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The analytical behavior of fractional-order differential equations under uncertainty is often difficult 
to investigate. To address this challenge, this study considers Caputo-type fuzzy fractional Volterra 
integro-differential equations (FFVIDEs) with boundary conditions. An iterative numerical approach 
based on the Adomian decomposition method (ADM) is proposed to obtain approximate fuzzy 
solutions. The existence and uniqueness of the solution are established using Banach’s fixed point 
theorem. Numerical simulations are carried out in MATLAB to illustrate the symmetry between the 
lower and upper ρ-cut representations of the fuzzy solutions. The graphical results demonstrate the 
accuracy and efficiency of the proposed method in handling uncertainty in fractional systems.
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Aside from pure mathematics, there is a strong desire to learn more about the subject applications in fluid 
flow, biology, fractal theory, control theory, electrochemistry, and viscoelasticity stimulate the study of fractional 
calculus (see1–3). Fixed point theorems are commonly used to investigate the existence and uniqueness of 
solutions in the domain of fractional calculus (see4–6). The solution properties were discovered in7,8, while 
several numerical approaches, including quadrature, product integration, variational iteration, and fuzzy 
transforms, were discovered in (see5,9). The use of fuzzy sets is well-suited for models with uncertainty, leading 
to a focus on fuzzy fractional calculus for addressing these types of problems. The study of fuzzy fractional 
differential equations (FFDEs) is a new area of fuzzy mathematics that is expanding steadily. To investigate a 
novel sort of dynamical system, the notion of fractional order fuzzy differential equations (FDEs) was recently 
developed10. The authors Agarwal, Lakshmikantham, and Nieto11 originated the fractional case generalization of 
the H-differentiability. In12 authors discovered the existence and uniqueness of results for FFDEs. Several studies 
and solutions of order 0 < η ≤ 1, (see13,14) FFDEs have been published in recent years. However, uncertainty 
can take a heavy toll on real-world issues at any time. Incomplete data, measurement errors, or identifying initial 
conditions can all lead to uncertainty.

The area of fuzzy fractional integro-differential equations (FFIDEs) has past few years piqued the interest of 
many researchers since it is recognized as a powerful tool for presenting imprecise parameters and handling their 
dynamical systems in real fuzzy conditions. Analyzing the majority of FFIDE’s problems is difficult. Some real-
world scenarios deal with this, including the golden mean, quantum optics, gravity, engineering phenomena, 
practical systems, and medical science. The existence of solutions for various fuzzy fractional integral equations 
is important, particularly in the context of developing efficient numerical methods for approximating 
these solutions15. By employing the generalized Hukuhara derivative16, the notion of fractional Caputo 
H-differentiability was utilized to study fuzzy fractional differential17 and integro-differential18 equations. In19, 
weakly contractive mappings were employed to establish the existence of a unique solution for FFVIDEs without 
Liptchitz conditions. In20 the existence and uniqueness of the solution for FFVIDEs in Caputo’s sense were 
proven, as well as the usage of Adomian decomposition to approximate the solution. In21–23, stability properties 
for FFVIDEs were explored, including the Ulam-Hyers stability. The variational iteration method was used in24 
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to get numerical solutions for FFDEs. The fuzzy Caputo derivative was implemented in25 using the modified 
fractional Euler (MFE) technique.

The investigation for interval-valued functions begun in26 continued in27, which describes the MFE and 
Adams generalization methods. Since the initial value problem (IVP) for the FFDEs and the corresponding 
FFVIDEs are not equivalent in general, a desirable condition is presented in28 to make this equivalence valid. The 
fractional Euler method is used29 to prove the solution of FFDEs under Caputo differentiability using generalized 
Taylor’s expansion as fuzzy-valued functions.

Very recently, Alexandru Mihai Bica et al.,30 studied the numerical method for fractional fuzzy integral 
equations, and Ehsan Ul Haq et al.,31 investigated a reliable method for a system of fuzzy solutions. The method 
of Adomian decomposition has been used in this seller to provide approximate results for the system of fuzzy 
fractional initial value problems. A new fractional-order method based on Jacobi polynomials was introduced 
by Bidari et al.32 for finding the solution to FFIDEs. They developed a set of equations to represent the suggested 
problem using operational matrices. They proved that under certain conditions, the proposed method converges. 
The fuzzy product integration approach was utilized by Bica et al.33 to develop an iterative method for solving 
fuzzy fractional Volterra integral equations. The fuzzy Volterra integral equation with weak singularity was 
investigated in34 using a piece-wise spline collocation approach. Additionally, they have shown that the solution 
exists and converges to content validity. FFIDE of the Volterra and Fredholm types can be solved using the 
Chebyshev spectral method according to a recent proposal by Kumar et al.,35.

Caputo-type fuzzy fractional Volterra integro-differential equations (FFVIDEs) emerge naturally in real-
life situations where memory, heredity, and uncertainty play a significant role in the system’s behavior. These 
equations combine three key concepts-fractional calculus, fuzzy logic, and integro-differential operators-making 
them suitable for modeling complex real-world processes that cannot be accurately described using classical 
differential equations.

In real life, many physical, biological, and engineering systems exhibit memory effects (dependence on past 
states) and imprecise information due to environmental fluctuations or measurement errors. The fractional 
derivative in the Caputo sense captures memory and hereditary properties, while fuzziness handles uncertainty 
or vagueness in system parameters and initial conditions. For instance: In engineering, they model viscoelastic 
materials where stress depends not only on the current strain but also on the entire deformation history. In biology, 
fuzzy fractional models describe population dynamics or enzyme kinetics under uncertain environmental 
influences. In electrical circuits, they represent RLC circuits with fractional elements and uncertain parameters. 
In control theory, they help design controllers for systems with uncertain or partially known dynamics.

The usage of fuzzy fractional calculus, also known as fuzzy fractional integro-differential equations, has grown 
significantly in recent years due to their extensive use in simulating a variety of physical industrial processes, 
including heat and mass transport, bio-mechanics, electromagnetic fields, etc. For the approximate solutions 
of fractional fuzzy Volterra integro-differential equations, several researchers have developed some numerical 
approaches using different types of fractional derivatives36–46.

Several authors have contributed significantly to recent developments in fuzzy fractional calculus. For 
example,47 investigated a novel method for solving fractional Abel k-integral equations and linear FDEs in a 
fuzzy environment. This study shows the effectiveness of applying fractional calculus with fuzzy systems to 
improve solution accuracy. Similarly,48 examined fuzzy Langevin fractional delay differential equations 
using the granular derivative, demonstrating the possibility for combining both mathematical frameworks. 
Furthermore,49 investigated fuzzy fractional delay integro-differential equations using the extended Atangana-
Baleanu fractional derivative, giving a unique approach to solving these complicated equations. Additionally,50 
investigated the existence and stability of solutions for fuzzy neutral fractional integro-differential equations 
involving the Caputo fractional generalized Hukuhara derivative.

