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This article presents a novel framework for mean square finite-time synchronization (MSFTSn)

and mean square finite-time contractive synchronization (MSFTCSn) of fractional-order stochastic
delayed neural networks (FOSDNNs) subject to hybrid control. The proposed hybrid control

strategy is designed to guarantee synchronization of the error system within a finite time horizon.

By combining continuous feedback with impulsive regulation, the hybrid mechanism effectively
suppresses stochastic disturbances and compensates for time-delay effects, which significantly
improves convergence rate and enhances contractive stability. The analytical approach integrates
stochastic analysis with Lyapunov-based methods, the fractional Gronwall inequality, and an improved
Razumikhin framework to establish novel synchronization criteria. In addition, a rigorous foundation
is developed to address discontinuous neuron activation functions through set-valued map theory.
Unlike integer-order models, the Caputo fractional derivative embeds past error trajectories, thereby
capturing memory and hereditary properties of neural systems. This leads to a more realistic neural
representation and reinforces the synchronization results. Theoretical findings demonstrate that
hybrid control extends the range of stabilizing parameters beyond standard feedback schemes. Finally,
numerical simulations are presented to validate the effectiveness and robustness of the proposed
strategy, confirming its strong applicability in realistic neural network models.
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List of symbols
R,R4+,Z+ Sets of real numbers, positive real numbers, and positive integers
R™ n-dimensional real space equipped with the Euclidean norm || - ||
o/ >0 (o <0) Matrix 7 is positive (negative) definite
T Inverse and transpose of matrix .o/
* Represents a symmetric block in a matrix
diag Denotes a block diagonal matrix
E() Expectation operator
{tk}kez+ Increasing impulse sequence satisfying ¢1 < tgy1 — tp < 2, Vk
b1, P2 Minimum and maximum impulse dwell times on [0, T]
B (t) Fractional Brownian motion with Hurst parameter H € (1/2,1)
C(H, W) Set of continuous functionsw : H — W
PC(H, W) Set of piecewise continuous functions with finite discontinuities
PC; = PC([to — T, t0],R"™) Space of piecewise continuous functions with delay 7
6117 = SUDaciry o) ()]l Supremum norm on [to — ., to]
Class of functions b(d) € C(R4,R4) satisfying b(0) = 0, b(5) > 0 for
0>0
b(0) Strictly increasing function on Ry
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Neural networks (NNs) have emerged as powerful tools in computational models due to their capability of
approximation, adaptive learning, and non-linear mapping efficiency. They are extensively applied in control,
optimization, and signal processing, where conventional methods face challenges arising from system complexity
or incomplete modelling!~. In recent years, integer-order stochastic NNs have been widely adopted in diverse
engineering and scientific fields due to their strong modeling capability under uncertainty. They have been
successfully utilized for climate and financial forecasting through stochastic process adaptation®, for enhancing
computational efficiency in machine learning via stochastic computing architectures®, and for ensuring secure
communication using synchronization-based control schemes”. These applications highlight the effectiveness of
stochastic NNs in handling randomness, time delays, and uncertain dynamics in complex real-world systems.
However, traditional NNs are inherently based on integer-order dynamics and thus may not adequately capture
the memory and hereditary characteristics present in many physical and biological processes®~1°. To tackle this,
fractional calculus has been integrated into the neural network framework, which in turn gives rise to fractional-
order NNs. By incorporating fractional derivatives into activation dynamics and learning rules, fractional-order
NNs introduce non-local and memory-dependent behavior, which boosts convergence speed, stability, and
generalization compared to classical NNs!!-!4. This extension not only enriches the representational power of
neural architectures but also integrates seamlessly with fractional-order control systems, making fractional-
order NNs a robust framework for intelligent modelling and control in complex, uncertain, and memory-driven
environments. Evolving from this foundation, researchers have further extended the notion to fractional-order
NNs with delay, in which time delays are introduced to more accurately represent systems that experience delayed
feedback, control, communication lags, or transport phenomena!®>~!7. These networks exhibit improved dynamic
behavior, enhanced stability analysis, and superior modelling accuracy, thereby providing an effective paradigm
for addressing real-world problems characterized by both fractional-order dynamics and time delays!®-%.

Furthermore, building upon this, fractional-order stochastic NNs have been designed to deal with the
memory-dependent characteristics of fractional calculus and the randomness of stochastic environments. Thus, by
integrating these two aspects, fractional-order stochastic NNs achieve efficient modelling fidelity and adaptability,
which makes them appropriate for uncertain systems that contain noise, perturbations, and randomness?!~2*.
Recent studies have further demonstrated their wide applicability in real-world problems, including financial
forecasting and macroeconomic analysis involving impulsive and stochastic effects?*?*, fault-tolerant control
of uncertain fractional-order neural systems with stochastic sensor faults?®, and fractional stochastic partial
differential equations for advanced scientific and engineering applications?”. These studies emphasize the strong
adaptability and effectiveness of fractional-order stochastic NNs in capturing hybrid dynamics influenced by
randomness, delays, and impulsive behaviors. Besides, they outperform integer-order or solely deterministic
NN in terms of stability, faster convergence under changing input, and synchronization performance. Added
to this, the significant branch of research concentrates on the role of discontinuous activation functions in
fractional-order stochastic neural networks. Although such functions introduce analytical difficulties due to
non-smooth state trajectories, they have been shown to significantly enhance synchronization and control
performance, particularly in finite-time analysis?®. These discontinuous mechanisms expand the applicability
of fractional-order stochastic NNs to problems where there are sudden changes or switching characteristics that
occur in the system dynamics?*-32. Likewise, fractional-order stochastic NNs with delay extend this framework
by incorporating the explicit time delays into the system. Time delays have major implications in effectively
modelling communication lags in networked systems, transport delays in distributed processes, and feedback
delays in biological and control systems. Also, fractional-order stochastic NNs with delay models enable the
derivation of rigorous stability and synchronization criteria through Lyapunov-Krasovskii functionals, stochastic
analysis, and fractional Gronwall inequalities, offering a mathematically sound framework for capturing
stochastic, hereditary, and delay-dependent effects simultaneously.

