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This article presents a novel framework for mean square finite-time synchronization (MSFTSn) 
and mean square finite-time contractive synchronization (MSFTCSn) of fractional-order stochastic 
delayed neural networks (FOSDNNs) subject to hybrid control. The proposed hybrid control 
strategy is designed to guarantee synchronization of the error system within a finite time horizon. 
By combining continuous feedback with impulsive regulation, the hybrid mechanism effectively 
suppresses stochastic disturbances and compensates for time-delay effects, which significantly 
improves convergence rate and enhances contractive stability. The analytical approach integrates 
stochastic analysis with Lyapunov-based methods, the fractional Gronwall inequality, and an improved 
Razumikhin framework to establish novel synchronization criteria. In addition, a rigorous foundation 
is developed to address discontinuous neuron activation functions through set-valued map theory. 
Unlike integer-order models, the Caputo fractional derivative embeds past error trajectories, thereby 
capturing memory and hereditary properties of neural systems. This leads to a more realistic neural 
representation and reinforces the synchronization results. Theoretical findings demonstrate that 
hybrid control extends the range of stabilizing parameters beyond standard feedback schemes. Finally, 
numerical simulations are presented to validate the effectiveness and robustness of the proposed 
strategy, confirming its strong applicability in realistic neural network models.
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List of symbols
R,R+,Z+	� Sets of real numbers, positive real numbers, and positive integers
Rn	� n-dimensional real space equipped with the Euclidean norm ∥ · ∥
A > 0 (A < 0)	� Matrix A  is positive (negative) definite
A −1, A T 	� Inverse and transpose of matrix A
∗	� Represents a symmetric block in a matrix
diag	� Denotes a block diagonal matrix
E(·)	� Expectation operator
{tk}k∈Z+ 	� Increasing impulse sequence satisfying ϕ1 ≤ tk+1 − tk ≤ ϕ2, ∀k
ϕ1, ϕ2	� Minimum and maximum impulse dwell times on [0, T]
BH(t)	� Fractional Brownian motion with Hurst parameter H ∈ (1/2, 1)
C(H, W)	� Set of continuous functions ω : H → W
PC(H, W)	� Set of piecewise continuous functions with finite discontinuities
P Cτ = P C([t0 − τ, t0],Rn)	� Space of piecewise continuous functions with delay τ
∥ψ∥τ = sups∈[t0−τ,t0] ∥ψ(s)∥	� Supremum norm on [t0 − τ, t0]
K	� Class of functions b(δ) ∈ C(R+,R+) satisfying b(0) = 0, b(δ) > 0 for 

δ > 0
b(δ)	� Strictly increasing function on R+
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Neural networks (NNs) have emerged as powerful tools in computational models due to their capability of 
approximation, adaptive learning, and non-linear mapping efficiency. They are extensively applied in control, 
optimization, and signal processing, where conventional methods face challenges arising from system complexity 
or incomplete modelling1–4. In recent years, integer-order stochastic NNs have been widely adopted in diverse 
engineering and scientific fields due to their strong modeling capability under uncertainty. They have been 
successfully utilized for climate and financial forecasting through stochastic process adaptation5, for enhancing 
computational efficiency in machine learning via stochastic computing architectures6, and for ensuring secure 
communication using synchronization-based control schemes7. These applications highlight the effectiveness of 
stochastic NNs in handling randomness, time delays, and uncertain dynamics in complex real-world systems. 
However, traditional NNs are inherently based on integer-order dynamics and thus may not adequately capture 
the memory and hereditary characteristics present in many physical and biological processes8–10. To tackle this, 
fractional calculus has been integrated into the neural network framework, which in turn gives rise to fractional-
order NNs. By incorporating fractional derivatives into activation dynamics and learning rules, fractional-order 
NNs introduce non-local and memory-dependent behavior, which boosts convergence speed, stability, and 
generalization compared to classical NNs11–14. This extension not only enriches the representational power of 
neural architectures but also integrates seamlessly with fractional-order control systems, making fractional-
order NNs a robust framework for intelligent modelling and control in complex, uncertain, and memory-driven 
environments. Evolving from this foundation, researchers have further extended the notion to fractional-order 
NNs with delay, in which time delays are introduced to more accurately represent systems that experience delayed 
feedback, control, communication lags, or transport phenomena15–17. These networks exhibit improved dynamic 
behavior, enhanced stability analysis, and superior modelling accuracy, thereby providing an effective paradigm 
for addressing real-world problems characterized by both fractional-order dynamics and time delays18–20.

Furthermore, building upon this, fractional-order stochastic NNs have been designed to deal with the 
memory-dependent characteristics of fractional calculus and the randomness of stochastic environments. Thus, by 
integrating these two aspects, fractional-order stochastic NNs achieve efficient modelling fidelity and adaptability, 
which makes them appropriate for uncertain systems that contain noise, perturbations, and randomness21–23. 
Recent studies have further demonstrated their wide applicability in real-world problems, including financial 
forecasting and macroeconomic analysis involving impulsive and stochastic effects24,25, fault-tolerant control 
of uncertain fractional-order neural systems with stochastic sensor faults26, and fractional stochastic partial 
differential equations for advanced scientific and engineering applications27. These studies emphasize the strong 
adaptability and effectiveness of fractional-order stochastic NNs in capturing hybrid dynamics influenced by 
randomness, delays, and impulsive behaviors. Besides, they outperform integer-order or solely deterministic 
NNs in terms of stability, faster convergence under changing input, and synchronization performance. Added 
to this, the significant branch of research concentrates on the role of discontinuous activation functions in 
fractional-order stochastic neural networks. Although such functions introduce analytical difficulties due to 
non-smooth state trajectories, they have been shown to significantly enhance synchronization and control 
performance, particularly in finite-time analysis28. These discontinuous mechanisms expand the applicability 
of fractional-order stochastic NNs to problems where there are sudden changes or switching characteristics that 
occur in the system dynamics29–32. Likewise, fractional-order stochastic NNs with delay extend this framework 
by incorporating the explicit time delays into the system. Time delays have major implications in effectively 
modelling communication lags in networked systems, transport delays in distributed processes, and feedback 
delays in biological and control systems. Also, fractional-order stochastic NNs with delay models enable the 
derivation of rigorous stability and synchronization criteria through Lyapunov-Krasovskii functionals, stochastic 
analysis, and fractional Gronwall inequalities, offering a mathematically sound framework for capturing 
stochastic, hereditary, and delay-dependent effects simultaneously.

As a result, they provide a complete and scalable approach to intelligent modelling and control in a variety of 
advanced applications, including robotics, power systems, biomedical engineering, and large-scale distributed 
networks33–35. In addition to stochastic disturbances and delays, many real processes are influenced by impulsive 
effects, which emerge as abrupt state changes caused by shocks, switching actions, or external perturbations. To 
capture such phenomena, the framework has been extended to fractional-order stochastic NNs with impulses, 
where impulsive differential operators are incorporated into the fractional stochastic setting. The incorporation 
of impulses improves the modelling capability of these networks, but it also poses considerable analytical hurdles, 
as the system trajectories are influenced simultaneously by fractional memory, stochastic disturbances, temporal 
delays, and instantaneous state jumps. To address these challenges, advanced tools like as piecewise Lyapunov 
functionals, impulsive integral inequalities, and stochastic analysis have been used to create sufficient criteria 
for stability, boundedness, and synchronization. As a result, fractional-order stochastic NNs with discontinuous 
activations, delays, and impulses offer a comprehensive paradigm for analyzing and controlling hybrid stochastic 
systems characterized by memory dependence, uncertainty, and abrupt dynamic variations, with applications 
ranging from power systems and communication networks to biomedical signal processing and robotic control36.

