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Skin diseases frequently cause mental and physical distress and are major global health concern. 
Because early detection is crucial to successful treatment, accurate diagnosis is challenge for 
dermatologists as well. Diagnostic accuracy could be significantly enhanced using methods like 
machine learning (ML) and deep learning (DL). However, substantial datasets are required for these 
models to make accurate predictions. The healthcare providers frequently encounter data shortages, 
and privacy regulations restrict data sharing. A privacy-preserving federated transfer learning for 
diagnosing skin diseases which incorporate four key strategies to enhance effectiveness. The transfer 
learning is used to train a model with dense neural network (DNN) for skin diseases detection. The 
feature extraction is performed using pre-trained architectures and DNN is used for classification. 
The federated learning (FL) replaces the transfer learning to train the model across distributed nodes 
with the DNN used to disease detection. The FL is combined with transfer learning to build a cohesive 
ecosystem where data privacy is maintained. The model performance was validated on both IID and 
non-IID database, with the proposed feature extraction with federated learning model achieving 
cross validation accuracy of 99.528% and 99.689% for IID and non-IID database, respectively. Results 
indicate that feature extraction with FL model can produce efficient, lightweight models—well-suited 
for resource-constrained devices—while ensemble learning enhances edge device performance, 
offering a powerful and privacy-preserving solution for skin disease diagnosis in modern healthcare.
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Globally, millions of people of all ages and demographics suffer from skin problems. Skin ailments range from 
eczema, psoriasis, and acne to melanoma and other skin malignancies1. Chronic illnesses like psoriasis can 
cause physical discomfort, emotional suffering, and social isolation2. Non-fatal skin diseases account for a large 
portion of global healthcare costs. The dermatologist scarcity in many places delays diagnoses and worsens 
patient outcomes3. Skin illnesses can indicate underlying health difficulties, thus early and precise diagnosis is 
crucial to preserving patient health and possibly detecting additional systemic diseases4. Dermatologists directly 
examine lesions, pigmentation, and texture changes to diagnose skin illnesses5,6. Analyzing large datasets of skin 
images and finding disease patterns with artificial intelligent (AI) based techniques is also improving diagnostic 
accuracy7. Despite technological advances, such equipment and technical competence are scarce, especially in 
low-resource areas8. In dermatology, virtual and real-time skin condition diagnosis are now possible through 
advanced digital tools9,10. Patients benefit from quick assessments and teledermatology consultation improves 
the dermatological care accessibility10. Continuous observation allows for personalized treatment adjustments, 
improving patient outcomes and adherence11. Additionally, AI models can analyze patient data to detect early 
skin abnormalities and potentially identify skin cancers or other serious conditions11,12. However, as these 
digital healthcare ecosystems expand, concerns about data security and privacy become increasingly significant, 
particularly in dermatology where sensitive medical data is transmitted and stored12.

Medical imaging and diagnosis capture and share sensitive health data across platforms, making data 
privacy as serious problem13. Medical images used in dermatology contain visual data about skin problems 
and information that could reveal identification of patients if privacy protections are insufficient. Centralized 
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storage systems, which contain patient data from numerous sources, are particularly vulnerable to hackers, 
threatening patient privacy and confidence in digital health care systems14. Federated learning (FL) model allows 
decentralized data utilization on local devices while keeping it secure, allowing shared model advances without 
transferring patient data15. To prevent data leaks during training, FL modelrequires strong encryption and secure 
aggregation. These advances make it harder to balance data utility and privacy since models need enough data 
to be clinically useful without violating patient privacy16. FL and transfer learning models have been popular in 
medical application because they solve data privacy, limited resources, and model adaptability17. FLmodel makes 
it possible to train machine learning (ML) and deep learning (DL) models on dispersed datasets, such as medical 
servers, without the need for centralized collection18. Transfer learning model allows pre-trained models on 
huge, publically available datasets to be tailored to specific medical applications with less task-specific data19. 
Transfer learning lets models adapt to diverse healthcare domains, such as dermatology and radiology. Transfer 
learning along with FL, can improve medical diagnostic accuracy by using information from many data sources, 
even in resource-limited medical environments20. These methods promise to improve model performance while 
protecting privacy and managing data scarcity, enabling ethical and practical AI use in healthcare. FL models 
with decentralized data interested by the discretion subjects of traditional ML/DL techniques that have been 
previously discussed. After that, each local network model is trained using its own local data, preventing sensitive 
information from being shared over a server network. The rest of this paper is organized as follows. The literature 
on skin disease diagnostic using ML/DL techniques is reviewed in Section "Related Work". The proposed model 
for diagnosing skin diseases using transfer learning, pre-trained feature extraction models, federated feature 
extraction, and federated transfer learning is presented in Section "Methodology skin disease diagnosis". The 
experimental setup and results comparison of skin disease detection models are described in Section "Results 
analysis" and "Discussion". The paper conclusion and future scope discussed in Section "Conclusion".

Related work
By handling visual complexity and model generalization through image augmentation, the convolutional neural 
network (CNN) offers a diverse dataset that more accurately captures the variability of skin conditions21. The 
model’s accuracy of 86% and reminiscence of 81% across seven disease classes show that it can recognize the 
features of skin disorders. The FL framework22 aggregates prediction while sharing sensitive data. FL differential 
privacy architecture facilitates cooperative model training without transferring confidential patient data to 
central servers using decentralized manner23. The implementation is on Amazon’s AWS cloud system, showed 
ease of use and scalability24 which improves mobile health technology diagnostics. A hybrid model using CNN 
and optimization module25 is used to improve the gesture identification. FL pre-trains the mixed approach 
without revealing sensitive sEMG data, and then transfer learning fine-tunes the model for each subject based on 
their features. According to experimental results, this approach improves recognition accuracy by 12.01% over 
conventional FL model and 28.52% over local training, overcoming data shortage and prioritizing privacy. The 
FL is used to train global model and sharing encrypted parameters via blockchain with permission to address 
privacy and trust issues26. According to the data, the scheme outperforms baseline models in segmentation by 
19.08% in Hausdorff distance for whole malignancies and 1.99% in Dice comparison coefficient for attractive 
growths. The local devices run simulations on their datasets without transferring sensitive health data, solving 
privacy concerns27. Radar-based heartbeat and activity monitoring is implemented using a networked multi-task 
transfer learning28. FedRadar beats local training models in heartbeat rate prediction and action planning on 
actual radar datasets by 2.8% and 2.5%, respectively. FL with decentralized data storage improves the detection 
rate29. A data balancing strategy improves classifier performance and achieves 95% accuracy by correct the 
dataset’s class imbalance. FRESH is smart healthcare architecture that combines FL with ring identity safeguards 
against such assaults30. Modified batch verification takes advantage of lined operations’ additively on elliptic 
arches to ease the server’s dispensation load.

Review summary
Based on the literature review (Table 1), DL techniques used to draw attention to the problems of using FL for 
skin disease diagnosis21–30. The inherent non-IID distribution and data imbalance in skin disease datasets are 
significant issues. Patients from various demographic groups, geographical locations, and healthcare facilities 
have varying disease frequencies and image features, which leads to biased models that are not particularly 
successful at generalizing to other populations. Threats to security and privacy are another significant obstacle. 
In a medical context, protecting patient information’s security and confidentiality is essential. The FL system31, 
which uses a dataset of over 10,000 photos and decentralized data, initially demonstrates an overall accuracy rate 
of around 79% in the classification of skin disorders. The four categories of skin diseases are classified using the 
CNN32 and the parameters are optimized using the hyper-parameter tuning.Even though FL is decentralized, 
during model updates, sensitive patient data—such as images of skin lesions—is still susceptible to reconstruction 
or inference assaults. The varied nature of medical imaging data, which unintentionally expose distinguishable 
characteristics, increases this danger21,23.

