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The dramatic increase in IoT devices in a smart ecosystem like smart cities, transportation systems, 
and healthcare and industrial automation has greatly improved network connectivity and data-
driven informed decisions. But this extraordinary level of connectivity generates important concerns 
associated with sensitive information and security risks. Therefore, this study proposes a novel 
framework for secure and sustainable IoT network and devices through a combination of a Hybrid 
Federated Learning Framework and GenAI. The proposed framework focuses on extending a secure 
learning platform for all different IoT devices through a Federated Learning Framework and utilizing 
GenAI capabilities for advanced information augmentation and customized anomaly detection. To 
improve the level of guaranteed privacy, this framework will utilize differential privacy techniques 
and a blockchain-assisted model validation process. Moreover, techniques for energy-efficient model 
optimization and edge intelligence in making decisions are considered to improve sustainability. The 
proposed work will examine and develop this novel hybrid model through intensive simulations and 
lab-based testing for its application in a building and energy management field. The impact will include 
a new federative generative architecture that offers enhanced cyber threat resilience, lower overhead 
costs of communication, and ensures user confidentiality of data. The end goal of this proposed project 
is to contribute positively towards advancing the state-of-the-art in sustainable AI for a secure and 
environment-conscious IoT.
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The advancement of Internet of Things (IoT) technology has significantly impacted contemporary infrastructure 
like smart cities, transportation systems, healthcare, and industrial automation through large-scale connections 
and autonomous computing. However, critical issues have arisen in relation to data security and privacy due to 
continuous information transfer and generation in IoT devices1. In traditional centralized ML-based systems, 
aggregated information needs to reach cloud servers for computation. The process is associated with security 
concerns for information and network traffic due to large volumes of information.

Federated Learning (FL) has lately appeared as a promising distributed learning technique to address the 
above-mentioned issues to train a common model together without sharing actual data. FL maintains data 
locality and hence ensures greater privacy and less transfer of sensitive information. However, in spite of its 
many benefits, FL still faces some challenges while employed in an IoT setting regarding its susceptibility to 
inversion attacks, communication overheads, heterogeneity issues in devices, and power limitations2,3. So far, 
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many surveys have highlighted that overcoming all above-mentioned limitations is a critical need to ensure 
efficient and secure FL implementations in resource-constraint IoT networks1–4.

Privacy and secure aggregation challenges
Although FL is known to provide added guarantees to user privacy as it ensures that all the data is stored 
locally and not centrally, there is still a risk of disclosing sensitive information in model updates via gradient-
based inference and/or reconstruction attacks. Various methods have recently emerged for securing FL 
communications. Some of those methods include differential privacy (DP), homomorphic encryption (HE), and 
secure multiparty computation (SMC) approaches to secure FL communications2,5. To provide added resilience 
to FL against malicious interference and provide enhanced trust in FL systems, blockchain-based FL frameworks 
have recently emerged for ensuring traceability and tamper-proof model aggregation6.

System heterogeneity and scalability
The reason is that IoT environments are heterogeneous devices with different computation abilities and 
network capabilities. The heterogeneity will cause a non-independent and identical distribution (non-IID) of 
data. As a consequence, it will adversely affect model divergences and performances3. In this scenario, more 
advanced aggregation techniques like FedProx, FedAvgM, and hierarchical FL have emerged to address this 
concern. Recently developed approaches like HED-FL and hierarchical clustering-based FL have attuned to 
better converge and manage resources in heterogeneous IoT environments3,4. The significance of adaptive client 
sampling techniques and approaches for compression in this context has emerged in these studies to address 
accuracy and efficiency simultaneously.

Energy efficiency and sustainability
Another important factor is energy usage in large-scale IoT implementations. Edge devices run on batteries 
and have limited bandwidth. Several iterations are required in FL for training a model. Hence, repeated model 
transfer can significantly drain resources and impact sustainability3. To make this more optimal and less 
resource-intensive, methods like in-network computation, model reduction, selective participation methods, 
and energy-conscious scheduling strategies have been proposed to decrease energy usage while keeping the 
model accuracy level high4,5. Sustainable FL is rapidly considered an important catalyst in making a sustainable 
smart environment and energy-efficient AI for edge devices.

Generative AI for data augmentation and security
Generative Artificial Intelligence (GenAI) approaches like Generative Adversarial Networks (GANs), Variational 
Autoencoders (VAEs), and diffusion models are significantly impacting data generation and security analysis. In 
scenarios related to intrusion and anomaly detection in IoT environments, generative approaches can generate 
realistic samples for better generalization and adversarial analysis2,7. Modern developments have assisted in 
extending generative approaches in federated learning infrastructure like FedGAN and FedVAE to provide 
secure and adaptive learning over distributed devices2,7. The proposed approaches can contribute to enhanced 
security and resistance to anomalies in privacy-focused scenarios.

Blockchain and trustworthy federated orchestration
The integration of blockchain technology with FL brings an added level of transparency and trust. In 
blockchain-based FL systems, the aggregation servers are made foolproof against single-point failures and 
provide immutability for updates to models through incentives 666. Research has revealed that integration with 
blockchain technology can greatly improve the auditability and verifiability of models in a privacy-preserving 
FL technique6.

Research gap and motivation
However, a knowledge gap still exists in this area for a holistic and unified framework that combines federated 
learning, generative AI, and sustainability concepts in a secure and privacy-preserving platform. The literature 
has described individual aspects like protecting user privacy during ML execution and reducing inter-device 
communications. However, nobody has expressed a need for a unified platform that optimizes multiple needs 
like intelligence in generating inputs for ML and its robustness against adversarial attacks for sustainable and 
secure IoT systems in a power-efficient and scalable architecture6,7. The proposed system will address this 
literature gap.