In modern neural and control system analysis, finite-time stability (FTS) ensures that trajectories reach 
equilibrium within a specified duration, offering faster convergence than asymptotic stability, which allows 
convergence only as time approaches infinity. This time-constrained behavior is particularly valuable for safety-
critical and rapid-response applications where timely convergence is essential37–42. Moreover, the concept of 
finite-time contractive stability (FTCS) strengthens this framework by ensuring that the distance between 
any two trajectories diminishes within finite time, which is crucial for synchronization in large-scale or 
interconnected neural networks subject to modeling inaccuracies, uncertainties, and external disturbances43–45. 
When randomness and noise are present, mean-square stochastic finite-time stability extends this notion by 
analyzing convergence through second-order moments, ensuring that the expected squared deviation from 
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equilibrium vanishes within a finite time frame. Furthermore, the integration of fractional calculus gives rise 
to mean-square stochastic fractional finite-time stability, where fractional-order derivatives effectively capture 
long-memory and non-local dynamics characteristic of many real-world systems46–48. Hence, the fusion of 
fractional operators with stochastic finite-time frameworks establishes a more flexible and realistic modeling 
paradigm, facilitating neural and control systems that achieve rapid convergence, efficient memory utilization, 
and enhanced robustness against stochastic perturbations.

Despite significant advancements in the stability analysis of stochastic and fractional-order NNs, numerous 
unresolved difficulties hinder their practical implementation in real-time and safety-critical contexts. The main 
challenges associated with fractional-order models compared with integer-order systems can be summarized as 
follows: 

	1.	 Fractional-order systems exhibit memory and hereditary characteristics, causing their current states to de-
pend on historical trajectories, which complicates dynamic modeling and analytical formulation.

	2.	 The presence of nonlocal fractional derivatives and stochastic effects increases the mathematical difficulty in 
establishing Lyapunov-based stability criteria and deriving feasible finite-time conditions.

	3.	 Strong coupling among system states, along with sensitivity to the fractional derivative order, makes control-
ler design and stability analysis more complex compared with integer-order NNs.

These inherent complexities significantly intensify the analytical and control design challenges in FOSDNNs. 
Although considerable progress has been achieved, most existing studies emphasize asymptotic or exponential 
stability, which guarantees convergence only over an infinite horizon and thus falls short for applications 
requiring rapid stabilization within a finite duration. While fractional calculus effectively captures long-memory 
effects and stochastic modeling enhances robustness against random perturbations, the combined influence 
of time delays and impulsive behaviors introduces additional dynamic complexity that remains insufficiently 
explored within finite-time constraints. This limitation highlights a critical research gap in developing a unified 
theoretical framework capable of simultaneously addressing MSFTSn and MSFTCSn for FOSDNNs under hybrid 
control. The motivation of this study, therefore, lies in bridging this gap by formulating a rigorous framework 
that establishes finite-time stability criteria, ensuring fast convergence, improved robustness, and stronger 
adaptability of hybrid-controlled NNs operating under stochastic disturbances, memory effects, delays, and 
impulsive influences. Based on this motivation, the key contributions of this study are summarized as follows: 

	1.	 A comprehensive hybrid control framework is proposed to overcome the analytical and design challenges of 
FOSDNNs by simultaneously achieving MSFTSn and MSFTCSn under the combined influence of stochastic 
disturbances, delays, impulses, and memory effects, thereby addressing the identified research gap in unified 
finite-time synchronization.

	2.	 The developed approach employs Filippov set-valued mapping, free-weighting matrices, and advanced in-
equality techniques to manage both continuous and discontinuous activations, ensuring less conservative 
stability conditions and accurate finite-time convergence analysis.

	3.	 The framework integrates fractional-order dynamics, hybrid control, and stochastic characteristics into a 
single formulation, effectively enhancing robustness, convergence speed, and adaptability in uncertain and 
time-delayed neural network environments, as demonstrated through detailed numerical simulations.

Furthermore, to facilitate subsequent analysis, the essential mathematical tools, notation, definitions, and 
lemmas used throughout the paper are presented in the following preliminaries section.

Preliminaries
System description
Consider the following fractional-order neural networks (FONNs) model:

	

C
0 Dβ

t x(t) = −Ax(t) + Bf
(
x(t)

)
+ Cf

(
x(t − τ(t))

)
,

x(t0 + l) = δ(l).
� (1)

Where β ∈ (0, 1) denotes the fractional order, x(t) ∈ Rn is the state vector of the FONNs (1); A ∈ Rn×n 
represents a diagonal self-connection matrix; B, C ∈ Rn×n correspond to the connection weight matrix, the 
delayed connection weight matrix, respectively. The function f : Rn → Rn denotes the neuron activation 
function, satisfying f(0) = 0. The notation τ(t) represents the time varying delay, and it satisfies 0 ≤ τ(t) ≤ t. 
The initial function δ(l) ∈ P Cτ  is defined for t0 − τ ≤ l ≤ t0.

Assumption 1  The nonlinear function f in system (1) is assumed to satisfy

	
L1 ≤ f(κ1) − f(κ2)

κ1 − κ2
≤ L2, ∀κ1, κ2 ∈ R, κ1 ̸= κ2,

where f(0) = 0, and L1, L2 ∈ Rn×n are diagonal matrices.
Let K  and M  be two separable Hilbert spaces, and L (K , M ) be the space of bounded linear operators 
from K  into M , L (K ) = L (K , K ). ∥ · ∥ represents the norm in K , M , L (K ), and L (K , M ). Let 
(Ω, F , {Ft}t≥0, P) be a complete filtered probability space satisfying that F0 contains all P−null sets of 
F . The noise-free system (1) is referred to as the drive system, and its corresponding response system can be 
expressed as follows:
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C
0 Dβ

t y(t) = [−A y(t) + B f(y(t)) + C f(y(t − τ(t))) + Du(t)] + h(t, y(t))dBH(t)
dt

,

y(t0 + l) = ϵ(l).
� (2)

Where, D represents the input weight matrix, u(t) ∈ Rn denotes the hybrid control input defined later, and 
ϵ(l) ∈ P Cτ . h(·, ·) ∈ L 2([0, ∞) × K ; L (K , M )) is continuous nonlinear mapping functions, with 
h(·, ·) is the noise intensity function. Let B = {B(t)}t≥0 be a zero-mean Brownian motion stochastic 
perturbation defined on (Ω, F , {Ft}t≥0, P), while fBm is a family of Gaussian processes indexed by Hurst 
parameter BH(t), H ∈ (0, 1). According to49, a K −value stochastic process {y(t)}t≥0 is called a mild 
solution of the system (2), if the stochastic process {y(t)}t≥0 is continuous and Ft adapted, the function 
h(·, ·) ∈ L 2([0, ∞) × K ; L (K , M )) and the β-order R-L fractional integral equation of (2) holds for every 
t with probability one.

In the following, the error system e(t) is derived from the master system (1) and the slave system (2), and its 
dynamics are expressed through the following formulation.

