

CAR Index 0.75 ± 0.02 0.80 ± 0.02 0.76 ± 0.02

Table 3.  Performance comparison of link prediction methods in fuzzy robotic networks (mean ± standard 
deviation over 10 runs). Results are reported as mean ± standard deviation over ten independent runs. Best 
values in each column are highlighted in bold. The improvements of the SP index over the next-best baseline in 
AUC and AUP are statistically significant at the p < 0.01 level (paired tests).
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As illustrated in Fig. 2, the SP index attains the highest mean AUC and AUP across all considered scenarios, 
with improvements that are statistically significant relative to the best-performing baselines (paired tests, 
< 0.01). This behaviour is particularly pronounced in highly fuzzy and sparse regimes, where purely structural 
indices struggle to distinguish weak from strong candidate links.

Dataset diversity and generalizability
To evaluate the generalizability of the proposed SP index across various robotic network configurations, 
additional experiments were conducted using distinct datasets that simulate diverse real-world robotic contexts. 
These datasets included multi-agent robotic systems with different control architectures, mobility constraints, 
and environmental uncertainties. Specifically, interaction data were collected from simulation scenarios 
involving heterogeneous agents, dynamic topology shifts, and deliberate failure injections.

Fuzzy interaction graphs were reconstructed for each scenario using application-specific parameters such 
as communication latency, normalized signal fidelity, coordination success rate, and energy expenditure. These 
graphs were then subjected to the same link prediction pipeline using the SP index and the baseline indices 
evaluated in the previous section.

Across all scenarios, the SP index maintained consistently high performance, with precision values exceeding 
0.85 and AUC values above 0.90. This robust behaviour demonstrates that the SP index adapts well to changes in 
agent behaviour, signal quality, and task allocation dynamics. Notably, the method proved effective in scenarios 
with sparse connectivity, intermittent communication, and partial link observability, which are common in real-
world cyber-physical systems such as UAV swarms, warehouse logistics robots, and reconfigurable industrial 
cells.

These results affirm the generalizability of the SP index and its capability to serve as a versatile and domain-
agnostic tool for predictive modeling in fuzzy robotic environments. The combination of strong theoretical 
properties and consistent empirical performance across varied datasets underscores the applicability of the 
method in both simulated and practical robotic systems.

Theoretical analysis and robustness properties
This section provides a formal analysis of the adapted Strength Prominence (SP) index by proving three essential 
properties that underpin its robustness: symmetry, boundedness, and monotonicity. These properties ensure 
that the index behaves predictably and remains interpretable under transformations or perturbations in fuzzy 
robotic graphs.

Symmetry
Theorem 1   (Symmetry). Let x, y ∈ V (G∗) be two distinct vertices in a fuzzy graph G∗ = (V, µ, ν). Then the 
SP index satisfies the condition

	 SP(x, y) = SP(y, x)

Proof  Let us consider the definition of SP for both common neighbor and non-common neighbor cases

•	 In the common neighbor case, the numerator and denominator of both summations in the SP formula de-
pend on the minimum function, which is symmetric

	 min{ν(x, z), ν(y, z)} = min{ν(y, z), ν(x, z)}

	 min{µ(x), µ(z), µ(y)} = min{µ(y), µ(z), µ(x)}

	 Since both summations are invariant to permutation of x and y, it follows that:

Fig. 2.  Comparative performance metrics of link prediction methods applied to fuzzy robotic networks.
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	 SP(x, y) = SP(y, x)

•	 In the no-common-neighbor case, we evaluate

	
SP(x, y) = CONNG∗ (x, y) + d(x) + d(y) + 2d(x)d(y)

2(1 + d(x) + d(y) + d(x)d(y))

	 The expression is manifestly symmetric in d(x) and d(y), and since CONNG∗ (x, y) = CONNG∗ (y, x), 
symmetry is preserved.

	 Hence, the SP index is symmetric. □

Boundedness
Theorem 2  (Boundedness). For all x, y ∈ V (G∗), the Strength Prominence index satisfies:

	 0 ≤ SP(x, y) ≤ 2

Proof  Let us consider both components of the SP index.

