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Skin disease diagnostics through
federated transfer learning on
heterogeneous data
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Skin diseases frequently cause mental and physical distress and are major global health concern.
Because early detection is crucial to successful treatment, accurate diagnosis is challenge for
dermatologists as well. Diagnostic accuracy could be significantly enhanced using methods like
machine learning (ML) and deep learning (DL). However, substantial datasets are required for these
models to make accurate predictions. The healthcare providers frequently encounter data shortages,
and privacy regulations restrict data sharing. A privacy-preserving federated transfer learning for
diagnosing skin diseases which incorporate four key strategies to enhance effectiveness. The transfer
learning is used to train a model with dense neural network (DNN) for skin diseases detection. The
feature extraction is performed using pre-trained architectures and DNN is used for classification.
The federated learning (FL) replaces the transfer learning to train the model across distributed nodes
with the DNN used to disease detection. The FL is combined with transfer learning to build a cohesive
ecosystem where data privacy is maintained. The model performance was validated on both IID and
non-1ID database, with the proposed feature extraction with federated learning model achieving
cross validation accuracy of 99.528% and 99.689% for 11D and non-1ID database, respectively. Results
indicate that feature extraction with FL model can produce efficient, lightweight models—well-suited
for resource-constrained devices—while ensemble learning enhances edge device performance,
offering a powerful and privacy-preserving solution for skin disease diagnosis in modern healthcare.

Keywords Skin disease, Federated learning, Transfer learning, Dense neural network, Feature extraction,
Classification

Globally, millions of people of all ages and demographics suffer from skin problems. Skin ailments range from
eczema, psoriasis, and acne to melanoma and other skin malignancies!. Chronic illnesses like psoriasis can
cause physical discomfort, emotional suffering, and social isolation?. Non-fatal skin diseases account for a large
portion of global healthcare costs. The dermatologist scarcity in many places delays diagnoses and worsens
patient outcomes®. Skin illnesses can indicate underlying health difficulties, thus early and precise diagnosis is
crucial to preserving patient health and possibly detecting additional systemic diseases*. Dermatologists directly
examine lesions, pigmentation, and texture changes to diagnose skin illnesses™®. Analyzing large datasets of skin
images and finding disease patterns with artificial intelligent (AI) based techniques is also improving diagnostic
accuracy’. Despite technological advances, such equipment and technical competence are scarce, especially in
low-resource areas®. In dermatology, virtual and real-time skin condition diagnosis are now possible through
advanced digital tools*!°. Patients benefit from quick assessments and teledermatology consultation improves
the dermatological care accessibility!’. Continuous observation allows for personalized treatment adjustments,
improving patient outcomes and adherence!!. Additionally, Al models can analyze patient data to detect early
skin abnormalities and potentially identify skin cancers or other serious conditions'"'2. However, as these
digital healthcare ecosystems expand, concerns about data security and privacy become increasingly significant,
particularly in dermatology where sensitive medical data is transmitted and stored!?.

Medical imaging and diagnosis capture and share sensitive health data across platforms, making data
privacy as serious problem!®. Medical images used in dermatology contain visual data about skin problems
and information that could reveal identification of patients if privacy protections are insufficient. Centralized
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storage systems, which contain patient data from numerous sources, are particularly vulnerable to hackers,
threatening patient privacy and confidence in digital health care systems!*. Federated learning (FL) model allows
decentralized data utilization on local devices while keeping it secure, allowing shared model advances without
transferring patient data'®. To prevent data leaks during training, FL. modelrequires strong encryption and secure
aggregation. These advances make it harder to balance data utility and privacy since models need enough data
to be clinically useful without violating patient privacy'®. FL and transfer learning models have been popular in
medical application because they solve data privacy, limited resources, and model adaptability!”. FLmodel makes
it possible to train machine learning (ML) and deep learning (DL) models on dispersed datasets, such as medical
servers, without the need for centralized collection!8. Transfer learning model allows pre-trained models on
huge, publically available datasets to be tailored to specific medical applications with less task-specific data'®.
Transfer learning lets models adapt to diverse healthcare domains, such as dermatology and radiology. Transfer
learning along with FL, can improve medical diagnostic accuracy by using information from many data sources,
even in resource-limited medical environments?’. These methods promise to improve model performance while
protecting privacy and managing data scarcity, enabling ethical and practical AI use in healthcare. FL models
with decentralized data interested by the discretion subjects of traditional ML/DL techniques that have been
previously discussed. After that, each local network model is trained using its own local data, preventing sensitive
information from being shared over a server network. The rest of this paper is organized as follows. The literature
on skin disease diagnostic using ML/DL techniques is reviewed in Section "Related Work". The proposed model
for diagnosing skin diseases using transfer learning, pre-trained feature extraction models, federated feature
extraction, and federated transfer learning is presented in Section "Methodology skin disease diagnosis". The
experimental setup and results comparison of skin disease detection models are described in Section "Results
analysis" and "Discussion". The paper conclusion and future scope discussed in Section "Conclusion".

Related work

By handling visual complexity and model generalization through image augmentation, the convolutional neural
network (CNN) offers a diverse dataset that more accurately captures the variability of skin conditions®!. The
model’s accuracy of 86% and reminiscence of 81% across seven disease classes show that it can recognize the
features of skin disorders. The FL framework?? aggregates prediction while sharing sensitive data. FL differential
privacy architecture facilitates cooperative model training without transferring confidential patient data to
central servers using decentralized manner?. The implementation is on Amazon’s AWS cloud system, showed
ease of use and scalability?* which improves mobile health technology diagnostics. A hybrid model using CNN
and optimization module? is used to improve the gesture identification. FL pre-trains the mixed approach
without revealing sensitive SEMG data, and then transfer learning fine-tunes the model for each subject based on
their features. According to experimental results, this approach improves recognition accuracy by 12.01% over
conventional FL model and 28.52% over local training, overcoming data shortage and prioritizing privacy. The
FL is used to train global model and sharing encrypted parameters via blockchain with permission to address
privacy and trust issues®®. According to the data, the scheme outperforms baseline models in segmentation by
19.08% in Hausdorff distance for whole malignancies and 1.99% in Dice comparison coefficient for attractive
growths. The local devices run simulations on their datasets without transferring sensitive health data, solving
privacy concerns?’. Radar-based heartbeat and activity monitoring is implemented using a networked multi-task
transfer learning?®. FedRadar beats local training models in heartbeat rate prediction and action planning on
actual radar datasets by 2.8% and 2.5%, respectively. FL with decentralized data storage improves the detection
rate”. A data balancing strategy improves classifier performance and achieves 95% accuracy by correct the
dataset’s class imbalance. FRESH is smart healthcare architecture that combines FL with ring identity safeguards
against such assaults®’. Modified batch verification takes advantage of lined operations’ additively on elliptic
arches to ease the server’s dispensation load.

Review summary

Based on the literature review (Table 1), DL techniques used to draw attention to the problems of using FL for
skin disease diagnosis?!~>?. The inherent non-IID distribution and data imbalance in skin disease datasets are
significant issues. Patients from various demographic groups, geographical locations, and healthcare facilities
have varying disease frequencies and image features, which leads to biased models that are not particularly
successful at generalizing to other populations. Threats to security and privacy are another significant obstacle.
In a medical context, protecting patient information’s security and confidentiality is essential. The FL system®!,
which uses a dataset of over 10,000 photos and decentralized data, initially demonstrates an overall accuracy rate
of around 79% in the classification of skin disorders. The four categories of skin diseases are classified using the
CNN?? and the parameters are optimized using the hyper-parameter tuning.Even though FL is decentralized,
during model updates, sensitive patient data—such as images of skin lesions—is still susceptible to reconstruction
or inference assaults. The varied nature of medical imaging data, which unintentionally expose distinguishable
characteristics, increases this danger?!?3.

