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Existence and uniqueness of
solutions for fuzzy fractional
integro-differential equations with
boundary conditions

Agilan K., Parthiban V.2, Nasreen Kausar® & Mohammed Abdullah Salman***

The analytical behavior of fractional-order differential equations under uncertainty is often difficult
to investigate. To address this challenge, this study considers Caputo-type fuzzy fractional Volterra
integro-differential equations (FFVIDEs) with boundary conditions. An iterative numerical approach
based on the Adomian decomposition method (ADM) is proposed to obtain approximate fuzzy
solutions. The existence and uniqueness of the solution are established using Banach’s fixed point
theorem. Numerical simulations are carried out in MATLAB to illustrate the symmetry between the
lower and upper p-cut representations of the fuzzy solutions. The graphical results demonstrate the
accuracy and efficiency of the proposed method in handling uncertainty in fractional systems.

Keywords Fractional differential equation, Adomian decomposition method, fixed point theorem, fuzzy
fractional differential equations.

Aside from pure mathematics, there is a strong desire to learn more about the subject applications in fluid
flow, biology, fractal theory, control theory, electrochemistry, and viscoelasticity stimulate the study of fractional
calculus (see!™). Fixed point theorems are commonly used to investigate the existence and uniqueness of
solutions in the domain of fractional calculus (see*®). The solution properties were discovered in”$, while
several numerical approaches, including quadrature, product integration, variational iteration, and fuzzy
transforms, were discovered in (see™). The use of fuzzy sets is well-suited for models with uncertainty, leading
to a focus on fuzzy fractional calculus for addressing these types of problems. The study of fuzzy fractional
differential equations (FFDEs) is a new area of fuzzy mathematics that is expanding steadily. To investigate a
novel sort of dynamical system, the notion of fractional order fuzzy differential equations (FDEs) was recently
developed!®. The authors Agarwal, Lakshmikantham, and Nieto!! originated the fractional case generalization of
the H-differentiability. In'? authors discovered the existence and uniqueness of results for FFDEs. Several studies
and solutions of order 0 < n < 1, (see'>!*) FFDEs have been published in recent years. However, uncertainty
can take a heavy toll on real-world issues at any time. Incomplete data, measurement errors, or identifying initial
conditions can all lead to uncertainty.

The area of fuzzy fractional integro-differential equations (FFIDEs) has past few years piqued the interest of
many researchers since it is recognized as a powerful tool for presenting imprecise parameters and handling their
dynamical systems in real fuzzy conditions. Analyzing the majority of FFIDE’s problems is difficult. Some real-
world scenarios deal with this, including the golden mean, quantum optics, gravity, engineering phenomena,
practical systems, and medical science. The existence of solutions for various fuzzy fractional integral equations
is important, particularly in the context of developing efficient numerical methods for approximating
these solutions'®. By employing the generalized Hukuhara derivative's, the notion of fractional Caputo
H-differentiability was utilized to study fuzzy fractional differential'” and integro-differential'® equations. In'®,
weakly contractive mappings were employed to establish the existence of a unique solution for FFVIDEs without
Liptchitz conditions. In?° the existence and uniqueness of the solution for FFVIDEs in Caputo’s sense were
proven, as well as the usage of Adomian decomposition to approximate the solution. In*!-23, stability properties
for FFVIDEs were explored, including the Ulam-Hyers stability. The variational iteration method was used in?
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to get numerical solutions for FFDEs. The fuzzy Caputo derivative was implemented in?* using the modified
fractional Euler (MFE) technique.

The investigation for interval-valued functions begun in*® continued in?’, which describes the MFE and
Adams generalization methods. Since the initial value problem (IVP) for the FFDEs and the corresponding
FFVIDEs are not equivalent in general, a desirable condition is presented in?® to make this equivalence valid. The
fractional Euler method is used® to prove the solution of FFDEs under Caputo differentiability using generalized
Taylor’s expansion as fuzzy-valued functions.

Very recently, Alexandru Mihai Bica et al.,*® studied the numerical method for fractional fuzzy integral
equations, and Ehsan Ul Haq et al.,*! investigated a reliable method for a system of fuzzy solutions. The method
of Adomian decomposition has been used in this seller to provide approximate results for the system of fuzzy
fractional initial value problems. A new fractional-order method based on Jacobi polynomials was introduced
by Bidari et al.* for finding the solution to FFIDEs. They developed a set of equations to represent the suggested
problem using operational matrices. They proved that under certain conditions, the proposed method converges.
The fuzzy product integration approach was utilized by Bica et al.>* to develop an iterative method for solving
fuzzy fractional Volterra integral equations. The fuzzy Volterra integral equation with weak singularity was
investigated in>! using a piece-wise spline collocation approach. Additionally, they have shown that the solution
exists and converges to content validity. FFIDE of the Volterra and Fredholm types can be solved using the
Chebyshev spectral method according to a recent proposal by Kumar et al.,*.

Caputo-type fuzzy fractional Volterra integro-differential equations (FFVIDEs) emerge naturally in real-
life situations where memory, heredity, and uncertainty play a significant role in the system’s behavior. These
equations combine three key concepts-fractional calculus, fuzzy logic, and integro-differential operators-making
them suitable for modeling complex real-world processes that cannot be accurately described using classical
differential equations.

