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In the context of global climate change and rapid urbanization, understanding the relationship 
between land use and carbon emissions is critical for sustainable development. This study investigates 
carbon emissions from land use and their intensity in China’s five major urban agglomerations, 
including Beijing-Tianjin-Hebei, Yangtze River Delta, Middle Reaches of Yangtze River, Pearl River 
Delta, and Chengdu-Chongqing, from 2000 to 2020. By integrating land-use and socio-economic 
data with geographic information systems, the Logarithmic Mean Divisia Index model, and the 
Kaya Identity, we analyze the spatiotemporal differentiation and evolution of carbon emissions and 
intensity, as well as the influencing factors behind these trends. Additionally, the Markov prediction 
method is employed to project land-use changes and carbon emission trends through 2025. The 
results indicate that the Pearl River Delta exhibited the fastest the most rapid increase in land-use 
carbon emissions during the study period, while simultaneously achieving the lowest land-use carbon 
emission intensity among all regions. Economic development and industrial structure served as the 
principal drivers of emission growth, whereas energy consumption intensity exerted a mitigating 
effect in all urban agglomerations. Despite the growing proportion of clean energy, the influence 
of energy structure on emission reduction remained limited, indicating a persistent dependence on 
fossil fuels. This study underscores the complex relationship between land use and carbon emissions 
in urban agglomerations, offering important insights for policy formulation. The findings emphasize 
the necessity of developing targeted strategies to reconcile economic growth with carbon reduction, 
thereby advancing sustainable land-use planning and supporting climate change mitigation and 
regional sustainability.
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As the world’s largest CO₂ emitter, China faces intensifying decarbonization challenges, with its carbon sink 
capacity declining from offsetting 30% of emissions (1980–1999) to merely 7–15% (2010–2020)1–4. The “Dual 
Carbon” goals (i.e., carbon emissions peaking by 2030 and achieving carbon neutrality by 2060)5 require urgent 
mitigation of carbon emissions from urban agglomerations, which accounted for 80% of national emissions in 
20206–8. This is primarily due to construction land expansion, which exhibits 55% higher emission intensity per 
unit area compared to fossil fuel combustion processes9.

Current research on land-use carbon emissions (LUCE) in China’s urban agglomerations employs 
a multidimensional analytical framework10–13, focusing on three core dimensions, including emission 
mechanisms, spatiotemporal patterns, and regional disparity. These studies demonstrate that intrinsic functional 
characteristics of urban agglomerations in China critically determine the spatiotemporal distribution of carbon 
emissions. For example, case studies of major urban agglomerations, such as the Yangtze River Delta and 
Beijing-Tianjin-Hebei regions), demonstrate that the synergistic interplay between socioeconomic activities and 
environmental governance policies significantly shapes LUCE trajectories, with effective intercity collaboration 
promoting regional green and low-carbon development14–16. Additionally, population agglomeration and spatial 
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restructuring are recognized as key drivers of LUCE dynamics, while regional variations in economic foundations 
and urbanization stages result in diversified low-carbon transformation pathways17–21. To quantify these 
relationships, advanced analytical methods, including the Decoupling Model22, Kaya Identity23, and Logarithmic 
Mean Divisia Index (LMDI)24 model were employed, revealing nonlinear associations between LUCE and socio-
economic indicators. Furthermore, predictive modeling systems incorporating FLUS25, InVEST26, and Markov 
chain models27 were employed to simulate future land-use changes and associated carbon impacts. These tools 
facilitate the optimization of land-use structures in urban agglomerations to improve carbon storage capacity 
and reduce emissions28. In summary, by integrating macro-level driving factors with micro-level pattern 
evolution, current research on LUCE in China’s urban agglomerations yields comprehensive understanding 
of the spatiotemporal dynamics governing land-use carbon emissions and sinks, thereby providing essential 
decision-making support for regional carbon neutrality strategies29.

However, current research on land-use carbon emissions in China’s urban agglomerations reveals three 
significant research gaps. First, existing studies lack standardized frameworks for cross-agglomeration 
comparisons and spatiotemporal modeling to track dynamic urbanization patterns. Second, predominant static 
analyses fail to capture phased emission mechanisms during critical processes such as industrial land conversion. 
Third, insufficient attention has been paid to indirect emissions from construction land and systemic impacts 
of land-use structural changes, particularly regarding spatial mismatches that affect emission efficiency through 
regional linkages. Addressing these gaps is crucial for advancing low-carbon land-use planning and achieving 
sustainable development goals in China’s urban agglomerations.

Therefore, this study proposes a multi-scale analysis framework (Fig. S1) of land-use carbon emissions across 
China’s five major urban agglomerations (Beijing-Tianjin-Hebei, Yangtze River Delta, Middle Yangtze River, 
Pearl River Delta, Chengdu-Chongqing) during 2000–2020. An urban-scale assessment framework is established 
to quantify phase-specific emission mechanisms in land conversion, and trace the impacts of structural land-use 
changes on regional carbon emissions. The integrated model examines carbon emission patterns across land 
categories, spatiotemporal variations in land-use carbon emission intensity, and key drivers including energy 
transitions, economic restructuring, and population dynamics.