Skin disease diagnostics include analyzes intensive high-resolution dermoscopic images. IoT devices with
limited processing and storage capacities find it challenging to handle such data hence models that are both
effective and lightweight are needed?**. Additionally, the communication cost in FL frameworks exacerbates
this issue, particularly when delivering large quantities of model changes in real-time from devices with
constrained resources. Ethical and legal restrictions make using FL to diagnose skin conditions much more
difficult?®?”. Another issue is the lack of model interpretability, as doctors frequently want precise justifications
for diagnostic judgments before they can have faith in Al systems, particularly when dealing with complex
disorders like psoriasis or melanoma. The accuracy of diagnosis compromises by malicious clients who can
introduce erroneous data or interfere with model updates*'~%°. The data processing techniques, robust model
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References | Disease Technique Dataset Training place | Findings Research gaps
2t Skin disease detection FL with CNN Synthetic dataset Decentralized | Accuracy 82.42% The perfqrmance is not further
explored in larger datasets
2 Malaria image detection FL with ResNet-50 27,560 images Decentralized | Accuracy 92%, 72% Hyper tuning could t?e &?nhanced
and DenseNet with use of some optimizer
= Detect Tuberculosis FL with CNN Chest X-ray dataset | Decentralized | Accuracy 89.56% ngh? I time consumption in
training dataset
24 Seizure epilepsy monitoring FL with ResNet and CHB-MIT dataset | Decentralized | Accuracy 88.4% Not consider the dataset overfitting
Transformer problems
25 sEMG}}a‘nd gesture Fede{ated transfer Ninapro DB5 Decentralized | Accuracy 87.96% Realjtlme could be challenging,
recognition learning dataset requires standard procedures
2 Brain tumour segmentation FL with CNN and BRAST dataset Decentralized | Dice 92.35% Privacy gnd data ut{l 1t¥leads to
Blockchain degradation of prediction results
Communication Loss of essential image with
27 Mental stress detection FL with SVM Synthetic dataset Decentralized | overhead edges which causes ineffective
10.02 MB/day classification
2 Hear‘tbeat' rate activity FL with multi-task Kaggle dataset Decentralized | Accuracy 93% Not cogmdermg the resource-
classification neural network constraints and complexity
» Skin disease classification FL with CNN HAM10000 dataset | Decentralized | Accuracy 79% ComPlexny in model training,
affecting performance across images
30 Smart healthcare system FL and ring signature | Kaggle dataset Decentralized | Accuracy 91.58% Leads fo communication inefficiency
for sending a large servers

Table 1. Research gap summary from existing FLfor disease diagnosis frameworks.

Local model

Aggregation server

Global model
training

Local

Global model

model

Local model

Local model Local model Local model
training training training
‘Q’ —»D _——— %—»@ C—— P [P '@' _’vh!
eSS | ! = i —
Patient IoT device Skin Patient IoT device Skin Patient IoT device Skin
User_1 dataset User 2 dataset User N dataset
Global model Global model Global model

Fig. 1. General structure of data collection from skin disease patient in FL environment.

design, ethical adherence, and enhanced security measures are required to get over these challenges and ensure
FLs efficacy in identifying skin conditions**-32. FL system is used for skin disease diagnostics with an emphasis
on resource utilization and data confidentiality. It eliminates the need to transfer confidential skin photos to
a centralized server while working with sensitive data. This work offer four distinct models to skin disease
diagnosis using DNN classifier (a) transfer learning (b) feature extraction (c) feature extraction with federated
learning (d) federated transfer learning.

Methodology skin disease diagnosis

This section presents a resource-efficient FL outline for the recognition and classification of skin illnesses. IoT-
enabled devices at different locations collect skin disease images from patients and store them locally. The overall
structure of data collection for skin disease diagnosis using FL is shown in Fig. 1. By using distributed data
to enhance the accuracy of ML/DL models, it facilitates more effective diagnosis of skin conditions. Figure 2
illustrates the conceptual framework for skin disease diagnosis using four distinct strategies: federated transfer
learning, feature extraction with FL, feature extraction with transfer learning, and transfer learning alone. In this
framework, images of skin conditions are collected from patients across different locations and stored locally
to maintain data confidentiality. Once data collection is complete, pre-processing methods—such as resizing,
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Fig. 2. Conceptual structure of skin disease diagnosis using (a) transfer learning, (b) feature extraction, (c)
feature extraction with federated learning, (d) federated transfer learning with DNN classifier.

grayscale conversion, and sharpening—are pragmatic to reduce noise and enhance image quality. Following
pre-processing, the dataset is analyzed using four methods.

1. The first method, transfer learning, employs DNN to fine-tune a pre-trained model for skin disease classifi-
cation.

2. The second method combines feature extraction and transfer learning, where pre-trained models like
DenseNet, VGG19, Xception, and UNet are used to extract features, which are then used for DNN-based
classification.

3. The third method integrates FL and feature extraction, enabling distributed clients to collaboratively train
models on both IID and non-IID datasets while ensuring strong performance and privacy.

4. The fourth method —federated transfer learning—uses FL in conjunction with transfer learning to build a
global model from dispersed data while preserving patient privacy.

The proposed framework offers a secure, scalable solution to modern healthcare challenges by leveraging ML/
DL methodologies in a decentralized setting.

FL with IID and non-IID datasets

Federated learning (FL)** model arrange statistics and secrecy while dealing the hitches of exercise representations
above a net of detached plans. The parameters or gradients of these locally trained replicas are then collective
to generate a global model. By keeping the system exercise course as adjacent to the statistics bases as likely, FL
model aims to safeguard data privacy. FL model is therefore, a good optimal for submissions where secrecy is
important, mainly when working with complex numbers, geographically detached evidence, or campaigns with
partial possessions or erratic network connectivity. FL model has attracted a lot of consideration and research
in a range of actual submissions, despite its challenges, particularly in the security domain?®*. The data-privacy-
conscious industries like healthcare and finance employ FL model more frequently to overawe the confines
of federal data storage. Without disclosing private patient information to outside servers, FL model enables
cooperative model training in the medical field to identify illnesses®. FL. model employs IID datasets, which
have a uniform and balanced distribution of data among devices*®, and Non-IID datasets, which have an uneven
and different distribution of data between devices®. Real-world scenarios with inconsistent data from several
sources are often reflected in non-IID databases. FL model enables resident strategies to maintain their discrete
and assorted documents though attractive a universal system, even in cases when data is not disseminated evenly.

Model training using transfer learning
In deep learning, transfer knowledge is the procedure of applying the information acquired from previously
trained models to new and related situations. The key idea is to shift the focus from a large-dataset-trained model
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to a different-but-related goal that requires fewer labeled instances. The substantial monetary outlay needed to
train intricate variables in DL models drives transfer learning. TL has becoming more and more popular in this
business for good reason, and it’s easy to incorporate into real-world applications. This process retrains a trained
network using just the final classification layer’s parameters by the exercise statistics from the novel mission. This
study identifies skin illnesses using transfer learning models, including VGG16, Xception, EfficientNetB3, and
MobileNetV2%, By initializing models using learned properties, transfer learning has the advantage of speeding
up training and reducing computational and resource costs. CNNs are distinguished by their hierarchical
representations and use of convolutional, pooling, dropout, and fully connected layers to extract features from
pictures. The transmission learning model has already recognized useful traits and trends across a range of
data, serving as a knowledge base. Applying the model to new work only improves the top layers; the lower
layers retain all of their learnt information. Initially, transfer learning models only train on low-level structures,
keeping all additional layers fixed. While training on a new dataset, transfer learning models often have their
remaining layers updated or adjusted. By enabling the model to derive higher-level features pertinent to the
new data distribution, altering these layers may enhance the model’s performance.When enhancing a transfer
learning model, it's important to pick your layers wisely and strike a balance between relying on prior knowledge
and learning from fresh data.he empirical source distribution Y is specified as Y = {Yl, Yg, .. YK} while

the source circulation Y for multi-source transfer learning is definite as ¥ = {Y1,Y2,..., Yk}, where I
represents the distribution of the K-th basis domain. For the set of hypothesis functions I that map P to Q, let
() :QxQ->R+represent the loss function. The next is the definition of the g-Discrepancy distance discY
between two distributions, /1 and I-:

DiSCQ(Yh YQ) ‘= sup |IY1 (i»FY1) — I, (7:’ FYz)‘ (1)
i€l

where I, (i, Fr,) := ep~a, [(¢(p), FT, (p))]. Fy; And Fy, denotes the labeling meaning for the delivery Y7 and
Y5, respectively. The empirical opt1ma1 problem of f may be clearly shown as follows, given a hypothesis class of

real-valued functions f and a set of training data samples T" = ({1, ..., tq):
N 1 2
Rr(f)=—FE |sup ZEhF(th) ()
@ [rer \Uo

where ¢ = (1,...,&q), &, are the Rademacher random variables X (e, = —1) = X (e, = 1) = 0.5. Let I be

a set of theory functions i(-) that map the first s-time step efforts { P1, Pz, ..., Ps} € r°*® to the s-time-step
output gs € r°?. Using the set I and the distribution X, a new hypothesis function set /7 is distinct as follows:
lr={l:p—U(i(p), Fx(p),i € I} 3)

where the initial #-time-step inputs p € * are mapped to [0, 1] by the loss purpose [(i(p), Fx (p)) € l1, anlr
-Lipchitz function associated with the RNN hypothesis. The following equality holds with chance at least 1 -8
over X for every i €I given a dataset of m samples X = (pn = qx);_, h=1...that is taken from the domain X:

E[l(i(p), 9)] < %Zl(i(p)7q) +2Re (i) + 3 log2§§)
h=1

(4)

Particular a dataset of K divisions with a, examplesh=1...a4 strained from several basis areas Y, forg=1... K,
the next equivalence grips with chance no less than 1 -8completed Y = {Y¥1,Y5,...,Yx } foralliel:

EI(i( <Z - Z (p),q) + 2R, (L) + 3,/ 22 (%) (5)

2aq4

The next variation grips for Yy with chance no less than 1 -8/K using §/K in its place of § for g=1, ... K.