In real life, many physical, biological, and engineering systems exhibit memory effects (dependence on past
states) and imprecise information due to environmental fluctuations or measurement errors. The fractional
derivative in the Caputo sense captures memory and hereditary properties, while fuzziness handles uncertainty
or vagueness in system parameters and initial conditions. For instance: In engineering, they model viscoelastic
materials where stress depends not only on the current strain but also on the entire deformation history. In biology,
fuzzy fractional models describe population dynamics or enzyme kinetics under uncertain environmental
influences. In electrical circuits, they represent RLC circuits with fractional elements and uncertain parameters.
In control theory, they help design controllers for systems with uncertain or partially known dynamics.

The usage of fuzzy fractional calculus, also known as fuzzy fractional integro-differential equations, has grown
significantly in recent years due to their extensive use in simulating a variety of physical industrial processes,
including heat and mass transport, bio-mechanics, electromagnetic fields, etc. For the approximate solutions
of fractional fuzzy Volterra integro-differential equations, several researchers have developed some numerical
approaches using different types of fractional derivatives>*~*°.

Several authors have contributed significantly to recent developments in fuzzy fractional calculus. For
example,” investigated a novel method for solving fractional Abel k-integral equations and linear FDEs in a
fuzzy environment. This study shows the effectiveness of applying fractional calculus with fuzzy systems to
improve solution accuracy. Similarly,® examined fuzzy Langevin fractional delay differential equations
using the granular derivative, demonstrating the possibility for combining both mathematical frameworks.
Furthermore,* investigated fuzzy fractional delay integro-differential equations using the extended Atangana-
Baleanu fractional derivative, giving a unique approach to solving these complicated equations. Additionally,*
investigated the existence and stability of solutions for fuzzy neutral fractional integro-differential equations
involving the Caputo fractional generalized Hukuhara derivative.

The existence of the FFVIDEs has been further investigated using Schauder’s fixed point theorem and the
uniqueness has been studied using the Banach contraction principle in®!. In addition, recently the Adomian
decomposition method (ADM) with initial condition®? and ADM with boundary conditions®**°, Shehu
Adomian decomposition method®?, successive approximation method>, monotone iterative technique®® two-
dimensional legendre wavelet method®® have all been used to examine the solutions of FFVIDEs.
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In this work, we try to solve FEVIDEs under Caputo derivative using the ADM. In order to solve FFVIDEs
with our proposed approach. To the best of our knowledge, this is the first time in the literature that numerical
solution of the FFVIDEs are examined under Caputo derivative employing ADM with the fractional order
0 < 1 < 1 and fuzzy initial conditions are investigated. The goal of this work is to look into it.

Motivation

Numerous authors have focused on exploring numerical solutions for FFVIDEs, as many of these equations
are difficult to solve analytically. Therefore, researchers are starting to use several numerical approaches. Some
examples of these numerical methods include the Laplace transform method, variational iteration method, semi-
analytical method, and Adomian decomposition method (ADM) to obtain better approximation solutions for
FFIDEs. All of these studies encouraged us to develop a numerical approach to solving FFVIDE. Additionally,
our analysis of the literature revealed that numerous investigations of numerical solutions of FFIDEs were
solved only with initial conditions. Hamoud®’ proposed the ADM to investigate the fractional Volterra integro-
differential equation’s solution without a fuzzy concept. Also in?® N. Ahmad et al. only addressed the FFVIDEs’
initial value problem. As a result, this study inspires us to adapt research for FFVIDE with boundary conditions.
Therefore, FFVIDEs must be developed with boundary conditions.

Novelty
The following is a summary of the work’s primary contribution:

1. The authors provide a new framework for the Adomian decomposition approach to solve FFVIDEs with
generalized boundary conditions.

2. Comparing to the existing studies in (see*>”’”) we present boundary conditions for the FFVIDEs investigated.

3. To demonstrate the existence of the unique solution using the Banach fixed point theory to the considered
equation. To provide lower/uppercut solutions for FFVIDEs with the help of the Adomian decomposition
technique.

4. To establish the effectiveness and reliability of the ADM, we provided a sufficient number of examples to
verify the theory and proposed an algorithm for solving these types of equations.

Overview of the paper’s sections

The paper is organized as follows: The introduction is included in the first part. Additionally, the motivation,
novelty, and structure of the article are described. Section 2 presents some basic ideas about fuzzy numbers and
the basics of fractional calculus, whereas Section 3 is focused on establishing the existence and uniqueness of
the FFBVPs under consideration. Section 4 presents the methodology of Adomian decomposition. In Section
5, we analyze the suggested method’s accuracy using a numerical example and Section 6 concludes with a brief
overview of this investigation.

Preliminaries
The definitions of fuzzy calculus and its key notions are provided in this section.

Definition 1 2° A fuzzy set A is said to be a fuzzy number, if the following conditions are satisfied.

A is normal; there exist, yo € R such that A (yo) = 1,

A(Ay1 + (1 — AN)y2) > min(A(y1), A(yz2)) holds, for all, y1,y2 € Rand 0 < A < 1i.e, A is convex,
A is upper semi-continuous,

A is compactly supported that is cl{y € R | A(y) > 0} C R is compact.

Ll

Definition 2 °7 A fuzzy number A is £-level set characterised as
[Ale ={y € R: A(y) = ¢},

where £ € (0,1] and y € R For a fuzzy number A, its £-cuts are closed intervals in R and we denoted by

[Ale = [¢,¢].