As aresult, they provide a complete and scalable approach to intelligent modelling and control in a variety of
advanced applications, including robotics, power systems, biomedical engineering, and large-scale distributed
networks*~*. In addition to stochastic disturbances and delays, many real processes are influenced by impulsive
effects, which emerge as abrupt state changes caused by shocks, switching actions, or external perturbations. To
capture such phenomena, the framework has been extended to fractional-order stochastic NNs with impulses,
where impulsive differential operators are incorporated into the fractional stochastic setting. The incorporation
of impulses improves the modelling capability of these networks, but it also poses considerable analytical hurdles,
as the system trajectories are influenced simultaneously by fractional memory, stochastic disturbances, temporal
delays, and instantaneous state jumps. To address these challenges, advanced tools like as piecewise Lyapunov
functionals, impulsive integral inequalities, and stochastic analysis have been used to create sufficient criteria
for stability, boundedness, and synchronization. As a result, fractional-order stochastic NNs with discontinuous
activations, delays, and impulses offer a comprehensive paradigm for analyzing and controlling hybrid stochastic
systems characterized by memory dependence, uncertainty, and abrupt dynamic variations, with applications
ranging from power systems and communication networks to biomedical signal processing and robotic control®.

In modern neural and control system analysis, finite-time stability (FTS) ensures that trajectories reach
equilibrium within a specified duration, offering faster convergence than asymptotic stability, which allows
convergence only as time approaches infinity. This time-constrained behavior is particularly valuable for safety-
critical and rapid-response applications where timely convergence is essential’’~*2. Moreover, the concept of
finite-time contractive stability (FTCS) strengthens this framework by ensuring that the distance between
any two trajectories diminishes within finite time, which is crucial for synchronization in large-scale or
interconnected neural networks subject to modeling inaccuracies, uncertainties, and external disturbances*-4.
When randomness and noise are present, mean-square stochastic finite-time stability extends this notion by
analyzing convergence through second-order moments, ensuring that the expected squared deviation from

Scientific Reports |

(2026) 16:1999 | https://doi.org/10.1038/s41598-025-31768-7 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

equilibrium vanishes within a finite time frame. Furthermore, the integration of fractional calculus gives rise
to mean-square stochastic fractional finite-time stability, where fractional-order derivatives effectively capture
long-memory and non-local dynamics characteristic of many real-world systems*¢-%%. Hence, the fusion of
fractional operators with stochastic finite-time frameworks establishes a more flexible and realistic modeling
paradigm, facilitating neural and control systems that achieve rapid convergence, efficient memory utilization,
and enhanced robustness against stochastic perturbations.

Despite significant advancements in the stability analysis of stochastic and fractional-order NNs, numerous
unresolved difficulties hinder their practical implementation in real-time and safety-critical contexts. The main
challenges associated with fractional-order models compared with integer-order systems can be summarized as
follows:

1. Fractional-order systems exhibit memory and hereditary characteristics, causing their current states to de-
pend on historical trajectories, which complicates dynamic modeling and analytical formulation.

2. The presence of nonlocal fractional derivatives and stochastic effects increases the mathematical difficulty in
establishing Lyapunov-based stability criteria and deriving feasible finite-time conditions.

3. Strong coupling among system states, along with sensitivity to the fractional derivative order, makes control-
ler design and stability analysis more complex compared with integer-order NNs.

These inherent complexities significantly intensify the analytical and control design challenges in FOSDNNS.
Although considerable progress has been achieved, most existing studies emphasize asymptotic or exponential
stability, which guarantees convergence only over an infinite horizon and thus falls short for applications
requiring rapid stabilization within a finite duration. While fractional calculus effectively captures long-memory
effects and stochastic modeling enhances robustness against random perturbations, the combined influence
of time delays and impulsive behaviors introduces additional dynamic complexity that remains insufficiently
explored within finite-time constraints. This limitation highlights a critical research gap in developing a unified
theoretical framework capable of simultaneously addressing MSFTSn and MSFTCSn for FOSDNNs under hybrid
control. The motivation of this study, therefore, lies in bridging this gap by formulating a rigorous framework
that establishes finite-time stability criteria, ensuring fast convergence, improved robustness, and stronger
adaptability of hybrid-controlled NNs operating under stochastic disturbances, memory effects, delays, and
impulsive influences. Based on this motivation, the key contributions of this study are summarized as follows:

1. A comprehensive hybrid control framework is proposed to overcome the analytical and design challenges of
FOSDNNS s by simultaneously achieving MSFT'Sn and MSFT'CSn under the combined influence of stochastic
disturbances, delays, impulses, and memory effects, thereby addressing the identified research gap in unified
finite-time synchronization.

2. The developed approach employs Filippov set-valued mapping, free-weighting matrices, and advanced in-
equality techniques to manage both continuous and discontinuous activations, ensuring less conservative
stability conditions and accurate finite-time convergence analysis.

3. The framework integrates fractional-order dynamics, hybrid control, and stochastic characteristics into a
single formulation, effectively enhancing robustness, convergence speed, and adaptability in uncertain and
time-delayed neural network environments, as demonstrated through detailed numerical simulations.

Furthermore, to facilitate subsequent analysis, the essential mathematical tools, notation, definitions, and
lemmas used throughout the paper are presented in the following preliminaries section.

Preliminaries
System description
Consider the following fractional-order neural networks (FONNs) model:

6 DYa(t) = —Ax(t) + Bf (x(t)) + Cf (x(t — 7(t))),

(1)
z(to +1) = 6(1).

Where 3 € (0,1) denotes the fractional order, z:(t) € R™ is the state vector of the FONNs (1); A € R"*"

represents a diagonal self-connection matrix; B, C' € R™*™ correspond to the connection weight matrix, the

delayed connection weight matrix, respectively. The function f:R"™ — R"™ denotes the neuron activation

function, satisfying f(0) = 0. The notation 7 () represents the time varying delay, and it satisfies 0 < 7(¢) < ¢.

The initial function §(1) € PC/ is defined for to — 7 < I < to.

Assumption 1 The nonlinear function fin system (1) is assumed to satisfy

2 < 7f(f€1) f(x2) < %Y, Vki,k2 €R, K1 # Ka,

K1 — R2
where f(0) = 0,and 21, % € R™*" are diagonal matrices.
Let # and .# be two separable Hilbert spaces, and (", #') be the space of bounded linear operators
from % into A, L () = L (K, ). || - || represents the norm in &, 4, L (X), and L (¥ , ). Let
(Q, F,{F}+t>0, F) be a complete filtered probability space satisfying that .% contains all & —null sets of
Z . The noise-free system (1) is referred to as the drive system, and its corresponding response system can be
expressed as follows:
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§DRy(e) = [-Ay(0) + B Fu(0) +C Tyt — (o) + Dute] + e y) 0,

y(to +1) = €.