. 1 <&, R log ()
E[lGi(p),g)] < — > Ui(p), q) + 2R, (Ir) + 3y | — >~ (6)
%92 2aq
samples Q = (p? - ¢ S_ h=1,..., ay, from the basis domain Y, for g=1, ..., K, and set of data samples
p r9n)s—1 9 9 g p

X = (pn = qn)’_,h=1,...,a, drawn from the aim area X. The triangle inequality and the definition were used

to compute the Q-discrepancy distance. The following equation can further constrain the major component in
the next line with a probability of at least 1 -8 over X, according to the goal function.

A » 1 5
D’iSCQ(X,X):‘ZX(i,Fx)flx(’i,FxﬂSZRT(ZI)+3 %Cf) (7)
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Additionally, the bound for Discq(Y,Y)

_ ) _ _ "l log (%)
Discq(V,¥) = [ly (i, Fy) = Iy (i, )| < D | 28, (In) + 31| — 2~

h=1

(8)

Let me be a private of the theoretical purpose i(-) that translates the concept of the RNN to the output of the
s-th step. The following difference grips with a chance of at least 1 -8&: Set a dataset of K subsections with
samples Q = (pj 'q,gl)i1 h=1,..., to from the base domain Y, for g=1,..., K, and a set of data samples

X = (pn = qn)?_,»h=1,...,a, pulled from the objective area X.

> ane,y, [1i(p), Fy, (p))]

h—1

Ix (i, Fx) — ly (i, Fy) = +sup |e, ¢ [1(i(p), Fz(p))] — )

il i o
h—1

The triangle inequality condition and the discrepancy distance concept may be used to get the following
inequality.

lx(’i,Fx) = lx(’i, Fx) — ly(i7Fy) + ly(i,Fy) — lf,(i, Fy) + ly(i, Fy)
< Discq(X,Y) + Discq(Y,Y) + 1y (i, Fy) (10)
<y (i, Fy) + 2Discq(Y,Y) 4 Discq(X,Y) + Disco(X, X)

Q-discrepancy distance and characteristics of empirical source distribution Y = {Yh Yg, ceey YK} defined as

follows.

K )
A _ane,_ v [1(i(p), Fy (p
Disco(X,Y) = sup e, ¢ [l(i(p), F;(p))] — iz 1y Y;’}[ (), 75, @) (11)
i€l Zh:l ap
Lastly, the inequality that follows may be obtained using
. , Soh_i ane,y, [1(i(p), Fy, (p))] k log (25:+2)
(i, Fx) = sup e, < U(i(p). Fx ()] ~ S O\ T | 2

The empirical error of the function i as evaluated on the experimental multi-source area Y is represented. X
And Y is Q-discrepancy distance is the second term. The function set I on the empirical basis domain Y and
the empirical goal domain X has a Rademacher difficulty term that is the third and fourth terms, respectively.
The final two elements show the probability terms, which are based on the assurance level § and the quantity of
data samples.

Feature extraction using pre-trained architectures

A key component of DL models that enables effective use of a pre-conditioned neuronal system’s abilities is
feature extraction. Among the several layers in these networks that are especially built to extract essential
characteristics for tasks like object identification and localization are convolutional and pooling layers. To might
change the learning rate, add layers, and variation the sum of neurons in every stratum, and so on to advance
our systems. These methods provide significant time and computing resource savings. Pre-trained replicas that
have been trained on huge datasets are effective feature extractors. System performance can be improved by
selecting the appropriate feature extractor. DenseNet, VGG19, Xception, and UNet were among the pre-trained
models® used which are used to extract the properties of the second-to-last layers. The resulting attributes are
then used to classify skin illnesses in FL with IID and Non-IID databases. By allowing remote devices to work
together by sharing these derived features for model training, they excel at extracting meaningful patterns from
high-dimensional image data, such as lesions’ shape, colour, texture, and edge details, which are critical for
diagnosing skin conditions.

Classification using dense neural network (DNN)

Dense neural network (DNN) is highly effective in performing complex classification tasks and learning intricate
data representations?’. A DNN can learn hierarchical features from input data because it has several completely
linked layers, with each neuron in one layer connected to every other neuron in the layer above. In this context,
DNNs are particularly advantageous. As the input features propagate deeper into the network, higher layers
extract more abstract and disease-specific patterns, enabling accurate differentiation between various skin
conditions. To simulate intricate relationships in the data, each layer of a DNN applies a weighted sum and then a
non-linear activation function.The model is trained using supervised learning with labeled datasets, optimizing
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weights via backpropagation and gradient descent to minimize classification error. The architecture’s ability to
learn deep, abstract features makes it well-suited for skin disease diagnosis, where subtle variations in texture,
color, and lesion shape can significantly affect classification accuracy. By leveraging the dense connectivity of
DNNs, the system achieves robust performance in automated dermatological analysis. The architecture consists
of three main layers: the input, hidden, and the output layer. The input layer is the first point of contact for the
model and receives raw data, which, in the context of skin disease classification, typically includes a feature
vector derived from skin images. The hidden layers form the core computational engine of the DNN, where each
layer applies a weighted sum followed by a non-linear ReLU activation function. The first hidden layer focuses
on detecting low-level features like edges, spots, and gradients, which serve as fundamental building blocks in
image recognition. Subsequent intermediate layers learn to combine these low-level cues into more complex
structures such as textures, shapes, and boundary patterns that are often characteristic of specific skin conditions.
The model’s depth and width significantly influence its ability to generalize across diverse cases, although deeper
networks may require larger datasets and robust regularization to mitigate overfitting. The output layer gives the
classification result, typically using a softmax activation function to generate chances for each class.The input and
output feature maps of a precise layer can be characterized as P € rIXZxH and Q € r'*%%9 where 1, Z, H,
and O represent the height, width, and number of channels, individually. The convolutional filters are embodied
as D € 1'% In group involvedness, the feature maps P, Q , and the filters D are separated into G distinct
groups. Group convolution is characterized in the calculations below. Here ® characterizes 2D convolution.

Qj:Pj®Dj (13)
Q=Q'uQ’u...uQ’...uQ’ (14)

The depth-dependent convolution used in the DNN module allows for the extraction of localized features
while preserving the spatial scale of the data. The subsequent point-wise dense vector further improves the
replica’saptitude to acquiremultifaceted representations by combining features from different channels, allowing
for richer information encoding. Depth convolution and point convolution is describes as follows.

k,l
de(Z,q)(n,g) = ZKL Z(K,L) X q(h+K,g+L) (15)
A
P2, Q) gy = Y, Zata (16)

Here Z denotes the difficulty kernel, q denotes the contributionarticle map, h and g are the dimensions of the
input feature map, K and L are the dimensions of the output feature map, and m denotes the number of channels.
Triple attention (TA) improves the replica’scapability to recognize and discriminate different characteristics.
Each branch is used to analyze the input tensor (x €RCxIxZ) in different ways, which improves the model’s
complex shapes. In each branch, the input tensor undergoes rotation, followed by W-union and convolution
operations, which help extract dimensional correlations between height and channel dimensions. The W-pool
function is given by the following relation.

W = Pool (p) = [max pool,_(p), avg pool,_(p)] (17)

By capturing key interactions between features at dissimilarbalances and locations, TA improves the replica’s
ability to identify subtle patterns essential for accurate classification. The final refined feature map is generated
by averaging the refined tensors generated by each branch.

q= % (X10 (@1 (%)) + (Re0 (U2 (X3))) + (Po (¥3 (%3)))) (18)

whereo represents the sigmoid function of each objective while 11,2 and 3 denotes the average two
dimensional convolutional layers definite by kernel size K in the three twigs of triplet courtesy.