	

C
0 Dβ

t e(t) = [−A e(t) + B f(e(t)) + C f(e(t − τ(t))) + Du(t)] + h(t, e(t), e(t − τ(t)))dBH(t)
dt

,

e(t0 + l) = η(l),
� (3)

where e(t) = y(t) − x(t), f(e(t)) = f(y(t)) − f(x(t)), f(e(t − τ(t))) = f(y(t − τ(t))) − f(x(t − τ(t))), 
and η(l) = ϵ(l) − δ(l).

Control mechanism
To realize a mean square finite-time contractive synchronization between stochastic delayed neural networks (2) 
and the noise-free derive system (1), we design the following controller input u(t) is presented as:

	
u(t) =u1(t) + u2(t) = −K(y(t) − x(t)) +

∞∑
k=0

[Mk(y(t) − x(t)) − (y(t) − x(t))]δ(t − tk), � (4)

where K ∈ Rn×n is a constant matrix and Mk  is the impulsive control gain matrix; δ(·) denotes the Dirac 
delta function; t0 = 0 is the initial time, and {t1, t2, . . . , tN −1, tN } such that tN < T  for give T > 0 is a 
finite sequence of impulsive instants with lim

k→+∞
tk = +∞, where N  denotes the number of impulse instances. 

Assume that throughout this paper the error signal e(t) = y(t) − x(t) is right continuous at t = tk, k ∈ Z+, 
i.e., e(tk) = e(t−

k ). When t ̸= tk, k ∈ Z+, according to (4), u(t) = −K(y(t) − x(t)), then

	
C
0 Dβ

t e(t) = [−A e(t) + B f(e(t)) + C f(e(t − τ(t))) + D(−Ke(t))] + h(t, e(t), e(t − τ(t)))dBH(t)
dt

. � (5)

When t = tk, k ∈ Z+ by combining error (3) and control input (4), it is easy to obtain that form25

	 ∆e(tk) = e(t+
k ) − e(tk) = D(Mk − 1)e(t−

k ),� (6)

where e(t+
k ) = lim

h→0+
e(tk + h), then

	 e(t+
k ) = DMke(t−

k ).� (7)

The controller u2(t) induces instantaneous changes in the state of system (3) at the impulse instants tk  that 
is, u2(t) acts as an impulsive control for system (3). Accordingly, the resulting closed-loop nonlinear delayed 
system under the hybrid control u(t) can be expressed as follows:

	




C
0 Dβ

t e(t) = [−(A + DK) e(t) + B f(e(t)) + C f(e(t − τ(t)))] + h(t, e(t), e(t − τ(t)))dBH(t)
dt

, t ̸= tk, k ∈ Z+,

e(tk) = DMk e(t−
k ), t = tk,

e(t0 + l) = η(l).
� (8)

Hereafter, some necessary definitions and lemmas are presented in the following manner. They serve as essential 
preliminaries for the analysis and proofs developed later.

Definition 1  46 Let ℏ1, ℏ2, and T be positive real numbers with ℏ2 > ℏ1. The system (8) is said to achieve MS-

FTSn with respect to (ℏ1, ℏ2, T ) if sup
t∈[t0−τ, t0]

E∥η∥2 ≤ ℏ1 implies E∥e(t)∥2 ≤ ℏ2, for all t ∈ [t0, T ], where E 

denotes the expectation operator.

Definition 2  43,46 Assume that there exist positive constants ℏ1, ℏ2, ℏ3, σ, and T with ℏ2 > ℏ1 > ℏ3, and 
σ ∈ (t0, T ), then the systems (8) achieve MSFTCSn with respect to (ℏ1, ℏ2, T ), if it is MSFTSn and additionally 
satisfies E∥e(t)∥2 ≤ ℏ3, for all t ∈ [T − σ, T ].
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Definition 3  50 Let 1
2 < H < 1 be fixed. A real-valued standard fractional Brownian motion (fBm), 

{BH(t), t ≥ 0}, with Hurst parameter H, is a zero-mean Gaussian process possessing continuous sample paths. 
Its fundamental statistical properties are defined as

	

E{BH(t)} = 0, t ≥ 0,

E{BH(t)BH(s)} = 1
2

(
t2H + s2H − |t − s|2H

)
.

Here, H determines the self-similarity and long-range dependence of the process: when H = 0.5, BH(t) 
reduces to the standard Brownian motion, while H > 0.5 indicates positively correlated increments, implying 
a persistent stochastic influence.

Definition 4  4 A function g ∈ C1 ([0, ∞),R) admits a fractional integral of order β (with 0 < β < 1 and 
t ≥ t0), which is defined by

	
t0 Iβ

t g(t) = 1
Γ(β)

ˆ t

t0

g(h)
(t − h)1−β

dh,

where Γ(β) refers to the Gamma function, given by Γ(β) =
+∞́

0
e−ssβ−1ds.

Definition 5  4 Let β ∈ (0, 1) and t ≥ t0. For a function g ∈ C1 ([0, ∞),R), the Caputo fractional derivative 
of order β is given by

	
C
t0 Dβ

t g(t) = 1
Γ(1 − β)

ˆ t

t0

g′(h)
(t − h)β

dh.

Lemma 1  4 If z ∈ C1([0, +∞),R) and n − 1 < β < n, (n ≥ 1, n ∈ Z+), then

	
t0 Iβ

t

(
C
t0 Dβ

t z(t)
)

= z(t) −
n−1∑
k=0

tk

k! z(k)(0).

Under the condition 0 < β < 1, the expression takes the simplified form:

	 t0 Iβ
t

(
C
t0 Dβ

t z(t)
)

= z(t) − z(t0).

Lemma 2  11 Consider a continuously differentiable vector function y ∈ Rn. For every t ≥ t0 and for all β ∈ (0, 1)
, the following inequality holds:

	
C
t0 Dβ

t

(
yT (t)Py(t)

)
≤ 2yT (t)PC

t0 Dβ
t y(t),

where P ∈ Rn×n is a symmetric and positive definite matrix.

Lemma 3  12 Suppose f ∈ C1 ([0, ∞),R) is a function for which the Caputo fractional derivative satisfies

	
C
t0 Dβ

t g(t) ≤ θg(t),

with β ∈ (0, 1) and θ ∈ R. Then the following estimate holds:

	 g(t) ≤ g(t0)Eβ

(
θ(t − t0)β

)
,

where Eβ(·) denotes the Mittag–Leffler function, defined as Eβ(z) =
∞∑

k=0

zk

Γ(kβ+1) .

Lemma 4  24 For any vectors y, z ∈ Rn and any symmetric positive definite matrix Q ∈ Rn×n, the following 
inequality holds:

	 2yT z ≤ yT Q−1y + zT Qz.

Remark 1  The concepts of MSFTSn and MSFTCSn differ in their synchronization precision and robustness 
level. In MSFTSn, the synchronization error e(t) evolves from an initial region ĥ1 to a smaller region ĥ2 within 
a finite time, ensuring that the mean square error remains bounded thereafter. In contrast, MSFTCSn introduces 
an additional contractive condition that further confines the error within a tighter region ĥ3 (ĥ3 < ĥ2) over 

Scientific Reports |         (2026) 16:1999 5| https://doi.org/10.1038/s41598-025-31768-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


[T − σ, T ], enforcing a continuous reduction of the synchronization error even after finite-time convergence. 
This contractive property guarantees higher synchronization precision and enhanced robustness against sto-
chastic perturbations and delays. Hence, MSFTCSn represents a stronger and more reliable synchronization 
form, with its importance lying in its ability to maintain sustained stability and improved resilience compared 
to conventional MSFTSn.