Research objective
To address this reality, this research proposes a Hybrid Federated Learning Framework that is coupled with 
Generative AI to promote sustainable and secure functioning for IoT-based smart spaces. Specifically, this 
proposed framework seeks to (a) improve privacy preservation via differential and blockchain-supported 
aggregation methods, (b) apply generative AI for generating virtual data and building anomalies, and (c) manage 
energy and communications spending via edge-based adaptive learning. The proposed combination is believed 
to ensure strength against cyber-attacks while still keeping sustainability and model accuracy.

Literature review
Federated learning (FL) and heterogeneity-aware methods
Federated learning allows for collaborative model training without requiring centralized storage of raw data. 
The FedAvg algorithm (McMahan et al., 2017) demonstrated communication-efficient collaborative training but 
suffers from slow convergence or divergence under non-IID data and device heterogeneity8. FedProx and related 
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methods improve robustness under heterogeneous data distributions by adding proximal terms and adjusting 
local solvers9,10. Empirical studies confirm that FedAvg alone is insufficient for real-world IoT deployments with 
diverse devices and non-IID workloads, motivating personalization, hierarchical aggregation, and adaptive client 
selection2,9. Federated Learning (FL) has recently been identified as an important privacy-preserving machine 
learning paradigm, where the seminal work FedAvg provided the first client-server aggregation protocol without 
the exchange of raw data8. Nonetheless, classic FL has proven to be associated with important limitations in the 
context of IoT networks, namely non-IID conditions, communication costs, as well as scalability11.

Privacy-preserving FL: differential privacy, secure aggregation, homomorphic encryption
While FL does not share raw data, model updates may leak private information through gradient inversion or 
membership inference attacks. To address this, the literature proposes:

•	 Differential privacy (DP): adding calibrated noise to updates;
•	 Secure aggregation / MPC: server aggregates encrypted updates without learning individual contributions;
•	 Homomorphic encryption (HE): allows arithmetic on encrypted updates.

For example, Ma et al. (2021) proposed multi-key HE schemes for FL (xMK-CKKS), achieving strong 
confidentiality even under collusion but at the cost of computation and key management overhead. DP offers a 
quantifiable privacy budget but may reduce model utility when local datasets are small, as is common in IoT9. 
Overall, privacy-preserving FL for IoT requires balancing security, energy, and model performance.

Federated generative models (FedGAN, FedVAE)
Generative AI models, such as GANs, VAEs, and diffusion models, are effective for data augmentation, anomaly 
detection, and adversarial training in privacy-sensitive contexts. Federated variants like FedGAN and FedVAE 
enable distributed training of generative models without sharing raw data, producing synthetic samples locally 
or collectively10,12. Rasouli et al. (2020) have proved that FedGAN is capable of producing realistic surrogate 
data under non-IID conditions while keeping feasibility in place. However, the stability of the GAN and cost 
of communication are still important concerns for fed-GAN10. Later on, Jin et al. (2023) emphasized security 
concerns like back-door attacks in fed-GAN for federated generative modeling12. For improved privacy, 
diversity, and data quality, the use of Generative AI models, like GANs, VAEs, has been incorporated in the 
FL process. The research proposed FedGAN, FedVAE, aims to optimize the generation of decentralized data, 
but the proposed approach has demonstrated large computational complexity, model divergence, and lack of 
scalability when running in resource-constrained IoT devices3. In addition, GAN models often demonstrate 
mode collapse in the non-IID IoT setting.

Energy- and communication-efficient FL in IoT
Energy and communication costs are important factors in battery-driven and network-constrained IoT devices. 
Cost reduction through hierarchical aggregation, client choice, model reduction, and in-network computation 
is common. The HED-FL framework proposed hierarchical edge and cloud aggregation to achieve minimum 
energy and communication costs while keeping high model accuracy (De Rango, 2023)13. Energy-efficient FL 
methods like selective participation and pruning were cited in a literature review by Baqer et al. in 2024 for 
their feasibility of deployment14. In IoT-based FL scenarios that are battery-driven and network-constrained, 
hierarchical and edge-based aggregation has garnered interest.

Blockchain/ledger-assisted FL
The blockchain has been coupled with FL to improve its audibility and resistance to tampering. The blockchain 
facilitates immutability and verifiability of the models and incentives in a decentralized fashion15,16. However, 
blockchain incurs additional latency and overhead in storage size. Lightweight blockchains can address this 
concern. The addition of blockchain to FL raises transparency and makes it more resilient to poisoning and 
backdoors.

FL for anomaly and intrusion detection in IoT
Federated learning has been used anomaly and intrusion detection in heterogeneous IoT networks as well 
as in IIoT. Federated DNNs are capable anomaly detection without requiring centralized data. However, few 
methods are available for detecting rare events and handling imbalances in classes. Wang et al. (2023) showed 
that hybrid architectures combining local unsupervised representations with global supervised updates enhance 
detection performance while preserving privacy17. Federated generative models further improve performance 
by generating synthetic samples for minority classes, reducing detection bias10,17.

Attacks and defenses in FL
FL is vulnerable to poisoning, backdoor, and inference attacks. Bagdasaryan et al. (2020) demonstrated model-
replacement backdoor attacks that compromise global model integrity18. Defenses include robust aggregation 
(median, trimmed mean), anomaly detection on updates, Byzantine-resilient methods, and secure logging 
via blockchain11,15. Federated generative models introduce additional attack vectors; secure protocols and 
anomaly detection for generative updates are necessary12. Recently, the emphasis has been on diffusion models, 
specifically Denoising Diffusion Probabilistic Models, as a stable approach over GANs to produce quality 
synthetic data6. Although the potential of federated diffusion models exists, the multi-step iterative process 
involved in sampling can make it quite computationally intensive, thereby less suitable for resource-constrained 
IoT devices11. The prevailing methods deal mainly with anomaly detection, privacy, but neglect energy efficiency, 
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trust establishment based on blockchain technology, as well as the needs of differential privacy7. The identified 
shortcomings trigger the search for an integrated solution.