1 ~ ~ 1 — J— —_
q= g(Xlwl + Xow2 + xws) = g(q1 + 3+ G) (19)

where w1, we, and w3 represents the three-dimensional attention weights g1 and g2 which ensures that TA
effectively captures spatial and channel dependencies. The working process of skin disease diagnosis using DNN
is summarized in Algorithm 1.
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Input : Feature vectors, learning rate, model weights, neurons per layer
Output : Skin disease classes
1. Begin;

2 Initialize the step sizes of the population
3. Group convolution is characterized in the calculations below. Q' = P/ ® D’
4 Depth convolution and point convolution. de(Z, q)(h,g) = I:L Zix 1) %Dk gv1)
5. Define W-pool function for each iteration vector

W= Pool(p) = [rnax pool,, (p), avgpool,, (p)]
6 The dense network with optimal vector factorization and queuing,

1 S A K A A K A

q= g(Zlo-(‘/ll (;fl )))"' (}(20'(1//2 (Zz )))+ (Poly,(#))
7. Find the fitness value
8. Update the final value
9. End

Algorithm 1: Skin disease diagnosis using DNN

Results analysis

This segment presents the results and comparative examination of the models used to identify skin illnesses.
Parameters such as accuracy, precision, recall, and loss are used to measure how effectively the models detect
the specified skin diseases. The proposed FL model implemented on the Google Colab platform using Python,
with model training and testing conducted on Colab cloud GPU server. Given the size of the HAM 10000 dataset
and the iterative communication between local and global models in FL, model training requires substantial
computational time, which CPU cannot efficiently handle. For system-level validation, experiments were also
executed on a local system configuration comprising an NVIDIA GTX 1650 graphics card with 4 GB dedicated
memory, 16 GB RAM, and an Intel Core i5 processor. In order to adjust volume of time, the model is often built
and executed on a GPU. An existing FL sample available on Kaggle.com was adapted and modified to design
the FL framework used in this study. The FedAvg method is used to average all of the local networks in order to
aggregate them into a global network at the FL server HAM10000 "Human against Machine with 10,000 training
images*!," a publicly accessible resource housed in the ISIC repository, served as the dataset used. Regarding
hyperparameter tuning, all models trained using hyperparameters optimized through empirical tuning and
grid search experiments. Specifically, the learning rate, batch size, and number of epochs were systematically
varied for each model to achieve optimal performance on the validation dataset. During tuning, the number of
epochs was varied from 0 to 150, and the best-performing configuration was selected based on accuracy and
convergence behavior. For most models, a learning rate of 0.001, batch size of 32, and 100 epochs were found to
provide the most effective balance between training time and model performance.

The dataset includes 11,253 dermatoscopeimages that show seven dissimilar kinds of skin infections (Fig. 3):
vascular lesions 412, benign keratosis-like lesions 1058, basal cell carcinoma 358, actinic keratosis 6858,
melanocytic nevi 635, melanoma 847, and Dermatofibroma 1085 (Table 2). The training and testing groups
were randomly selected from the dataset. Ten percent of the dataset is used for testing, while ninety percent is
used for training. To prevent overfitting during training, a validation process was also included. FL used both
IID database, where records is disseminated consistently and identically among devices, and Non-IID database,
where data spreading is uneven and differs amongst devices, as shown in Fig. 4 for 2 distinct clients (N =2). Non-
IID databases often depict real-world situations with conflicting information from several sources.Every client
uses its own local dataset to train on its own network. The server receives all of the local networks and combines
them into a global network once the local networks have finished training. The neural network is subsequently
distributed back to the customers. The clients then train their local network once more using their local dataset,
utilizing the global network as a fresh starting point. The cycle is repeated 100 times once the client’s local
network has been upgraded. The model presented in this work assumes that there are no problems with the
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Fig. 3. Skin images from dataset (a) MEL, (b) MV, (c) BCC, (d) AK, (e) BKL, (f) DF, (g) VL.
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Skin disease name Number of images
Melanocytic nevi (MV) 635

Melanoma (MEL) 847

Benign keratosis-like lesions (BKL) | 1058

Basal cell carcinoma (BCC) 358

Actinic keratoses (AK) 6858

Vascular lesions (VL) 412
Dermatofibroma (DF) 1085

Table 2. Number of images in dataset.
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Fig. 4. Training and testing accuracy of transfer learning models for skin disease diagnosis (a) VGG16, (b)
Xception, (c) EfficientNetB3 and (d) MobileNetV?2.

communication between the clients and the server. In practice, a local network to global network transfer can be
costly and erratic, which increases the likelihood of mistakes.

Results analysis of transfer learning models on skin disease diagnosis

This section provides a detailed analysis of transmissionknowledgereplicas for casing illness diagnosis.
Figure 4 shows the results analysis of training and testing accuracy for VGG16, Xception, EfficientNetB3, and
MobileNetV2 reveals that MobileNetV2 performs best, with a high training accuracy of 90.352% and testing
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Fig. 5. Training and testing accuracy of transfer learning models for skin disease diagnosis (a) VGG16, (b)
Xception, (c) EfficientNetB3 and (c) MobileNetV2.

Accuracy (%) Loss
Transfer learning models | Training | Testing | Training | Testing
VGGI16 94.805 84.281 | 0.768 0.785
Xception 96.695 87.039 |0.625 0.655
EfficientNetB3 97.611 88.09 0.648 0.663
MobileNetV2 98.064 91.53 0.498 0.502

Table 3. Results comparison of transfer learning models for skin disease diagnosis.