The existence of the FFVIDEs has been further investigated using Schauder’s fixed point theorem and the 
uniqueness has been studied using the Banach contraction principle in51. In addition, recently the Adomian 
decomposition method (ADM) with initial condition52 and ADM with boundary conditions38,39, Shehu 
Adomian decomposition method53, successive approximation method54, monotone iterative technique55 two-
dimensional legendre wavelet method56 have all been used to examine the solutions of FFVIDEs.

Reference Method Used Type of Problem Studied Remarks / Contributions

1. Savla, S. et al. (2024)
Shehu Adomian
decomposition
method

Solving linear and nonlinear
fuzzy fractional Volterra
-Fredholm integro-differential
equations (IVP)

Provided approximate
analytical solutions;
Via Adomian Polynimoals.

2. Vu, H. et al. (2019)
Successive
approximation
method

Stability for initial value
problems of fuzzy Volterra
integro-differential equation
with fractional order derivative

Discussed existence and
uniqueness; limited to simple
approximation method.

3. Shabestari, M.R.M. et al. (2018)
Two-dimensional
Legendre
wavelet method

Numerical solution of fuzzy
fractional integro-differential
equation via (IVP)

Focused on deterministic
systems and investigated
existence and uniqueness
under Hukuhara differentiability

Proposed
Work

Adomian
Decomposition
Method

Fuzzy fractional Volterra integro
-differential equations with
boundary conditions (BVP)

ADM improves convergence and
handles uncertainty, efficiently,
and requires no discretization or
linearization.
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In this work, we try to solve FFVIDEs under Caputo derivative using the ADM. In order to solve FFVIDEs 
with our proposed approach. To the best of our knowledge, this is the first time in the literature that numerical 
solution of the FFVIDEs are examined under Caputo derivative employing ADM with the fractional order 
0 < η ≤ 1 and fuzzy initial conditions are investigated. The goal of this work is to look into it.

Motivation
Numerous authors have focused on exploring numerical solutions for FFVIDEs, as many of these equations 
are difficult to solve analytically. Therefore, researchers are starting to use several numerical approaches. Some 
examples of these numerical methods include the Laplace transform method, variational iteration method, semi-
analytical method, and Adomian decomposition method (ADM) to obtain better approximation solutions for 
FFIDEs. All of these studies encouraged us to develop a numerical approach to solving FFVIDE. Additionally, 
our analysis of the literature revealed that numerous investigations of numerical solutions of FFIDEs were 
solved only with initial conditions. Hamoud57 proposed the ADM to investigate the fractional Volterra integro-
differential equation’s solution without a fuzzy concept. Also in20 N. Ahmad et al. only addressed the FFVIDEs’ 
initial value problem. As a result, this study inspires us to adapt research for FFVIDE with boundary conditions. 
Therefore, FFVIDEs must be developed with boundary conditions.

Novelty
The following is a summary of the work’s primary contribution: 

	1.	 The authors provide a new framework for the Adomian decomposition approach to solve FFVIDEs with 
generalized boundary conditions.

	2.	 Comparing to the existing studies in (see20,57) we present boundary conditions for the FFVIDEs investigated.
	3.	 To demonstrate the existence of the unique solution using the Banach fixed point theory to the considered 

equation. To provide lower/uppercut solutions for FFVIDEs with the help of the Adomian decomposition 
technique.

	4.	 To establish the effectiveness and reliability of the ADM, we provided a sufficient number of examples to 
verify the theory and proposed an algorithm for solving these types of equations.

Overview of the paper’s sections
The paper is organized as follows: The introduction is included in the first part. Additionally, the motivation, 
novelty, and structure of the article are described. Section 2 presents some basic ideas about fuzzy numbers and 
the basics of fractional calculus, whereas Section 3 is focused on establishing the existence and uniqueness of 
the FFBVPs under consideration. Section 4 presents the methodology of Adomian decomposition. In Section 
5, we analyze the suggested method’s accuracy using a numerical example and Section 6 concludes with a brief 
overview of this investigation.

Preliminaries
The definitions of fuzzy calculus and its key notions are provided in this section.

Definition 1  20 A fuzzy set A is said to be a fuzzy number, if the following conditions are satisfied. 

	1.	 A is normal; there exist, y0 ∈ R such that A (y0) = 1,
	2.	 A(λy1 + (1 − λ)y2) ≥ min(A(y1), A(y2)) holds, for all, y1, y2 ∈ R and 0 ≤ λ ≤ 1 i.e, A is convex,
	3.	 A is upper semi-continuous,
	4.	 A is compactly supported that is cl{y ∈ R | A(y) > 0} ⊆ R is compact.

Definition 2  57 A fuzzy number A is ξ-level set characterised as

	 [A]ξ = {y ∈ R : A(y) ≥ ξ},

where ξ ∈ (0, 1] and y ∈ R For a fuzzy number A, its ξ-cuts are closed intervals in R and we denoted by 
[A]ξ = [ξ, ξ].

Definition 3  29 The RL fractional integral of order η of fuzzy function f̃(y, ξ), based on its ξ-level illustrations:
[
Iη f̃(y, ξ)

]
=

[
Iηf(y, ξ), Iηf(y, ξ)

]
 where,

	

Iηf(y, ξ) = 1
Γ(η)

ˆ y

0
(y − t)η−1f(t, ξ)dt,

Iηf(y, ξ) = 1
Γ(η)

ˆ y

0
(y − t)η−1f(t, ξ)dt.

Note: In this paper, we consider (i) differentiable type to find the solution for FFVIDEs (from the theorem 2.1 
in38). However, a type (ii) differentiable solution is the same as type (i) differentiable.

Definition 4  38 The Caputo fractional derivative of order η of fuzzy function f̃(y, ξ), it can be stated as follows, 
based on its ξ-level illustrations:
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[
Dη f̃(y, ξ)

]
=

[
Dηf(y, ξ), Dηf(y, ξ)

]
 where,

	

Dη[f(y, ξ)] =




1
Γ(r−η)

ý

0
(y − t)r−η−1fr(y, ξ)dt, r − 1 < η < r

dr

dtr f(y, ξ), η = r, r ∈ N,

	

Dη[f(y, ξ)] =





1
Γ(r−η)

ý

0
(y − t)r−η−1f

r(y, ξ)dt, r − 1 < η < r

dr

dtr f(y, ξ), η = r, r ∈ N.

Problem formulation
In this study, we use the fuzzy idea to extend the concept to FVIDEs across the Caputo-type of order η ∈ (0, 1].