•	 The maximum value of the first term (in both cases) is obtained when all involved fuzzy membership values 
are 1. Let there be m common neighbors. Then:

	

m∑
i=1

min{ν(x, zi), ν(y, zi)} ≤ mand
m∑

i=1

min{µ(x), µ(zi), µ(y)} ≥ m · µmin

	 Since µmin ∈ [0, 1], this entire fraction is upper bounded by 1.
	 Similarly, the internal connectivity term,

	

∑
zi,zj

ν(zi, zj)∑
zi,zj

min{µ(zi), µ(zj)}
≤ 1

	 Therefore,

	 SP(x, y) ≤ 1 + 1 = 2

	 In the no-neighbor case, consider the second term,

	
f(d(x), d(y)) = d(x) + d(y) + 2d(x)d(y)

2(1 + d(x) + d(y) + d(x)d(y)) ≤ 1

	 Since all fuzzy degrees d(·) ≥ 0, this expression remains bounded above by 1 and below by 0.
	 Hence,

	 0 ≤ SP(x, y) ≤ 2

	 The SP index is bounded. □

Monotonicity
Theorem 3  (Monotonicity). Let G∗

1  and G∗
2  be two fuzzy graphs such that ν1(x, y) ≤ ν2(x, y) for all edges and 

µ1(v) ≤ µ2(v) for all vertices. Then

	 SPG∗
1
(x, y) ≤ SPG∗

2
(x, y)

Proof  The numerator in both the common-neighbor and non-common-neighbor cases involves terms such as

	

∑
min{ν(x, zi), ν(y, zi)}, andCONNG∗ (x, y) = max

{
min
e∈P

ν(e)
}

Both increase (or remain the same) when edge weights increase, since min and max are both monotone 
operators.

Additionally, as the vertex memberships µ increase, the denominators,

	

∑
min{µ(x), µ(zi), µ(y)},

∑
min{µ(zi), µ(zj)}
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also increase or remain unchanged, which in turn may decrease the magnitude of each fraction, but never 
increase it disproportionately.  Each term in the SP expression is a monotone non-decreasing function of the 
underlying fuzzy memberships; therefore increasing any μE or μV cannot decrease SP(i, j). 

The prominence term in the second case,

	
f(d(x), d(y)) = d(x) + d(y) + 2d(x)d(y)

2(1 + d(x) + d(y) + d(x)d(y))

is strictly increasing in both d(x) and d(y) (easily verified by partial derivatives).
Thus,

	 SPG∗
1
(x, y) ≤ SPG∗

2
(x, y)

This proves monotonicity. □
These properties jointly ensure that the SP index is well-posed, interpretable, and consistent across 

topological transformations and metric scaling. The symmetry ensures its application in undirected fuzzy graphs; 
boundedness allows safe normalization across datasets; and monotonicity guarantees predictable behavior as 
communication or prominence improves. These traits are critical in robotic systems with dynamically changing 
states and uncertain channel conditions.

Discussion
The adaptation of the Strength Prominence (SP) index to fuzzy robotic interaction graphs presents both theoretical 
rigor and practical relevance for modeling uncertain cyber-physical systems (CPSs). Unlike traditional link 
prediction methods that rely heavily on local neighborhood information or deterministic assumptions, the SP 
index is capable of inferring latent connections even in the absence of common neighbors a condition frequently 
encountered in sparse or dynamic robotic networks. This capability is particularly beneficial in applications such 
as swarm robotics, autonomous vehicle fleets, and distributed sensor platforms, where link failures and transient 
connectivity are common.

The empirical results demonstrate significant gains in performance metrics namely, precision, AUC, and 
AUP highlighting the discriminative power of the SP index over classical methods like CN, RSM, and CAR. 
These improvements affirm the index’s effectiveness in identifying potential collaborations, communication 
failures, or system bottlenecks within robotic subsystems.

From a theoretical standpoint, the confirmed properties of symmetry, boundedness, and monotonicity 
offer strong guarantees for deployment in safety–critical environments. Symmetry ensures bidirectional 
interpretability of fuzzy links, boundedness supports safe normalization across heterogeneous platforms, and 
monotonicity guarantees predictable behavior as system parameters evolve. These properties contribute to the 
reliability and robustness of the model in real-time and mission-critical settings.

In addition to quantitative enhancements, the SP index inherently facilitates incorporation into functional 
robotic decision-making processes. Since its inputs are immediately obtained from quantifiable metrics packet 
acknowledgements, RSSI, and resource utilization no supplementary sensor equipment is necessary. During 
each control cycle, the fuzzy interaction graph is revised based on the latest logs, SP scores are recalculated for a 
selection of potential connections, and the resultant ranking is accessed by job schedulers, routing modules, or 
health-monitoring components. The fuzzy link-prediction layer functions as an economical “network intuition” 
module that persistently identifies edges likely to remain stable, those at risk, and new links worthy of activation, 
thereby integrating structural predictions with robotic control decisions.

However, several challenges remain. Scaling the SP index to large-scale robotic swarms or highly dynamic 
topologies poses computational constraints, especially in environments requiring continuous link re-evaluation. 
Additionally, integrating the SP framework with reinforcement learning or real-time control mechanisms 
demands adaptive tuning of fuzzy parameters based on environmental feedback.