accuracy of 98.374%. Xception follows closely, achieving 87.798% in training and 97.985% in testing, while
EfficientNetB3 reaches 89.857% in training and 97.968% in testing. VGG16, despite some fluctuations, achieves
a strong testing accuracy of 95.858%, but with slower convergence. MobileNetV2 outperforms the others,
offering the best accuracy and generalization for skin disease classification. Fig. 5 demonstrations the loss results
of the transfer learning models during training and exciting over 10 epochs. Among the models, MobileNetV2
shows the best performance, with training loss reduced from 0.258 to 0.175 and testing loss from 0.199 to 0.116,
reflecting its strong learning and generalization capabilities. EfficientNetB3 follows closely, with consistent
reductionin training and testing loss to 0.235 and 0.076, respectively. Xception demonstrates moderate progress,
ending with testing loss of 0.077, while VGG16 shows slower improvement, with a final testing loss of 0.966.
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K-fold cross validation
Class | Model 1 2 3 4 5 6 7 8 9 10
VGG16+DNN 94.811 | 94.796 | 94.802 | 94.815 | 94.789 | 94.808 | 94.803 | 94.797 | 94.814 | 94.791
Xception + DNN 96.701 | 96.688 | 96.695 | 96.709 | 96.682 | 96.703 | 96.690 | 96.697 | 96.705 | 96.684
My EfficientNetB3+DNN | 97.616 | 97.605 | 97.612 | 97.620 | 97.598 | 97.614 | 97.607 | 97.619 | 97.601 | 97.615
MobileNetV2+DNN | 98.069 | 98.057 | 98.064 | 98.073 | 98.050 | 98.068 | 98.061 | 98.070 | 98.055 | 98.066
VGG16+DNN 94.799 | 94.813 | 94.805 | 94.790 | 94.816 | 94.801 | 94.807 | 94.794 | 94.812 | 94.798
Xception + DNN 96.689 | 96.702 | 96.695 | 96.680 | 96.710 | 96.691 | 96.698 | 96.685 | 96.706 | 96.693
MEL EfficientNetB3+DNN | 97.604 | 97.617 | 97.611 | 97.597 | 97.621 | 97.608 | 97.613 | 97.602 | 97.619 | 97.605
MobileNetV2+DNN | 98.058 | 98.071 | 98.064 | 98.049 | 98.075 | 98.060 | 98.067 | 98.053 | 98.072 | 98.059
VGG16+DNN 94.807 | 94.792 | 94.815 | 94.803 | 94.798 | 94.810 | 94.795 | 94.814 | 94.800 | 94.806
Xception + DNN 96.697 | 96.683 | 96.709 | 96.701 | 96.688 | 96.705 | 96.691 | 96.708 | 96.694 | 96.702
BKL EfficientNetB3 + DNN | 97.613 | 97.599 | 97.620 | 97.615 | 97.604 | 97.618 | 97.601 | 97.616 | 97.607 | 97.614
MobileNetV2+DNN | 98.065 | 98.051 | 98.074 | 98.068 | 98.057 | 98.071 | 98.060 | 98.073 | 98.055 | 98.067
VGG16+DNN 94.804 | 94.811 | 94.796 | 94.809 | 94.802 | 94.815 | 94.797 | 94.813 | 94.800 | 94.808
Xception+ DNN 96.694 | 96.707 | 96.681 | 96.703 | 96.696 | 96.710 | 96.685 | 96.708 | 96.692 | 96.705
pee EfficientNetB3 + DNN | 97.610 | 97.623 | 97.597 | 97.616 | 97.612 | 97.625 | 97.603 | 97.619 | 97.608 | 97.614
MobileNetV2+DNN | 98.062 | 98.076 | 98.048 | 98.070 | 98.065 | 98.078 | 98.054 | 98.072 | 98.060 | 98.067
VGG16+DNN 94.812 | 94.795 | 94.809 | 94.801 | 94.814 | 94.797 | 94.806 | 94.803 | 94.811 | 94.799
Xception + DNN 96.706 | 96.684 | 96.702 | 96.694 | 96.709 | 96.687 | 96.705 | 96.698 | 96.712 | 96.690
AK EfficientNetB3+DNN | 97.618 | 97.596 | 97.614 | 97.607 | 97.621 | 97.600 | 97.616 | 97.609 | 97.624 | 97.603
MobileNetV2+DNN | 98.072 | 98.049 | 98.067 | 98.060 | 98.075 | 98.053 | 98.070 | 98.063 | 98.077 | 98.056
VGG16+DNN 94.798 | 94.815 | 94.801 | 94.807 | 94.794 | 94.812 | 94.805 | 94.809 | 94.796 | 94.813
Xception+ DNN 96.682 | 96.708 | 96.693 | 96.699 | 96.686 | 96.711 | 96.695 | 96.702 | 96.684 | 96.707
Vb EfficientNetB3+DNN | 97.600 | 97.622 | 97.605 | 97.611 | 97.597 | 97.624 | 97.608 | 97.615 | 97.602 | 97.620
MobileNetV2+DNN | 98.053 | 98.076 | 98.058 | 98.065 | 98.050 | 98.078 | 98.061 | 98.068 | 98.055 | 98.073
VGG16+DNN 94.805 | 94.790 | 94.813 | 94.797 | 94.811 | 94.803 | 94.808 | 94.795 | 94.814 | 94.801
DE Xception + DNN 96.695 | 96.680 | 96.709 | 96.692 | 96.706 | 96.698 | 96.704 | 96.687 | 96.711 | 96.693
EfficientNetB3 + DNN | 97.611 | 97.597 | 97.624 | 97.603 | 97.618 | 97.609 | 97.615 | 97.601 | 97.622 | 97.607
MobileNetV2+DNN | 98.064 | 98.050 | 98.077 | 98.056 | 98.071 | 98.062 | 98.068 | 98.054 | 98.075 | 98.060

Table 4. Class-wise accuracy of proposed transfer learning with DNN models for skin disease diagnosisover
k-fold cross validation.

Minimum ‘ Maximum | Average | Minimum | Maximum | Average
Model GPU Memory Used (%) GPU Process Used (%)
VGG16 73.250 77.850 75.550 66.350 70.850 68.600
Xception 72.950 77.350 75.150 65.880 71.250 68.565
EfficientNetB3 | 73.580 78.120 75.850 66.750 70.950 68.850
MobileNetV2 | 73.850 78.550 76.200 67.150 71.450 69.300

CPU Process Used (%) Virtual Memory Used (%)
VGG16 10.250 11.950 11.100 79.120 82.580 80.850
Xception 9.850 11.750 10.800 78.580 82.250 80.415
EfficientNetB3 | 10.650 11.880 11.265 79.450 83.150 81.300
MobileNetV2 | 10.850 12.050 11.450 80.250 83.480 81.865

Table 5. Resource metrics of transfer learning models for skin disease detection.

MobileNetV2 and EfficientNetB3 is the most efficient models, with MobileNetV2 achieving the lowest losses,
making suitable for the skin disease diagnosis task.

Table 3 delivers a relativeexamination of transfer knowledge models with DNN classification for skin
disease detection. MobileNetV2 achieves the highest testing accuracy at 98.064%, shown 3.45% increase over
EfficientNetB3 and 3.64% improvement compared to Xception. To address this, regularization techniques
were applied, including dropout (rate 0.5), early stopping (patience =10), and batch normalization. The results
in Table 4 present the class-wise accuracy of transfer learning models with DNN, including VGG16+ DNN,
Xception + DNN, EfficientNetB3 + DNN, and MobileNetV2+DNN, across 10 folds of K-fold cross-validation
for skin disease diagnosis. Table 5 presents a comparative analysis of resource metrics for transfer learning
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models utilized in skin disease detection, evaluating GPU memory usage, GPU process usage, CPU process
usage, and virtual memory consumption.

Results analysis of feature extraction models on skin disease diagnosis

Figure 6 compares the accuracy of DenseNet, VGG19, Xception, and UNet during training and testing. UNet
leads with the highest exercise accuracy of 84.537% and challengingexactness of 90.894%, presentation strong
generalization. VGG19 improves steadily, reaching 82.845% in training and 89.202% in testing, while DenseNet
trails with peak training accuracy of 82.365% and testing accuracy of 88.722%. Figure 7 shows that UNet also
achieves the lowest loss during both phases, reducing training loss to 0.406 and testing loss to 0.321 by epoch
50. Table 6 presents the results of feature extraction models with a DNN classifier for skin disease discovery and
organization, highlighting notable differences in both accuracy and loss metrics. In terms of loss values, UNet
achieves the lowest testing loss at 0.112, followed by Xception at 0.124, VGG19 at 0.158, and DenseNet at 0.138.
UNet reduces testing loss by 0.026 compared to DenseNet, 0.046 compared to VGG19, and 0.012 compared to
Xception. For training loss, UNet again records the lowest value of 0.087, while Xception follows with 0.098,
VGGI19 at 0.145, and DenseNet at 0.125. UNet reduces training loss by 0.038 over DenseNet, 0.058 over VGG19,
and 0.011 over Xception.

The results in Table 7 shows the class-wise accuracy of feature extraction models with DNN (DenseNet + DNN,
VGGI19+DNN, Xception+DNN, UNet+DNN) across 10 folds of K-fold cross-validation for skin disease
diagnosis. UNet+ DNN achieve the highest average accuracy, ranging from 90.31% to 90.37% across all classes
(MV, MEL, BKL, BCC, AK, VL, and DF), indicating superior performance. Table 8 presents the resource
utilization metrics for feature extraction models integrated with DNN classification frameworks for skin disease
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Fig. 6. Training and testing accuracy of feature extortion models for skin disease diagnosis (a) DenseNet, (b)
VGG19, (c) Xception and (d) UNet.
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Fig. 7. Training and testing loss of feature extortion models for skin disease diagnosis (a) DenseNet, (b)

VGG109, (c) Xception and (d) UNet.

Accuracy (%) Loss
Feature extraction model | Training | Testing | Training | Testing
DenseNet 87.85 81.494 | 0.625 0.638
VGG19 88.713 82.28 0.645 0.658
Xception 89.511 83.067 | 0.598 0.624
UNet 90.338 83.854 | 0.587 0.612

Table 6. Results comparison of feature extraction models for skin disease diagnosis.

detection and classification, focusing on GPU memory, GPU process, CPU process, and virtual memory usage.
UNet demonstrates higher GPU memory, GPU process, CPU process, and virtual memory usage, making it
more computationally demanding but potentially suited for scenarios requiring higher processing capabilities.