	
Dη[ϑ̃(y, ξ)] =

(
f̃(y, ξ) +

ˆ y

0
Υ1(y, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ +

ˆ T

0
Υ2(y, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
� (1)

with the boundary condition

	 p1ϑ̃(0, ξ) + p2ϑ̃(T, ξ) = p̃3, p1, p2 ∈ R, p1 + p2 ̸= 0, p̃3 ∈ Rf .� (2)

Where ϑ̃(y, ξ) is a fuzzy function, Dη(.), η ∈ (0, 1], is the Caputo fractional derivative, 
f̃ : X → Rf , Υi : X × X → R for i = 1, 2 are continuous functions, Λi : R → R are Lipschitz continuous 
function, where X = [0, 1].

Main result
The focus of this section will be on the discussion of the existence and uniqueness of the solution to Eq. (1) with 
boundary condition (2), based on the hypothesis.

H1 : For any ϑ̃1, ϑ̃2 ∈ C(X, Rf ), there exists two constants c1, c2 > 0 such that,

	 |Λ1(ϑ̃1(y, ξ)) − Λ1(ϑ̃2(y, ξ))| ≤ c1|ϑ̃1 − ϑ̃2|,

	 |Λ2(ϑ̃1(y, ξ)) − Λ2(ϑ̃2(y, ξ))| ≤ c2|ϑ̃1 − ϑ̃2|.

H2 : For the set of all positive continuous function on J = {(y, ϱ) ∈ R × R : 0 ≤ ϱ ≤ y ≤ 1}, there exists 
the functions Υ1

∗, Υ2
∗ such that

	
Υ1

∗ = sup
y∈[0,1]

ˆ y

0
|Υ1(y, ϱ)|dϱ < ∞

and

	
Υ2

∗ = sup
y∈[0,1]

ˆ 1

0
|Υ2(y, ϱ)|dϱ < ∞.

H3 : The function f̃ : [0, 1] → Rf  is continuous, there exists a constant L > 0, such that 
L = sup{|f̃(y, ξ)| : 0 ≤ y ≤ T }.

Theorems and Lemma
Lemma 1  If a function ϑ̃(y, ξ) ∈ C[0, T ] satisfies (H1) − (H3) in [0, T], then the problems (1)-(2) are similar to 
obtaining a continuous solution of the FFVIDEs.

	

ϑ̃(y, ξ) =
ˆ y

0

(y − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt

− 1
p1 + p2

[ ˆ T

0

p2(T − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt − p̃3

]
.

� (3)

The above equation is equivalent to
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ϑ̃(y, ξ) =h̃(y, ξ) − 1
p1 + p2

ˆ T

0

p2(T − t)η−1

Γ(η)

( ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt

+
ˆ y

0

(y − t)η−1

Γ(η)

(ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ +

ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt

� (4)

where,

	
h̃(y, ξ) = p̃3

p1 + p2
− 1

p1 + p2

ˆ T

0

p2(T − t)η−1

Γ(η) (f̃(t, ξ))dt +
ˆ y

0

(y − t)η−1

Γ(η)
(
f̃(t, ξ)

)
dt. � (5)

Theorem 1  (Existence theorem) Let the hypotheses (H1) and (H2) be satisfied and 
Λ1(ϑ̃(y, ξ) ≤ µ1, Λ2(ϑ̃(y, ξ) ≤ µ2 for all y ∈ [0, T ] and for all ϑ̃(y, ξ) ∈ Rf , Under this hypothesis our consid-
ered equation has at least one solution in [0, T].

Proof  Let the operator Υ : C(X, Rf ) → C(X, Rf ) characterized by

	

(Υϑ̃)(y, ξ) =
ˆ y

0

(y − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt

− 1
p1 + p2

[ ˆ T

0

p2(T − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt − p̃3

]
, for y ∈ [0, 1].

� (6)

We begin by showing that the operator Υ is completely continuous.
(1) To prove  Υ is continuous:  Let ϑ̃n be a sequence converges to ϑ̃ in C(X, Rf ), for each ϑ̃n, ϑ̃ ∈ C(X, Rf ) 

and for any y ∈ X , we have

	

|Υϑ̃n(y, ξ) − Υϑ̃(y, ξ)| ≤ 1
Γ(η)

ˆ y

0
(y − t)η−1

( ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃n(ϱ, ξ)) − Λ1(ϑ̃(ϱ, ξ))|dϱ

+
ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃n(ϱ, ξ)) − Λ2(ϑ̃(ϱ, ξ))|dϱ

)
dt

+ |p2|
|p1 + p2|Γ(η)

ˆ T

0
(T − t)η−1

( ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃n(ϱ, ξ))

− Λ1(ϑ̃(ϱ, ξ))|dϱ +
ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃n(ϱ, ξ)) − Λ2(ϑ̃(ϱ, ξ))|dϱ

)
dt.

Taking supremum on both sides,

	

∥Υϑ̃n(y, ξ) − Υϑ̃(y, ξ)∥ ≤ 1
Γ(η)

(
Υ1

∗∥Λ1(ϑ̃n(ϱ, ξ)) − Λ1(ϑ̃(ϱ, ξ))∥

+ Υ2
∗∥Λ2(ϑ̃n(ϱ, ξ)) − Λ2(ϑ̃(ϱ, ξ))∥

) ˆ y

0
(y − t)η−1dt

+ |p2|
|p1 + p2|Γ(η)

(
Υ1

∗∥Λ1(ϑ̃n(ϱ, ξ)) − Λ1(ϑ̃(ϱ, ξ))∥

+ Υ2
∗∥Λ2(ϑ̃n(ϱ, ξ)) − Λ2(ϑ̃(ϱ, ξ))∥

) ˆ T

0
(T − t)η−1dt

Since, Λ1 and Λ2 are continuous, 
´ y

0 (y − t)η−1dt is bounded. As a result, we can deduce that 
∥Υϑ̃n(y, ξ) − Υϑ̃(y, ξ)∥∞ → 0 as n → ∞. Thus Υ is continuous.

(2) To prove  Υ is bounded: Υ maps bounded sets into bounded sets in C (X, Rf ) . We demonstrate that a 
positive constant λ exists, for every ρ > 0 such that for any ϑ̃ ∈ Bρ = {ϑ̃ ∈ C(X, Rf ) : ∥ϑ̃∥∞ ⩽ η}. One has 
∥ϑ̃∥∞ ⩽ λ. Let µ1 = supϑ̃∈X×[0,η] Λ1(ϑ̃(y, ξ)) + 1 and µ2 = supϑ̃∈X×[0,η] Λ2(ϑ̃(y, ξ)) + 1. Also for each 
y ∈ X  and for any ϑ̃ ∈ Br′ , we have
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0 ≤ |Υϑ̃(y, ξ)| =
∣∣∣
ˆ y

0

(y − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt

− 1
p1 + p2

[ ˆ T

0

p2(T − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt − p̃3

]∣∣∣, for y ∈ [0, T ]

≤
ˆ y

0

(y − t)η−1

Γ(η)

(
|f̃(t, ξ)| +

ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃(ϱ, ξ))|dϱ

+
ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃(ϱ, ξ))|dϱ

)
dt

+ 1
|p1 + p2|

ˆ T

0

|p2|(T − t)η−1

Γ(η)

(
|f̃(t, ξ)| +

ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃(ϱ, ξ)|)dϱ

+
ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃(ϱ, ξ)|)dϱ

)
dt + |p̃3|

|p1 + p2| .