Where, D represents the input weight matrix, u(t) € R™ denotes the hybrid control input defined later, and
e(l) € PC-. h(-,-) € L*([0,00) x X ; L (K, M)) is continuous nonlinear mapping functions, with
h(-,-) is the noise intensity function. Let B = {B(¢)}+>0 be a zero-mean Brownian motion stochastic
perturbation defined on (Q, %, {.%; }+>0, ), while fBm is a family of Gaussian processes indexed by Hurst
parameter B (t), H € (0,1). According to*, a # —value stochastic process {y(t)}+>0 is called a mild
solution of the system (2), if the stochastic process {y(t)}+>0 is continuous and .%#; adapted, the function
h(-,-) € L2([0,00) x ;. L(H ,.#)) and the B-order R-L fractional integral equation of (2) holds for every
t with probability one.

In the following, the error system e(t) is derived from the master system (1) and the slave system (2), and its
dynamics are expressed through the following formulation.

§ D/ e(t) = [ Ae(t) + B f(e(t)) + O f(e(t = 7(1)) + Du(t)] + h(t, e(t), e(t — 7(t))) b ()

e(to +1) = n(l),

where e(t) = y(t) — z(t), f(e(t)) = f(y(t)) — f(z(1)), fe(t —7(1)) = fy(t = 7(1))) — f(z(t — 7(2))),
and (1) = €(l) — §(1).

Control mechanism
To realize a mean square finite-time contractive synchronization between stochastic delayed neural networks (2)
and the noise-free derive system (1), we design the following controller input u(t) is presented as:

u(t) =ur (t) + ua(t) = =K (y(t) — (1)) + Y [Mi(y(t) — (1)) = (y(t) — 2()]3(t — tx), 4

e
k=0

where K € R™*™ is a constant matrix and M}, is the impulsive control gain matrix; () denotes the Dirac
delta function; to = 0 is the initial time, and {¢1,¢2,...,t.s—1,t.s } such thatt_» < T for give T'> O is a

finite sequence of impulsive instants with N lim tx = +o00, where .4 denotes the number of impulse instances.

—+o0
Assume that throughout this paper the error signal e(t) = y(t) — x(t) is right continuous at t = ti, k € Z,
ie,e(ty) = e(t; ). Whent # tr, k € Zy, according to (4), u(t) = —K(y(t) — x(t)), then

dBH ()

6 Dle(t) = [~Ae(t) + B f(e(t) + C f(e(t — 7(1))) + D(=Ke(t))] + h(t, e(t), e(t — 7(1))) o ®)
When ¢ = i, k € Z4 by combining error (3) and control input (4), it is easy to obtain that form?®
Ae(t) = e(t) - elte) = D(My — De(t; ), ©
where e(t}) = lim e(tx + h), then
h—0t
e(t)) = DMye(ty,). 7)

The controller u2(t) induces instantaneous changes in the state of system (3) at the impulse instants ¢; that
is, u2(t) acts as an impulsive control for system (3). Accordingly, the resulting closed-loop nonlinear delayed
system under the hybrid control u(f) can be expressed as follows:

H
By sy, ke,
dt (8)

§Dle(t) = [~(A + DK) e(t) + B f(e(t)) + C f(elt — T(H)] + h(t,elt). e(t — 7(1)))
e(tk) = D]W)c e(t;),t = tk-,
eto +1) = n(l).

Hereafter, some necessary definitions and lemmas are presented in the following manner. They serve as essential
preliminaries for the analysis and proofs developed later.

Definition 1 *® Let i1, hi2, and T be positive real numbers with fi2 > #i1. The system (8) is said to achieve MS-
FTSn with respect to (fi1, 2, T) if  sup  E|n||*> < 1 implies E|le(t)||* < he, for all t € [to, T, where E

. t€[to—T, to]
denotes the expectation operator.

Definition 2 *>%° Assume that there exist positive constants 71, ha, fis, o, and T with Az > k1 > hs, and
o € (to,T), then the systems (8) achieve MSFTCSn with respect to (%1, iz, T), if it is MSFTSn and additionally
satisfies E||e(t)||? < ha, forallt € [T — o, T).
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Definition 3 ** Let 1 < H <1 be fixed. A real-valued standard fractional Brownian motion (fBm),
{BH(t), t > 0}, with Hurst parameter H, is a zero-mean Gaussian process possessing continuous sample paths.
Its fundamental statistical properties are defined as

E{B"(t)} =0, t>0,
E{B"(t)B" (s)} = 1 (" + & — |t — s|*").

1
2
Here, H determines the self-similarity and long-range dependence of the process: when H = 0.5, B (t)
reduces to the standard Brownian motion, while H > 0.5 indicates positively correlated increments, implying
a persistent stochastic influence.

Definition 4 * A function g € C* ([0, 00), R) admits a fractional integral of order 8 (with 0 < § < 1 and
t > to), which is defined by

L[ g(h)
tOIth(t) = F(/B) /to (t ;gh)l_,gdh7

—+o0
where I'(3) refers to the Gamma function, given by I'(3) = [ e *s”~'ds.
0

Definition 5 * Let 8 € (0, 1) and ¢ > to. For a function g € C* ([0, 00), R), the Caputo fractional derivative
of order f3 is given by

1 tg'(h)
WD) = 5 g / - hyp "

Lemma 1 *Ifz € C*([0,+00),R)andn —1 < B <mn, (n>1,n € Z;), then
n—1 tk
wlf (D7=(1) = 2(0) = Y 172(0).
k=0
Under the condition 0 < 8 < 1, the expression takes the simplified form:

wll (5 DP2(1)) = 2(t) — z(to).

Lemma 2 ' Consider a continuously differentiable vector functiony € R". Foreveryt > to and forall B € (0,1)
, the following inequality holds:

D] (yT () 2y(t) < 20" ()25, D] y(t),
where & € R™*" is a symmetric and positive definite matrix.
Lemma 3 2 Suppose f € C* ([0, 00),R) is a function for which the Caputo fractional derivative satisfies
fo D7 g(t) < Bg(t),

with B € (0,1) and 6 € R. Then the following estimate holds:

g(t) < g(to)&s (6(t — t0)?)

2k

INCEESYR

8

where &3(-) denotes the Mittag-Leffler function, defined as &3(z) =

k=0

Lemma 4 ** For any vectors y, z € R™ and any symmetric positive definite matrix 2 € R"*", the following
inequality holds:

Tz <yt 27y + 2T 22

Remark 1 The concepts of MSFTSn and MSFTCSn differ in their synchronization precision and robustness
level. In MSFTSn, the synchronization error e(t) evolves from an initial region h; to a smaller region h2 within
a finite time, ensuring that the mean square error remains bounded thereafter. In contrast, MSFTCSn introduces
an additional contractive condition that further confines the error within a tighter region hz (hs < h2) over
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[T — o, T), enforcing a continuous reduction of the synchronization error even after finite-time convergence.
This contractive property guarantees higher synchronization precision and enhanced robustness against sto-
chastic perturbations and delays. Hence, MSFTCSn represents a stronger and more reliable synchronization
form, with its importance lying in its ability to maintain sustained stability and improved resilience compared
to conventional MSFTSn.