Methods
Study area
China’s five major urban agglomerations, including Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), 
Middle Reaches of the Yangtze River (MRYR), Pearl River Delta (PRD), and Chengdu-Chongqing (CC), serve 
as pivotal drivers for regional coordination and carbon neutrality initiatives, and are predominantly situated 
east of the Hu Huanyong Line (Fig. 1). According to the China Statistical Yearbook of 202130, these urban 
agglomerations accounted for 41% of China’s population in 2020, while occupying only 10% of the national 
land area, and generated 59% of the national Gross Domestic Product (GDP). Notably, the YRD dominated 
economically, contributing 27.6 trillion yuan (20.2% of the national GDP), while also leading in CO₂ emissions, 
accounting for 16% of the national total30. (Table S1). Collectively, these urban agglomerations account for 37.8% 

Fig. 1.  Study area.
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of China’s carbon emissions, with emission patterns reflecting regional economic scale31. Therefore, the selection 
of these five urban agglomerations was based on their status as China’s most economically developed and densely 
populated national-level strategic regions. They collectively represent the core engines of the national economy 
and account for a disproportionately large share of the country’s carbon emissions, thus providing critical 
insights into the land-use carbon emission relationship under rapid urbanization. While other agglomerations 
exist east of the Hu Huanyong Line, this study focuses on these five due to their paramount national significance 
and comparability in scale and policy attention.

As China’s capital economic circle, the Beijing-Tianjin-Hebei (BTH) combines two municipalities directly 
under the Central Government (Beijing and Tianjin) and Hebei Province. In 2020, cultivated land was the 
dominant land-use type in BTH, accounting for 48.00% of the total land area.

The Yangtze River Delta (YRD) urban agglomeration is the most populous and economically powerful region 
in China. According to the Outline of the Development Plan for Regional Integration in the Yangtze River Delta 
issued in 2019, the YRD is divided into a core area and a radiation area. This study focuses on the evaluation 
and discussion of LUCE in the core area of YRD (Fig. 1). In 2020, the land-use composition of the YRD was as 
follows: 46.52% cultivated land, 26.87% forest land, 3.49% grassland, 9.05% water bodies, 13.90% construction 
land, and 0.16% unused land.

Centered around Wuhan, Nanchang, and Changsha, China’s largest urban agglomeration, i.e., the Middle 
Reaches of the Yangtze River (MRYR), showed distinct ecological emphasis: forest (49.25%) and cultivated land 
(36.41%) comprised over 85% of land cover.

The Pearl River Delta (PRD) urban agglomeration is the economic center of southern China, comprising 
nine cities in Guangdong Province. The PRD demonstrated intensive development: 53.44% forest vs. 15.05% 
construction land—the highest built-up ratio among peers despite contributing 12% of national GDP.

The Chengdu-Chongqing (CC) urban agglomeration, anchored by its dual cores of Chengdu and Chongqing, 
stands as the most rapidly expanding economic hub in western China. It exhibits striking disparities, with 
cultivated land accounting for 61.3% (the highest proportion in all urban agglomerations) and construction 
land making up just 3.93% (the lowest), underscoring its significant potential for further development.

Data sources and preprocessing
This study integrates multi-source datasets covering the period 2000–2020 (Table 1). Land use patterns (2000–
2020) were obtained from the China Land Cover Dataset (CLCD), which is sourced by the National Ecosystem 
Science Data Center, National Science & Technology Infrastructure of China (https://www.resdc.cn/). The 
CLCD dataset, developed based on Landsat 30-m imagery using a supervised Random Forest algorithm, has 
demonstrated robust performance with an overall accuracy of 79.31% and a Kappa coefficient of 0.76 as reported 
in the original publication32. Based on the integration of land cover classes from CLCD and the classification 
standards specified in GB/T 21,010 − 2017, land use is classified into six categories: cultivated land (CulL), forest 
land (FL), grassland (GL), water (W), construction land (ConL), and unused land (UL) (Table 2). Additionally, 
the administrative boundaries of provinces and prefecture-level cities and related geographical vector data, 
including the islands and nine-dash line data of the South China Sea, were sourced from the Resources and 
Environment Data Platform of the CAS.

Economic and demographic data for urban agglomerations and their constituent cities were collected from 
statistical yearbooks covering the period 1999–2021, such as China Statistical Yearbook33, China Urban Statistical 
Yearbook34, and China Rural Statistical Yearbook35. These yearbooks contain detailed information on regional 
economic development, population development, industrial development, and other socio-economic variables, 
offering a reliable foundation for longitudinal analysis and cross-regional comparisons. Accordingly, data on 

Land-use type Primary land classification

CulL Paddy fields, dry farmland

FL Forested land, shrubland, sparse forest land, other forest land

GL High, medium, and low coverage grasslands

W Rivers and canals, lakes, reservoirs and ponds, permanent glaciers and snowfields, tidal flats, beach land

ConL Urban land, rural residential areas, other construction land

UL Sand land, Gobi, saline-alkali land, marshland, bare land, bare rock, texture, others

Table 2.  Land-use type and classification.

 

Data type Data content Data source

CLCD Land use The Resources and Environment Data Platform of Chinese Academy of Sciences (CAS) (https://www.resdc.cn/)

Economy development
GDP

Social and economic statistical yearbooks
Secondary industry output value

Society development Population size Social and economic statistical yearbooks

Energy Energy consumption Energy statistical yearbooks

Table 1.  Data sources.
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GDP, population, and secondary industry output value for cities within each urban agglomeration from 2000 
to 2020 were sourced from these statistical yearbooks. Data on energy consumption (2000–2020) cities within 
each urban agglomeration were sourced from national energy statistical yearbooks (China Energy Statistical 
Yearbook36, which were published by the National Bureau of Statistics of China (NBSC).