Taking the supremum on both sides, we obtain

	

∥Υϑ̃(y, ξ)∥∞ ≤
ˆ y

0

(y − t)η−1

Γ(η)

(
L + [Υ∗

1(µ1) + Υ∗
2(µ2)]

)
dt

+ 1
|p1 + p2|

ˆ T

0

|p2|(T − t)η−1

Γ(η)

(
L + [Υ∗

1(µ1) + Υ∗
2(µ2)]

)
dt + |p̃3|

|p1 + p2|

≤
T η

(
L + [Υ∗

1(µ1) + Υ∗
2(µ2)]

)

Γ(η + 1)

(
1 + |p2|

|p1 + p2|

)
+ |p̃3|

|p1 + p2|

≤

(
L + [Υ∗

1(µ1) + Υ∗
2(µ2)]

)

Γ(η + 1)

(
1 + |p2|

|p1 + p2|

)
+ |p̃3|

|p1 + p2| = λ.

Thus, for every ∥Υϑ̃∥ ≤ λ for every ϑ̃ ⊂ Br′ , which that ΥBr′ ⊂ Bλ.
(3) To prove  Υ is equicontinuous:   Υ maps bounded sets into equicontinuous sets of C (X, Rf ) . Let 

y1, y2 ∈ [0, 1] with y1 < y2. For ϑ̃ ∈ Bρ, (defined in last step Bρ) we have

	
|(Υϑ̃)(y2, ξ) − (Υϑ̃)(y1, ξ)| ≤

∣∣∣
ˆ y2

0

(y2 − t)η−1

Γ(η)

(
|f̃(t, ξ)| +

ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃(ϱ, ξ))|dϱ

	

+
ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃(ϱ, ξ))|dϱ

)
dt −

ˆ y1

0

(y1 − t)η−1

Γ(η)

(
|f̃(t, ξ)|

+
ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃(ϱ, ξ))|dϱ +

ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃(ϱ, ξ))|dϱ

)
dt

∣∣∣

≤
∣∣∣
ˆ y1

0

(y2 − t)η−1 − (y1 − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt

∣∣∣ +
∣∣∣
ˆ y2

y1

(y2 − t)η−1

Γ(η)

(
f̃(t, ξ)

+
ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ +

ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt

∣∣∣

≤ 1
Γ(η)

ˆ y1

0
[(y1 − t)η−1 − (y2 − t)η−1]

(
|f̃(t, ξ)|

+
ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃(ϱ, ξ))|dϱ +

ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃(ϱ, ξ))|dϱ

)
dt

+ 1
Γ(η)

ˆ y2

y1

(y2 − t)η−1
(

|f̃(t, ξ)| +
ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃(ϱ, ξ))|dϱ

+
ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃(ϱ, ξ))|dϱ

)
dt.

Hence,

Scientific Reports |         (2026) 16:2082 6| https://doi.org/10.1038/s41598-025-31808-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

|Υϑ̃(y2, ξ) − Υϑ̃(y1, ξ)| ≤ 1
Γ(η)

ˆ y1

0

[
(y1 − t)η−1 − (y2 − t)η−1] [

L + Υ1(µ1) + Υ2(µ2)
]
dt

≤ 1
Γ(η)

ˆ y2

y1

[
(y2 − t)η−1] [

L + Υ1(µ1) + Υ2(µ2)
]
dt

≤ [L + Υ1(µ1) + Υ2(µ2)]
[η + 1]

[
y1

η − y2
η + 2(y2 − y1)η

]

|Υϑ̃(y2, ξ) − Υϑ̃(y1, ξ)| ≤ 2[L + Υ1(µ1) + Υ2(µ2)]
[η + 1] |y2 − y1|η.

Υϑ̃(y2, ξ) − Υϑ̃(y1, ξ) → 0 as y2 − y1 → 0. This implies that,

	 |(Υϑ̃) (y2, ξ) − (Υϑ̃) (y1, ξ) | → 0.

The set ΥBρ is equicontinuous. Using the Arzelà–Ascoli theorem, we determine that Υ is completely continuous.
For the final step, let us consider the set defined by

	 E = {ϑ̃ ∈ C([0, T ], Rf ) : ϑ̃ = δΥ(ϑ̃) for 0 < δ < 1}.

Now, we show that the above set E is bounded.
Let us take ϑ̃ ∈ E. For every y ∈ [0, T ], we have, from Eq. (6)

	

ϑ̃(y, ξ) =δ

[ ˆ y

0

(y − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))

)
dt

− 1
p1 + p2

[ ˆ T

0

p2(T − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt − p̃3

]]
, for y ∈ [0, T ]

|ϑ̃(y, ξ)| =

∣∣∣∣∣δ
[ ˆ y

0

(y − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))s

)
dt

− 1
p1 + p2

[ ˆ T

0

p2(T − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt − p̃3

]]∣∣∣∣∣, for y ∈ [0, T ]

≤

∣∣∣∣∣δ
[

h̃(y, ξ) +
ˆ y

0

(y − t)η−1

Γ(η)

[ ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

]
dt

− 1
p1 + p2

( ˆ T

0

p2(T − t)η−1

Γ(η)

[ ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

]
dt

)]∣∣∣∣∣

where, h̃(y, ξ) is defined in Lemma (1).

	

h̃(y, ξ) = p̃3

p1 + p2
− 1

p1 + p2

ˆ T

0

p2(T − t)η−1

Γ(η) (f̃(t, ξ))dt +
ˆ y

0

(y − t)η−1

Γ(η)
(
f̃(t, ξ)

)
dt

|h̃(y, ξ)| ≤A.

We already obtain |Λ1(ϑ̃(y, ξ)| ≤ µ1, |Λ2(ϑ̃(y, ξ)| ≤ µ2, for every y ∈ [0, T ].
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|ϑ̃(y, ξ)| = |h̃(y, ξ)| + 1
Γ(η)

ˆ y

0
(y − t)η−1

[ ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃(ϱ, ξ))|dϱ

+
ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃(ϱ, ξ))|dϱ

]
dt

− |p2|
|p1 + p2|

1
Γ(η)

ˆ T

0
(T − t)η−1

[ ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃(ϱ, ξ))|dϱ

+
ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃(ϱ, ξ))|dϱ

]
dt

≤ A +

(
[Υ1µ1 + Υ2µ2]

Γ(η)

ˆ y

0
(y − t)η−1dt

) (
1 + |p2|

|p1 + p2|

)

≤ A +

(
[Υ1µ1 + Υ2µ2]yη

Γ(η + 1)

) (
1 + |p2|

|p1 + p2|

)

≤ A +

(
[Υ1µ1 + Υ2µ2]T η

Γ(η + 1)

) (
1 + |p2|

|p1 + p2|

)

≤ d.

