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Machine learning analysis of oral
solid dosage formulation solubility
variations by adjusting pressure
and temperature
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In this research work, we hand out a comprehensive study on predicting the solubility of tolfenamic
acid and the density of supercritical carbon dioxide (SC-CO,) using a combination of machine learning
models and hyper-parameter tuning techniques. The dataset is composed of input features, specifically
temperature and pressure, which are used to predict the target outputs, namely the density of SC-CO,
and the solubility of tolfenamic acid. Three distinct models, namely ADA-GPR (AdaBoost on Gaussian
Process Regression), ADA-SVR (AdaBoost on Support Vector Regression), and ADA-LR (AdaBoost

on Linear Regression), were employed to correlate the relationships between the inputs and outputs
for the dataset. The hyperparameters of these models were optimized using the Chimp Optimization
Algorithm (ChOA) to enhance performance. In predicting the solubility of tolfenamic acid, ADA-GPR
achieved excellent results, with an R-squared value of 0.98806, an RMSE of 0.10133, and an MAE of
0.07790. Additionally, ADA-SVR and ADA-LR delivered competitive outcomes, attaining R-squared
scores of 0.96056 and 0.86815, respectively. In the realm of SC-CO, density prediction, it is noteworthy
to highlight that the ADA-GPR model has emerged as the preeminent performer with an exceptional
R-squared score of 0.99265, RMSE of 9.7870, and MAE of 7.81506. ADA-SVR and ADA-LR exhibited
favorable performance as well, achieving R-squared scores of 0.8841 and 0.87774, respectively. This
study helps pharmaceutical and chemical companies predict tolfenamic acid solubility and SC-CO,
density. The proposed models and ChOA hyper-parameter optimization solve solubility and density
prediction problems in research and industry.
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Prediction and description of drug solubility has been of fundamental importance for development of advanced
processing in various fields such as food and pharmaceutical industry. To control, design, and develop
crystallization process as well as improving the drug solubility in aqueous media, knowing the solubility of
medicines in various solvents is critical' ™. It can help one find the best solvent for production of nanomedicine
via solution method. Computational techniques which are capable of predicting drug solubility in wide
conditions with great accuracy, are useful since they can save time and cost for experimental measuring solid
materials solubility in different solvents and conditions®.

Different computational models can be suggested for prediction of solid solubility in solvents such as
thermodynamics, molecular modeling, and machine learning (ML). The advantages and disadvantages for each
model have been reported*®~°. For direct and facile estimation of drug solubility, the models based on ML are
preferred provided that some measured data are available for training these models. The ML models have been
extensively developed for estimation of drug solubility in various solvents such as supercritical CO,'%!. Given
that supercritical processing is green and can be used to prepare nanomedicines, knowing the pharmaceutical
solubility in supercritical solvent (SC-CO,) is valuable for development of this unique process'*.

ML models are known as robust methods for data analytics in various fields where the pattern is difficult
to find out. Using these methods helps researchers uncover valuable insights and detailed patterns in complex
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datasets'®. This empowers them to make accurate predictions and informed decisions'*1%17. This approach has
been also used for correlation of drugs solubility to pressure and temperature.

In this study we used AdaBoost Regression with three models including Support Vector Regression (SVR),
Linear Regression (LR), and Gaussian Process Regression (GPR). AdaBoost Regression is a popular and effective
technique for building accurate regression models by combining the predictions of multiple weak regressors
through an adaptive and iterative process'®!°.

LR delineates a linear correlation between independent factors and the dependent variable. It applies a linear
equation to the data by minimizing the sum of squared errors between the observed values in the training
dataset and the model’s predicted values?’. Regression baseline models like LR are computationally efficient
and interpretable. When the features-target variable relationship is non-linear, its performance may be limited.

SVR represents an application of the Support Vector Machine framework specifically adapted for regression
analysis. The methodology aims to delineate an optimal hyperplane within the feature space that best
approximates the data distribution, subject to a defined epsilon (¢)-insensitive loss function. This constraint
establishes a permissible margin around the predicted output, effectively managing data deviations and thereby
mitigating the risk of overfitting during model training?!.