Main results

In this section, we establish the main results for MSFTSn and MSFTCSn for the FONNSs considered. The analysis
is carried out using an appropriate LF in combination with properties of the Mittag-Leftler function. These
tools enable us to derive sufficient conditions that guarantee synchronization thoery under the given impulsive
stochastic framework.

NNs with continuous neuron activation function:

Theorem 1 Let {e(t)}+>0 be a J -valued stochastic process that represents a mild solution of (8) and w1, w2 € 8
. Assume that hl, ho, hs, o, T, i, and p are positive constants satisfying ho > h1 > hs and o € (to, T'). Consider
a locally Lipschitz continuous function V (t,e) : R+ x R" — R, where & and & are positive definite matrices,
and Q, G € R™™™ are arbitrary real matrices. Suppose that the following conditions hold:

Moo= 32 <o

(i) wi Elle|®* < EV(t,e) < w2 Elle||%

(iii) & DJEV(te(t)) < uEV(te(t),t #trk € Zs;
(iv) EV(e(t)) < pEV(e(t™)),t = tr;

V) MFPM, < p2;

(vi) 2D = D2,
(vii) The inequality

o35 [0 02)] (F)+ < Z;E:?;Vt € [to, T]. ©)

Then, the NNs (8) achieve MSFTSn with respect to (hi1, hiz, T'). Furthermore, if the additional condition

%)-&-1 < w1(h3)
- ’wg(h1)

p(%) EA 195)}( Nte [l —o,T].

also holds, then the NNs (8) attain MSFTCSn with respect to (h1, he, hs, o, T).Where

- PA-ATP - DG -G'DT - L. 0 Lo 0 »B 2C
q)ll = * —ff// 0 ,(I>12 = fQW 0 0 s
* * - M+ 2 0 0 0
-+ 2 0 0 R
Doy = * -2 0 |, and control gain K = 27'G.
* * -2

Proof To establish the synchronization criteria for NNs (8), we construct a suitable Lyapunov function candidate
in quadratic form as follows:

V(e(t)) = e (t) Pe(t), (10)

where & = 27T is positive definite matrix. This quadratic structure is adopted because it ensures positive
definiteness, captures the instantaneous energy of the synchronization error, and provides a convenient
framework for deriving solvable LMI-based stability conditions. According to Lemma 2, when ¢ # t; the
fractional derivative of the Lyapunov function takes the following form:

DIV (e(t) < 267 (1) 2§, D e(t)

— 2T (1) ([—A e(t) + B f(e(t) + C f(e(t — 7(t))) — DKe(t)] + h(t, e(t), e(t — T(t)))dBdt(t)) .
11
= —2eT (1) P Ae(t) + 2T (1) PBf(e(t)) + 2eT (1) PC f(e(t — 7(1))) — 2T (t) P DKe(t)
dB™ (t)
dt

+2¢T () Ph(t, e(t), et — 7(t)))

Hereafter, the cross-product and coupling terms that arise in the fractional derivative of V(e(#)) are handled
using Lemma 2.4. This inequality decouples the product terms and converts them into diagonal quadratic forms
suitable for the LMI formulation, from which the following relations can be derived based on Lemma 2.4.

2¢" () ZBf(e(t)) < " () PBQ BT Pe(t) + f (e(t))Qf (e(t)), (12)
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e ()PCf(e(t = (1) < " (MPCQTCT Pe(t) + f7 (et = TMNQf (et = 7). (13)
Taking Assumption 1 into account, the following inequality can be derived implies that

(f(e(®) = 21 e(t))(f(e(t) — L e(t)) <0,
(flet —7(t)) — £ e(t —7(1))(f(e(t — () — £ et — 7(1))) <0,

where .Z1 and %> are Lipschitz matrices. Let .# and # be n x n diagonal matrices. Then, by applying the
above inequality, we obtain

Gty 5 20 (i) =0 (49
(i) O 20 (ely) 2o (15)

By substituting (12)-(15) along with condition (ii) into (11), one can get
SDMV(e) < — " ()P A+ AT P)e(t) + " (1) PBQT BT Pe(t) + fT(e(1)Qf (e(t)) + T (1) 2CQTCT Pe(t)
Te(t - (1)) Qf (elt — 7(t))) — 267 (1) PDKe(t) + (f(ifft)))) (20 (; (@P(tt))))

e(t —7(t)) =/ LW e(t —T(t)) TNy dBH()
+<f(e(t77(t)))) (27 20) (&7 )) 2" 02nt e e - 7)) (16)

H
=T (DA + e () Pelt) + 27 () Ph(t, e(t) e(t (1)) L
H
SV (e(t)) + 267 (O PRt eft), et — 7)) L,
where E(t) = (" (1), e (t = 7(0). ST (e()), [T (e(t = T(1)7,
Anr 0 Lo M 0
%Y 4 0 LW
A= * *1 - M+ 2 %) »and
Ay =—-P(A+DK) - (A+DK)' @ — /ot + PBQ 'B" 2 + 2CQ'C" . (17)
By employing the condition (vi), we rewrite the LMI term
Ay =—-PA-DG-A"2" - D'G" - Al + PBQT'BT 2 + 20Q 0" 2, (18)

with K = 2~ 'G. Moreover, by taking the Schur complement of the matrix A, we obtain the matrix ®.
According to condition (i) of Theorem 1, it then follows that A < 0. Applying the expectation operator to both
sides of (16) and invoking Definition 3, the following relation is derived:
B [§DPV(elt)] < n BV (e(1)). (19)
After that, applying the fractional integral to both sides of (19) and using Lemma 3, we obtain
wolf [1, DY EV (e(t)] <p oo I [EV (e(t ))]

EV(e(t)) <EV (e(t / EV(e(s))(t —s)°'ds (20)

EV(e(t)) <EV(e(to)) éa,e( (t —t0)”).
Let t = ty; in this case, condition (v) yields

V(e(tr)) = e (tx) Pe(tr)
el (t YMiE P Mye(ty,) (21)
< el (ty)pPe(ty ) = pV (elty,))-

Substituting inequality (21) into inequality (20), we have
EV(e(ty)) < p Es(u(t — te1)") EV(e(ty—1)).

Repeating the above inequality for k = {1,2, ..., .4}, which yields
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m

EV(e(ty)) < p” (H Eg(u(ts — ti—1)5)> EV(e(to)),

i=1
then forany ¢t € [ty ,t v 41),

EV(e(t)) <6s(ut —tx)7) BV (e(tr))

<p™ Es(ult —t4)°) (H &5t — ti_u‘*)) EV (e(to).