Main results
In this section, we establish the main results for MSFTSn and MSFTCSn for the FONNs considered. The analysis 
is carried out using an appropriate LF in combination with properties of the Mittag–Leffler function. These 
tools enable us to derive sufficient conditions that guarantee synchronization thoery under the given impulsive 
stochastic framework.

NNs with continuous neuron activation function:
Theorem 1  Let {e(t)}t≥0 be a K -valued stochastic process that represents a mild solution of (8) and w1, w2 ∈ K
. Assume that ℏ1, ℏ2, ℏ3, σ, T, µ, and ρ are positive constants satisfying ℏ2 > ℏ1 > ℏ3 and σ ∈ (t0, T ). Consider 
a locally Lipschitz continuous function V (t, e) : R+ × Rn → R, where P  and P̂  are positive definite matrices, 
and Q, G ∈ Rn×n are arbitrary real matrices. Suppose that the following conditions hold: 

	 (i)	 Φ =
[Φ11 Φ12

∗ Φ22

]
< 0;

	 (ii)	 w1 E∥e∥2 ≤ EV (t, e) ≤ w2 E∥e∥2;
	(iii)	 C

t0 Dβ
t EV (t, e(t)) ≤ µEV (t, e(t),t ̸= tk , k ∈ Z+;

	(iv)	 EV (e(t)) ≤ ρEV (e(t−)), t = tk ;
	 (v)	 MT

k PMk ≤ ρP ;
	(vi)	 PD = DP̂ ;
	(vii)	 The inequality 

	
ρ

(
T

ϑ2

) [
Eβ(µ ϑβ

2 )
]( T

ϑ1

)
+1 ≤ w1(ℏ2)

w2(ℏ1) , ∀t ∈ [t0, T ] .� (9)

	 Then, the NNs (8) achieve MSFTSn with respect to (ℏ1, ℏ2, T ). Furthermore, if the additional condition 

	
ρ

(
T

ϑ2

) [
Eβ(µ ϑβ

2 )
]( T

ϑ1

)
+1 ≤ w1(ℏ3)

w2(ℏ1) , ∀t ∈ [T − σ, T ] .

	 also holds, then the NNs (8) attain MSFTCSn with respect to (ℏ1, ℏ2, ℏ3, σ, T ).Where

	

Φ11 =

[
−PA − AT P − DG − GT DT − L1M 0 L2M

∗ −L1W 0
∗ ∗ −M + Q

]
, Φ12 =

[
0 PB PC

L2W 0 0
0 0 0

]
,

Φ22 =

[
−W + Q 0 0

∗ −Q 0
∗ ∗ −Q

]
, and control gain K = P̂−1G.

Proof  To establish the synchronization criteria for NNs (8), we construct a suitable Lyapunov function candidate 
in quadratic form as follows:

	 V (e(t)) = eT (t)Pe(t),� (10)

where P = PT  is positive definite matrix. This quadratic structure is adopted because it ensures positive 
definiteness, captures the instantaneous energy of the synchronization error, and provides a convenient 
framework for deriving solvable LMI-based stability conditions. According to Lemma 2, when t ̸= tk  the 
fractional derivative of the Lyapunov function takes the following form:

	

C
t0 Dβ

t V (e(t)) ≤ 2eT (t)P C
t0 Dβ

t e(t)

= 2eT (t)P
(

[−A e(t) + B f(e(t)) + C f(e(t − τ(t))) − DKe(t)] + h(t, e(t), e(t − τ(t)))dBH(t)
dt

)

= −2eT (t)PAe(t) + 2eT (t)PBf(e(t)) + 2eT (t)PCf(e(t − τ(t))) − 2eT (t)PDKe(t)

+ 2eT (t)Ph(t, e(t), e(t − τ(t)))dBH(t)
dt

.

� (11)

Hereafter, the cross-product and coupling terms that arise in the fractional derivative of V(e(t)) are handled 
using Lemma 2.4. This inequality decouples the product terms and converts them into diagonal quadratic forms 
suitable for the LMI formulation, from which the following relations can be derived based on Lemma 2.4.

	 2eT (t)PBf(e(t)) ≤ eT (t)PBQ−1BT Pe(t) + fT (e(t))Qf(e(t)), � (12)
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	 2eT (t)PCf(e(t − τ(t))) ≤ eT (t)PCQ−1CT Pe(t) + fT (e(t − τ(t)))Qf(e(t − τ(t))). � (13)

Taking Assumption 1 into account, the following inequality can be derived implies that

	

(f(e(t)) − L1 e(t))(f(e(t)) − L2 e(t)) ≤ 0,

(f(e(t − τ(t))) − L1 e(t − τ(t)))(f(e(t − τ(t))) − L2 e(t − τ(t))) ≤ 0,

where L1 and L2 are Lipschitz matrices. Let M  and W  be n × n diagonal matrices. Then, by applying the 
above inequality, we obtain

	

(
e(t)

f(e(t))
)T (−L1M L2M

∗ −M

) (
e(t)

f(e(t))
)

≥ 0, � (14)

	

(
e(t − τ(t))

f(e(t − τ(t)))
)T (−L1W L2W

∗ −W

) (
e(t − τ(t))

f(e(t − τ(t)))
)

≥ 0. � (15)

By substituting (12)-(15) along with condition (ii) into (11), one can get

	

C
t0 Dβ

t V (e(t)) ≤ − eT (t)(PA + AT P)e(t) + eT (t)PBQ−1BT Pe(t) + fT (e(t))Qf(e(t)) + eT (t)PCQ−1CT Pe(t)

+ fT (e(t − τ(t)))Qf(e(t − τ(t))) − 2eT (t)PDKe(t) +
(

e(t)
f(e(t))

)T (−L1M L2M
∗ −M

) (
e(t)

f(e(t))
)

+
(

e(t − τ(t))
f(e(t − τ(t)))

)T (−L1W L2W
∗ −W

) (
e(t − τ(t))

f(e(t − τ(t)))
)

+ 2eT (t)Ph(t, e(t), e(t − τ(t)))dBH(t)
dt

=ξT (t)∆ξ(t) + µeT (t)Pe(t) + 2eT (t)Ph(t, e(t), e(t − τ(t)))dBH(t)
dt

≤µV (e(t)) + 2eT (t)Ph(t, e(t), e(t − τ(t)))dBH(t)
dt

,

� (16)

where ξ(t) = (eT (t), eT (t − τ(t)),fT (e(t)), fT (e(t − τ(t))))T ,

∆ =




∆11 0 L2M 0
∗ −L1W 0 L2W
∗ ∗ −M + Q 0
∗ ∗ ∗ −W + Q


, and

	 ∆11 = −P(A + DK) − (A + DK)T P − L1M + PBQ−1BT P + PCQ−1CT P.� (17)

By employing the condition (vi), we rewrite the LMI term

	 ∆11 = −PA − DG − AT PT − DT GT − L1M + PBQ−1BT P + PCQ−1CT P,� (18)

with K = P̂−1G. Moreover, by taking the Schur complement of the matrix ∆, we obtain the matrix Φ. 
According to condition (i) of Theorem 1, it then follows that ∆ < 0. Applying the expectation operator to both 
sides of (16) and invoking Definition 3, the following relation is derived:

	 E
[

C
t0 Dβ

t V (e(t))
]

≤ µ EV (e(t)).� (19)

After that, applying the fractional integral to both sides of (19) and using Lemma 3, we obtain

	

t0 Iβ
t

[
C
t0 Dβ

t EV (e(t))
]

≤µ t0 Iβ
t [EV (e(t))]

EV (e(t)) ≤EV (e(t0)) + µ

Γ(β)

ˆ t

t0

EV (e(s))(t − s)β−1ds

EV (e(t)) ≤EV (e(t0)) Eβ(µ(t − t0)β).