Define A +

(
[Υ1µ1+Υ2µ2]T η

Γ(η+1)

) (
1 + |p2|

|p1+p2|

)
= d. Therefore ∥ϑ̃∥ ≤ d. This shows that any ϑ̃ ∈ E is 

bounded. Therefore, the set E is bounded.
Furthermore, the operator Υ has a fixed point, according to Schaefer’s fixed point theorem. This shows that 

at least one solution ϑ̃(y) for all y ∈ [0, T ] exists.
Now, we finish up the consequence of the hypothesis dependent on the contraction mapping rule. Υ has a 

unique fixed point. This shows that the problems (1)-(2) has unique solution. □

Theorem 2  (Uniqueness theorem) Assume that H1 to H3 holds. If

	

(
[Υ∗

1(c1) + Υ∗
2(c2)]

)

Γ(η + 1)

(
1 + |p2|

|p1 + p2|

)
< 1,

then there exists a unique solution of the Eq.(1).

Proof  ϑ̃(y, ξ) is the solution of the Eq. (1), with given boundary condition, if ϑ̃(y, ξ) satisfies

	

ϑ̃(y, ξ) =
ˆ y

0

(y − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt

− 1
p1 + p2

[ ˆ T

0

p2(T − t)η−1

Γ(η)

(
f̃(t, ξ) +

ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt − p̃3

]
, for y ∈ [0, 1].

Let’s define the operator Υ according to the Theorem (1). If ϑ̃ ∈ C (X, Rf ) is a fixed point of Υ, then ϑ̃ is the 
solution of the Eq. (1). Let ϑ̃1, ϑ̃2 ∈ C (X, Rf ), then

	

|Υϑ̃1(y, ξ) − Υϑ̃2(y, ξ)| = 1
Γ(η)

ˆ y

0
(y − t)η−1

( ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃1(ϱ, ξ)) − Λ1(ϑ̃2(ϱ, ξ))|dϱ

+
ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃1(ϱ, ξ)) − Λ2(ϑ̃2(ϱ, ξ))|dϱ

)
dt

+ |p2|
|p1 + p2|Γ(η)

ˆ T

0
(T − t)η−1

( ˆ t

0
|Υ1(t, ϱ)||Λ1(ϑ̃1(ϱ, ξ))

− Λ1(ϑ̃2(ϱ, ξ))|dϱ +
ˆ T

0
|Υ2(t, ϱ)||Λ2(ϑ̃1(ϱ, ξ)) − Λ2(ϑ̃2(ϱ, ξ))|dϱ

)
dt

Taking supremum on both sides, we can get,
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∥Υϑ̃1(y, ξ) − Υϑ̃2(y, ξ)∥∞ ≤ 1
Γ(η)

(
Υ∗

1(c1) + Υ∗
2(c2)

) ∥∥ϑ̃1 − ϑ̃2
∥∥

∞

ˆ y

0
(y − t)η−1dt

+ |p2|
|p1 + p2|Γ(η)

(
Υ∗

1(c1) + Υ∗
2(c2)

) ∥∥ϑ̃1 − ϑ̃2
∥∥

∞

ˆ T

0
(T − t)η−1dt

∥Υϑ̃1(y, ξ) − Υϑ̃2(y, ξ)∥∞ ≤

(
Υ∗

1c1 + Υ∗
2c2

)

Γ(η + 1)

(
1 + |p2|

|p1 + p2|

) ∥∥ϑ̃1 − ϑ̃2
∥∥

∞
< 1

∥Υϑ̃1(y, ξ) − Υϑ̃2(y, ξ)∥∞ <
∥∥ϑ̃1 − ϑ̃2

∥∥
∞

.

Hence, Υ is a contraction. Thus, by the Banach contraction principle, using the theorem (2.12) in20, Υ has a 
unique fixed point ϑ̃ ∈ C ([0, 1], Rf ). □

Description of ADM
The Adomian decomposition method, abbreviated ADM, is the subject of this essay. ADM is a kind of 
method that uses a decomposition approach to generate approximative solutions and even exact solutions for 
nonlinear systems when the proper initial data. Numerous benefits of this approach include. The diagrammatic 
representation of the proposed method is shown in Fig. 1.

Advantages of the adomian decomposition method

•	 Numerous types of nonlinear systems, including algebraic equations, differential equations, integral equa-
tions, integro-differential equations, and so on, can be solved using this method, and it is relatively simple to 
use.

•	 It avoids the time-consuming Picard method integrations.
•	 It can solve certain nonlinear problems that conventional numerical approaches cannot address.
•	 The number of variables has no impact on applications since it need not directly affect the solutions series.

Before using ADM to construct approximations of solutions for nonlinear equations with boundary conditions.
Consider this equation: When the operator Iη  is applied to both sides of Eq. (1), we obtain

	

Dηϑ̃(y, ξ) = h̃(y, ξ)− 1
p1 + p2

ˆ T

0

p2(T − t)η−1

Γ(η)

( ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt

+
ˆ y

0

(y − t)η−1

Γ(η)

( ˆ t

0
Υ1(t, ϱ)Λ1(ϑ̃(ϱ, ξ))dϱ

+
ˆ T

0
Υ2(t, ϱ)Λ2(ϑ̃(ϱ, ξ))dϱ

)
dt.

In the form of a series, Adomian’s method provides the solution ϑ̃(y, ξ),

	
ϑ̃ =

∞∑
n=0

ϑ̃n

and the decomposition of the nonlinear Λ1 and Λ2 is

Fig. 1.  Diagrammatic representation of proposed method.

 

Scientific Reports |         (2026) 16:2082 9| https://doi.org/10.1038/s41598-025-31808-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Λ1 =

∞∑
n=0

Mn, Λ2 =
∞∑

n=0

Nn.

Where Mn and Nn are Adomian polynomials and the expression for each of them is:

	

Mn = 1
n!

dn

dyn

[
Λ1

(
∞∑

l=0

U lϑ̃l

)]

U=0

Nn = 1
n!

dn

dyn

[
Λ2

(
∞∑

l=0

U lϑ̃l

)]

U=0

.

Therefore,

	

M0 = Λ1
(
ϑ̃0

)
,

M1 = ϑ̃1Λ′
1

(
ϑ̃0

)
,

M2 = ϑ̃2Λ′
1

(
ϑ̃0

)
+ 1

2 ϑ̃2
1Λ′′

1
(
ϑ̃0

)
,

M3 = ϑ̃3Λ′
1

(
ϑ̃0

)
+ ϑ̃1ϑ̃2Λ′′

1
(
ϑ̃0

)
+ 1

3 ϑ̃3
1Λ′′′

1
(
ϑ̃0

)
,

...

and

	

N0 = Λ2
(
ϑ̃0

)
,

N1 = ϑ̃1Λ′
2

(
ϑ̃0

)
,

N2 = ϑ̃2Λ′
2

(
ϑ̃0

)
+ 1

2 ϑ̃2
1Λ′′

2
(
ϑ̃0

)
,

N3 = ϑ̃3Λ′
2

(
ϑ̃0

)
+ ϑ̃1ϑ̃2Λ′′

2
(
ϑ̃0

)
+ 1

3 ϑ̃3
1Λ′′′

2
(
ϑ̃0

)
,

...