Based on the impulse sequence condition, one can get

+1

BV(en) < o075 [6300 9] F) BV (e(to)).

Therefore, for ¢ € [0, T such that

EVie®) < p(F) (6500 92] T BV (eto)).

Using condition (ii), we have

(22)

From inequality (22), it follows that E|le(t)||?> < h2, which guarantees that the error dynamics meets the
requirements of Definition 1 and the first inequality in condition (v). Therefore, neural networks (8) can be
regarded as achieving mean square finite-time synchronization with respect to the parameters (%1, fi2, 7). In
addition, it satisfies

Bl < BV(e(®) < o(F) [60u 9] T wo? o

< (%) (60090 B wa(i) <wn(he), te (70,11,

By inequality (23), one obtains FE||e(t)||* < his, which directly confirms that system (8) attains MSFTCSn
under Definition 2 and the second inequality in condition (v) with parameters (%1, hi2, fig, o, T'). The proof is
completed.

Remark 2 The set of conditions (i)-(vii) is fundamental in guaranteeing the finite-time synchronization proper-
ties of the considered stochastic delayed neural networks with impulses. Condition (i) enforces the negativity of
the constructed block matrix ®, which is the core feasibility requirement for the LMI framework. Conditions (i)
and (jif) restrict the Lyapunov functional growth by relating it to the error terms through the weighting functions
and the y-term, thereby ensuring boundedness and decay of trajectories. Condition (iv) controls the impulsive
effects by constraining the jump behavior of the Lyapunov functional, while condition (v) ensures that the im-
pulse matrices preserve stability by limiting their interaction with the Lyapunov matrix. Condition (vi) guaran-
tees consistency between the system matrices, and condition (vii) provides the inequality that explicitly links the
weighting functions with the finite-time bound. Together, these conditions form a tight and nonconservative set
of criteria that directly ensure MSFTSn and, under the additional inequality, extend the results to MSFTCSn. It
is worth emphasizing that all the conditions are very important in combination, as they are not mere restrictions
but necessary requirements to achieve the desired finite-time synchronization behavior.

Remark 3 Theorem 3.1 provides the theoretical basis for deriving the corresponding feedback control gain ma-
trix K from the proposed LMI-based stability conditions. Specifically, the feedback gain matrix K is determined
from the LMI conditions (i) and (vi), which guarantee the negativity of the symmetric matrix ® and ensure
compatibility among the positive definite matrices that define the Lyapunov functional used to analyze the syn-
chronization of the delayed fractional-order neural network system (8). The matrix term involving K in the LMI
formulation is expressed in (17). Here, the matrix D is assumed to be a full-rank column matrix, implying that
both D and & D are linearly independent for any &7 > 0. Hence, a nonsingular matrix & is defined such that
the equality condition (vi) is satisfied for some & > 0. If condition (vi) holds for a positive definite &, then
& must also be nonsingular. This equality constraint serves as an essential condition in reformulating the LMI
problem as a feasibility problem. To transform the original non-convex constraint into a convex form, the pro-
cedure described in>!*? is employed, where the equality condition (vi) is replaced by the following LMI with a
small scalar v > 0:
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By introducing an auxiliary variable G = ZK to remove the bilinear product between & and K, the

expression of A1y can be rewritten in a convex form as in (18 ) and the corresponding feedback control gain is

explicitly obtained as K = %~ . This formulation ensures that the resulting LMI constraints are convex and

computationally tractable, allowing the control gain matrix K to be systematically computed from the feasible

solution of the proposed LMI conditions.

NNs with discontinuous neuron activation function:
The analysis of MSFTSn and MSFTCSn for fractional-order stochastic neural networks with discontinuous
neuron activation functions is highly challenging. Discontinuities, arising from switching or saturation effects,
hinder the direct use of classical smooth-function techniques. When combined with stochastic disturbances and
fractional-order memory effects, the system dynamics become even more complex. To overcome these issues,
set-valued map theory provides a rigorous framework for establishing synchronization criteria in such networks.
We proceed by considering the neural networks (8), in which the neuron activation functions are assumed
to be discontinuous:

§De(t) = [—Ae(t) + B fe(t)) + C fle(t — 7(t))) — DKe(t)] + h(t, e(t), e(t — T(t)))%t(t)’
e(tr) = DMy ety ), t = i,

e(to +1) = n(l).

t#ty, ke€Zy,
(24)

The nonlinear function f(-) : R™ — R™ is assumed to be locally bounded and Lebesgue measurable, while
possibly exhibiting discontinuities at certain points e(-). In such situations, the solutions of system (24) are
formulated within the framework of Filippov regularization, where the corresponding set-valued map of f(-) is
defined in the sense of Filippov as follows:

e et — ()= [ (@ FBe(t),r)/LBe(t — 7(1),7)/K)],
r>0 mes(L)
>0 mes(K)

0
0

where mes(L) and mes(K) represents the Lebesgue measure of the set L and K, respectively; The notation
B(e(t),r) = {z : ||z — e(t)|| < 71} withcenter e(t) and radius r depicts aball; Ina similar way, B(e(t — 7(t)), )
also depicts a ball with center e(t — 7(¢)) and radius r.

Definition 6 28 The state e(f) is referred to as a Filippov solution of the discontinuous neural networks (24) if;
for any interval [tx, tx+1) C L, it is absolutely continuous and satisfies the following fractional-order stochastic
time-delayed impulsive inclusion (FOSTDII):

{ §DPe(t) € [~ A e(t) + B @l f(e(t))] + C @l f(e(t — 7(1)))] — DKe(®)] + h(t, e(t), e(t — (1) Lr 2, t# t,
e(tk) = DMk e(t;),t = tk,
e(to +1) = n(l).

By the local boundedness of f, the set-valued map ~ is nonempty, compact, convex and USC. In addition, the
existence of local solution of e(%o, et ) (¢) can be guaranteed for any (fo, e;,) € Ry x R™. If e(¢) is regarded as a
solution of the above FOSTDII, then there exists a measurable function () € ¢o[f(e(+))], such that

H
§Dle(t) = [~ A e(t) + B y(e(t)) + C (e(t — 7(t))) — DKe(t)] + h(t, e(t), e(t — 7())) L5 2, 1 # t,
e(tr) = DMy e(ty ), t = tr, (25)
elto +1) = (D).
Within this framework, we proceed to derive theoretical synchronization criteria for NNs characterized by
discontinuous activation functions.