The data collection and processing analysis for various urban agglomerations in this study are based on 
municipal-level regional units. Municipal-level data can more accurately capture spatial heterogeneity and 
developmental disparities within an urban agglomeration. Taking the Pearl River Delta urban agglomeration 
as an example, although all its cities are located within Guangdong Province, significant differences exist in 
economic development levels, industrial structure, and population density among cities such as Guangzhou, 
Shenzhen, Zhuhai, and Foshan. Analysis at the municipal level effectively reveals such nuanced variations. 
In contrast, provincial statistical data often masks developmental disparities among cities within the same 
province. The use of municipal-level data helps avoid this “averaging effect” and more realistically reflects the 
developmental status of individual cities within an urban agglomeration37. For urban agglomerations spanning 
only a few provincial units, such as the Sichuan-Chongqing urban agglomeration—which involves only Sichuan 
Province and Chongqing Municipality—municipal-level analysis enables precise identification of each city’s 
specific contributions and functional roles in regional development, thereby circumventing the ambiguity 
inherent in provincial-level analysis. All statistical yearbooks provide municipal-level data compiled under 
unified statistical standards, ensuring comparability across cities and supporting reliable longitudinal and cross-
sectional analyses.

To address missing statistical data in certain cities, this study employed two imputation methods: (1) for 
data missing continuously in time series, linear interpolation was applied; (2) for other missing data, an energy 
consumption-based estimation method was used, extrapolating values via the ratio of city-to-provincial energy 
consumption. Specifically, linear interpolation was applied to GDP data of Zigong City and Guang’an City 
from 2002 to 2004, and to population data of Xinyu City and Tianmen City from 2003 to 2005. The energy 
consumption estimation method was used to impute industrial output value data for Luzhou City and Yiyang 
City from 2000 to 2003. In terms of accuracy and sensitivity, the average relative error of linear interpolation 
was within 5%, while the error range of the energy consumption estimation method fell between 8% and 12%, 
with robustness confirmed via Monte Carlo simulation. All imputed total energy consumption values were 
cross-verified against provincial data to ensure consistency. These approaches ensured dataset completeness and 
reliability, establishing a solid data foundation for subsequent analysis.

Evaluation of land-use carbon emissions and land-use carbon emission efficiency
Evaluation of carbon emissions from different land-use types
In this study, the land-use types of CulL, FL, GL, W, and UL are calculated using direct carbon emissions, as their 
area coefficients are relatively fixed1,38. The equation is as follows:

	
Di =

∑
Ei · θi� (1)

where Direfers to the land-use type i. Ei denotes the area of land-use type i. θiis the carbon emission fixed area 
coefficient for land-use type i, as shown in Table 3.

 
ConL’s carbon emissions are indirectly derived from energy consumption data covering multiple fuel types 

(e.g., coal, coke, fuel oil, gasoline, kerosene, diesel, liquefied petroleum gas, crude oil, and thermal energy) and 
electricity40–42. The equation is as follows:

 

	
Eb =

n∑
i=1

mi · ni · φi

 
� (2)

 
whereEbdenotes the carbon emissions from ConL.mirepresents the consumption of energy i.niis the 

standard coal coefficient for the conversion of energy i. φirefers to the carbon emission coefficient of energy 
type i.

Energy-related carbon emission coefficients per standard coal unit were calculated using conversion factors 
from China Energy Statistical Yearbook 202131 and emission parameters in the revised IPCC 2006 Guidelines43 
(Table S2).

Land-use type Coefficient(t/hm2)

CulL 0.422

FL -0.644

GL -0.022

W -0.253

UL -0.005

Table 3.  Carbon emission fix area coefficients of land-use types1,39.
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Evaluation of land-use carbon emission intensity
The land-use carbon emission (LUCE) per GDP is used to represent the regional LUCE intensity, as shown in 
Eq. 3.

	
Ii = Ci

Gi
� (3)

where Iirefers to the LUCE intensity of region i.Cidenotes the LUCE of region i, andGiindicates the GDP of 
region i. The smaller value of Ii indicates the lower intensity of LUCE. Higher values indicate greater economic 
impacts on LUCE, while lower values reflect achieved decarbonization through enhanced efficiency and green 
industry transitions.

Integration of Logarithmic Mean Divisia Index model and Kaya Identity
This study employs Logarithmic Mean Divisia Index (LMDI) modeling (an enhanced approach integrating 
Kaya Identity principles23 with the context of China’s urban agglomerations) to analyze five key land-use carbon 
emissions determinants, including population size (PS), economic development (ED), energy structure (ES), 
energy consumption intensity (ECI), and industrial structure (IS). The LMDI method is applied to quantitatively 
assess the contribution of each factor to changes in the overall indicator, using the following equation:

	
∆LMDI =

n∑
i=1

αi × (log Xit − log Xit−1)� (4)

whereXitrepresents the numerical values of each factor, andαirepresents the weighting coefficients. The sum of 
the weighting values for all factors equal to 1 and the weighting value of each factor is 1.