Results analysis of federated transfer learning models on skin disease diagnosis

The analysis of the federated transfer learning perfect for skin disease diagnosis demonstrates notable
improvements in performance metrics across both Client 1 and Client 2 on the IID dataset. As highlighted
in Section "Results analysis of feature extraction models on skin disease diagnosis", among the four transfer
learning models evaluated, MobileNetV2 delivers the most effective results, achieved accuracy of 98.064%,
making most suitable model for this experiment. As shown in Figs. 8 and 9, for Client 1, accuracy improves
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K-fold cross validation
Class | Model 1 2 3 4 5 6 7 8 9 10
DenseNet+DNN | 87.832 | 87.865 | 87.841 | 87.879 | 87.823 | 87.856 | 87.848 | 87.870 | 87.834 | 87.862
VGG19+DNN 88.695 | 88.728 | 88.704 | 88.742 | 88.687 | 88.719 | 88.711 | 88.735 | 88.698 | 88.726
My Xception+DNN | 89.493 | 89.526 | 89.502 | 89.540 | 89.485 | 89.517 | 89.509 | 89.533 | 89.496 | 89.524
UNet+DNN 90.320 | 90.353 | 90.329 | 90.367 | 90.312 | 90.344 | 90.336 | 90.360 | 90.323 | 90.351
DenseNet+DNN | 87.859 | 87.836 | 87.872 | 87.844 | 87.867 | 87.829 | 87.855 | 87.841 | 87.863 | 87.837
VGG19+DNN 88.722 | 88.699 | 88.737 | 88.709 | 88.731 | 88.694 | 88.720 | 88.706 | 88.729 | 88.701
MEL Xception+DNN | 89.520 | 89.497 | 89.535 | 89.507 | 89.529 | 89.492 | 89.518 | 89.504 | 89.527 | 89.499
UNet+DNN 90.347 | 90.324 | 90.362 | 90.334 | 90.356 | 90.319 | 90.345 | 90.331 | 90.354 | 90.326
DenseNet+DNN | 87.840 | 87.873 | 87.849 | 87.831 | 87.864 | 87.846 | 87.868 | 87.854 | 87.827 | 87.851
VGG19+DNN 88.703 | 88.736 | 88.712 | 88.694 | 88.727 | 88.709 | 88.732 | 88.718 | 88.691 | 88.715
BKL Xception+DNN | 89.501 | 89.534 | 89.510 | 89.492 | 89.525 | 89.507 | 89.530 | 89.516 | 89.489 | 89.513
UNet+DNN 90.328 | 90.361 | 90.337 | 90.319 | 90.352 | 90.334 | 90.357 | 90.343 | 90.316 | 90.340
DenseNet+DNN | 87.866 | 87.843 | 87.825 | 87.858 | 87.880 | 87.852 | 87.834 | 87.869 | 87.847 | 87.829
VGG19+DNN 88.729 | 88.706 | 88.688 | 88.721 | 88.743 | 88.715 | 88.697 | 88.732 | 88.710 | 88.692
pee Xception+DNN | 89.527 | 89.504 | 89.486 | 89.519 | 89.541 | 89.513 | 89.495 | 89.530 | 89.508 | 89.490
UNet+DNN 90.354 | 90.331 | 90.313 | 90.346 | 90.368 | 90.340 | 90.322 | 90.357 | 90.335 | 90.317
DenseNet+DNN | 87.847 | 87.870 | 87.842 | 87.864 | 87.836 | 87.859 | 87.841 | 87.875 | 87.853 | 87.828
VGG19+DNN 88.710 | 88.733 | 88.705 | 88.727 | 88.699 | 88.722 | 88.704 | 88.738 | 88.716 | 88.691
AK Xception+DNN | 89.508 | 89.531 | 89.503 | 89.525 | 89.497 | 89.520 | 89.502 | 89.536 | 89.514 | 89.489
UNet+DNN 90.335 | 90.358 | 90.330 | 90.352 | 90.324 | 90.347 | 90.329 | 90.363 | 90.341 | 90.316
DenseNet+DNN | 87.854 | 87.831 | 87.867 | 87.839 | 87.862 | 87.844 | 87.876 | 87.848 | 87.830 | 87.855
VGG19+DNN 88.717 | 88.694 | 88.730 | 88.702 | 88.725 | 88.707 | 88.739 | 88.711 | 88.693 | 88.718
Vb Xception+DNN | 89.515 | 89.492 | 89.528 | 89.500 | 89.523 | 89.505 | 89.537 | 89.509 | 89.491 | 89.516
UNet+DNN 90.342 | 90.319 | 90.355 | 90.327 | 90.350 | 90.332 | 90.364 | 90.336 | 90.318 | 90.343
DenseNet+DNN | 87.861 | 87.838 | 87.874 | 87.846 | 87.868 | 87.850 | 87.832 | 87.857 | 87.879 | 87.841
VGG19+DNN 88.724 | 88.701 | 88.737 | 88.709 | 88.731 | 88.713 | 88.695 | 88.720 | 88.742 | 88.706
PF Xception+DNN | 89.522 | 89.499 | 89.535 | 89.507 | 89.529 | 89.511 | 89.493 | 89.518 | 89.540 | 89.504
UNet+DNN 90.349 | 90.326 | 90.362 | 90.334 | 90.356 | 90.338 | 90.320 | 90.345 | 90.367 | 90.331

Table 7. Class-wise accuracy of proposed feature extraction with DNN models for skin disease diagnosis over
k-fold cross validation.

Minimum ‘ Maximum | Average | Minimum | Maximum | Average
Model GPU memory used (%) GPU process used (%)
DenseNet | 66.250 71.450 68.850 58.360 63.580 60.970
VGGI19 65.850 70.680 68.265 58.120 62.750 60.435
Xception | 66.480 71.120 68.800 59.450 63.250 61.350
UNet 67.120 71.880 69.500 60.120 64.120 62.120

CPU process used (%) Virtual memory used (%)
DenseNet | 7.550 9.250 8.400 75.360 78.450 76.905
VGGI19 7.250 8.950 8.100 74.650 77.850 76.250
Xception | 7.650 9.350 8.500 75.580 78.950 77.265
UNet 7.850 9.580 8.715 76.120 79.150 77.635

Table 8. Resource metrics results of feature extraction models with DNN classification for skin disease
detection and classification.

from 25.568% to 99.698%, while precision, recall, and F-measure increase from 17.82%, 19.856%, and 18.783%
t0 99.897%. On Non-IID datasets, as shown in Figs. 10 and 11, training outcomes exhibit performance over 25
epochs. The outcomes confirm the models’ effective learning and optimization, even with the testsmodeled by
non-IID data circulations.

Table 9 compares the presentation of federated transfer knowledgefor skin infectionfinding across IID and
Non-IID datasets. During training, models on the Non-IID dataset demonstrate marginal improvements over
IID data. Training accuracy rises from 96.428% to 96.573%, precision improves from 96.004% to 96.235%,
recall increases from 96.108% to 96.389%, and F-measure advances from 96.048% to 96.298%. Additionally,
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Fig.8. Training and testing accuracy of federated transfer learningmodel for skin disease diagnosison IID
dataset (a) client-1, (b) client-2.
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Fig. 9. Training and testing loss of federated transfer learningmodel for skin disease diagnosison IID dataset
(a) client-1, (b) client-2.

the training loss decreases from 0.775 (IID) to 0.632 (Non-IID), indicates enhanced optimization on Non-IID
data. In testing, the Non-IID dataset again outperforms the IID. Table 10 describes the class-wise accuracy
of MobileNetV2 +FL+DNN model across tenfold cross-validation for both IID and Non-IID datasets shows
highly consistent and stable performance in skin disease diagnosis. As shown in Fig. 12, the narrow clustering of
average accuracy values between 95.9% and 96.5%, along with steady accuracy trends across all folds, confirms
the robustness, reliability of the MobileNetV2 +FL+ DNN perfect when used to both IID and Non-IID dataset.
Table 11 summarizes the resource utilization metrics for the MobileNetV2 + FL + DNN model on both IID and
Non-IID datasets for skin disease diagnosis, focusing on GPU memory, GPU process, CPU process, and virtual
memory usage across two clients. The results confirm that resource utilization remains efficient and fairly stable
between IID and Non-IID scenarios for this federated learning configuration.

Results analysis of UNet + FL + DNN for skin disease diagnosis

The UNet-based feature extraction model achieves a maximum training accuracy of 90.338% and testing
accuracy of 83.854%. Figures 13 and 14 shows the training results for the UNet + FL model on the IID dataset
for Client 1 and Client 2. Both clients show exceptional performance, with accuracy exceeding 99% by the
final epoch. Figures. 15 and 16 show the training results of federated learning models for feature extraction on
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Fig.10. Training and testing accuracy of federated transfer learningmodel for skin disease diagnosison non-
IID dataset (a) client-1, (b) client-2.
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Fig.11. Training and testing loss of federated transfer learningmodel for skin disease diagnosis on non-IID
dataset (a) client-1, (b) client-2.

Values in (%)
Data Data type | Accuracy | Precision | Recall | F-measure | Loss
1ID 96.428 96.004 96.108 | 96.048 0.407
Training
Non-IID | 96.573 96.235 96.389 | 96.298 0.485
1ID 98.918 98.327 97.312 | 97.484 0.425
Testing
Non-IID | 99.063 98.558 98.796 | 98.674 0.493
Table 9.