Skin disease diagnostics include analyzes intensive high-resolution dermoscopic images. IoT devices with 
limited processing and storage capacities find it challenging to handle such data hence models that are both 
effective and lightweight are needed24,25. Additionally, the communication cost in FL frameworks exacerbates 
this issue, particularly when delivering large quantities of model changes in real-time from devices with 
constrained resources. Ethical and legal restrictions make using FL to diagnose skin conditions much more 
difficult26,27. Another issue is the lack of model interpretability, as doctors frequently want precise justifications 
for diagnostic judgments before they can have faith in AI systems, particularly when dealing with complex 
disorders like psoriasis or melanoma. The accuracy of diagnosis compromises by malicious clients who can 
introduce erroneous data or interfere with model updates21–29. The data processing techniques, robust model 
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design, ethical adherence, and enhanced security measures are required to get over these challenges and ensure 
FL’s efficacy in identifying skin conditions30–32. FL system is used for skin disease diagnostics with an emphasis 
on resource utilization and data confidentiality. It eliminates the need to transfer confidential skin photos to 
a centralized server while working with sensitive data. This work offer four distinct models to skin disease 
diagnosis using DNN classifier (a) transfer learning (b) feature extraction (c) feature extraction with federated 
learning (d) federated transfer learning.

Methodology skin disease diagnosis
This section presents a resource-efficient FL outline for the recognition and classification of skin illnesses. IoT-
enabled devices at different locations collect skin disease images from patients and store them locally. The overall 
structure of data collection for skin disease diagnosis using FL is shown in Fig. 1. By using distributed data 
to enhance the accuracy of ML/DL models, it facilitates more effective diagnosis of skin conditions. Figure 2 
illustrates the conceptual framework for skin disease diagnosis using four distinct strategies: federated transfer 
learning, feature extraction with FL, feature extraction with transfer learning, and transfer learning alone. In this 
framework, images of skin conditions are collected from patients across different locations and stored locally 
to maintain data confidentiality. Once data collection is complete, pre-processing methods—such as resizing, 

Fig. 1.  General structure of data collection from skin disease patient in FL environment.

 

References Disease Technique Dataset Training place Findings Research gaps

21 Skin disease detection FL with CNN Synthetic dataset Decentralized Accuracy 82.42% The performance is not further 
explored in larger datasets

22 Malaria image detection FL with ResNet-50 
and DenseNet 27,560 images Decentralized Accuracy 92%, 72% Hyper tuning could be enhanced 

with use of some optimizer

23 Detect Tuberculosis FL with CNN Chest X-ray dataset Decentralized Accuracy 89.56% Higher time consumption in 
training dataset

24 Seizure epilepsy monitoring FL with ResNet and 
Transformer CHB-MIT dataset Decentralized Accuracy 88.4% Not consider the dataset overfitting 

problems

25 sEMGhand gesture 
recognition

Federated transfer 
learning

Ninapro DB5 
dataset Decentralized Accuracy 87.96% Real-time could be challenging, 

requires standard procedures

26 Brain tumour segmentation FL with CNN and 
Blockchain BRAST dataset Decentralized Dice 92.35% Privacy and data utilityleads to 

degradation of prediction results

27 Mental stress detection FL with SVM Synthetic dataset Decentralized
Communication 
overhead 
10.02 MB/day

Loss of essential image with 
edges which causes ineffective 
classification

28 Heartbeat rate activity 
classification

FL with multi-task 
neural network Kaggle dataset Decentralized Accuracy 93% Not considering the resource-

constraints and complexity

29 Skin disease classification FL with CNN HAM10000 dataset Decentralized Accuracy 79% Complexity in model training, 
affecting performance across images

30 Smart healthcare system FL and ring signature Kaggle dataset Decentralized Accuracy 91.58% Leads to communication inefficiency 
for sending a large servers

Table 1.  Research gap summary from existing FLfor disease diagnosis frameworks.
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grayscale conversion, and sharpening—are pragmatic to reduce noise and enhance image quality. Following 
pre-processing, the dataset is analyzed using four methods.

	1.	 The first method, transfer learning, employs DNN to fine-tune a pre-trained model for skin disease classifi-
cation.

	2.	 The second method combines feature extraction and transfer learning, where pre-trained models like 
DenseNet, VGG19, Xception, and UNet are used to extract features, which are then used for DNN-based 
classification.

	3.	 The third method integrates FL and feature extraction, enabling distributed clients to collaboratively train 
models on both IID and non-IID datasets while ensuring strong performance and privacy.

	4.	 The fourth method —federated transfer learning—uses FL in conjunction with transfer learning to build a 
global model from dispersed data while preserving patient privacy.

The proposed framework offers a secure, scalable solution to modern healthcare challenges by leveraging ML/
DL methodologies in a decentralized setting.

FL with IID and non-IID datasets
Federated learning (FL)33 model arrange statistics and secrecy while dealing the hitches of exercise representations 
above a net of detached plans. The parameters or gradients of these locally trained replicas are then collective 
to generate a global model. By keeping the system exercise course as adjacent to the statistics bases as likely, FL 
model aims to safeguard data privacy. FL model is therefore, a good optimal for submissions where secrecy is 
important, mainly when working with complex numbers, geographically detached evidence, or campaigns with 
partial possessions or erratic network connectivity. FL model has attracted a lot of consideration and research 
in a range of actual submissions, despite its challenges, particularly in the security domain34. The data-privacy-
conscious industries like healthcare and finance employ FL model more frequently to overawe the confines 
of federal data storage. Without disclosing private patient information to outside servers, FL model enables 
cooperative model training in the medical field to identify illnesses35. FL model employs IID datasets, which 
have a uniform and balanced distribution of data among devices36, and Non-IID datasets, which have an uneven 
and different distribution of data between devices37. Real-world scenarios with inconsistent data from several 
sources are often reflected in non-IID databases. FL model enables resident strategies to maintain their discrete 
and assorted documents though attractive a universal system, even in cases when data is not disseminated evenly.

Model training using transfer learning
In deep learning, transfer knowledge is the procedure of applying the information acquired from previously 
trained models to new and related situations. The key idea is to shift the focus from a large-dataset-trained model 
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Fig. 2.  Conceptual structure of skin disease diagnosis using (a) transfer learning, (b) feature extraction, (c) 
feature extraction with federated learning, (d) federated transfer learning with DNN classifier.
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to a different-but-related goal that requires fewer labeled instances. The substantial monetary outlay needed to 
train intricate variables in DL models drives transfer learning. TL has becoming more and more popular in this 
business for good reason, and it’s easy to incorporate into real-world applications. This process retrains a trained 
network using just the final classification layer’s parameters by the exercise statistics from the novel mission. This 
study identifies skin illnesses using transfer learning models, including VGG16, Xception, EfficientNetB3, and 
MobileNetV238. By initializing models using learned properties, transfer learning has the advantage of speeding 
up training and reducing computational and resource costs. CNNs are distinguished by their hierarchical 
representations and use of convolutional, pooling, dropout, and fully connected layers to extract features from 
pictures. The transmission learning model has already recognized useful traits and trends across a range of 
data, serving as a knowledge base. Applying the model to new work only improves the top layers; the lower 
layers retain all of their learnt information. Initially, transfer learning models only train on low-level structures, 
keeping all additional layers fixed. While training on a new dataset, transfer learning models often have their 
remaining layers updated or adjusted. By enabling the model to derive higher-level features pertinent to the 
new data distribution, altering these layers may enhance the model’s performance.When enhancing a transfer 
learning model, it’s important to pick your layers wisely and strike a balance between relying on prior knowledge 
and learning from fresh data.he empirical source distribution Ŷ  is specified as Ŷ =

{
Ŷ1, Ŷ2, . . . , ŶK

}
, while 

the source circulation Y for multi-source transfer learning is definite as Y = {Y1, Y2, . . . , YK}, where Ik  
represents the distribution of the K-th basis domain. For the set of hypothesis functions I that map P to Q, let 
(⋅,⋅) ∶Q × Q → R + represent the loss function. The next is the definition of the q-Discrepancy distance discY 
between two distributions, I1 and I2:

	
DiscQ(Y1, Y2) := sup

i∈I

|IY1 (i, FY1 ) − IY2 (i, FY2 )|� (1)

where Ixi (i, FΓi ) := ep∼xi [(i(p), FΓi (p))]. FY1  And FY2  denotes the labeling meaning for the delivery Y1 and 
Y2, respectively. The empirical optimal problem of f may be clearly shown as follows, given a hypothesis class of 
real-valued functions f and a set of training data samples T = (t1, . . . , ta):

	
R̂T (f) = 1

a
E

[
sup
F ∈f

(
a∑

h=1

εhF (th)

)]
� (2)

where ε = (ε1, . . . , εa), Eh are the Rademacher random variables X(εh = −1) = X(εh = 1) = 0.5. Let I be 
a set of theory functions i(⋅) that map the first s-time step efforts {P1, P2, . . . , P5} ∈ rcn×5 to the s-time-step 
output qs ∈ rcq . Using the set I and the distribution X, a new hypothesis function set lI  is distinct as follows:

	 lI = {l : p → l(i(p), Fx(p)), i ∈ I}� (3)

where the initial t-time-step inputs p ∈ rρ are mapped to [0, 1] by the loss purpose l(i(p), FX(p)) ∈ lI , an lR

-Lipchitz function associated with the RNN hypothesis. The following equality holds with chance at least 1 − δ 
over X for every i ∈ I given a dataset of m samples X̂ = (ph = qh)s

s−1 h = 1…that is taken from the domain X:

	
E[l(i(p), q)] ≤ 1

a

a∑
h=1

l(i(p), q) + 2R̂T (lI) + 3

√
log

(
2
δ

)
2a

� (4)

Particular a dataset of K divisions with ag  examples h = 1…ag  strained from several basis areas Yg  for g = 1… K, 
the next equivalence grips with chance no less than 1 − δcompleted Y = {Y1, Y2, . . . , YK} for all i ∈ I:

	

E[l(i(p), q)] ≤
k∑

g−1




1
ag

ag∑
h−1

l(i(p), q) + 2R̂Tg (l1) + 3

√
log

(
2K
δ

)
2ag


� (5)

The next variation grips for Yg  with chance no less than 1 − δ∕K using δ∕K in its place of δ for g = 1, … K.

	
E[l(i(p), q)] ≤ 1

ag

ax∑
h=1

l(i(p), q) + 2R̂Tx (lI) + 3

√
log

(
2K
δ

)
2ag

� (6)

samples Q̂ = (pg
h · qg

h)S

s−1,h = 1,…, ag , from the basis domain Yg  for g = 1, …, K, and set of data samples 

X̂ = (ph = qh)s
s−1,h = 1,…,a, drawn from the aim area X. The triangle inequality and the definition were used 

to compute the Q-discrepancy distance. The following equation can further constrain the major component in 
the next line with a probability of at least 1 − δ over X, according to the goal function.

	
DiscQ(X, X̂) = |lX̂(i, FX) − lX(i, FX)| ≤ 2R̂T (lI) + 3

√
log

(
2K
δ

)
2a

� (7)
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Additionally, the bound for DiscQ(Y, Ŷ )

	

DiscQ(Y, Ŷ ) = |lŶ (i, FY ) − lY (i, FY )| ≤
k∑

h=1


2R̂Th (lI) + 3

√
log

(
2K
δ

)
2ah


� (8)

Let me be a private of the theoretical purpose i(⋅) that translates the concept of the RNN to the output of the 
s-th step. The following difference grips with a chance of at least 1 − δ: Set a dataset of K subsections with 
samples Q̂ = (pg

h · qg
h)S

s−1 h = 1,…, to from the base domain Yg  for g = 1,…, K, and a set of data samples 

X̂ = (ph = qh)s
s−1, h = 1,…,a, pulled from the objective area X.

	

lX(i, FX) − lŶ (i, FY ) = + sup
i∈I

∣∣∣∣∣∣∣∣
ep∼X̂ [l(i(p), Fx̂(p))] −

K∑
h−1

ahep∼Ŷh
[l(i(p), FŶh

(p))]

K∑
h−1

ah

∣∣∣∣∣∣∣∣
� (9)

The triangle inequality condition and the discrepancy distance concept may be used to get the following 
inequality.

	

lX(i, FX) = lX(i, FX) − lY (i, FY ) + lY (i, FY ) − lŶ (i, FY ) + lŶ (i, FY )
≤ DiscQ(X, Y ) + DiscQ(Y, Ŷ ) + lŶ (i, FY )
≤ lŶ (i, FY ) + 2DiscQ(Y, Ŷ ) + DiscQ(X̂, Ŷ ) + DiscQ(X, X̂)

� (10)

Q-discrepancy distance and characteristics of empirical source distribution Ŷ =
{

Ŷ1, Ŷ2, . . . , ŶK

}
 defined as 

follows.

	
DiscQ(X̂, Ŷ ) = sup

i∈I

∣∣∣∣∣ep∼X̂ [l(i(p), Fî(p))] −
∑K

h=1 ahep∼Ŷh
[l(i(p), FŶh

(p))]∑K

h=1 ah

∣∣∣∣∣� (11)

Lastly, the inequality that follows may be obtained using

	

lX(i, FX) = sup
iϵI

∣∣∣∣∣∣
ep∼X̂ [l(i(p), FX(p))] −

∑k

h=1 ahep∼Ŷh
[l(i(p), FŶh

(p))]∑k

h=1 ah

+ 6
∑k

h=1

√
log

(
2K+2

δ

)
2ah

∣∣∣∣∣∣
� (12)

The empirical error of the function i as evaluated on the experimental multi-source area Ŷ  is represented. X̂  
And Ŷ  is Q-discrepancy distance is the second term. The function set I on the empirical basis domain Ŷ  and 
the empirical goal domain X̂  has a Rademacher difficulty term that is the third and fourth terms, respectively. 
The final two elements show the probability terms, which are based on the assurance level δ and the quantity of 
data samples.

Feature extraction using pre-trained architectures
A key component of DL models that enables effective use of a pre-conditioned neuronal system’s abilities is 
feature extraction. Among the several layers in these networks that are especially built to extract essential 
characteristics for tasks like object identification and localization are convolutional and pooling layers. To might 
change the learning rate, add layers, and variation the sum of neurons in every stratum, and so on to advance 
our systems. These methods provide significant time and computing resource savings. Pre-trained replicas that 
have been trained on huge datasets are effective feature extractors. System performance can be improved by 
selecting the appropriate feature extractor. DenseNet, VGG19, Xception, and UNet were among the pre-trained 
models39 used which are used to extract the properties of the second-to-last layers. The resulting attributes are 
then used to classify skin illnesses in FL with IID and Non-IID databases. By allowing remote devices to work 
together by sharing these derived features for model training, they excel at extracting meaningful patterns from 
high-dimensional image data, such as lesions’ shape, colour, texture, and edge details, which are critical for 
diagnosing skin conditions.