Gaussian Process Regression (GPR) is a flexible non-parametric Bayesian regression method for modeling
non-linear data relationships. GPR uses functions over training data points to represent prediction uncertainty.
A kernel function measures data point similarity and correlation. GPR handles noisy observations and complex
data patterns. Large datasets can make its computation difficult®2.

The central aim of this research is to develop accurate and reliable models to estimate these key properties,
which are crucial in various industrial applications, such as pharmaceutical formulations and green chemistry
processes. Drug solubility in SC-CO, is correlated to the pressure and temperature using these models. For
the first time, we developed these models to predict tolfenamic acid solubility in SC-CO, as well as the density
of supercritical carbon dioxide. Our contributions lie in the implementation and evaluation of an ensemble
learning approach, namely Adaptive Boosting Regression (AdaBoost), utilizing base models including LR, GPR,
and SVR. The utilization of AdaBoost allows for the enhancement of predictive capabilities, enabling accurate
and robust estimations of solubility and density. Furthermore, the use of the Chimp Optimization Algorithm
(ChOA) for hyper-parameter tuning optimizes model performance and is one of novel aspects of this work.

This work offers several new contributions that distinguish it from previous studies on solubility and density
prediction in supercritical systems:

 Novel integration of AdaBoost with Gaussian Process Regression (ADA-GPR): This ensemble structure has
not previously been applied to model tolfenamic acid solubility or SC-CO, density, demonstrating superior
accuracy in capturing non-linear thermodynamic relationships.

o Use of the Chimp Optimization Algorithm (ChOA) for hyperparameter tuning: This is the first study to em-
ploy ChOA for optimizing ensemble regression parameters in pharmaceutical solubility modeling, improving
convergence efficiency and predictive robustness.

o Dual-property modeling framework: Unlike earlier studies that modeled either solubility or density inde-
pendently, this work simultaneously predicts both, providing a more comprehensive understanding of super-
critical CO, behavior.

« Insightful visualization through 3D and 2D response surfaces: The generated surfaces reveal coupled effects of
pressure and temperature and can serve as a foundation for future texture analysis and morphological surface
studies.

Together, these innovations advance the application of machine learning in supercritical fluid modeling, offering
both methodological novelty and practical value for pharmaceutical and green manufacturing processes.

Data set evaluation

The data have been acquired from a reputable source?* and comprises four distinct variables, specifically Pressure,
Temperature, Density, and Solubility of tolfenamic acid. The experimental design incorporates Pressure and
Temperature as the primary independent parameters. The resultant observed outcomes, or dependent variables,
are quantified as the Solvent Density and the Solubility of tolfenamic acid. Other works used the same data for
this drug and developed ML models®*?. The complex, multidimensional interrelationships existing among these
four variables are comprehensively illustrated in Fig. 1, which displays a pair plot (or scatterplot matrix)?%.

Methodology

Chimp optimization algorithm (ChOA)

ChOA is a swarm-based algorithm that draws inspiration from the individual intelligence of chimpanzees and
their cooperative hunting behavior driven by sexual motivation®. In this approach, each chimp represents a
candidate solution within the population. The evolutionary process is guided by the top four solutions, namely,
the attacker, driver, barrier, and chaser solutions. These individuals play pivotal roles in promoting exploration
and exploitation in two distinct phases of the algorithm. During the first phase, the chimps collaboratively drive,
block, and chase the prey to explore the solution space. In the second phase, they collectively attack the prey to
exploit promising areas. The positional updates of each solution are influenced by either the four most optimal
solutions or by the arithmetic mean of all four solutions, thereby facilitating a harmonious equilibrium between
the processes of exploration and exploitation. In order to augment the algorithm’s performance, the position-
updating mechanism incorporates six distinct types of chaotic maps. This strategic inclusion guarantees efficient
evasion of local optima and expedites the rate of convergence.
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Fig. 1. Distribution of parameters in the dataset.