� (20)

Let t = tk ; in this case, condition (v) yields

	

V (e(tk)) = eT (tk)Pe(tk)
= eT (t−

k )MT
k PMke(t−

k )
≤ eT (t−

k )ρPe(t−
k ) = ρV (e(t−

k )).

� (21)

Substituting inequality (21) into inequality (20), we have

	 EV (e(tk)) ≤ ρ Eβ(µ(t − tk−1)β) EV (e(tk−1)).

Repeating the above inequality for k = {1, 2, . . . , N }, which yields
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EV (e(tN )) ≤ ρN

(
m∏

i=1

Eβ(µ(ti − ti−1)β)

)
EV (e(t0)),

then for any t ∈ [tN , tN +1),

	

EV (e(t)) ≤Eβ(µ(t − tN )β) EV (e(tN ))

≤ρN Eβ(µ(t − tN )β)

(
m∏

i=1

Eβ(µ(ti − ti−1)β)

)
EV (e(t0)).

Based on the impulse sequence condition, one can get

	 EV (e(t)) ≤ ρ

(
t

ϑ2

) [
Eβ(µ ϑβ

2 )
]( t

ϑ1

)
+1

EV (e(t0)).

Therefore, for t ∈ [0, T ] such that

	 EV (e(t)) ≤ ρ

(
T

ϑ2

) [
Eβ(µ ϑβ

2 )
]( T

ϑ1

)
+1

EV (e(t0)).

Using condition (ii), we have

	

w1E||e(t)||2 ≤ EV (e(t)) ≤ρ

(
T

ϑ2

) [
Eβ(µ ϑβ

2 )
]( T

ϑ1

)
+1

w2E||η||2

≤ ρ

(
T

ϑ2

) [
Eβ(µ ϑβ

2 )
]( T

ϑ1

)
+1

w2(ℏ1) ≤ w1(ℏ2), t ∈ [t0, T ].
� (22)

From inequality (22), it follows that E∥e(t)∥2 ≤ ℏ2, which guarantees that the error dynamics meets the 
requirements of Definition 1 and the first inequality in condition (v). Therefore, neural networks (8) can be 
regarded as achieving mean square finite-time synchronization with respect to the parameters (ℏ1, ℏ2, T ). In 
addition, it satisfies

	

w1E||e(t)||2 ≤ EV (e(t)) ≤ ρ

(
T

ϑ2

) [
Eβ(µ ϑβ

2 )
]( T

ϑ1

)
+1

w2E||η||2

≤ ρ

(
T

ϑ2

) [
Eβ(µ ϑβ

2 )
]( T

ϑ1

)
+1

w2(ℏ1) ≤ w1(ℏ3), t ∈ [T − σ, T ].
� (23)

By inequality (23), one obtains E||e(t)||2 ≤ ℏ3, which directly confirms that system (8) attains MSFTCSn 
under Definition 2 and the second inequality in condition (v) with parameters (ℏ1, ℏ2, ℏ3, σ, T ). The proof is 
completed. � □

Remark 2  The set of conditions (i)–(vii) is fundamental in guaranteeing the finite-time synchronization proper-
ties of the considered stochastic delayed neural networks with impulses. Condition (i) enforces the negativity of 
the constructed block matrix Φ, which is the core feasibility requirement for the LMI framework. Conditions (ii) 
and (iii) restrict the Lyapunov functional growth by relating it to the error terms through the weighting functions 
and the µ-term, thereby ensuring boundedness and decay of trajectories. Condition (iv) controls the impulsive 
effects by constraining the jump behavior of the Lyapunov functional, while condition (v) ensures that the im-
pulse matrices preserve stability by limiting their interaction with the Lyapunov matrix. Condition (vi) guaran-
tees consistency between the system matrices, and condition (vii) provides the inequality that explicitly links the 
weighting functions with the finite-time bound. Together, these conditions form a tight and nonconservative set 
of criteria that directly ensure MSFTSn and, under the additional inequality, extend the results to MSFTCSn. It 
is worth emphasizing that all the conditions are very important in combination, as they are not mere restrictions 
but necessary requirements to achieve the desired finite-time synchronization behavior.

Remark 3  Theorem 3.1 provides the theoretical basis for deriving the corresponding feedback control gain ma-
trix K from the proposed LMI-based stability conditions. Specifically, the feedback gain matrix K is determined 
from the LMI conditions (i) and (vi), which guarantee the negativity of the symmetric matrix Φ and ensure 
compatibility among the positive definite matrices that define the Lyapunov functional used to analyze the syn-
chronization of the delayed fractional-order neural network system (8). The matrix term involving K in the LMI 
formulation is expressed in (17). Here, the matrix D is assumed to be a full-rank column matrix, implying that 
both D and PD are linearly independent for any P > 0. Hence, a nonsingular matrix P̂  is defined such that 
the equality condition (vi) is satisfied for some P > 0. If condition (vi) holds for a positive definite P , then 
P̂  must also be nonsingular. This equality constraint serves as an essential condition in reformulating the LMI 
problem as a feasibility problem. To transform the original non-convex constraint into a convex form, the pro-
cedure described in51,52 is employed, where the equality condition (vi) is replaced by the following LMI with a 
small scalar ν > 0:
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[
−νI PD − DP̂

∗ −νI

]
< 0.

By introducing an auxiliary variable G = P̂K  to remove the bilinear product between P  and K, the 
expression of ∆11 can be rewritten in a convex form as in (18 ) and the corresponding feedback control gain is 
explicitly obtained as K = P̂−1G. This formulation ensures that the resulting LMI constraints are convex and 
computationally tractable, allowing the control gain matrix K to be systematically computed from the feasible 
solution of the proposed LMI conditions.

NNs with discontinuous neuron activation function:
The analysis of MSFTSn and MSFTCSn for fractional-order stochastic neural networks with discontinuous 
neuron activation functions is highly challenging. Discontinuities, arising from switching or saturation effects, 
hinder the direct use of classical smooth-function techniques. When combined with stochastic disturbances and 
fractional-order memory effects, the system dynamics become even more complex. To overcome these issues, 
set-valued map theory provides a rigorous framework for establishing synchronization criteria in such networks.

We proceed by considering the neural networks (8), in which the neuron activation functions are assumed 
to be discontinuous:

	

C
0 Dβ

t e(t) = [−A e(t) + B f(e(t)) + C f(e(t − τ(t))) − DKe(t)] + h(t, e(t), e(t − τ(t)))dBH(t)
dt

, t ̸= tk, k ∈ Z+,

e(tk) = DMk e(t−
k ), t = tk,

e(t0 + l) = η(l).