Combining the Kaya identity (carbon emissions = population × GDP × per capita carbon emissions) with the 
LMDI decomposition results, an extended model is formed:

	
C = P OP · GDP

P OP
· C

ENERGY
· ENERGY

GDP
· y2� (5)

where C refers to the LUCE of a region, ENERGY and GDP denote the regional total energy consumption and 
GDP, respectively, y2indicates the GDP derived from the regional secondary industry, and POP represents 
the regional total population. By defining p = P OP (population size), g = GDP

P OP (economic development), 
c = C

ENERGY (energy structure), and e = ENERGY
GDP (energy consumption intensity), Eq. 5 can be transformed 

into a new form, namely Eq. 6.

	
Cj =

∑
i

ci · gi · pi · ei · y2i� (6)

where Cjrepresents the net LUCE of urban agglomeration j. The terms ci,gi,pi,ei, and y2i refer to the carbon 
emissions driven by the influencing factors of ES, ED, PS, ECI, and IS, respectively, in city i.

Furthermore, C0
j  presents the carbon emissions of the base period in urban agglomeration j, CT

j is the current 
carbon emissions in urban agglomeration j, the change in carbon emissions is defined by Eq. 7:

	
∆CT

j = CT
j − C0

j =
n∑

i=1

ci
T · gi

T · pi
T · ei

T · y2i
T −

n∑
i=1

ci
0 · gi

0 · pi
0 · ei

0 · y0
2i� (7)

In the LMDI model, the contribution values of the influencing factors to LUCE are calculated by additive 
decomposing based on the Kaya Identity. The equations are as follows:

	
∆C

ci
j =

n∑
i=1

CT
j − C0

j

ln CT
j − ln C0

j

× ln cT
i

c0
i

� (8)

	
∆C

gi
j =

n∑
i=1

CT
j − C0

j

ln CT
j − ln C0

j

× ln gT
i

g0
i

� (9)

	
∆C

pi
j =

n∑
i=1

CT
j − C0

j

ln CT
j − ln C0

j

× ln pT
i

p0
i

� (10)

	
∆Cei

j =
n∑

i=1

CT
j − C0

j

ln CT
j − ln C0

j

× ln eT
i

e0
i

� (11)

	
∆Cy2i

j =
n∑

i=1

CT
j − C0

j

ln CT
j − ln C0

j

× ln yT
2i

y0
2i

� (12)
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where 
CT

j −C0
j

ln CT
j

−ln C0
j

 is the logarithmic mean weight, and n is the number of cities in urban agglomeration j. The 

terms ∆C
ci
j ,∆C

gi
j ,∆C

pi
j ,∆Cei

j , and ∆Cy2i
j  denote the contribution values (i.e., the influencing effects on 

LUCE) of ES, ED, PS, ECI, and IS, respectively. Positive values signify factors driving emissions growth, while 
negative values indicate emissions-curbing effects.

Markov chain method
The Markov chain model is used to predict events based on Markov chains, which describe each state transition 
depends only on the previous state and is independent of past status44. Specifically, the Markov chain model 
divides the studied dynamic systems into n possible states, identified as E1, E2, · · · , En. It then calculates the 
probability of transitions between these states, and constructs a state transition probability matrix27.

	

P = Pij =




P11 . . . P1n

...
. . .

...
Pn1 · · · Pnn


� (13)

where Pij indicates the transition probability from state Eito stateEj , and Pijneeds to meet the conditions: 

0 ⩽ Pij ⩽ 1(i, j = 1,2…, n), 
n∑

i=1
Pij = 1(i = 1,2…, n). Given the initial state probability vector E(0) and the state 

transition probability matrix P, the state probability distribution at any time k can be determined using Eq. 14:

	 E(k) = E(k − 1)P = · · · = E(0)P k � (14)

where E(k)is the state probability vector at the time k, and E(0) indicates the initial state probability vector.
The Markov chain model, as a data mining algorithm, relies on the probability transition matrix and the 

solution of equation systems27. Its computational process is straightforward and particularly suitable for scenarios 
with limited data. The algorithm is designed to enable efficient prediction and analysis when applied to small 
datasets. Consequently, the data scale in this study is appropriate for employing the Markov model. Furthermore, 
to validate the model’s prediction accuracy, cross-validation is adopted to evaluate its generalization capability. 
The data are partitioned into distinct subsets according to a three-year interval. The model is trained on the 
training set, and each validation set is sequentially used to assess performance. The average of all validation 
outcomes yields a prediction accuracy of 76%.

Results
Spatiotemporal evolution and characteristics of land-use carbon emissions
Land-use changes in urban agglomerations from 2000 to 2020
Figure 2 illustrates the evolution of land area by different land-use types in the five major urban agglomerations 
from 2000 to 2020. The results show that cultivated land (CulL) and forest land (FL) are the dominant land-
use types across these urban agglomerations. Specifically, FL accounts for the highest proportion in the PRD 
(Fig. 2d) and MRYR (Fig. 2c), followed by CulL. In contrast, the urban agglomerations of BTH (Fig. 2a), YRD 
(Fig. 2b), and CC (Fig. 2e) exhibit the opposite pattern, with CulL as the dominant land-use type.