Theorem 2 Assume that conditions (ii)-(iv) and (vi) of Theorem 1 are satisfied. Let 2, H, G € R™*™ be arbitrary
real matrices, and 2, & are positive definite matrices. Let fix, ha, i3, 0, and T be positive constants such that
ha > h1 > hg and o € (to,T). Assume w1, w2 € K, w, o, V1, V4 are positive constants and vz, v3 are negative
constants. Suppose the following conditions are satisfied:
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Xll lllgB — VQAT,QP 1/12”0 — I/3ATf 71/15f — I/4ATQP WB 3”0
H4+w»n%B I/Q.QpC+V3BTg 7Z/QQP+I/4BTQf 0 0

*
() X=| * * H+v32C - Z +wB"Z 0 0 | <0 where
* * * —n & 0 0
* * * * —-H 0
* * * * 0 —-H

Xii=-PA-ATP - DG -G'DT — v FA—wP, and K = 271G,

(i) MIP2M;, <a;
(iii) The inequality

o(#) [65(w 95)] (F)+ o wl(’i"’),w € [to, T). (26)

Then, the NNs (8) achieve MSFTSn with respect to (hi1, hiz, T'). Furthermore, if the additional condition

(E) [y 9y (F)51 2wl
(65w 95)] <SSl —0.1],

also holds, then the NNs (8) attain MSFTCSn with respect to (hy, ha, iz, 0,T).

Proof Consider the Lyapunov function V (e(t)) = e (t) Pe(t), where & is positive definite matrix. From
Lemma 2, the fractional derivative of V(¢) for ¢ # ¢ is expressed as:

CDIV(e(t)) < 2" (1) 2§ Dl e(t)

= 2€T(t)e@ ([—A e(t) + By(e(t)) + Cv(e(t —7(t))) — DKe(t)] + h(t,e(t), e(t — (t))) (t))

= —2¢T (1) P Ae(t) + 27 (1) PBy(e(t)) + 2eT (1) PCr(e(t — 7(1))) — 2¢T (1) P DKe(t) @7
+ 267 () Ph(t, e(t), e(t — (1)) dB (t)
Following Lemma 4, one can get

T (1) ZBy(e(t)) < e () PBH BT Ze(t) + 47 (e(t)) Hy(e(t)), (28)
2T (1) PCH(e(t — (1)) < T () PCH CT Pe(t) +~7 (e(t — (1)) Hy(e(t — 7(1))). (29)

Combining (28) and (29) with (27), it follows that

SDMV(e(t)) < — T (@) (PA+ AT P)e(t) + " (1) PBH BT Pe(t) + 47 (e(t) Hrle(t)) + " (1) PCH ™ CT Pe(t)

aB" (1) (30)

+ 7 (e(t — T(t)) Hryle(t — (1)) — 2e7 (t) ZDKe(t) 4 2% (£) Ph(t, e(t), e(t — 7(t))) n
In the sequel, the derivation proceeds by incorporating the free-weighting matrix methodology into the
following formulation. Since the Lipschitz continuity condition adopted in the continuous case cannot be
applied under discontinuous dynamics, the free-weighting matrix technique is introduced to flexibly handle the
coupling between the error terms and their delayed components. This approach provides additional degrees of
freedom in the Lyapunov analysis and ensures the feasibility of the LMI-based synchronization conditions for
the discontinuous case.

1™ () + vy (e(t)) + vy (e(t — T(1)) + va( Die(t) 12 [~ A e(t) + B (e(®)) + C (et — (1)) — {De(t)] = 0, (31)

where v1, 2, v3, and v4 are constant parameters, and 2 denotes an arbitrary real matrix. By substituting (31)
into (30), the following expression is obtained:

S DIV (e(t) < T (1)Mp(t) + we” Pe(t) + 2e™ (t) Ph(t, e(t), e(t — (t))) dB;(t) , (32)
where ¥(8) = (7 (8), v (e(1)),
11 Ilyo I3 —n Y — ATy
o) 00T = | T D OIS e B
* * * - ¥
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Iy = —PA— A"P+PBH 'B"P+PCH 'C"P —2PDK — 1 ZA - wP,Ils = ZB — 1nh A" Z,
i3 = 11 ZC — v3 AT 2. Applying the Schur complement to IT leads to the matrix X. Condition (i) of Theorem
2 guarantees that I < 0. Therefore, applying the expectation operator to both sides of (32) in accordance with
Definition 3 yields the following result:

E [ DV(e()] <w EV(e(t)).

From the above inequality, it is evident that the structure coincides with inequality (19) in Theorem 1. Therefore,
by following the procedure of Theorem 1, the intermediate derivations are omitted. In view of conditions (ii) and
(iii) of Theorem 2, the criteria for MFTSn and MFTCSn of the FOTDSII (25) are established with respect to the
parameters (1, A2, fiz, 0, T'). This completes the proof. O

Remark 4 Earlier investigations'>'6, and® have explored finite-time synchronization of FODNNSs using sin-
gle-action control strategies such as fractional feedback, impulsive, and matrix projection methods. Although
these approaches achieved synchronization under delays and uncertainties, they mainly focused on determinis-
tic or partially uncertain systems without addressing stochastic effects or contractive synchronization properties.
Likewise, studies**~*® examined MSFTS and MSFTSn of impulsive and stochastic systems through Lyapunov
inequalities and stochastic differential techniques, but these efforts were mostly limited to integer-order dynam-
ics and lacked consideration of hybrid control structures. To bridge these gaps, the present research develops a
unified framework for MSFTCSn in FOSDNN:Ss, applicable to both continuous and discontinuous control cases.
The proposed hybrid control mechanism combines continuous feedback with impulsive regulation, exploiting
the memory property of fractional derivatives to enhance damping, transient smoothness, and disturbance sup-
pression. Through fractional Lyapunov functionals and impulsive differential inequalities, rigorous finite-time
contractive conditions are derived under stochastic perturbations and delays, ensuring robust synchronization.
This formulation achieves faster convergence, improved robustness, and greater control efficiency while extend-
ing applicability to a wider class of hybrid fractional-order systems.

Numerical simulation
Example 1 Continuous case:
The neural networks described by equation (1) utilize the following parameter matrices:

Ae {1(.)3 193} B= [1+7r/4 20 } o [1.3\ﬂ3) /4 0.1 } D- [1 0} .