Results of federated transfer learning models for skin disease diagnosis.

Non-IID datasets, comparing Client 1 and Client 2 over 25 epochs. Table 12 presents the effectiveness of the
UNet + FL+DNN model for skin diseases diagnosis, comparing results with both IID and Non-IID datasets.
During training, the model exhibits minor variations, with accuracy dropping from 99.514% for IID to 99.414%
for Non-IID data. The loss is reduced for Non-IID data at 0.587 compared to 0.623 for IID. In the testing phase,
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Class | K-fold cross validation

Dataset 1 2 3 4 5 6 7 8 9 10
MV | 96.126 | 96.338 | 96.246 | 96.514 | 96.316 | 96.027 | 96.376 | 96.543 | 96.442 | 96.684
MEL | 95.785 | 95.971 | 95.909 | 96.13 | 96.013 | 95.856 | 96.23 | 95.973 | 96.118 | 95.844
BKL |96.336 | 96.402 | 96.12 | 96.564 | 96.522 | 96.353 | 96.257 | 96.419 | 96.305 | 96.469

1ID BCC |96.034 | 96.217 | 96.105 | 96.362 | 96.499 | 96.199 | 96.252 | 96.342 | 96.46 | 96.528
AK 96.233 | 96.371 | 96.453 | 96.152 | 96.297 | 96.291 | 96.345 | 96.526 | 96.445 | 96.226
VL 96.541 | 96.692 | 96.463 | 96.509 | 96.745 | 96.459 | 96.292 | 96.677 | 96.526 | 96.698
DF 96.004 | 96.122 | 96.242 | 96.318 | 96.038 | 96.221 | 96.161 | 96.283 | 96.429 | 96.511
MV | 96.271 | 96.4 96.218 | 96.52 | 96.113 | 96.246 | 96.055 | 96.407 | 96.297 | 96.223
MEL | 95.917 | 96.031 | 96.029 | 96.248 | 95.89 | 96.015 | 96.162 | 96.31 | 95.873 | 95.991
BKL |96.147 | 96.234 | 96.368 | 96.218 | 96.062 | 96.192 | 96.198 | 96.322 | 96.401 | 96.147

Non-IID | BCC |96.263 | 96.195 | 96.358 | 96.486 | 96.409 | 96.34 | 96.191 | 96.185 | 96.266 | 96.393
AK 96.326 | 96.433 | 96.253 | 96.522 | 96.185 | 96.32 | 96.376 | 96.491 | 96.345 | 96.149
VL 96.437 | 96.309 | 96.223 | 96.121 | 96.492 | 96.254 | 96.386 | 96.295 | 96.511 | 96.434
DF 96.003 | 96.124 | 96.21 | 96.319 | 96.421 | 96.198 | 96.255 | 96.367 | 96.155 | 96.079

Table 10. Class-wise accuracy of MobileNetV2 + FL + DNNfor skin disease diagnosis over k-fold cross

validation.

MEI

DF
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BKL i
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BXL

Fig. 12. Accuracy of MobileNetV2 + FL + DNN for skin disease diagnosison IID and non-IID datasets.

Client | Data Type | Minimum ‘ Maximum ‘ Average | Minimum ‘ Maximum ‘ Average
GPU Memory Used (%) GPU Process Used (%)

Client 1 | IID 28.360 30.280 29.320 31.050 32.120 31.585

Client 2 29.070 31.120 30.095 31.640 32.540 32.090

Client 1 | Non-IID 28.580 30.850 29.715 29.940 31.890 30.915

Client 2 29.350 31.480 30.415 30.900 32.880 31.890
CPU process used (%) Virtual memory used (%)

Client 1 | IID 5.100 5.920 5.510 75.800 77.620 76.710

Client 2 5.050 5.840 5.445 75.960 77.250 76.605

Client 1 | Non-IID 5.290 5.020 5.155 75.650 77.080 76.365

Client 2 5.420 5.100 5.260 75.950 77.400 76.675

Table 11. Resource metrics results of MobileNetV2 + FL + DNNfor skin disease diagnosis.

the model shows superior performance with Non-IID data, with accuracy rising by 0.161% to 99.689%, precision

increasing by 0.193% to 99.506%, recall by 0.144% to 99.441%, and F-measure by 0.171% to 99.473%.

Table 13 depicts the class-wise accuracy performance of the proposed UNet+FL+DNN for skin disease
diagnosis was evaluated using tenfold cross-validation on both IID and non-IID datasets. Figure 17 confirms
that the MobileNetV2 + FL + DNN model maintained consistent and superior accuracy trends under both IID
and non-IID distributions, displays the robustness of the FL framework for reliable skin disease diagnosis.
Table 14 illustrates the resource utilization metrics for the UNet+FL+DNN model under IID and Non-IID
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Fig. 13. Training and testing accuracy of feature extraction with FL model for skin disease diagnosis on IID
dataset (a) client-1, (b) client-2.
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Fig. 14. Training and testing loss of feature extraction with FL model for skin disease diagnosis on IID dataset
(a) client-1, (b) client-2.

data distributions in the context of skin disease diagnosis. Non-IID data introduces a mild increase in GPU
memory, GPU process, and CPU process usage for both clients, with Client 1 generally experiencing slightly
higher increases than Client 2 in most metrics. The virtual memory usage remains fairly consistent, indicating
Non-IID data marginally raises computational demand and system resource utilization remains balanced and
efficient in FL settings.

Discussion

Table 15 presents a comparative analysis of accuracy, loss, and resource utilization for four model strategies in skin
disease diagnosis: Strategy (a) as MobileNetV2, Strategy (b) as UNet, Strategy (c) as MobileNetV2 + FL+ DNN,
and Strategy (d) as UNet+ FL+ DNN. In terms of accuracy, integrating FL with DNN classification significantly
improved performance. Under IID conditions, MobileNetV2 + FL + DNN achieved 99.063% accuracy, which isan
8.23% and 18.03% increase over MobileNetV2 and UNet, respectively. Inference speed was also faster in FL model,
with UNet+FL+DNN achieving 28 ms (IID) and 29 ms (Non-IID), significantly quicker than MobileNetV2
(42 ms) and UNet (57 ms). In terms of model size, although federated models were slightly larger (24.6 MB for
Strategy c and 27.1 MB for Strategy d), this increase is acceptable given their superior accuracy and efficiency.
The resource consumption analysis further emphasizes the advantage of FL-based models. UNet+FL+DNN
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Fig. 15. Training and testing accuracy of feature extraction with FL model for skin disease diagnosis on non-
IID dataset (a) client-1, (b) client-2.
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Fig. 16. Training and testing loss of feature extraction with FLmodel for skin disease diagnosis on non-IID
dataset (a) client-1, (b) client-2.

Values in (%)

Data Data type | Accuracy | Precision | Recall | F-measure | Loss

1ID 99.514 99.382 99.291 | 99.315 0.398
Training

Non-IID | 99.414 99.389 99.302 | 99.340 0.412

1ID 99.528 99.313 99.297 | 99.302 0.415
Testing

Non-IID | 99.689 99.506 99.441 | 99.473 0.431

Table 12. Results comparison of UNet+FL+DNN for skin disease diagnosis.

utilized the least GPU memory (24.548% IID and 24.315% Non-IID), compared to MobileNetV2 (76.2%) and
UNet (69.5%), reflecting a reduction of 67.8% and 64.9%. GPU process utilization also decreased in FL models,
with UNet+FL+DNN consuming only 27.975% (IID) and 27.803% (Non-IID), and MobileNetV2 + FL+ DNN
slightly higher. CPU process usage followed the same trend, with UNet + FL + DNN requiring the least at 3.983%
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K-fold cross validation