Comparative analysis of representative works
Table 1 is a compact comparison of selected research works that highlight design decisions, evaluation settings, 
and remaining gaps.

Research gap and proposed solution mapping
Table 2 addresses each identified gap to specific mechanisms in the proposed hybrid framework. These gaps 
motivate a hybrid framework that: (i) Integrates federated generative models for augmentation and anomaly 
modelling, (ii) layers DP/HE/blockchain-based verification for privacy and trust, and (iii) uses hierarchical & 
energy-aware orchestration (clustered aggregation, compression, selective updates) to make the scheme practical 
for heterogeneous IoT deployments.

Methodology
The proposed research develops a Hybrid Federated Learning Framework with Generative AI (HFL-GAI) 
designed to address privacy, security, and sustainability challenges in heterogeneous IoT-enabled smart 
environments. The framework integrates: (i) federated learning for distributed collaborative model training, (ii) 
generative AI for data augmentation and anomaly modeling, (iii) privacy-preserving mechanisms (differential 
privacy, homomorphic encryption, secure aggregation), (iv) energy-efficient orchestration, and (v) blockchain-
based trust verification. The methodology has five core modules that cover important challenges emerging in 
the literature review.

Gap Proposed solution Expected outcome

Integration of privacy, security, and sustainability Hybrid FL + GenAI framework with DP, HE, blockchain, hierarchical 
aggregation

Holistic privacy-preserving, energy-efficient, 
secure IoT FL

Federated generative models are unstable and 
attack-prone Robust federated generative training; anomaly detection on updates Stabilized generative training; reduced 

backdoor risks

HE/DP overhead for IoT devices Hierarchical aggregation, selective compression, adaptive DP Feasible deployment on constrained IoT nodes

Lack of realistic IoT testbeds End-to-end IoT deployment with sensors, gateways, cloud Validated performance: privacy, energy, 
accuracy, robustness

Rare-event anomaly detection challenges Federated generative augmentation; hybrid supervised-unsupervised 
models Improved detection for minority/rare eve

Table 2.  Gap-solution-outcome mapping.

 

Paper Scope / contribution Strengths Weaknesses IoT suitability

8 Core FL algorithm Communication-efficient baseline; simple Sensitive to non-IID data; poor heterogeneity 
handling Baseline; needs adaptation

9 Heterogeneity-aware FL Stable under non-IID; robust convergence Hyperparameter tuning Improved for IoT 
heterogeneity

11 Cryptographic FL aggregation Strong confidentiality Computational/key overhead Promising w/ optimizations
10 Federated generative models Local synthetic data generation GAN instability; high communication Experimental for IoT
12 Security of federated generative models Highlights new attack surfaces Few practical defenses Critical concern
13 Hierarchical energy-aware FL Reduced energy & communication Trust dependency on cluster heads High

14 Energy-efficient FL Practical strategies: pruning, selective 
participation Limited cross-IoT evaluation Moderate; implementation 

needed

15,16 Blockchain-assisted FL Transparency; incentives Consensus overhead Needs lightweight 
permissioned design

18 Backdoor/poisoning attacks Demonstrates attack potency Defense trade-offs High concern
17 Federated anomaly detection Privacy-preserving detection Needs augmentation & robust defenses High

19 Secure data sharing in 6G IoT healthcare Data integrity, blockchain auditability Energy efficiency not analyzed Healthcare IoT; mid-
resource devices

20 IoT intrusion detection with blockchain High detection accuracy, secure key 
management High computational cost, no data privacy Mid-tier IoT devices

21 Blockchain-enhanced IDS Tamper-resistant, distributed support Energy/latency overhead, no generative AI Distributed IoT; high-
resource nodes

22 Explainable DL for CPS High accuracy, interpretable Limited privacy, computationally intensive Industrial IoT; high-
resource devices

Table 1.  Comparative summary.
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System architecture
Overview
The system has a total of three hierarchical layers:

	A.	 IoT device layer:

•	 Consists of IoT devices (sensors, actuators, wearables, gateways) collecting data locally.
•	 Performs local model training on lightweight ML/DNN models using device-specific data.
•	 Applies local differential privacy (LDP) mechanisms before sending updates.

	B.	 Fog/cluster layer:

•	 Groups edge devices into clusters for hierarchical aggregation.
•	 Cluster heads aggregate encrypted model updates using homomorphic encryption (HE) and transmit the 

intermediate models to the cloud layer.
•	 Cluster-level generative AI models (FedGAN/FedVAE) synthesize minority-class samples for anomaly de-

tection tasks.

	C.	 Cloud layer:

•	 Performs global aggregation of cluster-level models.
•	 Coordinates a generative AI module to improve the generated datasets.
•	 Implements blockchain ledger for auditable updating and secure cluster-level contribution verification.

How generative AI enhances privacy and security:

•	 Synthetic Data Creation: Generative AI can build realistic yet fictional datasets that can be analyzed without 
requiring actual and sensitive information.

•	 Differential Privacy: The generative models can either implement differential privacy as a technique within its 
learning process or utilize it as a noise generator for perturbation.

•	 Adversarial Learning for Security: The generated samples obtained from GANs can find application in gen-
erating adversarial examples for testing and improving intrusion detection systems. Moreover, generative 
methods can model normal system behavior to improve anomaly detection.

•	 Data Masking/Perturbation: On-device generative capabilities can be used for noise addition to preserve con-
fidentiality.