Classification using dense neural network (DNN)
Dense neural network (DNN) is highly effective in performing complex classification tasks and learning intricate 
data representations40. A DNN can learn hierarchical features from input data because it has several completely 
linked layers, with each neuron in one layer connected to every other neuron in the layer above. In this context, 
DNNs are particularly advantageous. As the input features propagate deeper into the network, higher layers 
extract more abstract and disease-specific patterns, enabling accurate differentiation between various skin 
conditions. To simulate intricate relationships in the data, each layer of a DNN applies a weighted sum and then a 
non-linear activation function.The model is trained using supervised learning with labeled datasets, optimizing 
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weights via backpropagation and gradient descent to minimize classification error. The architecture’s ability to 
learn deep, abstract features makes it well-suited for skin disease diagnosis, where subtle variations in texture, 
color, and lesion shape can significantly affect classification accuracy. By leveraging the dense connectivity of 
DNNs, the system achieves robust performance in automated dermatological analysis. The architecture consists 
of three main layers: the input, hidden, and the output layer. The input layer is the first point of contact for the 
model and receives raw data, which, in the context of skin disease classification, typically includes a feature 
vector derived from skin images. The hidden layers form the core computational engine of the DNN, where each 
layer applies a weighted sum followed by a non-linear ReLU activation function. The first hidden layer focuses 
on detecting low-level features like edges, spots, and gradients, which serve as fundamental building blocks in 
image recognition. Subsequent intermediate layers learn to combine these low-level cues into more complex 
structures such as textures, shapes, and boundary patterns that are often characteristic of specific skin conditions. 
The model’s depth and width significantly influence its ability to generalize across diverse cases, although deeper 
networks may require larger datasets and robust regularization to mitigate overfitting. The output layer gives the 
classification result, typically using a softmax activation function to generate chances for each class.The input and 
output feature maps of a precise layer can be characterized as P ∈ rI×Z×H  and Q ∈ rI×Z×O , where I, Z, H, 
and O represent the height, width, and number of channels, individually. The convolutional filters are embodied 
as D ∈ rI×O . In group involvedness, the feature maps P, Q , and the filters D are separated into G distinct 
groups. Group convolution is characterized in the calculations below. Here ⊗ characterizes 2D convolution.

	 Qj = P j ⊗ Dj � (13)

	 Q = Q1 ∪ Q2 ∪ . . . ∪ Qj . . . ∪ Ql� (14)

The depth-dependent convolution used in the DNN module allows for the extraction of localized features 
while preserving the spatial scale of the data. The subsequent point-wise dense vector further improves the 
replica’saptitude to acquiremultifaceted representations by combining features from different channels, allowing 
for richer information encoding. Depth convolution and point convolution is describes as follows.

	
dc(Z, q)(h,g) =

∑k,l

K,L
Z(K,L) × q(h+K,g+L)� (15)

	
pc(Z, q)(h,g) =

∑A

a
Zaqa� (16)

Here Z denotes the difficulty kernel, q denotes the contributionarticle map, h and g are the dimensions of the 
input feature map, K and L are the dimensions of the output feature map, and m denotes the number of channels. 
Triple attention (TA) improves the replica’scapability to recognize and discriminate different characteristics. 
Each branch is used to analyze the input tensor (χ ∈ RC × I × Z) in different ways, which improves the model’s 
complex shapes. In each branch, the input tensor undergoes rotation, followed by W-union and convolution 
operations, which help extract dimensional correlations between height and channel dimensions. The W-pool 
function is given by the following relation.

	 W = Pool (p) = [max pool0c
(p), avg pool0c

(p)]� (17)

By capturing key interactions between features at dissimilarbalances and locations, TA improves the replica’s 
ability to identify subtle patterns essential for accurate classification. The final refined feature map is generated 
by averaging the refined tensors generated by each branch.

	
q = 1

3
(
χ̂1σ (ψ1 (χ̂∗

1)) + (χ̂2σ (ψ2 (χ̂∗
2))) + (P σ (ψ3 (χ̂3)))

)
� (18)

whereσ represents the sigmoid function of each objective while ψ1,ψ2 and ψ3 denotes the average two 
dimensional convolutional layers definite by kernel size K in the three twigs of triplet courtesy.

	
q = 1

3(χ̂1ω1 + χ̂2ω2 + χω3) = 1
3(q1 + q2 + q3)� (19)

where ω1, ω2, and ω3 represents the three-dimensional attention weights q1 and q2 which ensures that TA 
effectively captures spatial and channel dependencies. The working process of skin disease diagnosis using DNN 
is summarized in Algorithm 1.
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Algorithm 1: Skin disease diagnosis using DNN

Results analysis
This segment presents the results and comparative examination of the models used to identify skin illnesses. 
Parameters such as accuracy, precision, recall, and loss are used to measure how effectively the models detect 
the specified skin diseases. The proposed FL model implemented on the Google Colab platform using Python, 
with model training and testing conducted on Colab cloud GPU server. Given the size of the HAM10000 dataset 
and the iterative communication between local and global models in FL, model training requires substantial 
computational time, which CPU cannot efficiently handle. For system-level validation, experiments were also 
executed on a local system configuration comprising an NVIDIA GTX 1650 graphics card with 4 GB dedicated 
memory, 16 GB RAM, and an Intel Core i5 processor. In order to adjust volume of time, the model is often built 
and executed on a GPU. An existing FL sample available on Kaggle.com was adapted and modified to design 
the FL framework used in this study. The FedAvg method is used to average all of the local networks in order to 
aggregate them into a global network at the FL server.HAM10000 "Human against Machine with 10,000 training 
images41," a publicly accessible resource housed in the ISIC repository, served as the dataset used. Regarding 
hyperparameter tuning, all models trained using hyperparameters optimized through empirical tuning and 
grid search experiments. Specifically, the learning rate, batch size, and number of epochs were systematically 
varied for each model to achieve optimal performance on the validation dataset. During tuning, the number of 
epochs was varied from 0 to 150, and the best-performing configuration was selected based on accuracy and 
convergence behavior. For most models, a learning rate of 0.001, batch size of 32, and 100 epochs were found to 
provide the most effective balance between training time and model performance.

The dataset includes 11,253 dermatoscopeimages that show seven dissimilar kinds of skin infections (Fig. 3): 
vascular lesions 412, benign keratosis-like lesions 1058, basal cell carcinoma 358, actinic keratosis 6858, 
melanocytic nevi 635, melanoma 847, and Dermatofibroma 1085 (Table 2). The training and testing groups 
were randomly selected from the dataset. Ten percent of the dataset is used for testing, while ninety percent is 
used for training. To prevent overfitting during training, a validation process was also included. FL used both 
IID database, where records is disseminated consistently and identically among devices, and Non-IID database, 
where data spreading is uneven and differs amongst devices, as shown in Fig. 4 for 2 distinct clients (N = 2). Non-
IID databases often depict real-world situations with conflicting information from several sources.Every client 
uses its own local dataset to train on its own network. The server receives all of the local networks and combines 
them into a global network once the local networks have finished training. The neural network is subsequently 
distributed back to the customers. The clients then train their local network once more using their local dataset, 
utilizing the global network as a fresh starting point. The cycle is repeated 100 times once the client’s local 
network has been upgraded. The model presented in this work assumes that there are no problems with the 

Fig. 3.  Skin images from dataset (a) MEL, (b) MV, (c) BCC, (d) AK, (e) BKL, (f) DF, (g) VL.
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communication between the clients and the server. In practice, a local network to global network transfer can be 
costly and erratic, which increases the likelihood of mistakes.

Results analysis of transfer learning models on skin disease diagnosis
This section provides a detailed analysis of transmissionknowledgereplicas for casing illness diagnosis. 
Figure 4 shows the results analysis of training and testing accuracy for VGG16, Xception, EfficientNetB3, and 
MobileNetV2 reveals that MobileNetV2 performs best, with a high training accuracy of 90.352% and testing 

Fig. 4.  Training and testing accuracy of transfer learning models for skin disease diagnosis (a) VGG16, (b) 
Xception, (c) EfficientNetB3 and (d) MobileNetV2.

 

Skin disease name Number of images

Melanocytic nevi (MV) 635

Melanoma (MEL) 847

Benign keratosis-like lesions (BKL) 1058

Basal cell carcinoma (BCC) 358

Actinic keratoses (AK) 6858

Vascular lesions (VL) 412

Dermatofibroma (DF) 1085

Table 2.  Number of images in dataset.
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accuracy of 98.374%. Xception follows closely, achieving 87.798% in training and 97.985% in testing, while 
EfficientNetB3 reaches 89.857% in training and 97.968% in testing. VGG16, despite some fluctuations, achieves 
a strong testing accuracy of 95.858%, but with slower convergence. MobileNetV2 outperforms the others, 
offering the best accuracy and generalization for skin disease classification. Fig. 5 demonstrations the loss results 
of the transfer learning models during training and exciting over 10 epochs. Among the models, MobileNetV2 
shows the best performance, with training loss reduced from 0.258 to 0.175 and testing loss from 0.199 to 0.116, 
reflecting its strong learning and generalization capabilities. EfficientNetB3 follows closely, with consistent 
reductionin training and testing loss to 0.235 and 0.076, respectively. Xception demonstrates moderate progress, 
ending with testing loss of 0.077, while VGG16 shows slower improvement, with a final testing loss of 0.966. 