01  1+4x/4)°% 7 0.1 ~1.3/(3) 7/4 01

The neuron activation function is defined as f(z(:)) = % (|z(-) + 1| — |@(-) — 1|) where the corresponding
Lipschitz matrices are chosen as .#1 = diag(0.6,0.4) and % = diag(0.3,0.1). In addition, the matrix 2 is

specified as diag(0.53, 0.52). The fractional order is set to 5 = 0.95 and the time delay is defined by 7(¢t) = %

With the chosen parameter settings, Fig. la illustrates the time evolution of the NN states, where the
irregular and non-periodic oscillations reflect the complex dynamics introduced by time delays. Meanwhile,
Fig. 1b depicts the phase trajectories of the time-delayed NNs (1), confirming the presence of chaotic motion
characterized by high sensitivity to initial conditions and delay-induced nonlinear responses. Following this,

consider the impulse input M= 1031 0-01] . The corresponding controller design procedure can now be
systematically formulated using the LMI-based algorithm described below. Based on these parameter values, the
subsequent feasibility solution can be derived using the MATLAB LMI Toolbox:

0-5 T T T T T
2 of
X
Sof y
X
| | | | _0.5 1 1 1 1 1
0.5 6 -4 2 0 2 4 6
0 20 40 60 80 100
Time t (sec) X,
(a) State trajectories (b) Chaotic behaviour
Fig. 1. Dynamic behaviour of NNs (1).
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1.

2.

3.

4.

5.

6.

Input:
System parameters: A, B, C, D, £, 5, 2

Define Unknowns:
Z>0,G>0
MW
Define LMI:

(symmetric)
(diagonal)

Formulate the block inequality ® < 0 and 2D = D2 with constraints.

Solve LMIs:
Solve the formulated LMI using an MATLAB LMI feasp solver.

if LMI feasible
e Evaluate 3?, G, 4, Y. .
o Compute =D ' PD and K = Z~'G.

else
e Display “No feasible solution occurs.”
end

Output: .
If feasible, (2,G, # , W ,<,K) are obtained;

Otherwise, “No feasible solution occurs” is displayed.

Algorithm. LMI-Based controller design.

Following the aforementioned LMI-based algorithm, the feasibility solution corresponding to the selected
parameter values can be obtained using the MATLAB LMI Toolbox:

12063 0
}W:{ 0 1.2063

0.0104

—0.0176 11201 0
2 =1-0.0176 ] M= [

G = 0.1584 0.0135
0.2088 0 1.1201 T

0.0135 0.0364]°

17.9387

and the control gain K is obtained as K = [ 1.5788 1.8622

0.331 6] . Under the designed control gain and impulse
effects, Fig. 2a shows that the slave system trajectories quickly follow those of the master system, indicating
effective control action.

As illustrated in Fig. 2b, the phase portraits of both networks nearly overlap, confirming successful
synchronization. Meanwhile, Fig. 2c depicts the error trajectories converging rapidly to zero, demonstrating
that the proposed control strategy with impulse effects ensures stable and reliable synchronization of the time-
delayed NNs without stochastic perturbations.

2 ¢, ) —e 2(t)

x(1), v(t)

04
15 20

Error

0
)
-OIE . D
.
0

08

EY)

10

15 2 4 2

Time t(sec)

(a) State trajectories

0
x(t)

(b) Chaotic behaviour

Time t(sec)

(¢) Error trajectories

Fig. 2. Dynamic behaviour of NNs (1) and (2) without stochastic influence with control input.
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Fig. 3. Dynamic behaviour of NNs (1) and (2) with stochastic influence and without control input.
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(a) State trajectories
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Error states
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(¢) Error trajectories

Fig. 4. Dynamic behaviour of NNs (1) and (2) with stochastic effect and control input.
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(a) Without control
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(c) With control (8 =1)

Fig. 5. Error trajectories of NNs (8) without and with control under different orders 8 = 0.95, 1.

With the inclusion of stochastic terms, Fig. 3a presents the state trajectories of NNs (1) and (2) under
random disturbances without control input, where irregular and unsynchronized oscillations emerge due to
stochastic perturbations. As shown in Fig. 3b, the chaotic trajectories display strong fluctuations and a noticeable
loss of coherence, reflecting the system’s instability in the absence of control action. Furthermore, Fig. 3c
demonstrates that the error trajectories vary widely instead of converging, confirming that stochastic effects
hinder synchronization and emphasizing the importance of control intervention in maintaining stable dynamic
behavior for time-delayed NN.

In Fig. 4a reveals that when both stochastic effects and control inputs are applied, the trajectories of the
slave neural network (2) gradually align with those of the master system (1), confirming the effectiveness of the
designed control law. In Fig. 4b, the phase portrait displays overlapping attractors, indicating that synchronization
is achieved even under random disturbances. Additionally, Fig. 4c shows that the error states settle rapidly to
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zero despite the presence of noise, demonstrating the robustness and stability of the proposed control approach
in managing stochastic perturbations within time-delayed NNs.

Assume that the parameters are chosenas i1 = 1.1, hg = 4,13 = 0.4,0 = 0.2,and T' = 4. These parameter
values satisfy the conditions specified in Definitions 1 and 2. Figure 5 illustrates the mean-square synchronization
error trajectories of NNs (8) under different fractional orders with and without control input.

In Fig. 5a, when no control is applied, F||e(t)||* diverges rapidly and exhibits large stochastic oscillations,
indicating that the system fails to maintain mean-square boundedness and cannot achieve synchronization
under random perturbations. In contrast, Fig. 5b shows that when the proposed hybrid control is applied with
the fractional order 8 = 0.95, the error trajectories decay sharply and remain confined within the admissible
region determined by (h1, iz, hs, 0, T) = (1.1,4,0.4, 0.2, 4). This satisfies both the MSFTSn and MSFTCSn
criteria, confirming finite-time synchronization at approximately 7" = 3s. Furthermore, Fig. 5¢ depicts the case
with integer order 5 = 1. When the order is fixed at 5 = 1, the error trajectories converge more slowly, reaching
synchronization around 7' = 8s,and occupy a broader bounded region (41, k2, ks, o, T') = (10, 30, 3.2,0.5, 8).
Therefore, compared with the integer-order system, the fractional-order case exhibits stronger damping, tighter
boundedness, and faster convergence. This confirms that incorporating fractional dynamics enhances the
system’s memory effect, accelerates error decay, and strengthens robustness against stochastic perturbations.

Under H =0.75, Fig. 6a shows that El|le(t)|? remains within the region
(h1, hi2, 13,0, T) = (0.5,2.5,0.15,0.1,2.5) and achieves synchronization at T' = 2.5s for fractional-order
B = 0.85. In comparison, Fig. 5b with 5 = 0.95 is confined to (1.1, 4, 0.4, 0.2, 4) and synchronizes at T" = 4s.
Hence, reducing the fractional order from 8 = 0.95 to 8 = 0.85 compresses the mean-square error bounds
and shortens the synchronization time, indicating a stronger memory effect that accelerates convergence and
improves resistance to stochastic fluctuations.