Figure 1 above shows hierarchical federated learning in a system consisting of different aspects of Generative 
AI to ensure enhanced privacy, security, and sustainability for different IoT-based smart domains. The different 
models within this hierarchical federated learning system are all developed and enabled through private, offline 
datasets. Rather than requiring all devices to share their respective sensitive datasets through a central server for 
analysis and learning within their respective AI models, all devices within this system are designed to securely 
share only their model updates with a central Aggregation Global Server. The server compiles all these updates 
to develop a more superior and enhanced global AI model. However, this enhanced global AI model is always 
shared with all devices.

Federated learning algorithm
Federated Learning (FL) makes it possible to perform distributed model training for ANN-based AI without 
transferring unencrypted data from devices of an IoT network. In this scenario, a device Di trains a local model 
W t

i ​ from its dataset and sends only encrypted weights to an edge aggregator. The FL module enhances the 
FedAvg framework for heterogeneity and energy efficiency:

	A.	 Client selection and scheduling:

•	 Clients are chosen depending on energy budget, network status, and computational capabilities.
•	 Adaptive selection will ensure that nodes with low batteries and/or low bandwidth are less likely to contribute.

	B.	 Hierarchical aggregation (HFL):

•	 Local models ω t
i ​ are trained at IoT devices for EEE local epochs.

	– Cluster heads perform intermediate aggregation:

	
wt

c = Σ i∈cniω
t
i∑

i∈ c
ni

where ni is the local dataset size of device i in cluster C.

•	 Global aggregation at the cloud:
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W t+1 =

∑
c∈ clusters

η cW t
c∑

c∈ clusters
nc

	C.	 Adaptive learning rates and proximal terms:

•	 Heterogeneous clients use local learning rates ni and FedProx-style proximal regularization to reduce diver-
gence under non-IID data:

	
Li (ω i) + µ

2
∣∣∣∣ω i − wt

∣∣∣∣2

 

•	   Ensures stable convergence for different IoT devices23,24.  

 

Fig. 1.  Hybrid federated learning framework.
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Figure 2 shows a hybrid federated learning framework designed specifically for loading monitoring. The 
figure shows a central server that manages updates coming from multiple training clusters that consist of 
clients with associated local datasets. The structure is designed to promote collaborative learning while still 
encompassing confidentiality.

Each IoT edge device k keeps a local generative model Gk(GAN or VAE). The generator model updates 
based on the local dataset Dk , are as follows:

θ t+1
k = θ t

k − η ∇ θ k Lk(Gk, Dk)Where: θ k  - local model parameters, η  - learning rate, Lk  - local loss.
The differential privacy guarantee can be achieved through the following operations performed on the 

gradients:

	
∼
∇ θ k Lk = clip(∇ θ k Lk, C) + N (0, σ 2C2I)

Generative AI integration
The Generative AI layer focuses on handling heterogeneity and datasets in distributed IoT environments. The 
Generative Adversarial Networks and Variational Autoencoders techniques are employed to generate additional 
data that can fill up less common classes as well as mimic unusual operational scenarios25,26.

In this setup, every generator G network learns the distribution of latent features from its respective domain, 
while its authenticity is confirmed through the discriminator. The federative generative network (FedGAN/
FedVAE) improves global model-generalization performance in a non-IID scenario. Moreover, generated 
samples can substitute actual ones to add a new level of security for clients.

Federated generative model (FedGAN / FedVAE) module:

	A.	 Purpose:

•	 Synthetic data generation for handling imbalance in classification problems and for carrying out adversarial 
testing.

	B.	 Training workflow:

•	 Each cluster trains a local generative model on-device using real data.
•	 Generative parameters are encrypted and shared with the cloud for federated aggregation.
•	 The global generator is redistributed to clusters for local sample generation.

	C.	 Use in anomaly detection:

 

•	   Synthetic anomalies augment training datasets.
•	    Hybrid model combines local unsupervised representations with global supervised classifiers.
•	    Increases accuracy for detection of rare occurrences in IoT data27–30.  

 
After local epochs E, the edge devices will send the parameters back to the central server. The global 

aggregation is performed by weighted average:
θ t+1

G =
∑

K
k=1

nk
n

θ t+1
k Where: nk =| Dk |  is the size of the local dataset, n =

∑ K

k=1nk , K  - total 
number of participating devices.

In generative models, the aggregation involves only the generator parameters, while the discriminators, 
encoders, can stay local if privacy issues are a concern.

The HFL-GAI model combines the concept of federated learning (FL), and generative models to create 
effective, secure, power-efficient, and privacy-preserving IoT intelligence. Each edge IoT device k, a local 
generative model Gk(VAE or GAN) on its private data Dk  will be trained, parameters via θ t+1

k are being 
updated with differential privacy imposed through noise addition and gradient clipping. Using the weighted 
average: θ t+1

G  the local updates at a server or fog node are periodically aggregated to produce a global generator.

Fig. 2.  Architecture of load monitoring.
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Privacy and security mechanisms

	A.	 Differential privacy (DP):

•	 Noise is added to the gradients/model parameters before sharing:

	
∼
gi= gi + N

(
0, σ 2)

 

•	   Ensures confidentiality of individual data inputs24,31.  

 

	B.	 Homomorphic encryption (HE) / secure aggregation:

 

•	   Cluster-level aggregation of encrypted weights to ensure that cloud is not able to get direct updates31,32.
•	    Encrypts model parameters, allowing secure computation on ciphertexts.
•	    Aggregator performs: Enc

(
W t+1)

=
∑

Enc
(
W t

i

)
  

 

	C.	 Blockchain ledger for trust verification:

 

•	   Maintains an immutable record of model updates.
•	    Enables post-hoc auditing and detection of malicious or anomalous updates33.  

 

	D.	 Robust aggregation & anomaly detection:

 

•	   Updates are analyzed for outliers via robust aggregation methods (trimmed mean, median).
•	    Malicious client detection prevents backdoor/poisoning attacks34.  