Transfer learning models

Accuracy (%) Loss

Training Testing Training Testing

VGG16 94.805 84.281 0.768 0.785

Xception 96.695 87.039 0.625 0.655

EfficientNetB3 97.611 88.09 0.648 0.663

MobileNetV2 98.064 91.53 0.498 0.502

Table 3.  Results comparison of transfer learning models for skin disease diagnosis.

 

Fig. 5.  Training and testing accuracy of transfer learning models for skin disease diagnosis (a) VGG16, (b) 
Xception, (c) EfficientNetB3 and (c) MobileNetV2.
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MobileNetV2 and EfficientNetB3 is the most efficient models, with MobileNetV2 achieving the lowest losses, 
making suitable for the skin disease diagnosis task.

Table 3 delivers a relativeexamination of transfer knowledge models with DNN classification for skin 
disease detection. MobileNetV2 achieves the highest testing accuracy at 98.064%, shown 3.45% increase over 
EfficientNetB3 and 3.64% improvement compared to Xception. To address this, regularization techniques 
were applied, including dropout (rate 0.5), early stopping (patience = 10), and batch normalization. The results 
in Table 4 present the class-wise accuracy of transfer learning models with DNN, including VGG16 + DNN, 
Xception + DNN, EfficientNetB3 + DNN, and MobileNetV2 + DNN, across 10 folds of K-fold cross-validation 
for skin disease diagnosis. Table 5 presents a comparative analysis of resource metrics for transfer learning 

Minimum Maximum Average Minimum Maximum Average

Model GPU Memory Used (%) GPU Process Used (%)

VGG16 73.250 77.850 75.550 66.350 70.850 68.600

Xception 72.950 77.350 75.150 65.880 71.250 68.565

EfficientNetB3 73.580 78.120 75.850 66.750 70.950 68.850

MobileNetV2 73.850 78.550 76.200 67.150 71.450 69.300

CPU Process Used (%) Virtual Memory Used (%)

VGG16 10.250 11.950 11.100 79.120 82.580 80.850

Xception 9.850 11.750 10.800 78.580 82.250 80.415

EfficientNetB3 10.650 11.880 11.265 79.450 83.150 81.300

MobileNetV2 10.850 12.050 11.450 80.250 83.480 81.865

Table 5.  Resource metrics of transfer learning models for skin disease detection.

 

Class Model

K-fold cross validation

1 2 3 4 5 6 7 8 9 10

MV

VGG16 + DNN 94.811 94.796 94.802 94.815 94.789 94.808 94.803 94.797 94.814 94.791

Xception + DNN 96.701 96.688 96.695 96.709 96.682 96.703 96.690 96.697 96.705 96.684

EfficientNetB3 + DNN 97.616 97.605 97.612 97.620 97.598 97.614 97.607 97.619 97.601 97.615

MobileNetV2 + DNN 98.069 98.057 98.064 98.073 98.050 98.068 98.061 98.070 98.055 98.066

MEL

VGG16 + DNN 94.799 94.813 94.805 94.790 94.816 94.801 94.807 94.794 94.812 94.798

Xception + DNN 96.689 96.702 96.695 96.680 96.710 96.691 96.698 96.685 96.706 96.693

EfficientNetB3 + DNN 97.604 97.617 97.611 97.597 97.621 97.608 97.613 97.602 97.619 97.605

MobileNetV2 + DNN 98.058 98.071 98.064 98.049 98.075 98.060 98.067 98.053 98.072 98.059

BKL

VGG16 + DNN 94.807 94.792 94.815 94.803 94.798 94.810 94.795 94.814 94.800 94.806

Xception + DNN 96.697 96.683 96.709 96.701 96.688 96.705 96.691 96.708 96.694 96.702

EfficientNetB3 + DNN 97.613 97.599 97.620 97.615 97.604 97.618 97.601 97.616 97.607 97.614

MobileNetV2 + DNN 98.065 98.051 98.074 98.068 98.057 98.071 98.060 98.073 98.055 98.067

BCC

VGG16 + DNN 94.804 94.811 94.796 94.809 94.802 94.815 94.797 94.813 94.800 94.808

Xception + DNN 96.694 96.707 96.681 96.703 96.696 96.710 96.685 96.708 96.692 96.705

EfficientNetB3 + DNN 97.610 97.623 97.597 97.616 97.612 97.625 97.603 97.619 97.608 97.614

MobileNetV2 + DNN 98.062 98.076 98.048 98.070 98.065 98.078 98.054 98.072 98.060 98.067

AK

VGG16 + DNN 94.812 94.795 94.809 94.801 94.814 94.797 94.806 94.803 94.811 94.799

Xception + DNN 96.706 96.684 96.702 96.694 96.709 96.687 96.705 96.698 96.712 96.690

EfficientNetB3 + DNN 97.618 97.596 97.614 97.607 97.621 97.600 97.616 97.609 97.624 97.603

MobileNetV2 + DNN 98.072 98.049 98.067 98.060 98.075 98.053 98.070 98.063 98.077 98.056

VL

VGG16 + DNN 94.798 94.815 94.801 94.807 94.794 94.812 94.805 94.809 94.796 94.813

Xception + DNN 96.682 96.708 96.693 96.699 96.686 96.711 96.695 96.702 96.684 96.707

EfficientNetB3 + DNN 97.600 97.622 97.605 97.611 97.597 97.624 97.608 97.615 97.602 97.620

MobileNetV2 + DNN 98.053 98.076 98.058 98.065 98.050 98.078 98.061 98.068 98.055 98.073

DF

VGG16 + DNN 94.805 94.790 94.813 94.797 94.811 94.803 94.808 94.795 94.814 94.801

Xception + DNN 96.695 96.680 96.709 96.692 96.706 96.698 96.704 96.687 96.711 96.693

EfficientNetB3 + DNN 97.611 97.597 97.624 97.603 97.618 97.609 97.615 97.601 97.622 97.607

MobileNetV2 + DNN 98.064 98.050 98.077 98.056 98.071 98.062 98.068 98.054 98.075 98.060

Table 4.  Class-wise accuracy of proposed transfer learning with DNN models for skin disease diagnosisover 
k-fold cross validation.
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models utilized in skin disease detection, evaluating GPU memory usage, GPU process usage, CPU process 
usage, and virtual memory consumption.

Results analysis of feature extraction models on skin disease diagnosis
Figure 6 compares the accuracy of DenseNet, VGG19, Xception, and UNet during training and testing. UNet 
leads with the highest exercise accuracy of 84.537% and challengingexactness of 90.894%, presentation strong 
generalization. VGG19 improves steadily, reaching 82.845% in training and 89.202% in testing, while DenseNet 
trails with peak training accuracy of 82.365% and testing accuracy of 88.722%. Figure 7 shows that UNet also 
achieves the lowest loss during both phases, reducing training loss to 0.406 and testing loss to 0.321 by epoch 
50. Table 6 presents the results of feature extraction models with a DNN classifier for skin disease discovery and 
organization, highlighting notable differences in both accuracy and loss metrics. In terms of loss values, UNet 
achieves the lowest testing loss at 0.112, followed by Xception at 0.124, VGG19 at 0.158, and DenseNet at 0.138. 
UNet reduces testing loss by 0.026 compared to DenseNet, 0.046 compared to VGG19, and 0.012 compared to 
Xception. For training loss, UNet again records the lowest value of 0.087, while Xception follows with 0.098, 
VGG19 at 0.145, and DenseNet at 0.125. UNet reduces training loss by 0.038 over DenseNet, 0.058 over VGG19, 
and 0.011 over Xception.