Definition 3 % The RL fractional integral of order 7 of fuzzy function f (y, &), based on its £-level illustrations:

[1"f(y,0)] = [I"f(y,£), 1" (y, )] where,

9 = 75 [

( )
IF0.9) = s / Yy — "R (1, )t

Note: In this paper, we consider (i) differentiable type to find the solution for FFVIDEs (from the theorem 2.1
in®®). However, a type (ii) differentiable solution is the same as type (i) differentiable.

Definition 4 * The Caputo fractional derivative of order 7 of fuzzy function f (y, &), it can be stated as follows,
based on its £-level illustrations:
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[D"f(y,&)] = [D"f(y.€), D" f(y,€)] where,

)
D"[f(y,€)] = =) Of(y — )T (y,O)dt, T—1<n<r

L f(y,€), n=rrEN,

Dn[?(y,f)] _ F(‘Tlfn) ‘({‘(y - t)r_n_lf (y,f)dt, r—1l<n<r

;577'?(?175)7 n=rré&N.

Problem formulation
In this study, we use the fuzzy idea to extend the concept to FVIDEs across the Caputo-type of order € (0, 1].

D"[d(y,&)] = (f(y,é)Jr/y Tl(yyg)/\l(ﬁ(g,é))dwr/ Ta(y, 9)A2(1§(Q,€))d9> (1)

0 0
with the boundary condition

p10(0,8) + pad(T,€) = Ps, p1,p2 €R, p1+p2 #0, ps € Ry. )

Where 9(y,§) is a fuzzy function, D"(.),n € (0,1], is the Caputo fractional derivative,
f: X =>RsTi: X xX — Rfori=1,2are continuous functions, A; : R — R are Lipschitz continuous
function, where X = [0, 1].

Main result
The focus of this section will be on the discussion of the existence and uniqueness of the solution to Eq. (1) with
boundary condition (2), based on the hypothesis.

H1 : For any ¥1, 92 € C(X, Ry), there exists two constants c1, c2 > 0 such that,

(A1 (D1 (y,€)) — M (D2(y, €))| < ea|dr — D,
[A2(T1(y,€)) — A2(Da(y, )| < e2lF1 — Da.

H2 : For the set of all positive continuous functionon J = {(y,0) € R x R : 0 < o < y < 1}, there exists
the functions T1*, T2 such that

Y
T1" = sup / IT1(y, 0)ldo < o0
170

y€[0,1

and

1
T2" = sup / |T2(y, 0)|de < oc.
170

y€[o,1

H3: The function f:[0,1 = R; is continuous, there exists a constant [, > 0, such that
L =sup{[f(y,§)]: 0<y <T}

Theorems and Lemma

Lemma 1 If a function Iy, &) € C[0, T satisfies (H1) — (H3) in [0, T], then the problems (1)-(2) are similar to
obtaining a continuous solution of the FFVIDEs.

B9 = [ U (Feo+ [ 1 omieo)e

+ [ alt 00000 e )

- [ 2O (g + [ i oniie e

" /OT Ya(t, 0)As(9(o, E))d9> dt — 153} '

€)

The above equation is equivalent to
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306) b, — i — [ I ([ 0o (e €)de

p1 + p2 I'(n)
+/0 Ya(t, 0)As (Do g))dg)dt (@)
- ( (DM (e + [ m,g)Az(é(g,s))dg) at
where,
o m 1 M@ Yy
My, &) ==~ o /0 O A /0 oy (6:0) dt. (5)

Theorem 1 (Existence theorem) Let the hypotheses (H1) and (H2) be satisfied and
A (9(y, &) < p1, Aa(V(y, &) < p2forally € [0,T] and for all 9(y, &) € Ry, Under this hypothesis our consid-
ered equation has at least one solution in [0, T].

Proof Let the operator Y : C(X,Rs) — C(X, Ry) characterized by

n—1

(YD) (y, &) =/Oy %

+/OT T2 (t, 0)A2(9(o, ))dQ)dt
1 [/OT (T — )" (f(t,gH/Ot T (1, )M (90, €))de

a p1+ p2 T'(n)

+ /OT Ta(t, 0)A2(V(o, §))d9) dt _p~3]’ fory €10,1].

(7.9 + [ Titomite e

We begin by showing that the operator T is completely continuous.
(1) To prove T is continuous: Let ., be a sequence convergestod in C'(X, R ), foreach ., 9 € C(X, Ry)
and for any y € X, we have

0.00.) = TH0.0) < g [ =0 ([ MM ((e.6) = M (o€l
+ [ 10alt, A2 (91 0:9) — Aa(Ole.€)Ide)

|p2| r _ p\n—1 ¢ 7
s [0 ([ ol e 6)

~ T ~
—A1(19(0,§))\d9+/0 [T2(t, 0)l|A2(Fn (0, €)) — A2(D(e, ))|d9) dt.
Taking supremum on both sides,

0:0:6) = T3 )1 < g5 (147 M (2.9 — Ma(He. )
0 A (0.6) ~ a2 ) [ =

|p2| * 1 _ ~
o (T I (e, ) — & (e, ©)]

27T (0.) — Aa(F(2.)])) / (T =t at

Since, A1 and Az are continuous, fo —t)" ~1dt is bounded. As a result, we can deduce that
[T (y, &) — YO (y, €)]|oc — 0asn — oc. Thus T is continuous.