The positional updates of the attacker, driver, barrier, and chaser entities are governed by a set of mathematical
equations, which are employed to determine their respective locations in the given system?”-2%;

Lattacker = Lattacker — Al (clxattack:er - M1£U)
Tdriver = Ldriver — A2 (CQxdTiUE’I" - MQx)
M3$)

Tbarrier = Tbarrier — AS (CSmba'rrie'r -

Lchaser = Lchaser — A4 (C4xchaser - M4'77)

In the above equations, the positions of the attacker, driver, barrier, and chaser are denoted by Xa¢ttacker»
Xdrivers Xbarrier> and Xchaser, respectively. Additionally, M; represents the chaotic map. The calculation of
additional parameters, such as A and C, is performed in the following manner?’:

A:2'f'7‘1—f
022-1"2
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In the final position updating equation, r, and r, represent random variables within the range [0, 1], while
f decreases nonlinearly from 2.5 to 0. The equation involves calculating the average of all top four chimps’
positions to update their respective positions?®.

Tattacker T Tdriver + Tbarrier + Lchaser

4

z(t+1)=

In this study, the mean five-fold cross-validation (CV) score was employed as the objective function for the
ChOA to optimize, ensuring that the selected hyperparameters generalized well across different subsets of the
dataset. The ChOA was configured with a population size of 40 chimps and a maximum of 110 iterations to
balance exploration and convergence speed. The chaotic map type was set to logistic, and the control parameter
fwas linearly decreased from 2.5 to 0 during the optimization process to guide the transition from exploration
to exploitation. Random initialization was applied to all chimps within predefined parameter bounds of each
model, allowing the algorithm to effectively search the solution space for the optimal AdaBoost and base
regressor hyperparameters.

Adaptive boosting (AdaBoost)

Adaptive Boosting Regression (AdaBoost) is a powerful ensemble model widely used for regression tasks.
It operates by combining multiple weak regression models, also known as “base learners,” to create a strong
and robust predictive model. Although models such as GPR are inherently strong learners, the term “weak
learner” in the AdaBoost framework refers not to their standalone capability but to their role as base estimators
whose predictions are iteratively reweighted and combined to further enhance overall model performance.
Unlike traditional ensemble methods that build individual models independently and average their predictions,
AdaBoost follows an adaptive approach that assigns varying weights to training samples during model training®.

The process of AdaBoost can be described as follows: It starts by fitting a weak regressor to the training data,
with equal weight assigned to each data point. The weak regressor could be any regression algorithm capable of
providing slightly better predictions than random chance. After the initial model is trained, AdaBoost identifies
the data points that were mis-predicted with higher errors and increases their weights. This re-weighting process
effectively puts more emphasis on difficult-to-predict data points in the subsequent training iteration.

The subsequent iterations involve training additional weak regressors on the updated dataset, giving higher
importance to the previously misclassified samples. These new weak models are also assigned weights based
on their individual performance in making predictions. The calculations progress for a pre-defined number of
iterations, or until a specified level of accuracy is achieved!®.

The final prediction from the AdaBoost ensemble is obtained by combining the predictions of all weak
regressors in the model. The weight assigned to each base learner’s prediction depends on its performance
during training. In the context of predictive modeling, it is observed that the weight assigned to a weak model in
the final prediction is directly proportional to its level of accuracy. As a result, the ensemble model focuses more
on the base learners that perform well on challenging data points, effectively increasing the overall predictive
power of the model. Figure 2 displays the workflow of this ensemble regression algorithm.

One of the key benefits of AdaBoost is its strength to manage complex relationships and interactions within
the data. It can effectively capture non-linearities and outliers, making it a versatile and robust regression
technique. Additionally, AdaBoost is less prone to overfitting, as it prioritizes data points that are more difficult
to predict, preventing the model from overly relying on noisy or irrelevant features.

The AdaBoost framework was selected because it effectively enhances the performance of individual regressors
by adaptively focusing on difficult-to-predict data points, thereby reducing both bias and variance. In this study,
solubility and density relationships exhibited strong non-linearity and heterogeneity—conditions under which
single models often struggle. AdaBoost’s iterative reweighting mechanism allows weak learners to be sequentially
improved, resulting in a robust ensemble that captures complex dependencies without overfitting. This balance
between model accuracy and generalization makes AdaBoost particularly suitable for thermophysical property
prediction tasks involving interacting process variables such as temperature and pressure.

In this study, the primary hyperparameters of the AdaBoost model, including the number of estimators (i.e.,
the number of weak learners), the learning rate (which controls the contribution of each weak learner), and the
parameters of the base regressors (such as kernel type and regularization factors for SVR, covariance kernel
parameters for GPR, and coeflicient weights for LR), were finely tuned using the ChOA. This optimization
ensured that the ensemble achieved an optimal balance between bias and variance, leading to enhanced
prediction accuracy and model robustness.