The results in Table 7 shows the class-wise accuracy of feature extraction models with DNN (DenseNet + DNN, 
VGG19 + DNN, Xception + DNN, UNet + DNN) across 10 folds of K-fold cross-validation for skin disease 
diagnosis. UNet + DNN achieve the highest average accuracy, ranging from 90.31% to 90.37% across all classes 
(MV, MEL, BKL, BCC, AK, VL, and DF), indicating superior performance. Table 8 presents the resource 
utilization metrics for feature extraction models integrated with DNN classification frameworks for skin disease 

Fig. 6.  Training and testing accuracy of feature extortion models for skin disease diagnosis (a) DenseNet, (b) 
VGG19, (c) Xception and (d) UNet.
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detection and classification, focusing on GPU memory, GPU process, CPU process, and virtual memory usage. 
UNet demonstrates higher GPU memory, GPU process, CPU process, and virtual memory usage, making it 
more computationally demanding but potentially suited for scenarios requiring higher processing capabilities.

Results analysis of federated transfer learning models on skin disease diagnosis
The analysis of the federated transfer learning perfect for skin disease diagnosis demonstrates notable 
improvements in performance metrics across both Client 1 and Client 2 on the IID dataset. As highlighted 
in Section "Results analysis of feature extraction models on skin disease diagnosis", among the four transfer 
learning models evaluated, MobileNetV2 delivers the most effective results, achieved accuracy of 98.064%, 
making most suitable model for this experiment. As shown in Figs. 8 and 9, for Client 1, accuracy improves 

Feature extraction model

Accuracy (%) Loss

Training Testing Training Testing

DenseNet 87.85 81.494 0.625 0.638

VGG19 88.713 82.28 0.645 0.658

Xception 89.511 83.067 0.598 0.624

UNet 90.338 83.854 0.587 0.612

Table 6.  Results comparison of feature extraction models for skin disease diagnosis.

 

Fig. 7.  Training and testing loss of feature extortion models for skin disease diagnosis (a) DenseNet, (b) 
VGG19, (c) Xception and (d) UNet.
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from 25.568% to 99.698%, while precision, recall, and F-measure increase from 17.82%, 19.856%, and 18.783% 
to 99.897%. On Non-IID datasets, as shown in Figs. 10 and 11, training outcomes exhibit performance over 25 
epochs. The outcomes confirm the models’ effective learning and optimization, even with the testsmodeled by 
non-IID data circulations.

Table 9 compares the presentation of federated transfer knowledgefor skin infectionfinding across IID and 
Non-IID datasets. During training, models on the Non-IID dataset demonstrate marginal improvements over 
IID data. Training accuracy rises from 96.428% to 96.573%, precision improves from 96.004% to 96.235%, 
recall increases from 96.108% to 96.389%, and F-measure advances from 96.048% to 96.298%. Additionally, 

Minimum Maximum Average Minimum Maximum Average

Model GPU memory used (%) GPU process used (%)

DenseNet 66.250 71.450 68.850 58.360 63.580 60.970

VGG19 65.850 70.680 68.265 58.120 62.750 60.435

Xception 66.480 71.120 68.800 59.450 63.250 61.350

UNet 67.120 71.880 69.500 60.120 64.120 62.120

CPU process used (%) Virtual memory used (%)

DenseNet 7.550 9.250 8.400 75.360 78.450 76.905

VGG19 7.250 8.950 8.100 74.650 77.850 76.250

Xception 7.650 9.350 8.500 75.580 78.950 77.265

UNet 7.850 9.580 8.715 76.120 79.150 77.635

Table 8.  Resource metrics results of feature extraction models with DNN classification for skin disease 
detection and classification.

 

Class Model

K-fold cross validation

1 2 3 4 5 6 7 8 9 10

MV

DenseNet + DNN 87.832 87.865 87.841 87.879 87.823 87.856 87.848 87.870 87.834 87.862

VGG19 + DNN 88.695 88.728 88.704 88.742 88.687 88.719 88.711 88.735 88.698 88.726

Xception + DNN 89.493 89.526 89.502 89.540 89.485 89.517 89.509 89.533 89.496 89.524

UNet + DNN 90.320 90.353 90.329 90.367 90.312 90.344 90.336 90.360 90.323 90.351

MEL

DenseNet + DNN 87.859 87.836 87.872 87.844 87.867 87.829 87.855 87.841 87.863 87.837

VGG19 + DNN 88.722 88.699 88.737 88.709 88.731 88.694 88.720 88.706 88.729 88.701

Xception + DNN 89.520 89.497 89.535 89.507 89.529 89.492 89.518 89.504 89.527 89.499

UNet + DNN 90.347 90.324 90.362 90.334 90.356 90.319 90.345 90.331 90.354 90.326

BKL

DenseNet + DNN 87.840 87.873 87.849 87.831 87.864 87.846 87.868 87.854 87.827 87.851

VGG19 + DNN 88.703 88.736 88.712 88.694 88.727 88.709 88.732 88.718 88.691 88.715

Xception + DNN 89.501 89.534 89.510 89.492 89.525 89.507 89.530 89.516 89.489 89.513

UNet + DNN 90.328 90.361 90.337 90.319 90.352 90.334 90.357 90.343 90.316 90.340

BCC

DenseNet + DNN 87.866 87.843 87.825 87.858 87.880 87.852 87.834 87.869 87.847 87.829

VGG19 + DNN 88.729 88.706 88.688 88.721 88.743 88.715 88.697 88.732 88.710 88.692

Xception + DNN 89.527 89.504 89.486 89.519 89.541 89.513 89.495 89.530 89.508 89.490

UNet + DNN 90.354 90.331 90.313 90.346 90.368 90.340 90.322 90.357 90.335 90.317

AK

DenseNet + DNN 87.847 87.870 87.842 87.864 87.836 87.859 87.841 87.875 87.853 87.828

VGG19 + DNN 88.710 88.733 88.705 88.727 88.699 88.722 88.704 88.738 88.716 88.691

Xception + DNN 89.508 89.531 89.503 89.525 89.497 89.520 89.502 89.536 89.514 89.489

UNet + DNN 90.335 90.358 90.330 90.352 90.324 90.347 90.329 90.363 90.341 90.316

VL

DenseNet + DNN 87.854 87.831 87.867 87.839 87.862 87.844 87.876 87.848 87.830 87.855

VGG19 + DNN 88.717 88.694 88.730 88.702 88.725 88.707 88.739 88.711 88.693 88.718

Xception + DNN 89.515 89.492 89.528 89.500 89.523 89.505 89.537 89.509 89.491 89.516

UNet + DNN 90.342 90.319 90.355 90.327 90.350 90.332 90.364 90.336 90.318 90.343

DF

DenseNet + DNN 87.861 87.838 87.874 87.846 87.868 87.850 87.832 87.857 87.879 87.841

VGG19 + DNN 88.724 88.701 88.737 88.709 88.731 88.713 88.695 88.720 88.742 88.706

Xception + DNN 89.522 89.499 89.535 89.507 89.529 89.511 89.493 89.518 89.540 89.504

UNet + DNN 90.349 90.326 90.362 90.334 90.356 90.338 90.320 90.345 90.367 90.331

Table 7.  Class-wise accuracy of proposed feature extraction with DNN models for skin disease diagnosis over 
k-fold cross validation.
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the training loss decreases from 0.775 (IID) to 0.632 (Non-IID), indicates enhanced optimization on Non-IID 
data. In testing, the Non-IID dataset again outperforms the IID. Table 10 describes the class-wise accuracy 
of MobileNetV2 + FL + DNN model across tenfold cross-validation for both IID and Non-IID datasets shows 
highly consistent and stable performance in skin disease diagnosis. As shown in Fig. 12, the narrow clustering of 
average accuracy values between 95.9% and 96.5%, along with steady accuracy trends across all folds, confirms 
the robustness, reliability of the MobileNetV2 + FL + DNN perfect when used to both IID and Non-IID dataset. 
Table 11 summarizes the resource utilization metrics for the MobileNetV2 + FL + DNN model on both IID and 
Non-IID datasets for skin disease diagnosis, focusing on GPU memory, GPU process, CPU process, and virtual 
memory usage across two clients. The results confirm that resource utilization remains efficient and fairly stable 
between IID and Non-IID scenarios for this federated learning configuration.