Dataset | Class | 1 2 3 4 5 6 7 8 9 10
MV | 99.512 | 99.543 | 99.528 | 99.567 | 99.499 | 99.535 | 99.522 | 99.549 | 99.515 | 99.541
MEL | 99.467 | 99.489 | 99.475 | 99.503 | 99.461 | 99.482 | 99.47 | 99.497 | 99.465 | 99.484
BKL | 99.548 | 99.572 | 99.559 | 99.585 | 99.541 | 99.563 | 99.551 | 99.577 | 99.546 | 99.569
1ID BCC |99.491 | 99.513 | 99.499 | 99.525 | 99.485 | 99.508 | 99.494 | 99.519 | 99.489 | 99.511
AK 99.529 | 99.551 | 99.537 | 99.563 | 99.523 | 99.545 | 99.531 | 99.557 | 99.527 | 99.549
VL 99.574 | 99.598 | 99.584 | 99.61 | 99.568 | 99.591 | 99.579 | 99.603 | 99.575 | 99.596
DF 99.456 | 99.478 | 99.464 | 99.49 |99.45 | 99.473 | 99.459 | 99.485 | 99.454 | 99.476
MV | 99.673 | 99.705 | 99.689 | 99.721 | 99.661 | 99.697 | 99.682 | 99.709 | 99.675 | 99.701
MEL | 99.628 | 99.65 |99.636 | 99.662 | 99.622 | 99.645 | 99.631 | 99.657 | 99.626 | 99.649
BKL ]99.709 | 99.733 | 99.718 | 99.745 | 99.703 | 99.726 | 99.712 | 99.738 | 99.707 | 99.73
Non-IID | BCC |99.652 | 99.674 | 99.66 | 99.686 | 99.646 | 99.669 | 99.654 | 99.68 | 99.649 | 99.672
AK 99.69 | 99.712 | 99.698 | 99.724 | 99.684 | 99.707 | 99.692 | 99.718 | 99.688 | 99.71
VL 99.735 | 99.759 | 99.745 | 99.771 | 99.729 | 99.752 | 99.737 | 99.765 | 99.733 | 99.757
DF 99.621 | 99.643 | 99.629 | 99.655 | 99.615 | 99.638 | 99.624 | 99.65 | 99.619 | 99.642

Table 13. Class-wise accuracy of UNet+FL + DNN for skin disease diagnosis over k-fold cross validation.

Fig. 17. Accuracy of MobileNetV2 +FL + DNN for skin disease diagnosis on IID and non-IID datasets.

Minimum ‘ Maximum | Average | Minimum ‘ Maximum ‘ Average
Client | Data type | GPU memory used (%) GPU Process Used 9%)
Client 1 | IID 25.320 24.450 24.885 27.180 28.250 27.715
Client 2 25.410 23.010 24.210 27.450 29.020 28.235
Client 1 | Non-IID | 25.580 22.740 24.160 26.100 28.840 27.470
Client 2 25.760 23.180 24.470 26.820 29.450 28.135
CPU process used (%) Virtual memory used (%)
Client 1 | IID 3.180 4.850 4.015 73.240 75.120 74.180
Client 2 3.250 4.650 3.950 73.650 75.430 74.540
Client 1 | Non-IID | 3.350 4.020 3.685 72.980 75.020 74.000
Client 2 3.480 4.100 3.790 73.120 75.180 74.150

Table 14. Resource metrics results of UNet+FL+DNN for skin disease diagnosis.

(IID) and 3.738% (Non-IID), showed drop from MobileNetV2 and UNet. Virtual memory usage was similarly
optimized in federated setups; with UNet+FL+DNN and MobileNetV2+FL+DNN maintaining lower
consumption levels than their standalone counterparts. The ANOVA results (Table 15) confirmed statistically
significant differences (p <0.001) in accuracy, loss, training time, and GPU-related metrics, indicating that the
choice of strategy has a meaningful impact on performance. To further determine where these differences lie,
Tukey’s HSD post-hoc analysis was applied. The post-hoc results revealed that Strategy (d) (UNet+FL+DNN)
consistently outperformed Strategies (a), (b), and (c) with statistically significant higher accuracy and lower loss
values. Similarly, both FL-integrated strategies (c and d) shows reduced resource usage (GPU/CPU/memory)
compared to their non-federated counterparts (a and b), with strong statistical significance.
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Strategy (a) Strategy (b) | Strategy (c) Strategy (d)
MobileNetV2+FL+DNN | UNet+FL+DNN

Resources MobileNetV2 | UNet 11D Non-IID | IID Non-IID | ANOVA (p) | Tukey’s HSD
GPU memory (%) | 76.200 69.500 29.708 30.065 | 24.548 | 24315 | <0.001 (a),(b) > (c),(d)
Virtual memory (%) | 81.865 77.635 76.658 76.520 74.360 | 74.075 <0.05 (a)>(d)
GPU process (%) 69.300 62.120 31.838 31.403 27.975 | 27.803 <0.001 (a),(b)>(c),(d)
CPU process (%) 11.450 8.715 5.478 5.208 3.983 |3.738 <0.001 (a),(b) > (c),(d)
Training time (s) 1380 1560 1020 1065 945 990 <0.001 (b)>all, (d)<all
Model size (MB) 16.700 19.300 24.600 24.600 27.100 | 27.100 <0.01 (d)>(a)
Inference speed (ms) | 42.000 57.000 31.000 33.000 28.000 | 29.000 <0.001 (b)>all, (d)<all
Mean accuracy (%) | 91.53 83.854 98.918 99.063 | 99.528 | 99.689 | <0.001 (d) > (a),(b),(c)
Mean loss 0.502 0.612 0.425 0.493 0.415 | 0.431 <0.001 (b)>(d), (a) > (c),(d)

Table 15. Comparative analysis of accuracy, loss and resource consumption metrics for proposed models
(strategy a, b, c and d) in skin disease diagnosis.

In real-world clinical settings, computational resource efficiency plays a crucial role in determining the
deployability of AI models, especially in resource-constrained environments such as small clinics or mobile
diagnostic units. From the comparative analysis (Table 15), observe that traditional models like MobileNetV2
and UNet require higher GPU memory and longer training times, which not be feasible for on-site training or
rapid inference. UNet + FL + DNN, in particular, requires only 24.548% GPU memory and 945 s of training time,
while offering the fastest inference speed of 28 ms. FL-based model offer enhanced data privacy, aligning with
regulatory frameworks like HIPAA and GDPR, which is critical for clinical use. The slightly larger model sizes
(27.1 MB for UNet+FL+DNN) are still manageable on modern edge devices and embedded systems, making
these models highly practical for deployment in decentralized clinical infrastructures without compromising
diagnostic accuracy.

Conclusion

A privacy-preserving FL framework was proposed for skin disease diagnosis, evaluated through four strategic
approaches: strategy (a) employed MobileNetV2 with transfer learning and DNN classification, strategy (b)
utilized UNet for feature extraction followed by DNN classification, strategy (c) integrated FL with MobileNetV2
and DNN, and strategy (d) combined UNet-based feature extraction with FL and DNN classification to maintain
data decentralization while enhancing diagnostic accuracy. Both IID and Non-IID datasets were used for
comprehensive assessment. From the results, strategy (d) achieved the highest diagnostic accuracy of 99.689%
(IID), surpassing MobileNetV2 by 8.16% and UNet by 15.835%. It also recorded the lowest loss of 0.415 (IID),
representing a 17.32% reduction compared to MobileNetV2 and 32.21% decrease relative to UNet. Strategy
(c) delivered performance with 98.918% accuracy (IID) and a loss of 0.425, improving substantially over
both baseline models though marginally lower than strategy (d). In terms of resource consumption, strategy
(d) required 24.548% GPU memory (IID) and 27.975% GPU process, which were significantly lower than
MobileNetV2 and UNet. Strategy (c) followed closely with 29.708% GPU memory and 31.838% GPU process.
Similar trends were noted for CPU process and virtual memory usage, where federated models consumed fewer
resources while achieving higher accuracy and lower loss values. When comparing strategy d to strategy c, the
former outperformed with 0.771% higher accuracy and 2.35% lower loss which confirms that incorporating
feature extraction through UNet prior to federated optimization results in superior classification outcomes
compared to direct transfer learning fine-tuning in a federated environment. The proposed strategy (d) model
effectively combines high diagnostic accuracy with strong data privacy safeguards. It ensures reliable, scalable,
and privacy-preserving skin disease detection across both IID and Non-IID data distributions. These capabilities
position the model as a robust Al-driven dermatological solution, highly suitable for real-world telemedicine
and remote healthcare applications.

Data availability

The data supporting the findings of this study are available from the corresponding author upon reasonable
request. We confirm that all necessary steps were taken to ensure the privacy and confidentiality of the data used
in this research. The HAM10000 dataset is publicly available and does not contain any personally identifiable
information. Additionally, the proposed federated learning approach inherently protects data privacy by keeping
the raw data localized to each client device. No identifying information or individual patient details were includ-
ed in the manuscript.https://www.kaggle.com/datasets/vrindaat/ham10000-dataset
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