Base models development

The base models developed and utilized include Linear Regression (LR), Gaussian Process Regression (GPR),
and Support Vector Regression (SVR). These models function as the core components of the ensemble learning
framework implemented through AdaBoost.

The selection of these base models was motivated by their complementary modeling capabilities. LR
provides a simple and interpretable linear baseline for benchmarking performance, SVR introduces flexibility
through kernel functions that can model moderate non-linear patterns, and GPR offers a fully probabilistic
framework that accounts for uncertainty and captures highly non-linear behaviors. Using this diverse trio within
the AdaBoost ensemble ensures that both linear trends and complex, non-linear interactions among process
parameters are effectively learned, thereby improving the robustness and generalizability of predictions.

Linear regression is a linear modeling technique that establishes a relationship between the input independent
parameters X and the output variable Y by fitting a linear equation. The model can be represented as®:
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Fig. 2. The AdaBoost regression workflow.
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In thisequation, 3 o, 3 1, . , B , indicate the coefficients to be estimated, X1, X2, ... , X, stand for the input
features, and e denote the error term. LR endeavors to minimize the summation of squared errors between the
dataset and predicted values, thereby exhibiting computational efficiency and interpretability. However, it may
not perform well when the underlying relationship between the features and the target variable is non-linear™®.
But this shortcoming can be handled when it is used as a base model of ensemble method such as Adaboost.

For regression problems, researchers developed SVR, a variant of the general-purpose SVM. SVR aims
to find a hyperplane that best fits the data, while also controlling the deviations (epsilon-insensitive zone) to
achieve a balance between fitting the training data and preventing overfitting. The kernel trick is employed to
transform the data into higher-dimensional space, enabling SVR to capture non-linear relationships®!. SVR
is effective in handling high-dimensional data and is less sensitive to outliers. However, choosing appropriate
hyperparameters and kernel functions is crucial for achieving optimal performance.

GPR is a Bayesian technique that models the relationship between X and the target variable Y as a
distribution over functions. The predictive distribution can be represented as®:

Y~ GP (1 (X),k(X,X"))

Here, the term p (X) represents the mean function, while & (X, X’) denotes the kernel function, which
assesses the similarity between the data points X and X’. GPR is capable of capturing complex non-linear
relationships in the data and effectively handles noisy observations. However, it may suffer from computational
complexity for large datasets due to the need to invert a covariance matrix.

Results and discussion
The predictive models were implemented using Python 3, leveraging key libraries such as Pandas and NumPy
for data manipulation and analysis. We present the results of the three models evaluated for both solubility and
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Predicted Values

Model R%score | R?(95% CI) | RMSE MAE

ADA-GPR | 0.98806 | (0.983-0.992) | 1.0133E-01 | 7.78966E—02

ADA-SVR | 0.96056 | (0.951-0.970) | 1.6666E-01 | 1.25660E—01

ADA-LR | 0.86815 | (0.851-0.885) | 3.2685E-01 | 2.27757E-01

Table 1. Solubility prediction results.
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Fig. 3. Data set and predicted values comparison for solubility using ADA-GPR.

density prediction, namely ADA-GPR, ADA-SVR and ADA-LR. The performance of each model in predicting
the solubility of tolfenamic acid in SC-CO, is summarized in Table 1.

Table 1 demonstrates that the ADA-GPR model attained the highest coefficient of determination (R?
score) of 0.98806, signifying an exceptional connection between the predicted and actual solubility values in
the dataset. Furthermore, the aforementioned analysis resulted in the attainment of the most minimal RMSE
value, measuring at 1.0133E—01, and a MAE value of 7.78966E-02. These outcomes unequivocally showcase
the exceptional precision and efficacy of this model in the estimation of solubility. Figures 3, 4 and 5, which
are comparisons of data set and model predicted solubility values using all models, confirm the superiority of
ADA-GPR.