From 2000 to 2020, construction land (ConL) experienced rapid growth in all five urban agglomerations, 
whereas CulL and grassland (GL) decreased. Additionally, the area of FL declined in the YRD, MRYR, and PRD 
urban agglomerations during this period. These land-use changes reflect the complex interplay among economic 
development, urbanization, policy interventions, and environmental factors. Rapid urbanization and economic 
growth have been the main drivers of construction land expansion, contributing to the reduction of agricultural 
and natural land areas. Such trends are especially evident in the YRD and PRD, which are among China’s most 
economically developed urban agglomerations.

As shown in Fig. 2a, from 2000 to 2020, the ConL in the BTH urban agglomeration increased by approximately 
66%, which was the lowest growth rate among the five urban agglomerations. However, the absolute increase 
in ConL (about 99 × 104 hm2) exceeded that of the PRD, MRYR, and CC. FL showed a slight increase, while 
CulL, GL, and unused land (UL) decreased significantly, by approximately 2 × 104, 3 × 104, and 11 × 104 hm2, 
respectively. The relatively slow growth rate of ConL in the BTH region can be attributed to stricter land-use 
regulations and policies aimed at controlling urban sprawl in the capital area. Nevertheless, the substantial 
absolute increase reflects the region’s role as a national political and economic center, which drives demand for 
infrastructure and housing. The decline in CulL and GL is associated with urban expansion and land degradation, 
whereas the slight increase in FL may be attributed to afforestation initiatives designed to enhance air quality and 
ecological resilience.

Figure 2b illustrates that the YRD exhibited the most pronounced increase in ConL among the five urban 
agglomerations, expanding by nearly 100% (138 × 104 hm2) between 2000 and 2020. Water bodies (W) and 
UL also increased slightly, whereas CulL, FL, and GL decreased significantly, by 138 × 104, 6 × 104, and 3 × 104 
hm2, respectively. Notably, the reduction in CulL was equivalent to the gain in ConL. The rapid expansion 
of ConL in the YRD reflects its position as the most economically dynamic region in China, a trend driven 
by industrialization, urbanization, and infrastructure development. The direct conversion of CulL into ConL 
underscores the trade-off between agricultural land and urban expansion. The slight rise in W may be attributed 
to water management initiatives, while the declines in FL and GL likely resulted from urban encroachment and 
the intensification of land use.
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As shown in Fig. 2c, the MRYR exhibited a fluctuating decline in FL, GL, and UL from 2000 to 2020. In 
contrast, ConL increased substantially by 66 × 10⁴ hm² (a growth rate of 78%), whereas CulL showed a slight 
decrease. These land-use changes reflect the region’s transition from an agricultural-based economy to an 
industrial and urban economy. The rapid expansion of ConL was driven by regional development policies 
and infrastructure initiatives, such as the Yangtze River Economic Belt strategy. The fluctuating reductions in 
FL, GL, and UL indicate competing pressures from urbanization, agricultural modernization, and ecological 
conservation measures.

As illustrated in Fig. 2d, from 2000 to 2020, CulL, FL, and W in the PRD decreased by 24 × 104, 10 × 104, and 
5 × 104 hm2, respectively. During the same period, ConL expanded rapidly from 41 × 104 hm2 to 80 × 104 hm2, 
representing a growth rate of 96%. UL and GL also declined over this period. The rapid expansion of ConL in 
the PRD is attributed to its role as a global manufacturing hub and its integration with Hong Kong and Macao. 
The decrease in CulL and FL reflects the conversion of agricultural and forested land to urban and industrial 
uses. The reduction in W may be associated with land reclamation, while the declines in GL and UL are likely 
attributable to urban expansion and land degradation.

Figure 2e indicates that the CC recorded the highest growth rate of ConL among the five urban agglomerations, 
with a 1.62-fold increase (45 × 104 hm2) from 2000 to 2020. FL and W increased by 10 × 104 and 4.7 × 104 hm2, 

Fig. 2.  (a) Land-use changes in the BTH from 2000–2020; (b) Land-use changes in the YRD from 2000–2020; 
(c) Land-use changes in the MRYR from 2000–2020; (d) Land-use changes in the PRD from 2000–2020; (e) 
Land-use changes in the CC from 2000–2020.
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respectively, while UL exhibited a marginal increase. In contrast, CulL and GL decreased significantly, by 
34 × 104 and 28 × 104 hm2, respectively. The rapid expansion of ConL in the CC is attributed to its strategic 
role as a western economic hub and supportive government policies for regional development. The increases 
in FL and W reflect ongoing ecological restoration and water resource conservation measures. The substantial 
reductions in CulL and GL underscore the effects of urbanization and agricultural intensification, as well as 
potential challenges in reconciling economic growth with environmental sustainability.

Spatiotemporal evolution of land-use carbon emissions
The land-use carbon emissions and carbon sinks of these urban agglomerations from 2000 to 2020 were 
presented in Table S3. Notably, the net LUCE in all five urban agglomerations exhibited a turning point in 2010, 
after which it gradually increased from 2010 to 2020, as illustrated in Fig. S2.

A notable observation is the more than threefold in carbon emissions from ConL in the YRD, rising from 
10914.85 × 104 tons in 2000 to 42124.76 × 104 tons in 2020 (Table S3). This marked growth reflects the rapid 
urbanization, industrialization, and economic development in the YRD, which have driven the expansion of 
ConL and the associated energy consumption.