(2) To prove 7Y is bounded: T maps bounded sets into bounded sets in C' (X, Rs) . We demonstrate that a
positive constant A exists, for every p > 0 such that for any JeB,={dcC(X, Ry) : [|9]lo < n}. Onehas
[19]]cc < A Let pg = SUPje x x [0,y M1 (O(y,€)) +1and po = SUD e x % [0,1] A2(O(y, €)) + 1. Also for each

y € X and for any 9 € B,, we have

Scientific Reports|  (2026) 16:2082 | https://doi.org/10.1038/s41598-025-31808-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

0< 0391 =] [ YL (Feo+ [ Tk oni e

+ /0 Ta(t, 0)Aa(D(0,€))de) dt

; J1rp2 {/(;T pQ(Tanl;)n_l (f(t,f) + /O.t 1(t, 0)A1((0,€))do

+ /OT Y2(t, 0) A2 (Yo, 5))d9) dt — 153} ’

Yy 0"
< ["UL D (e [ it ol e o) ide

/ 1T2(t, 0)||A2(D ))|dg)dt

for y €[0,T]

|P2 )1t ¢ _
Ip1 +p2 / ‘f t7€)|+/0 1T1(t, 0)[[A1 (90, €)])de

|Ps|
" / \Tz(t,g)l\Aa(ﬁ(@,E)l)dg)dH -

Taking the supremum on both sides, we obtain

103001 < [ U T (2 i) + Y]

I'(n)
1 T pa|(T =) . . P3|
Sy g (e i s B
<Tn (L+ (Y7 (1) +T§(H2)]> . Ip2| A
B L(n+1) ( +Ip1+pz>+lp1+pz
(B i) + T3 u) (1 .l > ol
- L(n+1) Ip1 + pe Ip1 + pa

Thus, for every || Yd|| < X for every 9 C B,, which that YB,, C Bi.
(3) To prove Y is equicontinuous: Y maps bounded sets into equicontinuous sets of C' (X, Ry) . Let
y1,y2 € [0,1] with y1 < yo. For ¥ € B,, (defined in last step 3,) we have

[(T0) (y2, €) — (YD) (y1,€)| < ’/Oyz %

T _ Y1 (yl _ t)"*l ~
+ [ Pratt linaite. )ide) i — [ LD (10

/m (t, 0)||A1(V( o, € |dg+/ ITa(t, 0)||A2(D(o, ))|dg>dt‘

(1701 [ 1Tae olin (e ) lde

(2 =)' = (pp — )" i 3
< /0 () (f(t,£>+ /O T, (¢, 0) A (30, £))de
+ [ st ona(ite o] + | [ LI (.0

T

+ [Tt oMo+ [ Talt 0430 9)de)
e L PR (FOYS]
/w (A0, Dl + [ 1Tale, )l IA2(D(0.€)ide)

s [0 (101 [ DM O €lde

Wyl

+ [ Peatt, ol (e, ) lde)

Hence,

Scientific Reports|  (2026) 16:2082 | https://doi.org/10.1038/s41598-025-31808-2 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

3 2 1 vt -1 n—1
0052.8) = 001,01 < s [ [ =07 = (0 = 7] [L TaGn) + T

<t [t =0T [L o Talo) + Ta(a) |
[L4Ti(p) + Yalp2)] [ 4 n n
< i+ 1] [y1 —y2" +2(y2 — Y1) }
_ < 2[L + Y1 (p1) + Ta(p2)] n
[T (y2,£) — TI(y1,€)| < I+ 1] [z ="

Té(yg, &) — Tlg(yh &) — 0asys — y1 — 0. This implies that,
(YD) (y2, &) — (TD) (y1,€) | — 0.

The set T B, is equicontinuous. Using the Arzela—Ascoli theorem, we determine that Y is completely continuous.
For the final step, let us consider the set defined by

E={9€C(0,T],Rf) : 9 =3T@) for 0<3<1}.

Now, we show that the above set E is bounded.
Let us take J € E. For every y € [0, 1], we have, from Eq. (6)

39, €)= [ [T (fo + [ Titomite e

+ [ et 00 000.9) )

- [ 2O (g + [ e 0n (e )de

+f "Lt M2 (D(e. o) dt — 3] | fory € [0.7]

[9(y, §)| =

Yy—t)"" (7 ‘ j
5[/0 W(f(t7§)+/() Y1(t, 0)A1(P(0, §))do

+ [ alt Aa(00. 80

L [ [Te@—nty, : ]
p1 +p2[/0 T(n) (f(lt’f)*/0 T1(t, 0)A1(I(0,€))do

+ [ st M0, o)t - i) || sor v e 0,71

<

5 [ﬁ(y,f) + [MUEE= ] [ T ome o)

+ /0 Ta(t, 0)Aa(D(0, ) do| dt

o im (/OT pQ(TFEn?n_I [/;Tl(t, 0)A1(D(e,€))de

n /OT Ta(t, 0) A2 (9o, 5))d9} dt)} ‘

where, h(y, €) is defined in Lemma (1).