� (24)

The nonlinear function f(·) : Rn → Rn is assumed to be locally bounded and Lebesgue measurable, while 
possibly exhibiting discontinuities at certain points e(·). In such situations, the solutions of system (24) are 
formulated within the framework of Filippov regularization, where the corresponding set-valued map of f(·) is 
defined in the sense of Filippov as follows:

	

γ(e(t), e(t − τ(t))) =
∩

r > 0
r > 0

∩

mes(L) = 0
mes(K) = 0

co [ f(B(e(t), r)/L,B(e(t − τ(t)), r)/K)] ,

where mes(L) and mes(K) represents the Lebesgue measure of the set L and K, respectively; The notation 
B(e(t), r) = {z : ||z − e(t)|| ≤ r1} with center e(t) and radius r depicts a ball; In a similar way, B(e(t − τ(t)), r) 
also depicts a ball with center e(t − τ(t)) and radius r.

Definition 6  28 The state e(t) is referred to as a Filippov solution of the discontinuous neural networks (24) if, 
for any interval [tk, tk+1) ⊆ I, it is absolutely continuous and satisfies the following fractional-order stochastic 
time-delayed impulsive inclusion (FOSTDII):

	

{
C
0 Dβ

t e(t) ∈ [−A e(t) + B co[f(e(t))] + C co[f(e(t − τ(t)))] − DKe(t)] + h(t, e(t), e(t − τ(t))) dBH (t)
dt

, t ̸= tk,
e(tk) = DMk e(t−

k ), t = tk,
e(t0 + l) = η(l).

By the local boundedness of f, the set-valued map γ is nonempty, compact, convex and USC. In addition, the 
existence of local solution of e(t0, et0 )(t) can be guaranteed for any (t0, et0 ) ∈ R+ × Rn. If e(t) is regarded as a 
solution of the above FOSTDII, then there exists a measurable function γ(t) ∈ co[f(e(·))], such that

	

{
C
0 Dβ

t e(t) = [−A e(t) + B γ(e(t)) + C γ(e(t − τ(t))) − DKe(t)] + h(t, e(t), e(t − τ(t))) dBH (t)
dt

, t ≠ tk,
e(tk) = DMk e(t−

k ), t = tk,
e(t0 + l) = η(l).

� (25)

Within this framework, we proceed to derive theoretical synchronization criteria for NNs characterized by 
discontinuous activation functions.

Theorem 2  Assume that conditions (ii)–(iv) and (vi) of Theorem 1 are satisfied. Let Z , H, G ∈ Rn×n be arbitrary 
real matrices, and P , P̂  are positive definite matrices. Let ℏ1, ℏ2, ℏ3, σ, and T be positive constants such that 
ℏ2 > ℏ1 > ℏ3 and σ ∈ (t0, T ). Assume w1, w2 ∈ K, ω, α, ν1, ν4 are positive constants and ν2, ν3 are negative 
constants. Suppose the following conditions are satisfied: 
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	 (i)	 X =




X11 ν1Z B − ν2AT Z ν1Z C − ν3AT Z −ν1Z − ν4AT Z PB PC
∗ H + ν2Z B ν2Z C + ν3BT Z −ν2Z + ν4BT Z 0 0
∗ ∗ H + ν3Z C −ν3Z + ν4BT Z 0 0
∗ ∗ ∗ −ν4Z 0 0
∗ ∗ ∗ ∗ −H 0
∗ ∗ ∗ ∗ 0 −H


 < 0; where 

X11 = −PA − AT P − DG − GT DT − ν1Z A − ωP , and K = P̂−1G.
	(ii)	 MT

k PMk ≤ αP ;
	(iii)	 The inequality 

	
α

(
T

ϑ2

) [
Eβ(ω ϑβ

2 )
]( T

ϑ1

)
+1 ≤ w1(ℏ2)

w2(ℏ1) , ∀t ∈ [t0, T ] .� (26)

	 Then, the NNs (8) achieve MSFTSn with respect to (ℏ1, ℏ2, T ). Furthermore, if the additional condition 

	
α

(
T

ϑ2

) [
Eβ(ω ϑβ

2 )
]( T

ϑ1

)
+1 ≤ w1(ℏ3)

w2(ℏ1) , ∀t ∈ [T − σ, T ] ,

	 also holds, then the NNs (8) attain MSFTCSn with respect to (ℏ1, ℏ2, ℏ3, σ, T ).

Proof  Consider the Lyapunov function V (e(t)) = eT (t)Pe(t), where P  is positive definite matrix. From 
Lemma 2, the fractional derivative of V(t) for t ̸= tk  is expressed as:

	

C
t0 Dβ

t V (e(t)) ≤ 2eT (t)P C
t0 Dβ

t e(t)

= 2eT (t)P
(

[−A e(t) + B γ(e(t)) + C γ(e(t − τ(t))) − DKe(t)] + h(t, e(t), e(t − τ(t)))dBH(t)
dt

)

= −2eT (t)PAe(t) + 2eT (t)PBγ(e(t)) + 2eT (t)PCγ(e(t − τ(t))) − 2eT (t)PDKe(t)

+ 2eT (t)Ph(t, e(t), e(t − τ(t)))dBH(t)
dt

.

� (27)

Following Lemma 4, one can get

	 2eT (t)PBγ(e(t)) ≤ eT (t)PBH−1BT Pe(t) + γT (e(t))Hγ(e(t)), � (28)

	 2eT (t)PCγ(e(t − τ(t))) ≤ eT (t)PCH−1CT Pe(t) + γT (e(t − τ(t)))Hγ(e(t − τ(t))). � (29)

Combining (28) and (29) with (27), it follows that

	

C
t0 Dβ

t V (e(t)) ≤ − eT (t)(PA + AT P)e(t) + eT (t)PBH−1BT Pe(t) + γT (e(t))Hγ(e(t)) + eT (t)PCH−1CT Pe(t)

+ γT (e(t − τ(t)))Hγ(e(t − τ(t))) − 2eT (t)PDKe(t) + 2eT (t)Ph(t, e(t), e(t − τ(t)))dBH(t)
dt

.
� (30)

In the sequel, the derivation proceeds by incorporating the free-weighting matrix methodology into the 
following formulation. Since the Lipschitz continuity condition adopted in the continuous case cannot be 
applied under discontinuous dynamics, the free-weighting matrix technique is introduced to flexibly handle the 
coupling between the error terms and their delayed components. This approach provides additional degrees of 
freedom in the Lyapunov analysis and ensures the feasibility of the LMI-based synchronization conditions for 
the discontinuous case.

	 [ν1eT (t) + ν2γT (e(t)) + ν3γT (e(t − τ(t))) + ν4(C
t0Dq

t e(t))T ]Z [−A e(t) + B γ(e(t)) + C γ(e(t − τ(t))) − C
t0Dβ

t e(t)] = 0,� (31)

where ν1, ν2, ν3, and ν4 are constant parameters, and Z  denotes an arbitrary real matrix. By substituting (31) 
into (30), the following expression is obtained:

	
C
t0 Dβ

t V (e(t)) ≤ φT (t)Πφ(t) + ωeT P e(t) + 2eT (t)Ph(t, e(t), e(t − τ(t)))dBH(t)
dt

,� (32)

where γ(t) = (eT (t), γT (e(t)),

γT (t − τ(t)), C
t0 Dβ

t eT (t))T , Π =




Π11 Π12 Π13 −ν1Z − ν4AT Z
∗ H + ν2Z B ν2Z C + ν3BT Z −ν2Z + ν4BT Z
∗ ∗ H + ν3Z C −ν3Z + ν4CT Z
∗ ∗ ∗ −ν4Z


, and 
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Π11 = −PA − AT P+PBH−1BT P+PCH−1CT P − 2PDK − ν1ZA − ωP , Π12 = ν1Z B − ν2AT Z , 
Π13 = ν1Z C − ν3AT Z . Applying the Schur complement to Π leads to the matrix X. Condition (i) of Theorem 
2 guarantees that Π < 0. Therefore, applying the expectation operator to both sides of (32) in accordance with 
Definition 3 yields the following result:

	 E
[

C
t0 Dβ

t V (e(t))
]

≤ ω EV (e(t)).