The components ϑ̃0, ϑ̃1, ϑ̃2, . . . are determined in a recursive manner by

	

ϑ̃0(y, ξ) =h̃(y, ξ)

ϑ̃1(y, ξ) = − 1
p1 + p2

ˆ T

0

p2(T − t)η−1

Γ(η)

( ˆ t

0
Υ1(t, ϱ)M0dϱ +

ˆ T

0
Υ2(t, ϱ)N0dϱ

)
dt

+
ˆ y

0

(y − t)η−1

Γ(η)

( ˆ t

0
Υ1(t, ϱ)M0dϱ +

ˆ T

0
Υ2(t, ϱ)N0dϱ

)
dt

ϑ̃k+1(y, ξ) = − 1
p1 + p2

ˆ T

0

p2(T − t)η−1

Γ(η)

( ˆ t

0
Υ1(t, ϱ)Mkdϱ +

ˆ T

0
Υ2(t, ϱ)Nkdϱ

)
dt

+
ˆ y

0

(y − t)η−1

Γ(η)

( ˆ t

0
Υ1(t, ϱ)Mkdϱ +

ˆ T

0
Υ2(t, ϱ)Nkdrϱ

)
dt, k ≥ 1.

We approximate the BVP solution by solving the relation using boundary conditions. The recurrence relations 
are easily considered, in contrast to the boundary conditions for (3), which are important in the development 
of the solution.

Remark 1  Note that the notation Λ1(ϑ̃0(y, ξ)) always must be replaced by Λ1(ϑ̃0).

Limitations of the adomian decomposition method

•	 The method’s accuracy relies heavily on the choice of the initial fuzzy approximation, which can affect the 
convergence and stability of the solution.

•	 ADM does not provide a straightforward way to estimate approximation errors in fuzzy fractional contexts.
•	 For FFVIDEs with strong nonlinear kernels or long-memory fractional terms, ADM may require many iter-

ations to achieve acceptable accuracy.

Scientific Reports |         (2026) 16:2082 10| https://doi.org/10.1038/s41598-025-31808-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Numerical experiments
The examples in this section demonstrate how precisely the methodology yields the FFVIDEs solution. The 
existence and uniqueness requirement in (1-2) is required for BVPs to solve the problem.

Example 1  Consider the Caputo-type Volterra-Fredholm integro-differential equation with fuzzy boundary 
conditions.

	





D
1
2 ϑ̃(y, ξ) = (2 + y2

3 )[ξ − 1, 1 − ξ] + 1
20

ý

0
(3y + 4ϱ)ϑ̃(ϱ, ξ)dϱ + 1

8

1́

0
(3y − 1)ϑ̃(ϱ, ξ)dϱ

2ϑ̃(0, ξ) + ϑ̃(1, ξ) = [ξ − 1, 1 − ξ], y ∈ (0, 1]

	 p1, p2 ∈ R, p̃3 ∈ Rf p1 = 2, p2 = 1, p̃3 = [p
3
, p3] = [ξ − 1, 1 − ξ].

The equivalent form of the above equation for type(i)-differentiability is shown below. ( using the definition 2.9 
in38)

	




D
1
2 ϑ(y, ξ) = (2 + y2

3 )(ξ − 1) + 1
20

x́

0
(3y + 4ϱ)ϑ(ϱ, ξ)dϱ + 1

8

1́

0
(3y − 1)ϑ(ϱ, ξ)dϱ,

D
1
2 ϑ(y, ξ) = (2 + y2

3 )(1 − ξ) + 1
20

x́

0
(3y + 4ϱ)ϑ(ϱ, ξ)dϱ + 1

8

1́

0
(3y − 1)ϑ(ϱ, ξ)dϱ.

let’s construct ϑ(y, ξ) and apply the operator I
1
2  on both sides

	




ϑ(y, ξ) = h(y, ξ) − p2
p1+p2

1
Γ(1/2)

1́

0
(1 − t)−1/2

[
ý

0

(3y+4ϱ)
20 ϑ(ϱ, ξ)dϱ +

1́

0

(3y−1)
8 ϑ(ϱ, ξ)dϱ

]
dt

+ 1
(1/2)

ý

0
(y − t)−1/2

[
x́

0

(3y+4ϱ)
20 ϑ(ϱ, ξ)dϱ +

1́

0

(3y−1)
8 ϑ(ϱ, ξ)dϱ

]
dt,

ϑ(y, ξ) = h(y, ξ) − p2
p1+p2

1
Γ(1/2)

1́

0
(1 − t)−1/2

[
ý

0

(3y+4ϱ)
20 ϑ(ϱ, ξ)dϱ +

1́

0

(3y−1)
8 ϑ(ϱ, ξ)dϱ

]
dt

+ 1
(1/2)

ý

0
(y − t)−1/4

[
ý

0

(3y+4ϱ)
20 ϑ(ϱ, ξ)dϱ +

1́

0

(3y−1)
8 ϑ(ϱ, ξ)dϱ

]
dt.

The next step is to determine the solution of ϑ(y, ξ) by using the ADM.

	

ϑ0(y, ξ) =h(y, ξ)

ϑ0(y, ξ) =h(y, ξ) =
p

3
p1 + p2

− 1
p1 + p2

ˆ 1

0

p2(1 − t)η−1

Γ(η) [f(t, ξ)]dt +
ˆ y

0

(y − t)η−1

Γ(η) [f(t, ξ)]dt

ϑ0(y, ξ) =h(y, ξ) = (ξ − 1)
3 − (ξ − 1)

3Γ(1/2)

ˆ 1

0
(1 − t)−1/2[t3 + 3t2 + 1]dt

+ (ξ − 1)
Γ(1/2)

ˆ y

0
(y − t)−1/2[t3 + 3t2 + 1]dt

ϑ1(y, ξ) = − p2

p1 + p2

1
Γ(1/2)

1ˆ

0

(1 − t)−1/2


 1

20

yˆ

0

(3y + 4ϱ)M0dϱ + 1
8

1ˆ

0

(3y − 1)N0dϱ


 dt

+ 1
Γ(1/2)

yˆ

0

(y − t)−1/2


 1

20

yˆ

0

(3y + 4ϱ) M0dϱ + 1
8

1ˆ

0

(3y − 1)N0dϱ


 dt

In a similar manner, we can determine the following terms: ϑ2(y, ξ), ϑ3(y, ξ), ... and obtain the result.