. P 1 /T p(T —)" = /'” y—0""
h(y, &) = - tENdt+ | L (f(t, ) dt
&) =B o [ B e+ [T ()
|h(y, &) <A.
We already obtain |A1 (0(y, &)| < 1, |A2(D(y, €)| < pa, for every y € [0,T7.
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9091 = b &) + g5 [ =07 [ [ i olin e el
+ [ Pt o)lina(ile. ) ide]ar
_ ‘p2| L r _ p\n—1 k 3
s [0 [ [ e ol e )l

+ [ Pratt 113(0.6) e

<A+ T1“1+T2“21/ ptar | (14 2l
[p1 + p2|
T1u1+Tzu2]y 14 |p2|
L(n+1) [p1 + p2|
Tl,th + Yops]T" 1+ |p2]
T(n+1) lp1 + p2|

I/\

\ /\

Define A+ w (1 + ‘plzle,z‘) = d. Therefore ||9|| < d. This shows that any 9 € E is

bounded. Therefore, the set E is bounded.

Furthermore, the operator Y has a fixed point, according to Schaefer’s fixed point theorem. This shows that
at least one solution ¥(y) for all y € [0, T exists.

Now, we finish up the consequence of the hypothesis dependent on the contraction mapping rule. T has a
unique fixed point. This shows that the problems (1)-(2) has unique solution. [J

Theorem 2 (Uniqueness theorem) Assume that H1 to H3 holds. If

(ITiten + Ti(eo))) (1+ - ><1,

Tn+1) [p1 + p2|

then there exists a unique solution of the Eq.(1).

Proof 5(y, &) is the solution of the Eq. (1), with given boundary condition, if 19(3;, &) satisfies

)"t

3. = [ UL (769 + [ Tat oMl )de

+ [ Talt 002900, €)d0)

- (o + [ T om0 e
+ [ ot 0Nl o)t — ] for € 0.1

Let’s define the operator Y according to the Theorem (1). If ¥ € C (X, Ry) is a fixed point of T, then 7 is the
solution of the Eq. (1). Let 91,92 € C (X, Ry), then

008 = T2l )| = g7 [ =07 ([ 110010109 — Mo, lde
+ [ Pratt lIAa(Fi(0.6) — Aa(ia(o.€)lde)
‘p2| r _ \n—1 k q
s [ ([ ols i)

~M(ale )i+ [ Yalt.ol|Aa(Ti(e.€) ~ AalTa(e.)lde )i

Taking supremum on both sides, we can get,
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Hrﬁwfy—ﬁ%wfmmsi%ﬁ(m@ﬂ+ra@gHaféﬁwlﬂy,ﬂwwt
|p2| . \ . T -
+ m(Tl(Cl) + T2(C2)) ||191 — 192||00A (T, t) dt
~ ~ (TT61 +T§C2> |p2| _ ~
T30, €) =020 Ol = T(n+1) < Ip1 +p2|> 9 ﬂQH"" <!

Hence, Y is a contraction. Thus, by the Banach contraction principle, using the theorem (2.12) in2, Y has a
unique fixed point ¥ € C ([0, 1], R¢). O

Description of ADM

The Adomian decomposition method, abbreviated ADM, is the subject of this essay. ADM is a kind of
method that uses a decomposition approach to generate approximative solutions and even exact solutions for
nonlinear systems when the proper initial data. Numerous benefits of this approach include. The diagrammatic
representation of the proposed method is shown in Fig. 1.

Advantages of the adomian decomposition method

Numerous types of nonlinear systems, including algebraic equations, differential equations, integral equa-
tions, integro-differential equations, and so on, can be solved using this method, and it is relatively simple to
use.

It avoids the time-consuming Picard method integrations.

It can solve certain nonlinear problems that conventional numerical approaches cannot address.

The number of variables has no impact on applications since it need not directly affect the solutions series.

Before using ADM to construct approximations of solutions for nonlinear equations with boundary conditions.

Consider this equation: When the operator 1" is applied to both sides of Eq. (1), we obtain

T pa(T — )"
L'(n)

+ [ et 00 o)

+/0y%(/;Tl(t,g)/h(ﬁ(&ﬁ))dg

+ [ et 0 0(0. o)t

D3(0.6) = ) ———— | (] rittomitite.enae

In the form of a series, Adomian’s method provides the solution 75(1/, £),

3=34,
n=0

and the decomposition of the nonlinear A1 and As is

_ Apply the Decompose the Make boundary
Define theb || Fractional Integral |—| nonlinear terms | | conditions for
FFVIDEs to be to using Adomian e sliifion
Solied proposed equation polynomials
Obtain the final Apply the recursive
solution by < | relation to iterative
summing up form to improve the
the terms solution
Fig. 1. Diagrammatic representation of proposed method.
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oo oo
Ay = ZM As = ZN
n=0 n=0

Where M,, and N,, are Adomian polynomials and the expression for each of them is:

l (imlﬂw

13

v=0
Therefore,

Mo = Ay (o),

My = 1A (d) ,

My = 2% (o) + 5020 (d0)

My = Fu (Do) + 91320 (Jo) + TN (9o)
and

No = As (do) ,

Ny = d:1A (do) ,

N> =215 (Jo) + 5 Lany (Do),

N3 = 9373 (o) + D192A5 (Do) + 193A’2” (Do) .
The components Jo, 01,2, . . . are determined in a recursive manner by

Jo(y, €) =h(y,€)

= _ 1 T pQ(T - t n—1
9.6 ==~ [ 2D (o + [ Yate ) Nodo)
Viy—t)!
-I—/ 1_‘7 / Tl t Q)Modg+/ Tg t, Q)Nodg)dt
0
~ T—t)7 !
Ort1(y,§) = — o +p2/ P ) / Tt g)Mkngr/ To(t Q)wag)dt

+/Oy%</o T1(t7Q)Mde+/O TQ(t,g)derg)dt, k>1.