Results analysis of UNet + FL + DNN for skin disease diagnosis
The UNet-based feature extraction model achieves a maximum training accuracy of 90.338% and testing 
accuracy of 83.854%. Figures 13 and 14 shows the training results for the UNet + FL model on the IID dataset 
for Client 1 and Client 2. Both clients show exceptional performance, with accuracy exceeding 99% by the 
final epoch. Figures. 15 and 16 show the training results of federated learning models for feature extraction on 

Fig. 9.  Training and testing loss of federated transfer learningmodel for skin disease diagnosison IID dataset 
(a) client-1, (b) client-2.

 

Fig.8.  Training and testing accuracy of federated transfer learningmodel for skin disease diagnosison IID 
dataset (a) client-1, (b) client-2.
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Non-IID datasets, comparing Client 1 and Client 2 over 25 epochs. Table 12 presents the effectiveness of the 
UNet + FL + DNN model for skin diseases diagnosis, comparing results with both IID and Non-IID datasets. 
During training, the model exhibits minor variations, with accuracy dropping from 99.514% for IID to 99.414% 
for Non-IID data. The loss is reduced for Non-IID data at 0.587 compared to 0.623 for IID. In the testing phase, 

Data Data type

Values in (%)

LossAccuracy Precision Recall F-measure

Training
IID 96.428 96.004 96.108 96.048 0.407

Non-IID 96.573 96.235 96.389 96.298 0.485

Testing
IID 98.918 98.327 97.312 97.484 0.425

Non-IID 99.063 98.558 98.796 98.674 0.493

Table 9.  Results of federated transfer learning models for skin disease diagnosis.

 

Fig.11.  Training and testing loss of federated transfer learningmodel for skin disease diagnosis on non-IID 
dataset (a) client-1, (b) client-2.

 

Fig.10.  Training and testing accuracy of federated transfer learningmodel for skin disease diagnosison non-
IID dataset (a) client-1, (b) client-2.
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the model shows superior performance with Non-IID data, with accuracy rising by 0.161% to 99.689%, precision 
increasing by 0.193% to 99.506%, recall by 0.144% to 99.441%, and F-measure by 0.171% to 99.473%.

Table 13 depicts the class-wise accuracy performance of the proposed UNet + FL + DNN for skin disease 
diagnosis was evaluated using tenfold cross-validation on both IID and non-IID datasets. Figure 17 confirms 
that the MobileNetV2 + FL + DNN model maintained consistent and superior accuracy trends under both IID 
and non-IID distributions, displays the robustness of the FL framework for reliable skin disease diagnosis. 
Table 14 illustrates the resource utilization metrics for the UNet + FL + DNN model under IID and Non-IID 

Client Data Type Minimum Maximum Average Minimum Maximum Average

GPU Memory Used (%) GPU Process Used (%)

Client 1 IID 28.360 30.280 29.320 31.050 32.120 31.585

Client 2 29.070 31.120 30.095 31.640 32.540 32.090

Client 1 Non-IID 28.580 30.850 29.715 29.940 31.890 30.915

Client 2 29.350 31.480 30.415 30.900 32.880 31.890

CPU process used (%) Virtual memory used (%)

Client 1 IID 5.100 5.920 5.510 75.800 77.620 76.710

Client 2 5.050 5.840 5.445 75.960 77.250 76.605

Client 1 Non-IID 5.290 5.020 5.155 75.650 77.080 76.365

Client 2 5.420 5.100 5.260 75.950 77.400 76.675

Table 11.  Resource metrics results of MobileNetV2 + FL + DNNfor skin disease diagnosis.

 

Fig. 12.  Accuracy of MobileNetV2 + FL + DNN for skin disease diagnosison IID and non-IID datasets.

 

Dataset

Class K-fold cross validation

1 2 3 4 5 6 7 8 9 10

IID

MV 96.126 96.338 96.246 96.514 96.316 96.027 96.376 96.543 96.442 96.684

MEL 95.785 95.971 95.909 96.13 96.013 95.856 96.23 95.973 96.118 95.844

BKL 96.336 96.402 96.12 96.564 96.522 96.353 96.257 96.419 96.305 96.469

BCC 96.034 96.217 96.105 96.362 96.499 96.199 96.252 96.342 96.46 96.528

AK 96.233 96.371 96.453 96.152 96.297 96.291 96.345 96.526 96.445 96.226

VL 96.541 96.692 96.463 96.509 96.745 96.459 96.292 96.677 96.526 96.698

DF 96.004 96.122 96.242 96.318 96.038 96.221 96.161 96.283 96.429 96.511

Non-IID

MV 96.271 96.4 96.218 96.52 96.113 96.246 96.055 96.407 96.297 96.223

MEL 95.917 96.031 96.029 96.248 95.89 96.015 96.162 96.31 95.873 95.991

BKL 96.147 96.234 96.368 96.218 96.062 96.192 96.198 96.322 96.401 96.147

BCC 96.263 96.195 96.358 96.486 96.409 96.34 96.191 96.185 96.266 96.393

AK 96.326 96.433 96.253 96.522 96.185 96.32 96.376 96.491 96.345 96.149

VL 96.437 96.309 96.223 96.121 96.492 96.254 96.386 96.295 96.511 96.434

DF 96.003 96.124 96.21 96.319 96.421 96.198 96.255 96.367 96.155 96.079

Table 10.  Class-wise accuracy of MobileNetV2 + FL + DNNfor skin disease diagnosis over k-fold cross 
validation.
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data distributions in the context of skin disease diagnosis. Non-IID data introduces a mild increase in GPU 
memory, GPU process, and CPU process usage for both clients, with Client 1 generally experiencing slightly 
higher increases than Client 2 in most metrics. The virtual memory usage remains fairly consistent, indicating 
Non-IID data marginally raises computational demand and system resource utilization remains balanced and 
efficient in FL settings.

Discussion
Table 15 presents a comparative analysis of accuracy, loss, and resource utilization for four model strategies in skin 
disease diagnosis: Strategy (a) as MobileNetV2, Strategy (b) as UNet, Strategy (c) as MobileNetV2 + FL + DNN, 
and Strategy (d) as UNet + FL + DNN. In terms of accuracy, integrating FL with DNN classification significantly 
improved performance. Under IID conditions, MobileNetV2 + FL + DNN achieved 99.063% accuracy, which is an 
8.23% and 18.03% increase over MobileNetV2 and UNet, respectively. Inference speed was also faster in FL model, 
with UNet + FL + DNN achieving 28 ms (IID) and 29 ms (Non-IID), significantly quicker than MobileNetV2 
(42 ms) and UNet (57 ms). In terms of model size, although federated models were slightly larger (24.6 MB for 
Strategy c and 27.1 MB for Strategy d), this increase is acceptable given their superior accuracy and efficiency. 
The resource consumption analysis further emphasizes the advantage of FL-based models. UNet + FL + DNN 

Fig. 14.  Training and testing loss of feature extraction with FL model for skin disease diagnosis on IID dataset 
(a) client-1, (b) client-2.