 

Energy-efficient orchestration
Energy consumption in resource-limited IoT devices is optimized through adaptive orchestration policies35. 
The framework dynamically selects participating devices based on their residual energy, connectivity stability, 
and computation capacity. A reinforcement-learning-based scheduler adjusts batch sizes and learning rates to 
balance accuracy and energy cost. The total energy is modeled as

	 Etotal = Ecomp + Ecomm

.
where computation and communication energies are minimized by optimizing the participation probability 

Popt. Edge-level aggregation further reduces long-haul transmissions to the cloud, contributing to sustainable 
operation.

	A.	 Adaptive participation:

•	 Low-resource devices participate less frequently.
•	 High-energy devices handle more computation.

	B.	 Model compression & sparsification:

•	 Weight pruning and gradient sparsification reduce communication overhead.
•	 Cluster heads compress intermediate models before forwarding to cloud.

	C.	 Hierarchical scheduling:

 

•	   Clusters are formed dynamically based on network topology and device energy levels.
•	    Reduces global communication rounds while maintaining convergence.  
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Algorithm 1.  HFL-GAI framework.

 The HFL-GAI algorithm is a hierarchical federated learning framework that integrates generative AI and 
privacy protection. It starts with local datasets on IoT devices, an initial global model, and a generative model. In 
each training round, a subset of devices is selected based on energy and network conditions. Each device trains 
its local model with proximal regularization and adds differential privacy noise, while also updating a local 
generative model (GAN/VAE) to enhance data privacy. The locally trained models and generative parameters 
are encrypted and sent to a cluster head, which aggregates them into a cluster model. These cluster models 
are then aggregated at the cloud level to update the global model. The global generative model is updated and 
redistributed to devices, while all updates are logged on a blockchain for verification. The result is a privacy-
preserving global federated model and a federated generative model for secure and efficient edge intelligence. 
The HFL-GAI model combines VAEs as well as GANs to achieve consistency, accuracy, as well as resource 
efficiency for diverse IoT networks. VAEs are preferably utilized in resource-constrained edge nodes as they are 
stable, provide probabilistic latent modeling, as well as robustness in non-IID conditions, but generate slightly 
blurry synthetic data.

 Additionally, GANs model accurate data well suited for anomaly detection as well as robustness against 
adversarial attacks but are computationally intensive, as well as vulnerable to non-IID data, favoring mid-tier 
fog nodes or clouds36. These trade-offs were also verified in a small ablation study, where VAEs were found to 
provide steady results along with less computational cost, while GANs can enhance accuracy in resource-rich 
nodes. HFL-GAI seamlessly switches between VAE and GAN depending upon the computing capability as well 
as data heterogeneity.

 In order to strike a proper trade-off between fidelity, robustness, and computational complexity, VAEs are 
applied to resource-constrained edge nodes based on their resilience over non-IID data, while GANs are applied 
to mid-level fog/cloud nodes for the generation of high-fidelity data in the applications of anomaly detection as 
well as adversarial robustness. The ablation experiment verifies that VAEs guarantee stable results in negligible 
computational costs, while GANs can promote model accuracy as well as adversarial robustness if sufficient 
resources are available. This dynamic allocation helps the HFL-GAI realize efficiency as well as high-quality 
privacy-preserving learning in diverse IoT networks.
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Algorithm 2.  Privacy verification assessment.
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 The Privacy Verification Assessment Algorithm ensures that privacy is maintained while processing IoT 
or federated learning data. It operates by examining privacy requirements, securing resource distribution, 
estimating delays in communications, and making corresponding changes if privacy is not assured. The solution 
begins with system parameters initialization and a subsequent check for a privacy check. If a privacy check is not 
met, resources are reassigned and looped through a fine-tuned privacy guarantee factor. The algorithm proceeds 
to estimate transmission delays and resources assignment mapping to determine if the system meets and adheres 
to a privacy requirement. A factor for an erroneous control is continued until there is a potential deviation from 
a security goal. The final step involves a check to ensure delays and resources in a system are above a minimum 
required level if a success occurs; otherwise, a system reinitializes and retries through resource assignments until 
a privacy promise is achieved.

Expected benefits
 

•	   Privacy-preserving: Raw data never leaves local devices; DP, HE and blockchain ensure confidentiality.
•	    Energy-efficient: The hierarchical aggregation, adaptive participation mechanism, and compression tech-

niques are used to reduce IoT energy consumption.
•	    Security-enhanced: Robust aggregation and blockchain auditing prevent poisoning/backdoor attacks.
•	    Improved anomaly detection: Federated generative models provide synthetic data augmentation to enhance 

detection of rare events37.
•	    Scalable: Hierarchical orchestration supports large-scale IoT networks with heterogeneous devices38.  

 

Experimental results and analysis
Experimental setup
To ensure that the proposed HFL-GAI framework is efficient in performance, a hybrid testing platform has been 
developed that simulates an IoT-Edge-Cloud environment with diverse devices. The environment had:

•	 IoT layer: Ten Raspberry Pi 4 boards (8 GB RAM, Quad-core Cortex-A72) simulating edge IoT sensors (tem-
perature, light, occupancy, and power-usage nodes).

•	 Edge layer: Featuring two NVIDIA Jetson Nano boards acting as intermediate aggregators for cluster-level 
model fusion.

•	 Cloud layer: Dedicated server (Intel Xeon Silver processor and 64 GB of RAM with a Tesla V100 GPU) run-
ning Ubuntu 22.04 for final model integration and blockchain ledger maintenance.

•	 Blockchain platform: The Hyperledger Fabric-based private blockchain network (version 2.5) developed for 
verifying AI/ML models and logging.

•	 Software stack: Ubuntu 20.04 (Server), Federated Learning Framework Flower 1.5, Python 3.10 with PyTorch 
2.1 for FL and Generative NNs, PySyft for secure computation, gRPC with TLS 1.3 encryption for communi-
cation, and TensorBoard.