We approximate the BVP solution by solving the relation using boundary conditions. The recurrence relations
are easily considered, in contrast to the boundary conditions for (3), which are important in the development

of the solution.
Remark 1 Note that the notation A; (Jo(y, £)) always must be replaced by A1 (J).

Limitations of the adomian decomposition method

o The method’s accuracy relies heavily on the choice of the initial fuzzy approximation, which can affect the

convergence and stability of the solution.

o ADM does not provide a straightforward way to estimate approximation errors in fuzzy fractional contexts.
« For FFVIDEs with strong nonlinear kernels or long-memory fractional terms, ADM may require many iter-

ations to achieve acceptable accuracy.
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Numerical experiments
The examples in this section demonstrate how precisely the methodology yields the FFVIDEs solution. The
existence and uniqueness requirement in (1-2) is required for BVPs to solve the problem.

Example 1 Consider the Caputo-type Volterra-Fredholm integro-differential equation with fuzzy boundary
conditions.

1~ 2 ~ 1 -
D2Y(y, &) = 2+ %)~ 1,1 - € + 55 f(?)y +40)0(0,€)do + 5 [(3y — 1)9(0,€)do
_ _ 0 0
219(075)4_19(17&):[5_171_5}7 y€(071]
pL,p2 € R, Pps €Ry p1=2,p2=1,p3 = [p,, 5] = [ — 1,1 - &].

The equivalent form of the above equation for type(i)-differentiability is shown below. ( using the definition 2.9
in38)

D39(y,€) = 2+ L)€ — 1) + & [(By + 40)9(0, )do+ L [(3y — 1)D(o, €)do,

Ct—gy O —s

D3(y,6) = 2+ L)(1 - €) + & [(3y + 40)0(0, E)do+ £ [(3y — 1)9(0, &)do.

let’s construct ¥(y, &) and apply the operator I 3 on both sides

S =

VW, &) = h(y,&) — -2 iy [(1—1) 1”{ JCutg(o,¢) dg+f<3y 290, 5)d4

HO

Yy
o [y -7 {f 9 (o, €)do +f<3y (e, 5>d4 dt,
0

o

Wy,&) = h(y,&) — ;2= ml/g){ w2 u Gutde)ig(o, ¢ dg+f G=1F(,, f)dg} dt
Y 1
+7 Of(y —)7 L{ B0l (o, ¢ dg+0f (8y )dg} dt.

The next step is to determine the solution of ¥(y, &) by using the ADM.
9o(y, &) =h(y,§)
_ b1 pa(1—t)"! Y-8t
Dy(4€) =h(y,€) = / e+ [ U (rolar

p1+p2  p1+Dp2 T'(n)
9o(y, ) =h(y,§) = « ; b_ 3(1&;(;/12)) /0 (1 =) Y26 + 36> + 1)dt

+ (Ff(;/;; /Oy (y — ) 2[¢° + 3t + 1]dt

1 Y 1

—__p 1 [ 52 _
9, (y,€) = ot /D) /(1 t) % /(3y+4g)Mon+8/(3y 1)Nodo | dt
0 0

Y y 1

1 —-1/2 1

. —t 40) Mod — 1)Nodp | dt

+F(1/2)/(y ) 20/(3y+ 0) Mo 9+8/(3y )Nodo
0 0 0

In a similar manner, we can determine the following terms: ¥, (y, §), 95 (y, ), ... and obtain the result.

N _ (- 206-1)  20€-1)  206-Dy'? 26 -1y
=D WO ="g— - 30(3/2)  OT(7/2) T T(3/2) | ar(rjz) 7

In the same way, we can find type(ii) differentiable,

Z _ (-9 21-9 2(1-9 2(1-gy? 21—y
— 3 3I'(3/2) 9r'(7/2) I'(3/2) 30(7/2)
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Fig. 2. Visualizes the approximated fuzzy results of 9(y, &), 9(y, £) at different values of uncertainty &=
0.2,0.5,0.7 and Caputo derivative = 1/5, 3/4 for Example 1.

n=1/5
£ =0.2 £E=04 £ =0.6 £ =0.8

y |28 9(W,6) | 9(y, &) I(y, &) | 9(y, &) F(y,€) |9y, €) B(y,&)

0.2 | -0.8818 0.8818 -0.6614 0.6614 -0.4409  0.4409 -0.2205 0.2205
0.4 | -1.0926 1.0926 -0.8194 0.8194 -0.5463 0.5463 -0.2731 0.2731
0.6 | -1.2573 1.2573 -0.943  0.943 -0.6287 0.6287 -0.3143 0.3143
0.8 | -1.4137 1.4137 -1.0603 1.0603 -0.7068 0.7068 -0.3534 0.3534

Table 1. Numerical results for Example 1, 9(y, &) & 9(y, &) at different values of uncertainty ¢ and fractional
valuen = 1/5..