	
ϑ(y, ξ) =

∞∑
n=0

ϑn(y, ξ) = (ξ − 1)
3 − 2(ξ − 1)

3Γ(3/2) − 2(ξ − 1)
9Γ(7/2) + 2(ξ − 1)y1/2

Γ(3/2) + 2(ξ − 1)y5/2

3Γ(7/2) + ...

In the same way, we can find type(ii) differentiable,

	
ϑ(y, ξ) =

∞∑
n=0

ϑn(y, ξ) = (1 − ξ)
3 − 2(1 − ξ)

3Γ(3/2) − 2(1 − ξ)
9Γ(7/2) + 2(1 − ξ)y1/2

Γ(3/2) + 2(1 − ξ)y5/2

3Γ(7/2) + ...
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Using MATLAB, we obtain 2D and 3D graphs of the simulation result of approximated fuzzy solutions displayed 
in the figure and table values for different levels of uncertainty ξ = 0.2(red), ξ = 0.5(green), ξ = 0.7(blue) 
shown in Fig. 2a, 2b and Table. 1, 2, 3 where us plots of ξ-cut representation of the approximated solution for 
Caputo derivative η = 1/5, η = 3/4 respectively. Different values of space variable y = 0.2, 0.5, 0.7 are shown 
in Fig. 3a,3b, and both uncertainty ξ and space variable y with the fuzzy solutions are shown in Fig. 4a, 4b the 
surface plot of the fuzzy solutions are presented respectively (green and blue are the upper and lower solutions 
respectively). The fuzzy solution and the solution representation changed when we changed the η order. While 
this modification is tiny, it may make a significant effect when applied to real-world issues.

Note: Here, The 1st non linear term ϑ0(y, ξ) = M0,
and 2nd non linear term ϑ0(y, ξ) = N0.

Example 2  Consider the Caputo-type Volterra-Fredholm integro-differential equation with fuzzy boundary 
conditions.

	




D
3
4 ϑ̃(y, ξ) = (y + 1)[ξ − 1, 1 − ξ] + 1

10

ý

0
(ϱ2ey)ϑ̃(ϱ, ξ)dϱ +

1́

0
y2ϑ̃(ϱ, ξ)dϱ

2ϑ̃(0, ξ) + ϑ̃(1, ξ) = [ξ − 1, 1 − ξ], y ∈ (0, 1]

	 p1, p2 ∈ R, p̃3 ∈ Rf p1 = 2, p2 = 1, p̃3 = [p
3
, p3] = [ξ − 1, 1 − ξ].

The equivalent form of the above equation for type(i)-differentiability is shown below.

	




D
3
4 ϑ(y, ξ) = (y + 1)(ξ − 1) + 1

10

x́

0
(ϱ2ey)ϑ(ϱ, ξ)dϱ +

1́

0
y2ϑ(ϱ, ξ)dϱ

D
3
4 ϑ(y, ξ) = (y + 1)(1 − ξ) + 1

10

ý

0
(ϱ2ey)ϑ(ϱ, ξ)dϱ +

1́

0
y2ϑ(ϱ, ξ)dϱ

let’s construct ϑ(y, ξ) and apply the operator I
3
4  on both sides

η = 1/5

y

ξ = 0.2 ξ = 0.4 ξ = 0.6 ξ = 0.8

ϑ(y, ξ)   ϑ(y, ξ) ϑ(y, ξ)    ϑ(y, ξ) ϑ(y, ξ)    ϑ(y, ξ) ϑ(y, ξ)    ϑ(y, ξ)
0.2 -0.8818   0.8818 -0.6614    0.6614 -0.4409    0.4409 -0.2205    0.2205

0.4 -1.0926   1.0926 -0.8194    0.8194 -0.5463    0.5463 -0.2731    0.2731

0.6 -1.2573   1.2573 -0.943    0.943 -0.6287    0.6287 -0.3143    0.3143

0.8 -1.4137   1.4137 -1.0603    1.0603 -0.7068    0.7068 -0.3534    0.3534

Table 1.  Numerical results for Example 1, ϑ(y, ξ) & ϑ(y, ξ) at different values of uncertainty ξ and fractional 
value η = 1/5..

 

Fig. 2.  Visualizes the approximated fuzzy results of ϑ(y, ξ), ϑ(y, ξ) at different values of uncertainty ξ= 
0.2,0.5,0.7 and Caputo derivative η = 1/5, 3/4 for Example 1.
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



ϑ(y, ξ) = h(y, ξ) − p2
p1+p2

1
Γ(η)

1́

0
(1 − t)−1/4

[
1

10

ý

0
(ϱ2ey)ϑ(ϱ, ξ)dϱ +

1́

0
t2ϑ(ϱ, ξ)dϱ

]
dt

+ 1
(η)

ý

0
(y − t)−1/4

[
1

10

ý

0
(ϱ2ey) ϑ(ϱ, ξ)dϱ +

1́

0
t2ϑ(ϱ, ξ)dϱ

]
dt

ϑ(y, ξ) = h(t, ξ) − p2
p1+p2

1
Γ(η)

1́

0
(1 − t)−1/4

[
1

10

ý

0
(ϱ2ey)ϑ(ϱ, ξ)dϱ +

1́

0
t2ϑ(ϱ, ξ)dϱ

]
dt

+ 1
(η)

ý

0
(y − t)−1/4

[
1

10

ý

0
(ϱ2ey)ϑ(ϱ, ξ)dϱ +

1́

0
t2ϑ(ϱ, ξ)dϱ

]
dt.

The next step is to determine the solution of ϑ(y, ξ) by using the ADM.

Fig. 3.  Visualizes the fuzzy results of ϑ(y, ξ), ϑ(y, ξ) at different values of η = 1/5, 3/4 and space variable 
y = 0.2, 0.5, 0.7 for Example 1.

 

ξ p
3

η = 1/5 η = 3/4

ϑ0(y, ξ) ϑ1(y, ξ) ϑ0(y, ξ) ϑ1(y, ξ)

0.2 -0.8 0.387 -1.575 0.353 -1.507

0.5 -0.5 0.242 -0.985 0.221 -0.942

0.7 -0.3 0.145 -0.590 0.132 -0.565

ξ p3 ϑ0(y, ξ) ϑ1(y, ξ) ϑ0(y, ξ) ϑ1(y, ξ)

0.2 0.8 -0.387 1.575 -0.353 1.507

0.5 0.5 -0.242 0.985 -0.221 0.942

0.7 0.7 -0.145 0.590 -0.132 0.565

Table 3.  Numerical results for Example 1, where p1 = 2, p2 = 1 and boundary points 
ϑ0(y, ξ), ϑ1(y, ξ), ϑ0(y, ξ), ϑ1(y, ξ) at different values of uncertainty ξ and fractional values η = 1/5, 
η = 3/4.