In contrast, carbon emissions from CulL decreased across all five urban agglomerations from 2000 to 2020, 
consistent with the continuous decline in CulL area. This reduction is attributed to the conversion of agricultural 
land to urban and industrial uses, as well as improvements in agricultural practices that lower emissions.

The carbon sequestration effects of FL, GL, W, and UL remained relatively stable over the two decades. 
Among the five urban agglomerations, the MRYR exhibits the most pronounced carbon sequestration effect, 
with land-use carbon sinks reaching approximately 1179.21 × 104 tons in 2020 (Table S3). This amount is nearly 
equivalent to the total carbon sinks of the other urban agglomerations, underscoring the MRYR’s significant role 
in carbon sequestration due to its extensive forest coverage.

Using the natural breaks (Jenks) method, a statistical classification technique based on numerical distribution 
patterns, the LUCE values of different cities within each urban agglomeration were categorized for the years 2000 
and 2020. This method optimally partitions data into classes by minimizing intra-class variance and maximizing 
inter-class variance, thereby ensuring a meaningful representation of spatial patterns. Based on this classification, 
the spatiotemporal patterns of LUCE for each urban agglomeration are depicted in Fig. S3.

Figure S3a indicates that the number of cities with high LUCE in the BTH region decreased between 2000 and 
2020. Among them, Tangshan maintained the highest LUCE values in both 2000 and 2020, which is consistent 
with its dominant coal and steel industries. In contrast, Shijiazhuang exhibited the most substantial decline in 
LUCE, despite its historical dependence on heavy industries such as steel and coal. The reduction in high-LUCE 
cities in the BTH region is likely due to regional policies aimed at industrial upgrading and environmental 
protection. The persistently high LUCE in Tangshan underscores the difficulty of transitioning energy-intensive 
industries, whereas the decrease in Shijiazhuang reflects the effective implementation of emission control 
measures and industrial restructuring.

As illustrated in Fig. S3b, in 2000, Shanghai and Ningbo were the main cities with high LUCE in the YRD. 
By 2020, the number of high-LUCE cities increased significantly, including marine port cities such as Ningbo 
and Zhousan, as well as cities along the Yangtze River, including Nanjing, Suzhou, and Wuxi. Consequently, the 
number of cities with low LUCE decreased. Notably, Shanghai’s LUCE declined substantially between 2010 and 
2020, indicating its progress toward green and low-carbon development. The expansion of high-LUCE cities 
in the YRD reflects the region’s rapid economic growth, industrialization, and urbanization, especially in port 
and riverine cities. The reduction in LUCE in Shanghai is likely attributable to its advanced policies promoting 
renewable energy adoption, energy efficiency improvements, and sustainable urban planning, establishing a 
reference for other cities.

From 2000 to 2020, the number of cities with high LUCE in the MRYR increased significantly, predominantly 
along the mainstream of the Yangtze River (Fig. S3c), indicating a clear upward regional trend. This rise is 
primarily driven by industrial expansion and infrastructure development, especially within the Yangtze River 
Economic Belt. The trend is further exacerbated by less stringent emission controls and slower adoption of green 
technologies compared to coastal regions such as the YRD.

Figure S3d shows that from 2000 to 2020, the number of low-LUCE cities in the PRD increased. The city with 
the highest LUCE shifted from Guangzhou (the largest city in the PRD) in 2000 to Huizhou in 2020. Shenzhen, 
the second-largest city, experienced a decrease in LUCE from a secondary high level to a secondary low level. 
Moreover, the east-west disparity in LUCE became more pronounced, with higher levels observed in the east 
and lower levels in the west. The increase in low-LUCE cities in the PRD reflects achievements in industrial 
upgrading, technological innovation, and green urban development. Shenzhen’s reduction in LUCE can be 
attributed to its emphasis on high-tech industries and renewable energy adoption. The east-west disparity may 
result from uneven economic development and differences in the enforcement of environmental regulations.

As shown in Fig. S3e, from 2000 to 2020, Chongqing maintained a relatively high LUCE level, while Chengdu 
remained at a secondary high level. In contrast, the growth of LUCE in other cities slowed, leading to a notable 
rise in the number of low-LUCE cities, particularly in the northern part of the Chengdu-Chongqing (CC) region. 
Overall, the CC exhibited the most significant increase in low-LUCE cities among the five urban agglomerations. 
Chongqing’s high LUCE is associated with its industrial foundation and rapid urbanization, whereas Chengdu’s 
secondary high level reflects a balance between economic growth and environmental policies. The rise in 
low-LUCE cities, especially in the north, indicates the effectiveness of regional policies aimed at promoting 
sustainable development and reducing emissions.
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Land-use carbon emission intensity and its spatial differentiation
Table S4 represents that from 2000 to 2020, both GDP and LUCE in each city exhibited a simultaneous growth 
trend. However, GDP growth significantly outpaced LUCE growth. As illustrated in Fig. S4, this disparity led 
to a substantial decrease in LUCE intensity across the urban agglomerations, indicating a trend toward green 
devolvement of economy. Furthermore, the differences in LUCE intensity among the five urban agglomerations 
have shown a narrowing trend, suggesting a convergence in carbon emission efficiency over time.