Using MATLAB, we obtain 2D and 3D graphs of the simulation result of approximated fuzzy solutions displayed
in the figure and table values for different levels of uncertainty £ = 0.2(red), £ = 0.5(green), £ = 0.7(blue)
shown in Fig. 2a, 2b and Table. 1, 2, 3 where us plots of £-cut representation of the approximated solution for
Caputo derivative n = 1/5, 7 = 3/4 respectively. Different values of space variable y = 0.2,0.5, 0.7 are shown
in Fig. 3a,3b, and both uncertainty £ and space variable y with the fuzzy solutions are shown in Fig. 4a, 4b the
surface plot of the fuzzy solutions are presented respectively (green and blue are the upper and lower solutions
respectively). The fuzzy solution and the solution representation changed when we changed the 7 order. While
this modification is tiny, it may make a significant effect when applied to real-world issues.

Note: Here, The 1st non linear term ¥, (y, £) = Mo,

and 2nd non linear term 9, (y, £) = No.

Example 2 Consider the Caputo-type Volterra-Fredholm integro-differential equation with fuzzy boundary
conditions.

Dy, &)= (y+E-1,1-€ + & J(@2e")d(0, €)do+ fly%?(g, §)do
21’9‘(075)4»1;(175) = [57 1517517 Y€ (Ov 1]

pi,p2 € R, Pps € Ry p1=2,p2=1,p3 = [p,;ps] = [§ — L, 1 = ¢].

The equivalent form of the above equation for type(i)-differentiability is shown below.
. 1
DYy, &) = (y+ 1)(§ — 1) + 5 [ (e*e")D (0, )do+ [ y*I(0,€)do

0

Did(y,&) = (y+ D1 — &) + 5

O =e @ —=s

1
(0*e¥)0(0,&)do + [ y*V (o, €)do
0

let’s construct ¥(y, &) and apply the operator I % on both sides
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0.2 | -0.1683 0.1683 -0.1262  0.1262 -0.0841 0.0841 -0.0421 0.0421
0.4 | -0.5315 0.5315 -0.3986 0.3986 -0.2658 0.2658 -0.1329 0.1329
0.6 | -0.8626 0.8626 -0.6469 0.6469 -0.4313 0.4313 -0.2156  0.2156
0.8 | -1.1841 1.1841 -0.8881 0.8881 -0.592  0.592 -0.296 0.296

Table 2. Numerical results for Example 1, ¥(y, £) & E(y, £) at different values of uncertainty £ and fractional
value n = 3/4.

0.2 | -0.8 | 0.387 -1.575 0.353 -1.507
0.5 | -0.5 | 0.242 -0.985 0.221 -0.942
0.7 | -0.3 | 0.145 -0.590 0.132 -0.565
€ 1P | Do(y,8) |D1(y,6) |Do(y.6) |91y, &)
0.2 | 0.8 |-0.387 1.575 -0.353 1.507
0.5 0.5 |-0.242 0.985 -0.221 0.942
0.7 | 0.7 |-0.145 0.590 -0.132 0.565

Table 3. Numerical results for Example 1, where p1 = 2, p2 = 1 and boundary points
Do (y, &), 91 (y, &), Y0(y, &), V1(y, &) at different values of uncertainty £ and fractional values n = 1/5,

n=3/4.
2 T 2 T

Yatz =02 Yatz=02
~~ ————datz=02 ————Datz =02

TSE T~a Yatz=05|] 151 Yatz=05|]
Te~lT~al S Jatz =05 F-e ————Jatz=05

GE—— \\fj\\\ datz =07 | A \\\\ datz =07 |
T=— T~ ————datz =07 [ S~ ————Jatz =07

Fuzzy solution
Fuzzy solution

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

(a) n=1/5 (b) n=3/4

Fig. 3. Visualizes the fuzzy results of ¥(y, £), 9(y,
y = 0.2,0.5,0.7 for Example 1.

&) at different values of n = 1/5, 3/4 and space variable

r Iy, &) = h(y&) - ,{’TQM%){l( 1—t)~'/* [f—o f(@Qey)ﬁ(e,ﬁ)ngr Ofltzﬁ(e,f)da] dt
+ 0fy(y [%Of o’e) é)dg+f1t2ﬁ(g, §)dg] dt

Iy, &) = h(t,€) — 5 i Ofl(l — )~ [— z(g e’)0(e, €)do +{1t25(9, E)dg] dt
+ Ofy(y — 1)~ [%0 z(azey)??(e, &)do + Oft21_9(g, §)dg:| dt.

The next step is to determine the solution of 9(y, £) by using the ADM.
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fuzzy Solution
fuzzy Solution

(a) n=1/5 (b) n=3/4

Fig. 4. Visualizes the fuzzy results of 9(y, &), 9(y, £) at different values of fractional order 7, uncertainty £ and
space variable y for Example 1.

ﬁo (y7 6) :E(ya 5)

S S S C ) Yy
by &) =t = [ U+ [T ol
_ 11 \-1/4
30006 =0 &) = S - o [ Ul e - v
y _4\—1/4
+ [ U e - e
Ql(y,g):—plpjmﬁ/(l—t)_l/‘l lio/(g?ey)Modﬁ/t?Nodg dt

1

Y Y

1 —1/4 | 1 / 2y /2

—_— —t — Mod t“Nodp | dt
+F(77) /(y ) 10 (Qe) 0 Q+ 0aQ

0 0 0

In a similar manner, we can determine the following terms: ¥, (y, §), 95 (y, £) and obtain the result.