There were three datasets to showcase its applicability to different fields:

	1.	 Smart-home energy dataset (UCI) – The dataset contains 9 households, 2,923,200 sensor data, and there are 
also 12 environmental variables like motion, temperature, humidity, and light conditions, among others. The 
values were filled by linear interpolation for the missing values, which were less than 2.1%. The time series 
window was also applied, where the window size was set to 30 s. They used Non-IID data, where the parti-
tioning was done based on the skewness of the labels following the Dirichlet distribution, which has alpha 
set to 0.3. Quantity skew was based on the activity duration.

	2.	 IoTID20 – The IoTID20 dataset has a total of 3,670,000 traffic flows, which were produced by IoT devices in 
a benign as well as attack conditions. The noisy logs were removed (1.4%), while the categorical values in the 
networks were one-hot encoded. The outlier traffic was removed using the interquartile range method.

	3.	 Edge-MNIST – A lightweight model of MNIST was deployed for the edge, which consisted of 60,000 train-
ing images and 10,000 testing images, compressed to 16 bits of grayscale. Pixel intensities were normalized 
between [0,1].

The datasets were made non-IID to mimic realistic IoT scenarios. The experiments were conducted for five 
runs to ensure reliability in reporting the average. Hyperparameters learning rate ranging between 0.001 and 
0.005, the noise multiplier in differential privacy (σ = 1.1), and the reduced diffusion steps set to 20 were tuned. 
The results showed that values of σ > 1.3 result in reduced accuracy, small values of the learning rate result in an 
increased energy budget, and sparse aggregations result in slow convergence. These hyperparameters form the 
optimal trade-off between accuracy, privacy, and energy efficiency.

Experimental workflow
Figure 3 sketches the execution workflow of the experiments conducted on the proposed model.

Step 1: Initialization: Central server initializes the global model weights.
Step 2: Local Training: Each client trains the model on its local data and applies generativeAI-based 

augmentation.
Step 3: Secure Aggregation: The local updates are communicated to the server; differentialprivacy is to ensure 

the confidentiality of client information.
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Step 4: Global Model Update: The server computes aggregated updates based on FedAvg and sends updated 
global model to clients.

Step 5: Iteration: Repeat steps 2–4 for a number of iterations until convergence.

Illustration of experimental setup
Every client enhances its own dataset with a VAE (Generative AI) to facilitate better generalization. The sensitive 
client information is protected against inference from model updates through Differential Privacy. The energy 
and sustainability features are recorded in every round.

Evaluation metrics
The proposed framework is compared to traditional centralized and federated learning approaches through a 
variety of metrics as follows:

•	 Model accuracy (Acc) – overall predictive performance.
•	 Precision, recall, and F1-score – for security and anomaly-detection tasks.
•	 Privacy loss (ε) – measured under the differential-privacy model.
•	 Communication overhead (CO) – total bytes transmitted per training round.
•	 Energy consumption (E_total) – measured using on-board sensors of IoT devices.
•	 Blockchain latency (BL) – time for verification and consensus.

The use of the blockchain in the HFL-GAI increases the level of trust in the model verification process performed 
in a secure manner but also brings latency costs associated with the number of IoT devices, which increases 
linearly along with the number of devices in the simulation but remains independent of the communication cost, 
which is reduced by batch processing, as well as the storage cost in the ledger, proportional to the model size and 
the replication factor. Nonetheless, as verified through the simulation process, the use of the blockchain ensures 
secure verification, but efficiency can be achieved through proper design.

In the proposed HFL-GAI scheme, the blockchain technology, Hyperledger Fabric v2.2, has been applied for 
model verification and secure aggregation. The average consensus latency Lc grows linearly with the number of 
involved IoT devices K  as given by the following equation:

Lc ≈ L0 + α KWhere:

•	 L0is base network latency (~ 50 ms in our setup),
•	 α represents per-device transaction propagation (~ 2–5 ms per node).

This linear scaling factor means that, in large implementations, the latency of the consensus process could be a 
consideration for real-time aggregation.

Fig. 3.  Experimental chart.
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Performance analysis
Model accuracy and convergence
Table  3 below shows a comparison between the performance metrics for four different model scenarios for 
training and testing of the system. These scenarios include Centralized Baseline, Basic Federated Learning (FL), 
Federated Learning with Differential Privacy (FL-DP), and Hybrid Federated Learning with Generative AI 
(HFL-GAI), which is our proposed model.

	A.	 Centralized baseline.

•	 Ranked the top in accuracy (98.5%), since this is a centralized model that isn’t bound by any privacy concerns.
•	 Precision is high (0.99) and has good recall (0.98), but this is achieved with a cost to data privacy and scala-

bility.

	B.	 Basic federated learning (FL).

•	 Reflects a minor drop in its performance metrics (95.2% accuracy) as a consequence of distributed data, as it 
faces challenges related to non-IID data and limited communications.

•	 However, it enhances data privacy by keeping data local.

	C.	 FL with differential privacy (FL-DP).

•	 The accuracy and F1-score decrease slightly (94.1%) over basic FL since noise is added to improve privacy and 
this hampers model accuracy (0.93).

•	 Despite the performance trade-off, this approach significantly improves privacy protection for sensitive data.

	D.	 HFL-GAI.

•	 The proposed Hybrid Federated Learning with Generative AI optimizes thoroughly with a total accuracy of 
96.8% and F1-score value of 0.97, which is better than Basic FL and FL-DP.

•	 The Generative AI increases learning through its ability to produce virtual but privacy-compliant informa-
tion.

•	 Thus, it is evident that this proposed model is successful in lessening the privacy-accuracy trade-off in fed-
erated learning.