Furthermore, Fig. 6b and 6¢ illustrate the mean-square synchronization behavior of the error NNs (8)
for different Hurst parameters H = 0.85 and H = 0.95 with 8 = 0.95. Both cases confirm finite-time
synchronization under the proposed control law; however, the synchronization region expands with increasing
H. For H = 0.85, smoother correlations in the fBm yield smaller fluctuation amplitudes and a tighter
convergence region, whereas for = 0.95, stronger temporal persistence slightly enlarges the bounded region
and introduces higher transient peaks. Overall, the results demonstrate that the designed controller effectively
preserves boundedness and synchronization performance under varying stochastic dependencies.

Discontinuous case:

The matrices used in this case are identical to those used in the previously analyzed continuous case.
Furthermore, set v1 = 0.67, vo = —0.52, v3 = —0.42, v4 = 0.21, @ = 0.79, and w = 1. The discontinuous
activation function employed in this case is defined as

Flz) = tanh(z) —0.02, if z >0,
)= tanh(z) +0.02, ifz <0,

which adds a small shift on either side of the origin. This small offset creates a jump between the two parts of
the function, making it discontinuous. As shown in Fig. 7, this discontinuity changes how the neuron responds,
producing sharper transitions and more irregular, chaotic motion in the network states compared with the
continuous case.

Using the above parameter settings and following the same LMI-based algorithm described earlier, the
corresponding feasibility conditions are obtained through the MATLAB LMI Toolbox as follows:

P — 0.0888 —0.0701 @ — 0.0048  —0.0083 G = 7.6596  1.1181
— |-0.0701 08777 |>~ T |-0.0083 0.1396 |~ T |-0.2401 2.9173]°

and the control gain K is obtained as K = [971 '08515793 146'62230503} Furthermore, Fig. 8 illustrates the state

trajectories of NNs (1) and (2) with the discontinuous activation function under impulsive and control actions.
It is evident that the trajectories of (2) closely follow those of (1), confirming successful synchronization and
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(a) H=0.75, =0.85 (b) H=0.85,5 =0.95 (¢) H=10.958 =0.75

Fig. 6. Dynamic behaviour of error NNs (8) under different Hurst parameters and fractional orders.
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Dynamic behaviour of NNs (1) with discontinuous neuron activation function.
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Fig. 8. Dynamic behaviour of NNs (1) and (2) with discontinuous neuron activation function under hybrid
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Fig. 9. Dynamic behaviour of error NNs (8).

(b) With control

demonstrating the effectiveness of the proposed control strategy in handling discontinuous dynamics and

stochastic behaviour.

As shown in Fig. 9, the state trajectories of the error NNs (8) are illustrated both without and with control.

In the uncontrolled case (9a), the trajectories E||e(t)||*> diverge due to stochastic excitation, exhibiting strong
oscillations and loss of synchronization. In contrast, the controlled case (9b) demonstrates that the proposed
aperiodic intermittent control achieves convergence within the finite terminal time 7" = 2.5s. For the chosen
parameters iy = 0.4, ho =1, h3 = 0.1, 0 = 0.05, H = 0.75, and 8 = 0.95, the trajectories contract toward
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the origin, fulfilling the conditions of MSFTSn and MSFTCSn. This behavior confirms the robustness and finite-
time synchronization capability of the proposed control scheme under stochastic perturbations.

Overall, the numerical simulations consistently validate the theoretical analysis established in Theorems 1
and 2, confirming that the proposed hybrid control approach guarantees both MSFTSn and MSFTCSn under
stochastic disturbances. The continuous case described in Theorem 1 demonstrates that smooth control actions
provide steady finite time convergence with well-damped system responses, ensuring stable synchronization.
In contrast, the discontinuous case presented in Theorem 2 introduces switching dynamics that enhance
robustness against stochastic perturbations and accelerate synchronization through faster error contraction.
Furthermore, the comparison between the integer and fractional order systems shows that the fractional order
structure possesses stronger memory and diffusion characteristics, resulting in faster convergence, reduced
synchronization error, and a more compact bounded region. In addition, the control input plays a crucial role in
stabilizing the network, as the trajectories diverge without control but rapidly converge when control is applied.
Moreover, the fractional order 8 and the Hurst parameter H significantly influence the system’s response. A
smaller fractional order strengthens the memory and damping behavior, thereby accelerating the contraction
of the mean square error, while a lower Hurst parameter produces smoother stochastic correlations and
smaller fluctuation amplitudes. Therefore, the overall numerical evidence confirms that the proposed hybrid
control, integrating both continuous and discontinuous mechanisms, achieves fast, stable, and noise-resilient
synchronization in fractional-order stochastic neural networks.

Remark 5 In earlier works'>'7, synchronization of fractional-order delayed neural networks was typical-
ly achieved using single-action control strategies such as fractional feedback, impulsive, or matrix projection
methods. Although these approaches ensured finite-time convergence, they often struggled to balance stability,
convergence speed, and robustness under delays and uncertainties. To overcome these challenges, this study
proposes a hybrid control framework that integrates continuous feedback with impulsive regulation. The contin-
uous part maintains smooth error evolution and suppresses delay-induced oscillations, while the impulsive com-
ponent provides rapid correction against stochastic disturbances. Leveraging the memory property of fractional
derivatives, the scheme enhances damping and transient smoothness, achieving energy-efficient synchroniza-
tion. Analytical results based on fractional Lyapunov functionals and impulsive differential inequalities confirm
finite-time synchronization and mean-square stability, which are further supported by comparative simulations.

Conclusion

Theoretical results established new sufficient conditions for MSFTSn and MSFTCSn in fractional-order stochastic
delayed neural networks under a hybrid control framework. The analytical approach combined stochastic
analysis with Lyapunov-based techniques, the fractional Gronwall inequality, and an improved Razumikhin
method to derive finite-time synchronization criteria. The hybrid control, integrating continuous feedback with
impulsive regulation, was crucial for compensating time delays, suppressing disturbances, and accelerating
convergence, thereby enhancing synchronization efficiency with reduced control effort. Both continuous and
discontinuous activation functions were effectively managed through smooth feedback and set-valued map
theory. Numerical simulations confirmed the theoretical findings, demonstrating faster synchronization and
stronger robustness, while the fractional-order formulation offered improved adaptability and realistic neural
dynamics. Future research may extend this framework to coupled neural networks with symmetric saturation
impulses to establish new synchronization criteria for large-scale interconnected systems.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper. All simula-
tion codes are available from the corresponding author on request.
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