Although the value of LUCE intensity in the BTH decreased from 2000 to 2020, it remains the highest among 
the five urban agglomerations at 0.325 × 104 t/100 million yuan. In 2020, cities with higher LUCE intensity were 
primarily distributed in the northern and southern parts of Hebei Province, with Handan and Tangshan recording 
the highest LUCE intensity at 1.03 × 104 t/100 million yuan and 1.3 × 104 t/100 million yuan, respectively. The 
high LUCE intensity in Hebei Province is largely due to its heavy reliance on energy-intensive industries such as 
steel and coal. In contrast, Beijing and Tianjin have optimized their industrial structures, transitioning to high-
tech and high-end manufacturing sectors. Leveraging their population size and technological talent, these cities 
have significantly reduced their land-use carbon emission intensity, achieving the lowest LUCE intensity and 
ecological benefits in the BTH.

The YRD contributes nearly a quarter of China’s total economic output (GDP). However, its highly 
concentrated and active economic development has resulted in LUCE accounting for 40% of the total carbon 
emissions of the five urban agglomerations. Among the cities in the YRD, Zhoushan, a hub for high-end 
shipbuilding and marine engineering equipment manufacturing, recorded a GDP of 15.12 million yuan in 2020 
but had the highest LUCE intensity in the region, with net LUCE reaching 3141 × 104 tons. Similarly, Ma’anshan, 
a mining economy, had LUCE equivalent to Shanghai’s (1,627 × 10⁴ tons) but a GDP only 0.06 times that of 
Shanghai, reflecting its high energy dependency and high LUCE intensity. The high LUCE in Zhoushan and 
Ma’anshan underscores the challenges of energy-dependent economic growth. While the YRD’s economic 
dynamism drives national growth, its carbon intensity highlights the need for further industrial upgrading and 
energy efficiency improvements.

The MRYR encompasses three metropolitan regions, i.e., Wuhan, Changsha-Zhuzhou-Xiangtan, and Poyang 
Lake. In 2000, cities including Ezhou, Loudi, and Xinyu demonstrated substantially higher LUCE intensity 
(exceeding 0.5 × 10⁴ t/100 million yuan) than other regions, which was attributed to their established traditional 
industrial bases. Subsequent industrial restructuring has resulted in significant reductions in their LUCE 
intensity since 2000. Changsha exhibited the lowest LUCE intensity in the MRYR (0.023 × 10⁴ t/billion yuan), 
demonstrating superior energy utilization efficiency and minimal influence of economic expansion on LUCE. 
While industrial cities in the MRYR are progressively adopting more sustainable development approaches, their 
persistent dependence on conventional industries remains a constraint for further LUCE intensity reduction. 
Changsha’s exemplary low LUCE intensity provides a valuable reference for achieving equilibrium between 
economic development and carbon efficiency.

In the PRD, Huizhou exhibited the highest LUCE intensity in 2020 at 0.633 × 10⁴ t/100  million yuan. 
Conversely, Shenzhen, characterized by its advanced high-tech, financial, logistics, and cultural industries, 
recorded the lowest LUCE intensity (0.029 × 10⁴ t/100  million yuan). Dongguan, as a major manufacturing 
center, demonstrated substantial LUCE intensity reduction, achieving a decrease of 1.22 × 10⁴ t/100  million 
yuan between 2000 and 2020. Shenzhen’s minimal LUCE intensity reflects its sophisticated industrial structure 
and superior energy efficiency. Huizhou’s elevated LUCE intensity underscores the persistent challenges in 
energy-intensive manufacturing sectors, whereas Dongguan’s progress illustrates the effectiveness of industrial 
transformation initiatives.

In the CC, Chengdu, Deyang, and Zigong exhibited lower LUCE intensity. Neijiang, as a traditional industrial 
base, demonstrated significant improvement in LUCE intensity despite high energy consumption, achieving a 
reduction of 2.71 × 10⁴/100 million yuan from 2000 to 2020. Ya’an, characterized by its ecological advantages, 
maintained low energy consumption but limited GDP, resulting in the region’s highest LUCE intensity. The 
dual-core cities of Chongqing and Chengdu successfully transitioned to green, low-carbon energy consumption 
patterns, sustaining relatively low LUCE intensity levels. Neijiang’s progress reflects effective industrial 
restructuring, whereas Ya’an’s elevated LUCE intensity highlights the necessity for economic diversification to 
improve carbon efficiency.

Influencing factors and spatiotemporal effects on land-use carbon emissions
Influencing factor decomposition of land-use carbon emissions based on LMDI model
Table 4; Fig. 3 present the contribution values (denoted as ∆C

ci
j ,∆C

gi
j ,∆C

pi
j ,∆Cei

j , and ∆Cy2i
j ) of influencing 

factors—namely energy structure, economic development, population size, energy carbon intensity, and 
industrial structure—to LUCE from 2000 to 2020.

As shown in Fig. 3a, economic development (ED) and industrial structure (IS) were the primary drivers of 
LUCE growth in the BTH urban agglomeration from 2000 to 2020. The contribution of population size (PS) 
was relatively lower than that of ED and IS. This indicates the region’s dependence on industrial expansion and 
economic growth, which have resulted in increased carbon emissions. In contrast, energy consumption intensity 
(ECI) exerted a significant inhibitory effect on LUCE, as evidenced by its negative contribution value. However, 
the absolute contribution value of ECI gradually declined over time, indicating a diminishing inhibitory effect 
on LUCE. The weakening inhibitory role of ECI underscores the necessity of further enhancing energy efficiency 
to mitigate emission growth.