 

η = 3/4

y

ξ = 0.2 ξ = 0.4 ξ = 0.6 ξ = 0.8

ϑ(y, ξ)   ϑ(y, ξ) ϑ(y, ξ)    ϑ(y, ξ) ϑ(y, ξ)    ϑ(y, ξ) ϑ(y, ξ)    ϑ(y, ξ)
0.2 -0.1683   0.1683 -0.1262    0.1262 -0.0841    0.0841 -0.0421    0.0421

0.4 -0.5315   0.5315 -0.3986    0.3986 -0.2658    0.2658 -0.1329    0.1329

0.6 -0.8626   0.8626 -0.6469    0.6469 -0.4313    0.4313 -0.2156    0.2156

0.8 -1.1841   1.1841 -0.8881    0.8881 -0.592    0.592 -0.296    0.296

Table 2.  Numerical results for Example 1, ϑ(y, ξ) & ϑ(y, ξ) at different values of uncertainty ξ and fractional 
value η = 3/4.
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ϑ0(y, ξ) =h(y, ξ)

h(y, ξ) =
p

3
p1 + p2

− 1
p1 + p2

ˆ 1

0

p2(1 − t)η−1

Γ(η) [f(t, ξ)]dt +
ˆ y

0

(y − t)η−1

Γ(η) [f(t, ξ)]dt

ϑ0(y, ξ) =h(y, ξ) = (ξ − 1)
2 + 1 − 1

2 + 1

ˆ 1

0

(1 − t)−1/4

Γ(3/4) [(t + 1)(ξ − 1)]dt

+
ˆ y

0

(y − t)−1/4

Γ(3/4) [(t + 1)(ξ − 1)]dt

ϑ1(y, ξ) = − p2

p1 + p2

1
Γ(η)

1ˆ

0

(1 − t)−1/4


 1

10

yˆ

0

(ϱ2ey)M0dϱ +
1ˆ

0

t2N0dϱ


 dt

+ 1
Γ(η)

yˆ

0

(y − t)−1/4


 1

10

yˆ

0

(ϱ2ey) M0dϱ +
1ˆ

0

t2N0dϱ


 dt

In a similar manner, we can determine the following terms: ϑ2(y, ξ), ϑ3(y, ξ) and obtain the result.

	
ϑ(y, ξ) =

∞∑
n=0

ϑ(y, ξ)n = (ξ − 1)
3 − (ξ − 1)

3Γ(11/4) − (ξ − 1)
3Γ(7/4) + (ξ − 1)y7/4

Γ(11/4) + (ξ − 1)y3/4

Γ(7/4) + ...

In the same way, we can find type(ii) differentiable,

	
ϑ(y, ξ) =

∞∑
n=0

ϑ(y, ξ)n = (1 − ξ)
3 − (1 − ξ)

3Γ(11/4) − (1 − ξ)
3Γ(7/4) + (1 − ξ)y7/4

Γ(11/4) + (1 − ξ)y3/4

Γ(7/4) + ...

Using MATLAB, we obtain 2D and 3D graphs of the simulation result of approximated fuzzy solutions displayed 
in the figure and table values for different levels of uncertainty ξ = 0.2(red), ξ = 0.5(green), ξ = 0.7(blue) 
shown in Fig. 5a, 5b and Table. 4, 5, 6 where us plots of ξ-cut representation of the approximated solution for 
Caputo derivative η = 1/5, η = 3/4 respectively. Different values of space variable y = 0.2, 0.5, 0.7 are shown 
in Fig. 6a, 6b, and both uncertainty ξ and space variable y with the fuzzy solutions are shown in Fig. 7a, 7b the 
surface plot of the fuzzy solutions are presented respectively(green and blue are the upper and lower solutions 
respectively.)

Conclusions
In this study, we examined a class of fuzzy fractional Volterra integro-differential equations (FFVIDEs) using 
both theoretical and numerical approaches based on the Adomian decomposition method. The existence and 
uniqueness of the solution were established through the contraction mapping principle under the given fuzzy 
boundary conditions. The proposed approach, derived from the decomposition rule, effectively generates 
approximate solutions whose behavior was analyzed both mathematically and graphically. The simulation 
results indicate that even a slight variation in the ξ-cut value can significantly affect the solution, confirming the 

Fig. 4.  Visualizes the fuzzy results of ϑ(y, ξ), ϑ(y, ξ) at different values of fractional order η, uncertainty ξ and 
space variable y for Example 1.
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sensitivity and accuracy of the numerical approach. Overall, the findings demonstrate that the proposed method 
provides reliable and precise fuzzy fractional solutions.

For future research, we intend to extend this work by incorporating the concept of time delay, as time-delay 
systems play a vital role in modeling real-world processes in engineering, biology, and control theory. The study 
will further explore variable-order fuzzy fractional Volterra integro-differential equations (VOFFVIDEs) using 
alternative and more advanced numerical techniques.

η = 3/4

y

ξ = 0.2 ξ = 0.4 ξ = 0.6 ξ = 0.8

ϑ(y, ξ)   ϑ(y, ξ) ϑ(y, ξ)    ϑ(y, ξ) ϑ(y, ξ)    ϑ(y, ξ) ϑ(y, ξ)    ϑ(y, ξ)
0.2 -0.1008   0.1008 -0.0756    0.0756 -0.0504    0.0504 -0.0252    0.0252

0.4 -0.3486   0.3486 -0.2615    0.2615 -0.1743    0.1743 -0.0872    0.0872

0.6 -0.6076   0.6076 -0.4557    0.4557 -0.3038    0.3038 -0.1519    0.1519

0.8 -0.8836   0.8836 -0.6627    0.6627 -0.4418    0.4418 -0.2209   0.2209

Table 5.  Numerical results for Example 2, ϑ(y, ξ) & ϑ(y, ξ) at different values of uncertainty ξ and fractional 
value η = 3/4.

 

η = 1/5

y

ξ = 0.2 ξ = 0.4 ξ = 0.6 ξ = 0.8

ϑ(y, ξ)   ϑ(y, ξ) ϑ(y, ξ)   ϑ(y, ξ) ϑ(y, ξ)   ϑ(y, ξ) ϑ(y, ξ)   ϑ(y, ξ)
0.2 -0.471   0.471 -0.3532    0.3532 -0.2355    0.2355 -0.1177    0.1177

0.4 -0.7014   0.7014 -0.5261    0.5261 -0.3507    0.3507 -0.1754    0.1754

0.6 -0.9142    0.9142 -0.6857    0.6857 -0.4571    0.4571 -0.2286    0.2286

0.8 -1.123   1.123 -0.8422    0.8422 -0.5615    0.5615 -0.2807    0.2807

Table 4.  Numerical results for Example 2, ϑ(y, ξ) & ϑ(y, ξ) at different values of uncertainty ξ and fractional 
value η = 1/5.
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Fig. 5.  Visualizes the fuzzy results of ϑ(y, ξ), ϑ(y, ξ) at different values of uncertainty ξ = 0.2, 0.5, 0.7 and 
fractional order η = 1/5, 3/4 for Example 2.
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