The higher accuracy of ADA-GPR arises from its capacity to represent complex, non-linear dependencies
between temperature, pressure, and solubility. In contrast, ADA-LR underperforms because it assumes linearity,
while ADA-SVR’s performance is constrained by its kernel choice and sensitivity to scaling. This highlights the
strong non-linear nature of solubility behavior in supercritical systems.

The predictive capabilities of each model for estimating the density of SC-CO, are summarized in Table 2.
As seen in Table 2, the ADA-GPR model has great accuracy in predicting the density of SC-CO,, with a score
of 0.99265 by of R? score metric. The RMSE for the ADA-GPR model was 9.7870E + 00, which indicates that
the average error in predicting density was relatively low. The MAE of 7.81506E + 00 further highlights the high
precision and reliability of the ADA-GPR model for density estimation. The comparisons of predicted and actual
data for density of solvent are illustrated in Figs. 6, 7 and 8.

The ADA-GPR’s superior density predictions arise from its ability to model smooth non-linear thermodynamic
relationships, unlike ADA-LR or ADA-SVR, which struggle to represent coupled temperature—pressure effects.
This explains why its R* and error metrics are notably stronger across all operating conditions.

Overall, the ADA-GPR model outperformed the other models for both solubility and density prediction.
It demonstrated remarkable accuracy and predictive capabilities, making it the best model for estimating the
solubility of tolfenamic acid in SC-CO, and the density of SC-CO, itself. So, the final analysis done using this
model and Figs. 9 and 10 are 3D response surfaces of both outputs using ADA-GPR. Figures 11, 12, 13 and
14 depict 2-dimensional illustrations of output patterns resulting from variations in inputs. The variations of
solubility and density of solvent can be analyzed via the modeling outputs. As expected, density is reduced with
increasing temperature, and rise with enhancing pressure in the process. On the other hand, it is seen that the
drug solubility is increased with enhancing both parameters. For drug solubility in supercritical solvents, the
influence of cross-over pressure point should be considered. This is indeed a point where the solubility variations

Scientific Reports |

(2026) 16:2010 | https://doi.org/10.1038/s41598-025-31759-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

@ Test Data 301 ¢ Train Data
—— Perfect Prediction ° —— Perfect Prediction
3.0 1 ®
2.54
2.5
2 $ 201
2 3
0 20 (]
> >
T T
[ D 154
- -
L R
T 1.5 T
[} (]
- -
a -
1.0
0.5 A
0.5 4
)
O.'5 le 1?5 2f0 2;5 3:0 04'5 l.IO 14'5 2j0 2;5 3:0
Actual Values Actual Values
Fig. 4. Data set and predicted values comparison for solubility using ADA-LR.
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Fig. 5. Data set and predicted values comparison for solubility using ADA-SVR.

Model R?score | R? (95% CI) | RMSE MAE

ADA-GPR | 0.99265 | (0.988-0.996) | 9.7870E+00 | 7.81506E + 00
ADA-SVR | 0.88410 | (0.872-0.896) | 2.3654E+01 | 1.91280E+01
ADA-LR 0.87774 | (0.861-0.892) | 2.4871E+01 | 2.03660E+01

Table 2. Solvent density correlations via ML.

change beyond this point. Below this point, the solubility is decreased with enhancing temperature, while above
this point, the solubility is increased with enhancing temperature.

Figure 9 illustrates the three-dimensional response surface generated using the ADA-GPR model for
tolfenamic acid solubility as a function of temperature and pressure. The smooth curvature of the surface reflects
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Fig. 7. Data set and predicted values comparison for solvent density using ADA-LR.

the strong non-linear relationship among the parameters and confirms that solubility increases with both
temperature and pressure up to the crossover region. Figure 10 presents the three-dimensional response surface
for SC-CO, density predicted by the ADA-GPR model. The figure clearly demonstrates that density decreases
with increasing temperature and increases with pressure, consistent with thermodynamic expectations for
supercritical fluids. Other models indicated similar behavior for tolfenamic acid based on the effects of pressure
and temperature?*2°,

Figure 11 shows the two-dimensional plot illustrating how solubility varies with pressure at a constant
temperature. The positive correlation indicates that higher pressure enhances solubility due to the increased
solvent density, thereby improving the solvent power of SC-CO,.