 

Fig. 13.  Training and testing accuracy of feature extraction with FL model for skin disease diagnosis on IID 
dataset (a) client-1, (b) client-2.
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utilized the least GPU memory (24.548% IID and 24.315% Non-IID), compared to MobileNetV2 (76.2%) and 
UNet (69.5%), reflecting a reduction of 67.8% and 64.9%. GPU process utilization also decreased in FL models, 
with UNet + FL + DNN consuming only 27.975% (IID) and 27.803% (Non-IID), and MobileNetV2 + FL + DNN 
slightly higher. CPU process usage followed the same trend, with UNet + FL + DNN requiring the least at 3.983% 

Data Data type

Values in (%)

LossAccuracy Precision Recall F-measure

Training
IID 99.514 99.382 99.291 99.315 0.398

Non-IID 99.414 99.389 99.302 99.340 0.412

Testing
IID 99.528 99.313 99.297 99.302 0.415

Non-IID 99.689 99.506 99.441 99.473 0.431

Table 12.  Results comparison of UNet + FL + DNN for skin disease diagnosis.

 

Fig. 16.  Training and testing loss of feature extraction with FLmodel for skin disease diagnosis on non-IID 
dataset (a) client-1, (b) client-2.

 

Fig. 15.  Training and testing accuracy of feature extraction with FL model for skin disease diagnosis on non-
IID dataset (a) client-1, (b) client-2.
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(IID) and 3.738% (Non-IID), showed drop from MobileNetV2 and UNet. Virtual memory usage was similarly 
optimized in federated setups; with UNet + FL + DNN and MobileNetV2 + FL + DNN maintaining lower 
consumption levels than their standalone counterparts. The ANOVA results (Table 15) confirmed statistically 
significant differences (p < 0.001) in accuracy, loss, training time, and GPU-related metrics, indicating that the 
choice of strategy has a meaningful impact on performance. To further determine where these differences lie, 
Tukey’s HSD post-hoc analysis was applied. The post-hoc results revealed that Strategy (d) (UNet + FL + DNN) 
consistently outperformed Strategies (a), (b), and (c) with statistically significant higher accuracy and lower loss 
values. Similarly, both FL-integrated strategies (c and d) shows reduced resource usage (GPU/CPU/memory) 
compared to their non-federated counterparts (a and b), with strong statistical significance.

Client Data type

Minimum Maximum Average Minimum Maximum Average

GPU memory used (%) GPU Process Used 9%)

Client 1 IID 25.320 24.450 24.885 27.180 28.250 27.715

Client 2 25.410 23.010 24.210 27.450 29.020 28.235

Client 1 Non-IID 25.580 22.740 24.160 26.100 28.840 27.470

Client 2 25.760 23.180 24.470 26.820 29.450 28.135

CPU process used (%) Virtual memory used (%)

Client 1 IID 3.180 4.850 4.015 73.240 75.120 74.180

Client 2 3.250 4.650 3.950 73.650 75.430 74.540

Client 1 Non-IID 3.350 4.020 3.685 72.980 75.020 74.000

Client 2 3.480 4.100 3.790 73.120 75.180 74.150

Table 14.  Resource metrics results of UNet + FL + DNN for skin disease diagnosis.

 

Fig. 17.  Accuracy of MobileNetV2 + FL + DNN for skin disease diagnosis on IID and non-IID datasets.

 

Dataset Class

K-fold cross validation

1 2 3 4 5 6 7 8 9 10

IID

MV 99.512 99.543 99.528 99.567 99.499 99.535 99.522 99.549 99.515 99.541

MEL 99.467 99.489 99.475 99.503 99.461 99.482 99.47 99.497 99.465 99.484

BKL 99.548 99.572 99.559 99.585 99.541 99.563 99.551 99.577 99.546 99.569

BCC 99.491 99.513 99.499 99.525 99.485 99.508 99.494 99.519 99.489 99.511

AK 99.529 99.551 99.537 99.563 99.523 99.545 99.531 99.557 99.527 99.549

VL 99.574 99.598 99.584 99.61 99.568 99.591 99.579 99.603 99.575 99.596

DF 99.456 99.478 99.464 99.49 99.45 99.473 99.459 99.485 99.454 99.476

Non-IID

MV 99.673 99.705 99.689 99.721 99.661 99.697 99.682 99.709 99.675 99.701

MEL 99.628 99.65 99.636 99.662 99.622 99.645 99.631 99.657 99.626 99.649

BKL 99.709 99.733 99.718 99.745 99.703 99.726 99.712 99.738 99.707 99.73

BCC 99.652 99.674 99.66 99.686 99.646 99.669 99.654 99.68 99.649 99.672

AK 99.69 99.712 99.698 99.724 99.684 99.707 99.692 99.718 99.688 99.71

VL 99.735 99.759 99.745 99.771 99.729 99.752 99.737 99.765 99.733 99.757

DF 99.621 99.643 99.629 99.655 99.615 99.638 99.624 99.65 99.619 99.642

Table 13.  Class-wise accuracy of UNet + FL + DNN for skin disease diagnosis over k-fold cross validation.
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In real-world clinical settings, computational resource efficiency plays a crucial role in determining the 
deployability of AI models, especially in resource-constrained environments such as small clinics or mobile 
diagnostic units. From the comparative analysis (Table 15), observe that traditional models like MobileNetV2 
and UNet require higher GPU memory and longer training times, which not be feasible for on-site training or 
rapid inference. UNet + FL + DNN, in particular, requires only 24.548% GPU memory and 945 s of training time, 
while offering the fastest inference speed of 28 ms. FL-based model offer enhanced data privacy, aligning with 
regulatory frameworks like HIPAA and GDPR, which is critical for clinical use. The slightly larger model sizes 
(27.1 MB for UNet + FL + DNN) are still manageable on modern edge devices and embedded systems, making 
these models highly practical for deployment in decentralized clinical infrastructures without compromising 
diagnostic accuracy.

Conclusion
A privacy-preserving FL framework was proposed for skin disease diagnosis, evaluated through four strategic 
approaches: strategy (a) employed MobileNetV2 with transfer learning and DNN classification, strategy (b) 
utilized UNet for feature extraction followed by DNN classification, strategy (c) integrated FL with MobileNetV2 
and DNN, and strategy (d) combined UNet-based feature extraction with FL and DNN classification to maintain 
data decentralization while enhancing diagnostic accuracy. Both IID and Non-IID datasets were used for 
comprehensive assessment. From the results, strategy (d) achieved the highest diagnostic accuracy of 99.689% 
(IID), surpassing MobileNetV2 by 8.16% and UNet by 15.835%. It also recorded the lowest loss of 0.415 (IID), 
representing a 17.32% reduction compared to MobileNetV2 and 32.21% decrease relative to UNet. Strategy 
(c) delivered performance with 98.918% accuracy (IID) and a loss of 0.425, improving substantially over 
both baseline models though marginally lower than strategy (d). In terms of resource consumption, strategy 
(d) required 24.548% GPU memory (IID) and 27.975% GPU process, which were significantly lower than 
MobileNetV2 and UNet. Strategy (c) followed closely with 29.708% GPU memory and 31.838% GPU process. 
Similar trends were noted for CPU process and virtual memory usage, where federated models consumed fewer 
resources while achieving higher accuracy and lower loss values. When comparing strategy d to strategy c, the 
former outperformed with 0.771% higher accuracy and 2.35% lower loss which confirms that incorporating 
feature extraction through UNet prior to federated optimization results in superior classification outcomes 
compared to direct transfer learning fine-tuning in a federated environment. The proposed strategy (d) model 
effectively combines high diagnostic accuracy with strong data privacy safeguards. It ensures reliable, scalable, 
and privacy-preserving skin disease detection across both IID and Non-IID data distributions. These capabilities 
position the model as a robust AI-driven dermatological solution, highly suitable for real-world telemedicine 
and remote healthcare applications.

Data availability
The data supporting the findings of this study are available from the corresponding author upon reasonable 
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in this research. The HAM10000 dataset is publicly available and does not contain any personally identifiable 
information. Additionally, the proposed federated learning approach inherently protects data privacy by keeping 
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