From the above inequality, it is evident that the structure coincides with inequality (19) in Theorem 1. Therefore, 
by following the procedure of Theorem 1, the intermediate derivations are omitted. In view of conditions (ii) and 
(iii) of Theorem 2, the criteria for MFTSn and MFTCSn of the FOTDSII (25) are established with respect to the 
parameters (ℏ1, ℏ2, ℏ3, σ, T ). This completes the proof. □

Remark 4  Earlier investigations15,16, and29 have explored finite-time synchronization of FODNNs using sin-
gle-action control strategies such as fractional feedback, impulsive, and matrix projection methods. Although 
these approaches achieved synchronization under delays and uncertainties, they mainly focused on determinis-
tic or partially uncertain systems without addressing stochastic effects or contractive synchronization properties. 
Likewise, studies46–48 examined MSFTS and MSFTSn of impulsive and stochastic systems through Lyapunov 
inequalities and stochastic differential techniques, but these efforts were mostly limited to integer-order dynam-
ics and lacked consideration of hybrid control structures. To bridge these gaps, the present research develops a 
unified framework for MSFTCSn in FOSDNNs, applicable to both continuous and discontinuous control cases. 
The proposed hybrid control mechanism combines continuous feedback with impulsive regulation, exploiting 
the memory property of fractional derivatives to enhance damping, transient smoothness, and disturbance sup-
pression. Through fractional Lyapunov functionals and impulsive differential inequalities, rigorous finite-time 
contractive conditions are derived under stochastic perturbations and delays, ensuring robust synchronization. 
This formulation achieves faster convergence, improved robustness, and greater control efficiency while extend-
ing applicability to a wider class of hybrid fractional-order systems.

Numerical simulation
Example 1  Continuous case:

The neural networks described by equation (1) utilize the following parameter matrices:

	
A =

[1.3 0
0 1.3

]
, B =

[1 + π/4 20
0.1 1 + π/4

]
, C =

[
−1.3

√
(3) π/4 0.1

0.1 −1.3
√

(3) π/4

]
, D =

[1 0
0 1

]
.

The neuron activation function is defined as f(x(·)) = 1
2 (|x(·) + 1| − |x(·) − 1|) where the corresponding 

Lipschitz matrices are chosen as L1 = diag(0.6, 0.4) and L2 = diag(0.3, 0.1). In addition, the matrix Q is 
specified as diag(0.53, 0.52). The fractional order is set to β = 0.95 and the time delay is defined by τ(t) = et

et+1 .
With the chosen parameter settings, Fig. 1a illustrates the time evolution of the NN states, where the 

irregular and non-periodic oscillations reflect the complex dynamics introduced by time delays. Meanwhile, 
Fig. 1b depicts the phase trajectories of the time-delayed NNs (1), confirming the presence of chaotic motion 
characterized by high sensitivity to initial conditions and delay-induced nonlinear responses. Following this, 

consider the impulse input M1 =
[ 0.8 0.0
0.31 0.01

]
. The corresponding controller design procedure can now be 

systematically formulated using the LMI-based algorithm described below. Based on these parameter values, the 
subsequent feasibility solution can be derived using the MATLAB LMI Toolbox:
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Fig. 1.  Dynamic behaviour of NNs (1).
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Algorithm.  LMI-Based controller design.

Following the aforementioned LMI-based algorithm, the feasibility solution corresponding to the selected 
parameter values can be obtained using the MATLAB LMI Toolbox:

	
P =

[ 0.0104 −0.0176
−0.0176 0.2088

]
, M =

[1.1201 0
0 1.1201

]
, W =

[1.2063 0
0 1.2063

]
, G =

[0.1584 0.0135
0.0135 0.0364

]
,

and the control gain K is obtained as K =
[17.9387 1.8622

1.5788 0.3316
]

. Under the designed control gain and impulse 

effects, Fig. 2a shows that the slave system trajectories quickly follow those of the master system, indicating 
effective control action.

As illustrated in Fig. 2b, the phase portraits of both networks nearly overlap, confirming successful 
synchronization. Meanwhile, Fig. 2c depicts the error trajectories converging rapidly to zero, demonstrating 
that the proposed control strategy with impulse effects ensures stable and reliable synchronization of the time-
delayed NNs without stochastic perturbations.
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Fig. 2.  Dynamic behaviour of NNs (1) and (2) without stochastic influence with control input.
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With the inclusion of stochastic terms, Fig. 3a presents the state trajectories of NNs (1) and (2) under 
random disturbances without control input, where irregular and unsynchronized oscillations emerge due to 
stochastic perturbations. As shown in Fig. 3b, the chaotic trajectories display strong fluctuations and a noticeable 
loss of coherence, reflecting the system’s instability in the absence of control action. Furthermore, Fig. 3c 
demonstrates that the error trajectories vary widely instead of converging, confirming that stochastic effects 
hinder synchronization and emphasizing the importance of control intervention in maintaining stable dynamic 
behavior for time-delayed NNs.

In Fig. 4a reveals that when both stochastic effects and control inputs are applied, the trajectories of the 
slave neural network (2) gradually align with those of the master system (1), confirming the effectiveness of the 
designed control law. In Fig. 4b, the phase portrait displays overlapping attractors, indicating that synchronization 
is achieved even under random disturbances. Additionally, Fig. 4c shows that the error states settle rapidly to 

(a) Without control

||e(t)|| 2

E||e(t)|| 2

(b) With control (β = 0.95) (c) With control (β = 1)

Fig. 5.  Error trajectories of NNs (8) without and with control under different orders β = 0.95, 1.
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Fig. 4.  Dynamic behaviour of NNs (1) and (2) with stochastic effect and control input.
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Fig. 3.  Dynamic behaviour of NNs (1) and (2) with stochastic influence and without control input.
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zero despite the presence of noise, demonstrating the robustness and stability of the proposed control approach 
in managing stochastic perturbations within time-delayed NNs.

Assume that the parameters are chosen as ℏ1 = 1.1, ℏ2 = 4, ℏ3 = 0.4, σ = 0.2, and T = 4. These parameter 
values satisfy the conditions specified in Definitions 1 and 2. Figure 5 illustrates the mean-square synchronization 
error trajectories of NNs (8) under different fractional orders with and without control input.

In Fig. 5a, when no control is applied, E||e(t)||2 diverges rapidly and exhibits large stochastic oscillations, 
indicating that the system fails to maintain mean-square boundedness and cannot achieve synchronization 
under random perturbations. In contrast, Fig. 5b shows that when the proposed hybrid control is applied with 
the fractional order β = 0.95, the error trajectories decay sharply and remain confined within the admissible 
region determined by (ℏ1, ℏ2, ℏ3, σ, T ) = (1.1, 4, 0.4, 0.2, 4). This satisfies both the MSFTSn and MSFTCSn 
criteria, confirming finite-time synchronization at approximately T = 3s. Furthermore, Fig. 5c depicts the case 
with integer order β = 1. When the order is fixed at β = 1, the error trajectories converge more slowly, reaching 
synchronization around T = 8s, and occupy a broader bounded region (ℏ1, ℏ2, ℏ3, σ, T ) = (10, 30, 3.2, 0.5, 8). 
Therefore, compared with the integer-order system, the fractional-order case exhibits stronger damping, tighter 
boundedness, and faster convergence. This confirms that incorporating fractional dynamics enhances the 
system’s memory effect, accelerates error decay, and strengthens robustness against stochastic perturbations.