B (e VR (Rl VI (St VI (Sl O I (el Vi
Q(y’g)_goﬁ(y’g)”_ 3 3T(11/4)  30(7/4) T T(1/4) T4
In the same way, we can find type(ii) differentiable,
S NG, L 1=O  (1-9 (-9  (1-oyt a-gy**
ﬁ(y’é)_nzoﬁ(y’g)"_ 3 30(11/4)  30(7/4) T T(i/4) T4y T

Using MATLAB, we obtain 2D and 3D graphs of the simulation result of approximated fuzzy solutions displayed
in the figure and table values for different levels of uncertainty £ = 0.2(red), £ = 0.5(green), £ = 0.7(blue)
shown in Fig. 5a, 5b and Table. 4, 5, 6 where us plots of £-cut representation of the approximated solution for
Caputo derivative n = 1/5, 7 = 3/4 respectively. Different values of space variable y = 0.2,0.5, 0.7 are shown
in Fig. 6a, 6b, and both uncertainty £ and space variable y with the fuzzy solutions are shown in Fig. 7a, 7b the
surface plot of the fuzzy solutions are presented respectively(green and blue are the upper and lower solutions
respectively.)

Conclusions

In this study, we examined a class of fuzzy fractional Volterra integro-differential equations (FFVIDEs) using
both theoretical and numerical approaches based on the Adomian decomposition method. The existence and
uniqueness of the solution were established through the contraction mapping principle under the given fuzzy
boundary conditions. The proposed approach, derived from the decomposition rule, effectively generates
approximate solutions whose behavior was analyzed both mathematically and graphically. The simulation
results indicate that even a slight variation in the £-cut value can significantly affect the solution, confirming the
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Fig. 5. Visualizes the fuzzy results of 9(y, £), 9(y, £) at different values of uncertainty ¢ = 0.2,0.5, 0.7 and
fractional order n = 1/5, 3/4 for Example 2.

0.2 | -0.471 0.471 -0.3532  0.3532 -0.2355  0.2355 -0.1177 0.1177
04 |-0.7014 0.7014 -0.5261 0.5261 -0.3507 0.3507 -0.1754 0.1754
0.6 | -0.9142 0.9142 -0.6857 0.6857 -0.4571 0.4571 -0.2286 0.2286
0.8 | -1.123 1.123 -0.8422  0.8422 -0.5615 0.5615 -0.2807 0.2807

Table 4. Numerical results for Example 2, 9(y, £) & ¥(y, £) at different values of uncertainty £ and fractional
valuen = 1/5.

0.2 | -0.1008 0.1008 -0.0756 0.0756 -0.0504 0.0504 -0.0252  0.0252
0.4 | -0.3486 0.3486 -0.2615 0.2615 -0.1743  0.1743 -0.0872  0.0872
0.6 | -0.6076 0.6076 -0.4557 0.4557 -0.3038 0.3038 -0.1519 0.1519
0.8 | -0.8836 0.8836 -0.6627 0.6627 -0.4418 0.4418 -0.2209 0.2209

Table 5. Numerical results for Example 2, 9(y, £) & ¥(y, £) at different values of uncertainty £ and fractional
valuen = 3/4.

sensitivity and accuracy of the numerical approach. Overall, the findings demonstrate that the proposed method
provides reliable and precise fuzzy fractional solutions.

For future research, we intend to extend this work by incorporating the concept of time delay, as time-delay
systems play a vital role in modeling real-world processes in engineering, biology, and control theory. The study
will further explore variable-order fuzzy fractional Volterra integro-differential equations (VOFFVIDEs) using
alternative and more advanced numerical techniques.
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0.2 | -0.8 | 0.265 -1.331 0.189 -1.178
0.5 | -0.5 | 0.166 -0.832 0.118 -0.736
0.7 | -0.3 | 0.099 -0.499 0.070 -0.441
€ Ps | Do(y,8) |D1(y,6) |Do(y.6) |91y, &)
0.2 | 0.8 |-0.265 1.331 -0.189 1.178
0.5 | 0.5 |-0.166 0.832 -0.118 0.736
0.7 | 0.3 |-0.099 0.499 -0.070 0.441

Table 6. Numerical results f(lr Example 2, where p1 = 2, p2 = 1 and boundary points
Fo(y,€), 9, (y,8£),00(y,€), V1 (y, £) at different values of uncertainty £ and fractional values n = 1/5,

n=3/4.

2 - 15 -
Jatz =02 Jatz =02
————datz =02 ———-datz =02
15¢ Yatz=05|] Yatz =05

[~~~ ———-Jatz=05 TR ————Jdatz=05|]

s Teel date =07 Tt Yatz =07
————Jatz =07 - ————Jatz =07
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Fuzzy solution

0 0.2 0.4 0.6 0.8
X X

o

0.2 0.4 0.6 0.8 1

(a) n=1/5 (b) n=3/4

Fig. 6. Visualizes the fuzzy results of ¥(y, £), 9(y, £) at different values of = 1/5,3/4 and space variable
y = 0.2,0.5,0.7 for Example 2.

fuzzy Solution
fuzzy Solution

(a) n=1/5 (b) n=3/4

Fig. 7. Visualizes the fuzzy results of 9(y, £), 9(y, €) at different values of fractional order 7, uncertainty £ and
space variable y of Example 2.

Data availability
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