Figure 12 displays the influence of temperature on the solubility of tolfenamic acid at fixed pressures. The
figure highlights the crossover pressure effect, where solubility behavior transitions from a decreasing to an
increasing trend with temperature depending on whether the system is below or above the crossover point?°.
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Figure 13 illustrates the relationship between pressure and SC-CO, density. The nearly linear upward trend
indicates that increasing pressure substantially enhances CO, density, reflecting the compressible nature of the
supercritical phase and its impact on solvation behavior.

Figure 14 demonstrates the effect of temperature on the density of SC-CO, at constant pressures. As
temperature rises, density decreases due to thermal expansion of the fluid, a trend that inversely correlates with
solubility at lower pressures but supports it beyond the crossover region?.

Overall, the higher predictive power of ADA-GPR across both solubility and density tasks underscores
that the studied system is governed by non-linear, interdependent variables. Sumayli et al.?> obtained the
same observations for density and solubility as well. The ChOA-optimized hyperparameters further enhanced
generalization by balancing bias and variance. The consistent pattern of ADA-GPR outperforming the others
emphasizes that solubility and density in SC-CO, are better represented through flexible, uncertainty-aware
models rather than rigid or purely deterministic regressors.

To further assess the robustness and generalizability of the proposed ADA-GPR-ChOA framework, external
validation was performed using datasets for three additional drugs—Docetaxel, Anastrozole, and Loratadine—
under comparable supercritical CO, conditions. The model maintained high predictive accuracy across these
compounds, yielding R2 scores of 0.98457, 0.97283, and 0.98941 for solubility prediction, and 0.99162, 0.98735,
and 0.99308 for density estimation, respectively. The close alignment of these results with those obtained for
tolfenamic acid demonstrates that the developed method remains stable across diverse molecular structures
and physicochemical profiles. This consistent performance confirms the model’s strong generalization capability
and its potential for broader application in solubility and thermodynamic property prediction for various
pharmaceutical compounds.

When compared with the recent study by Zhang et al.?4, our ADA-GPR-ChOA framework achieved slightly
lower R? values on the primary dataset; however, our results demonstrated narrower and more consistent 95%
confidence intervals, indicating stronger reliability of the predictions. Moreover, unlike Zhang et al., who did
not report any external validation, this study extended testing to three additional drug systems—Docetaxel,
Anastrozole, and Loratadine—confirming the model’s stability and superior generalizability across diverse
compounds. This comparative advantage underscores the robustness and broader applicability of our approach
beyond single-compound optimization.

Scientific Reports |

(2026) 16:2010 | https://doi.org/10.1038/s41598-025-31759-8 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

v T=320K .
T=330K ° L]
e T=340K °
[ ]
251 ®
[ ]
[ ]
[ ]
®
»m- [ ]
= °
X
< 2.0 °
-] ®
(%)
< [ ]
Y °
£ °
m
5 [ ]
%1.5— ®
- [ ]
L
o { ]
> )
=
= v
s ¢ vV
F] ° v?
[=] ] vYY
S 10 ° N
v ¥
° v ¥
v
v
° v Y
v
o v Y
v
[ ] v
A v
05{ @ v?
v
v
v
15 20 25 30 35 40

Pressure (MPa)

Fig. 11. Effect of pressure on solubility changes.

Conclusion

This study developed and optimized ML models to predict the solubility of tolfenamic acid and the density of
supercritical CO,, with hyperparameter tuning performed using the Chimp Optimization Algorithm (ChOA).
Among the tested models, the ADA-GPR (AdaBoost with Gaussian Process Regression) achieved the highest
predictive accuracy for both solubility and density, with R? values exceeding 0.98. These results confirm the
model’s ability to capture complex, non-linear thermodynamic behaviors. The findings demonstrate the
frameworK’s potential for improving process design and optimization in pharmaceutical and green chemistry
applications.

Future research can extend this work by scaling the model to larger and more diverse datasets, incorporating
molecular descriptors and additional process parameters, and integrating it into real-time industrial solubility
prediction systems. Moreover, the 3D response surfaces obtained in this study can serve as a basis for advanced
texture analysis—similar to recent approaches in morphological surface characterization®® to quantitatively
explore the surface features and complexity of solubility and density response patterns.
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Fig. 12. Effect of temperature on solubility changes.
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