Under H = 0.75, Fig. 6a shows that E∥e(t)∥2 remains within the region 
(ℏ1, ℏ2, ℏ3, σ, T ) = (0.5, 2.5, 0.15, 0.1, 2.5) and achieves synchronization at T = 2.5s for fractional-order 
β = 0.85. In comparison, Fig. 5b with β = 0.95 is confined to (1.1, 4, 0.4, 0.2, 4) and synchronizes at T = 4s. 
Hence, reducing the fractional order from β = 0.95 to β = 0.85 compresses the mean-square error bounds 
and shortens the synchronization time, indicating a stronger memory effect that accelerates convergence and 
improves resistance to stochastic fluctuations.

Furthermore, Fig. 6b and 6c illustrate the mean-square synchronization behavior of the error NNs (8) 
for different Hurst parameters H = 0.85 and H = 0.95 with β = 0.95. Both cases confirm finite-time 
synchronization under the proposed control law; however, the synchronization region expands with increasing 
H. For H = 0.85, smoother correlations in the fBm yield smaller fluctuation amplitudes and a tighter 
convergence region, whereas for H = 0.95, stronger temporal persistence slightly enlarges the bounded region 
and introduces higher transient peaks. Overall, the results demonstrate that the designed controller effectively 
preserves boundedness and synchronization performance under varying stochastic dependencies.

Discontinuous case:
The matrices used in this case are identical to those used in the previously analyzed continuous case. 

Furthermore, set ν1 = 0.67, ν2 = −0.52, ν3 = −0.42, ν4 = 0.21, α = 0.79, and ω = 1. The discontinuous 
activation function employed in this case is defined as

	
f(x) =

{ tanh(x) − 0.02, if x > 0,
tanh(x) + 0.02, if x < 0,

which adds a small shift on either side of the origin. This small offset creates a jump between the two parts of 
the function, making it discontinuous. As shown in Fig. 7, this discontinuity changes how the neuron responds, 
producing sharper transitions and more irregular, chaotic motion in the network states compared with the 
continuous case.

Using the above parameter settings and following the same LMI-based algorithm described earlier, the 
corresponding feasibility conditions are obtained through the MATLAB LMI Toolbox as follows:

	
P =

[ 0.0888 −0.0701
−0.0701 0.8777

]
, Z =

[ 0.0048 −0.0083
−0.0083 0.1396

]
, G =

[ 7.6596 1.1181
−0.2401 2.9173

]
,

and the control gain K is obtained as K =
[91.8173 16.2353

7.0559 4.6200
]

. Furthermore, Fig. 8 illustrates the state 

trajectories of NNs (1) and (2) with the discontinuous activation function under impulsive and control actions. 
It is evident that the trajectories of (2) closely follow those of (1), confirming successful synchronization and 
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Fig. 6.  Dynamic behaviour of error NNs (8) under different Hurst parameters and fractional orders.
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demonstrating the effectiveness of the proposed control strategy in handling discontinuous dynamics and 
stochastic behaviour.

As shown in Fig. 9, the state trajectories of the error NNs (8) are illustrated both without and with control. 
In the uncontrolled case (9a), the trajectories E∥e(t)∥2 diverge due to stochastic excitation, exhibiting strong 
oscillations and loss of synchronization. In contrast, the controlled case (9b) demonstrates that the proposed 
aperiodic intermittent control achieves convergence within the finite terminal time T = 2.5s. For the chosen 
parameters ℏ1 = 0.4, ℏ2 = 1, ℏ3 = 0.1, σ = 0.05, H = 0.75, and β = 0.95, the trajectories contract toward 
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the origin, fulfilling the conditions of MSFTSn and MSFTCSn. This behavior confirms the robustness and finite-
time synchronization capability of the proposed control scheme under stochastic perturbations.

Overall, the numerical simulations consistently validate the theoretical analysis established in Theorems 1 
and 2, confirming that the proposed hybrid control approach guarantees both MSFTSn and MSFTCSn under 
stochastic disturbances. The continuous case described in Theorem 1 demonstrates that smooth control actions 
provide steady finite time convergence with well-damped system responses, ensuring stable synchronization. 
In contrast, the discontinuous case presented in Theorem 2 introduces switching dynamics that enhance 
robustness against stochastic perturbations and accelerate synchronization through faster error contraction. 
Furthermore, the comparison between the integer and fractional order systems shows that the fractional order 
structure possesses stronger memory and diffusion characteristics, resulting in faster convergence, reduced 
synchronization error, and a more compact bounded region. In addition, the control input plays a crucial role in 
stabilizing the network, as the trajectories diverge without control but rapidly converge when control is applied. 
Moreover, the fractional order β and the Hurst parameter H significantly influence the system’s response. A 
smaller fractional order strengthens the memory and damping behavior, thereby accelerating the contraction 
of the mean square error, while a lower Hurst parameter produces smoother stochastic correlations and 
smaller fluctuation amplitudes. Therefore, the overall numerical evidence confirms that the proposed hybrid 
control, integrating both continuous and discontinuous mechanisms, achieves fast, stable, and noise-resilient 
synchronization in fractional-order stochastic neural networks.

Remark 5  In earlier works15–17, synchronization of fractional-order delayed neural networks was typical-
ly achieved using single-action control strategies such as fractional feedback, impulsive, or matrix projection 
methods. Although these approaches ensured finite-time convergence, they often struggled to balance stability, 
convergence speed, and robustness under delays and uncertainties. To overcome these challenges, this study 
proposes a hybrid control framework that integrates continuous feedback with impulsive regulation. The contin-
uous part maintains smooth error evolution and suppresses delay-induced oscillations, while the impulsive com-
ponent provides rapid correction against stochastic disturbances. Leveraging the memory property of fractional 
derivatives, the scheme enhances damping and transient smoothness, achieving energy-efficient synchroniza-
tion. Analytical results based on fractional Lyapunov functionals and impulsive differential inequalities confirm 
finite-time synchronization and mean-square stability, which are further supported by comparative simulations.

Conclusion
Theoretical results established new sufficient conditions for MSFTSn and MSFTCSn in fractional-order stochastic 
delayed neural networks under a hybrid control framework. The analytical approach combined stochastic 
analysis with Lyapunov-based techniques, the fractional Gronwall inequality, and an improved Razumikhin 
method to derive finite-time synchronization criteria. The hybrid control, integrating continuous feedback with 
impulsive regulation, was crucial for compensating time delays, suppressing disturbances, and accelerating 
convergence, thereby enhancing synchronization efficiency with reduced control effort. Both continuous and 
discontinuous activation functions were effectively managed through smooth feedback and set-valued map 
theory. Numerical simulations confirmed the theoretical findings, demonstrating faster synchronization and 
stronger robustness, while the fractional-order formulation offered improved adaptability and realistic neural 
dynamics. Future research may extend this framework to coupled neural networks with symmetric saturation 
impulses to establish new synchronization criteria for large-scale interconnected systems.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper. All simula-
tion codes are available from the corresponding author on request.
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