The below Fig. 4 shows a graphical representation of Test Accuracy (%) for four different learning methods like 
Centralized Baseline, Basic Federated Learning (FL), Federated Learning with Differential Privacy (FL-DP), and 

Fig. 4.  Model performance vs. training rounds.

 

Model scenario Test accuracy (%) F1-score Precision Recall

Centralized baseline 98.5% 0.98 0.99 0.98

Basic federated learning (FL) 95.2% 0.95 0.94 0.96

FL with differential privacy 94.1% 0.94 0.93 0.95

HFL-GAI (proposed) 96.8% 0.97 0.97 0.97

Table 3.  Performance comparison of models.
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Proposed Federated Learning with Generative AI (HFL-GAI) for a number of training iterations ranging from 
1 to 20. In this centralized scenario, all data is aggregated directly, and that is why its accuracy is the maximum. 
However, in Basic FL and FL-DP methods, there is a lower level of accuracy because of data distribution and 
differential privacy noise added to the learning process. In this proposed HFL-GAI model, the performance is 
better than that in Basic FL and FL-DP. The proposed model is able to reach an accuracy of 96.8% in its 20th 
iteration. The reason for this better performance is that this proposed HFL-GAI model combines all capabilities 
of Generative AI. Hence, this proposed HFL-GAI model is capable of achieving better learning accuracy while 
still keeping a good level of privacy.

Privacy preservation efficiency
The value of the privacy budget ε is varied between 0.5 and 2.0. The privacy preservation and accuracy analysis 
of the proposed Hybrid Federated Learning with Generative AI (HFL-GAI) framework for different values of 
the privacy budget ε is shown in Table 4. From Table 5, it is evident that while the value of the privacy budget ε 
increases from 0.5 to 2.0, the accuracy level of the model increases from 95.1% to 96.7%, and this is a positive 
aspect regarding the compromise between cost and utility. The computation time is observed to marginally 
increase from 62.5 s to 64.8 s. The value of privacy loss gradually increases from 1.2% to 2.8%, and this is within 
safety limits for secure deployment. The above-mentioned analysis demonstrates that HFL-GAI is an effective 
technique that preserves a high level of model performance and is suitable for practical implementations of a 
smart environment scenario as illustrated in Fig. 5.

Energy consumption and sustainability
The comparison in terms of energy value and sustainability efficiency for different patterns of learning 
is mentioned in Table  6. The highest energy value is 100  J and lower sustainability efficiency is 55% in the 
centralized learning algorithm. The reason for this is extensive computation as well as simultaneous transfer 
of data to a centralized server. In Basic Federated Learning, though there is a reduction in energy value to 78 J, 
sustainability efficiency is increased to 70% since computation is distributed as well as reduced dependency on 
a centralized server.

The Federated Learning with Differential Privacy (FL with DP) model has even enhanced energy efficiency 
with a sustainability efficiency of 80% while consuming 65 J of energy. The reason for this enhanced sustainability 
efficiency is that this model is a blend of different approaches in order to achieve a balance for computation and 
communication. In this case, it is to be recognized that the proposed model of Hybrid Federated Learning 
with Generative AI (HFL-GAI) has provided the most optimal results for measuring energy and sustainability 
efficiency with only 54 J of energy while having a sustainability efficiency of 90%. The reason for this optimal 
performance is that this proposed model is more efficient.

The cost of communication for the different models as described in Table 7 below is quite high and depends 
on the training approaches and strategies used for client and server privacy. In Centralized training, the cost is 
very low since all calculations are conducted in the server. Thus, it consumes only 2.5 s for a round. In Basic 
Federated Learning approaches, a moderate cost is incurred since a total of 100 rounds are involved with a 
total of 480 MB and takes a total of 3.5  s for a round. However, with the addition of Differential Privacy to 
Federated Learning (FL with DP), added costs are incurred since more calculations and transfer are involved. 

Privacy budget (ε) Accuracy (%) Computation time (s) Privacy loss (%)

0.5 95.1 62.5 1.2

1.0 96.1 63.4 1.5

1.5 96.4 64.0 2.1

2.0 96.7 64.8 2.8

Table 5.  Privacy preservation and accuracy results of HFL-GAI framework.

 

Parameter Value

Number of clients 10

Local epochs 5

Batch size 32 (edge)

Learning rate 0.001– 0.005

Optimizer Adam (β1 = 0.9, β2 = 0.999)

DP noise multiplier σ = 1.1

Aggregation method FedAvg

Differential privacy Gaussian mechanism (ε = 2.5 for proposed)

Diffusion steps 20

Generative AI Component Client level data augmentation through variational autoencoder (VAE).

Table 4.  Federated learning configuration.
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In this scenario, a total of 120 rounds with a total of 520 MB of data are involved with a total of 3.8 s for a 
round. However, if HFL-GAI is introduced to Federated Learning approaches, a substantial reduction in costs is 
obtained since a total of 90 rounds are involved with a total of 420 MB and a total of 3.0 s for a round. HFL-GAI 
has lower costs compared to all Federated Learning approaches.

In Fig. 6 above, one thing that is evident in the key take-away of the results is that HFL-GAI not only has the 
capability to sustain a better level of performance and privacy for its users but is highly successful in areas related 
to energy conservation and sustainability.

Energy measured using device-level profiling at 1  Hz sampling frequency. Values averaged over five 
independent runs. Confirms HFL-GAI achieves significant sustainability improvement compared to standard 
federated learning as given in Table 8.