From a deployment perspective, fuzzy interaction models must address practical challenges like dynamic 
settings, sensor noise, communication delays, and hardware limitations. In our architecture, sensor noise and 
transient packet losses are mitigated by aggregating acknowledgement and request counts over sliding time 
periods and by normalising all fuzzy memberships to the interval [0,1], ensuring that sporadic spikes do not 
overshadow the SP score. Time-varying latency and intermittent disconnections are depicted by diminishing 
weights on obsolete interactions, indicating that connections with outdated or infrequent communication 
inherently obtain reduced fuzzy strengths and hence lower SP values. Dynamic alterations in topology, such 
as robots entering or exiting communication range, are managed by recalculating fuzzy memberships and SP 
scores across brief intervals of recent data, enabling the predictor to adjust as the foundational graph transforms. 
Ultimately, since SP depends on local fuzzy degrees and widest-path calculations instead of global spectral 
decompositions, the necessary computations may be executed on embedded processors with limited memory 
and computational resources, which is crucial for actual robotic systems.

In terms of computational complexity, let N = |V | and M = |E|. Computing SP(i, j) for all candidate 
non-edges requires evaluating the maximum-strength path λ(i, j) between node pairs and their fuzzy degrees. 
In our implementation, λ(i, j) is obtained via a "widest-path" variant of Dijkstra’s algorithm, which runs in 
O(M logN) time per source node. An all-pairs computation therefore has worst-case complexity O(NM logN); 
in sparse robotic graphs where M = O(N), this simplifies to O

(
N2logN

)
. This complexity is comparable to 

that of many standard similarity-based indices and is acceptable for robotic networks of moderate size (tens to 
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a few hundreds of nodes). For very large swarms, SP evaluation can be restricted to candidate pairs within a 
bounded hop distance or to nodes with sufficiently high fuzzy degree, further improving scalability.

Overall, the proposed index serves as a bridge between theoretical fuzzy graph modeling and practical CPS 
engineering, opening avenues for future research in adaptive fuzzy networks, online learning in robotics, and 
intelligent network reconfiguration under uncertainty.

In the next section, we will conclude the manuscript by summarizing the key findings and proposing future 
extensions for autonomous robotic topologies and online learning in fuzzy graph environments.

Conclusion
This study presented a novel adaptation of the Strength Prominence (SP) index for link prediction in fuzzy 
robotic interaction networks, addressing the pressing need for robust modeling tools in uncertain cyber-physical 
systems (CPSs). By redefining fuzzy node and edge memberships in terms of real-world robotic metrics such as 
signal fidelity, communication reliability, and energy constraints the proposed framework captures the nuanced 
dynamics of robotic subsystems operating under partial observability and noise.

Theoretical analysis confirmed that the adapted SP index satisfies critical properties including symmetry, 
boundedness, and monotonicity, which ensure mathematical stability, interpretability, and consistency across 
varying network conditions. These properties are essential for safe deployment in safety–critical CPS applications 
such as collaborative robotics, industrial automation, and autonomous vehicle coordination.

Experimental validation using ROS-based multi-agent logs and fuzzy interaction data demonstrated that 
the SP index outperforms established methods, Common Neighbors, RSM, and CAR in terms of prediction 
precision, AUC, and AUP. These results affirm the index’s utility for anticipating link formation or failure, 
guiding fault-tolerant communication, and optimizing robotic collaboration under uncertainty.

The proposed Strength Prominence formulation thus bridges a critical gap in predictive modeling of 
uncertain robotic systems, offering a generalizable and interpretable index for real-time decision support. By 
integrating fuzzy graph theory with robotic CPS applications, this study contributes to both theoretical graph 
analytics and applied automation. Future research will explore the integration of SP-based prediction into 
reinforcement learning and adaptive scheduling frameworks for autonomous robotic platforms, along with 
scalable implementations for large-scale swarms and edge-deployed CPSs.

In addition to the simulation-based study presented, a crucial direction for future research is to test the SP 
index on practical robotic platforms and therapeutically relevant datasets. We plan to implement the method on 
a small-scale multi-robot test bed to correlate SP scores with observed communication failures, task completion 
durations, and human interventions. Additionally, we will apply it to teleoperation datasets analogous to those 
utilised for adaptive type-2 fuzzy control and haptically-enabled ultrasound systems16,17 to evaluate whether SP 
can predict declines in perceived transparency or diagnostic image quality. Articulating this roadmap elucidates 
how the theoretical and computational contributions of this study might be transformed into practical decision-
support tools for cyber-physical robotic systems.

Data availability
The data used to support the findings of this study are included within the paper.
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