Communication and scalability analysis
Consequently, through secure aggregation and strategic device involvement in the HFL-GAI model, there was a 
reduction in average communication overhead per round from 12.8 MB in baseline FL to 7.5 MB. The blockchain 
consensus algorithm contributed a negligible latency of 0.8 s per transaction in addition to PBFT for a near-
real-time learning process. The scalability analysis that involved a maximum of 100 IoT clients proved linearity 
in relation to performance without effecting throughput. Figure 7 indicates how accuracy increases with each 
round of training for 20 rounds. Even though Centralized has a large accuracy level due to shared information in 
less time, a stepwise development is observed in federated learning. The proposed HFL-GAI outpaces Basic FL 
and FL with DP in achieving a higher accuracy level of 96.8% in round 20 against Basic FL’s 95.2% and FL with 
DP’s 94.1% accuracy. Hence, it can be ascertained that hierarchical learning and addition of more synthetically 
generated datasets in HFL-GAI cause enhanced stability.

Model Communication rounds Data transfer (MB) Time per round (s)

centralized – – 2.5

Basic FL 100 480 3.5

FL with DP 120 520 3.8

HFL-GAI 90 420 3.0

Table 7.  Communication overhead.

 

Model Energy consumption (J) Sustainability efficiency (%)

Centralized 100 55

Basic FL 78 70

FL with DP 65 80

HFL-GAI (proposed) 54 90

Table 6.  Energy consumption vs. sustainability.

 

Fig. 5.  Privacy budget vs. model accuracy.
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Fig. 7.  Learning efficiency over training rounds.

 

Device Baseline FL FL with DP HFL-GAI Energy reduction vs. baseline (%)

Raspberry Pi 4 1250 1120 980 21.6

NVIDIA Jetson Nano 2400 2200 1900 20.8

Overall Average 1825 1660 1440 21.2

Table 8.  Summarizing energy consumption of devices.

 

Fig. 6.  Energy consumption vs. sustainability efficiency.
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Figure 8 comparison of communication cost incurred in different frameworks. The proposed HFL-GAI 
framework is more efficient in terms of communication cost as it consumes only 90 rounds to achieve global 
aggregation with a transfer size of 420 MB. The proposed HFL-GAI framework is more efficient as it cuts down 
the cost of FL with DP by 15% as it optimizes updates and minimizes redundant client communications. As a 
result, HFL-GAI enables a faster and more efficient distributed training process.

Figure 9 tests scalability under varying numbers of clients ranging from 10 to 100. As more clients are added 
to the network, a reduction in accuracy can be noticed for Basic FL and FL with DP because of heterogeneity 
and aggregation delays. However, for Proposed HFL-GAI, accuracy is better maintained (93.8% for 100 clients), 
indicating its robustness in large and non-IID settings. The generative component in HFL-GAI is able to balance 
all clients well to ensure that model performance is well maintained even in large-scale scenarios.

Privacy and security resistance
Comparison of resistance to Membership Inference Attack and Adversarial Attack for various models. The 
Centralized model is more vulnerable to attack with a success rate of 85% and 90%, respectively. But this can be 
greatly reduced by federated learning. The resistance can even be improved by differential privacy. The Proposed 

Fig. 9.  Model scalability with increasing clients.

 

Fig. 8.  Communication Overhead Comparison.
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HFL-GAI model is more secure with a resistance success rate of 8% and 12%, respectively. The hierarchical 
architecture and generative anonymization of features can ensure confidentiality and security (Fig. 10).

Figure 11 above shows how one can strike a balance between a privacy budget ε and accuracy for Basic FL, FL 
with DP, and HFL-GAI. The reduction in ε will lead to a decrease in accuracy since more noise is being added. 
On the contrary, HFL-GAI holds a stable accuracy of 96% even when ε is reduced to 1. Therefore, this proves 
that HFL-GAI can accomplish its objectives of making sure that both accuracy and privacy are not altered in a 
federated learning process.

The Centralized Baseline is used as a reference point for comparison of performance on common aspects 
(accuracy, energy, and others), but not for metrics that are essentially federated-dependents (convergence speed, 
scalability, as well as accuracy-privacy trade-off). In conclusion, based on the experimental analysis conducted 
above, it is evident that the proposed HFL-GAI framework is capable of reaching a balance between accuracy, 

Fig. 11.  Privacy–accuracy trade-off.

 

Fig. 10.  Privacy and security resistance comparison.
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privacy, and sustainability. The role of Gen AI in this framework is important in generating realistic data that has 
the capability to address the imbalanced and limited quantities of edge nodes. Gen AI can boost the scalability 
and immutability features of federated learning for edge nodes. Hence, it is proved that this technology has a 
greater potential to act as a full-proof and sustainable solution for next-generation smart environment.

 Conclusion and future directions
The proposed work brings out a novel framework known as HFL-GAI that overcomes challenges in federated 
learning regarding privacy concerns and heterogeneity in federated learning for IoT. The proposed HFL-GAI 
model has proved its efficiency in building a more accurate model and reducing imbalances in generated datasets 
while providing better privacy security than traditional federated learning. The HFL-GAI model enhances 
privacy, robustness, and energy efficiency but also faces challenges. The model can experience degraded 
performance when dealing with extreme non-IID conditions, the sensitivity of the differential privacy noise in 
the detection of anomalies, as well as the influence of resource-constrained devices that generate less realistic 
generative values. The model faces issues in its actual applications associated with variations in the reliability of 
devices, the variability of the networks, as well as secure inference tasks performed by devices. The ethical issues 
include proper usage of synthetic data and transparency in decision-making.

The future work will remain focused on scalability for various IoT devices, integration of advanced generative 
architectures for enhanced augmentation capability in deep learning frameworks, as well as exploring realistic 
scenarios in power and healthcare domains. Moreover, blockchain-based methods for validating federated 
learning frameworks will play a more important role in providing greater trust and security in distributed 
learning. The future includes research in adaptive privacy budgets, energy-aware model compression, hierarchical 
aggregation in FL, federated diffusion for high-quality synthetic data, real-world implementations in IoT, as well 
as ethical auditing mechanisms.
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