As shown in Fig. 3b, in the YRD, PS significantly drives LUCE, with its contribution value increasing steadily 
from 2000 to 2020, reaching 11651.81 × 104 tons in 2020. In 2020, the average population density in the YRD 
was 657 people per square kilometer, making it a highly densely populated area in China. Between 2000 and 
2020, cities such as Shanghai and Hangzhou experienced substantial population growth. Data from the Seventh 
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National Census indicate that the combined population increase in these two cities reached nearly 14 million 
over this twenty-year period. Notably, Shanghai’s urban area recorded an average population density of 23,870.4 
persons per square kilometer. Population growth emerged as the one of the dominant factors driving the increase 
in total LUCE. ED and IS also played major roles in promoting LUCE growth. Similar to the BTH, ECI exerted 
an inhibitory effect on LUCE, and its absolute contribution value increased over time, reflecting a strengthening 
inhibitory effect.

Figure  3c illustrates that in the MRYR, the influence of ES on LUCE exhibited temporal fluctuations, 
shifting from a driving effect (2000–2005) to an inhibitory effect (2005–2010), then reverting to a driving 
effect (2010–2015), and ultimately becoming inhibitory again (2015–2020). These fluctuations reflect changes 
in energy structure and policy interventions. ED and IS consistently served as the principal drivers of LUCE 
growth. In contrast, ECI exerted a notable inhibitory effect, although its influence diminished over time. The 
persistent driving roles of ED and IS highlight the region’s ongoing industrial and economic expansion, while the 
weakening inhibitory effect of ECI indicates a need for renewed emphasis on energy efficiency improvements.

As shown in Fig. 3d, in the PRD, IS and ES were the primary driving drivers for LUCE growth, with their 
contributions increasing from 2000 to 2020. IS constituted the dominant driving factor among all influences. 
Consistent with patterns observed in the BTH, YRDR, and MRYR, ECI exerted a suppressive effect on LUCE, 
especially between 2010 and 2015. ED exhibited a driving effect from 2000 to 2015 but shifted to an inhibitory 
effect during 2015–2020, indicating the diminishing role of high-energy-consuming industries in economic 
growth. These results indicate that the PRD’s industrial and energy structures have been major drivers of LUCE; 
however, the region’s transition toward a more service-oriented economy has started to alleviate emissions. PS 
also significantly contributed to LUCE growth during this period. According to the Seventh National Population 
Census, the PRD experienced a population growth rate exceeding 20% from 2000 to 2020, with Guangzhou and 
Shenzhen collectively increasing by 20 million residents. Furthermore, the urbanization rate in the PRD rose 
from approximately 55% in 2000 to over 85% in 2020, while population density in core cities like Guangzhou 
and Shenzhen increased by more than 40% during the same period. According to the China Energy Statistical 
Yearbook2,36, urban per-capita energy consumption grew by 15–20% in the PRD between 2000 and 2020. 
Consequently, the aggregate effect of population growth emerged as a dominant factor contributing to the 
increase in total LUCE.

According to Fig. 3e, in the CC, the driving and inhibitory effects of ES and PS on LUCE were relatively low 
compared to other urban agglomerations. The growth of LUCE was primarily influenced by IS and ED. Similar to 
other urban agglomerations, ECI exerted an inhibitory effect on LUCE, as indicated by its negative contribution 
value, which reflects its role in reducing emissions from 2000 to 2020. The reliance of the CC on IS and ED 
as driving factors corresponds to its industrial and economic development trajectory. The inhibitory effect of 
ECI underscores the region’s progress in enhancing energy efficiency, although further efforts are required to 
counteract the growth in emissions.

In conclusion, from 2000 to 2020, the influencing factors of ED and IS exerted significant driving effects 
on LUCE in the five urban agglomerations, whereas ECI demonstrated a distinct inhibitory effect. During this 
period, China underwent rapid urbanization and industrialization. The findings indicate that economic growth 
and energy consumption remain closely coupled. Achieving the “Dual Carbon” goals, decoupling economic 

UA Period ∆C
ci
j ∆C

ei
j

∆C
gi
j

∆C
pi
j

∆C
y2i
j ∆C

BTH

2015–2020 23.20 -4313.47 3286.63 1401.45 8144.74 397.81

2010–2015 -170.02 -9216.47 9197.99 1308.54 7727.65 1120.04

2005–2010 -116.67 -9806.39 15474.15 1320.65 20522.70 6871.74

2000–2005 -85.52 -783.37 10228.53 465.63 8558.31 9825.27

YRD

2015–2020 -115.60 -11191.64 4154.55 11651.81 20501.60 4499.12

2010–2015 -354.09 -9461.58 14779.22 2126.80 12593.83 7090.35

2005–2010 121.49 -9689.01 18754.63 749.68 22198.19 9936.79

2000–2005 31.96 -1854.69 10986.72 463.07 9960.00 9627.06

MRYR

2015–2020 -19900.80 -6302.36 8550.95 -1696.51 4845.97 -19348.72

2010–2015 9707.56 -27108.08 18651.10 327.55 24303.27 1578.13

2005–2010 -7102.43 -11785.70 26852.08 916.81 29784.59 8880.75

2000–2005 3679.04 37.02 8561.36 -131.14 7720.11 12146.28

PRD

2015–2020 -26.68 -2095.01 -4086.44 6784.40 3054.24 576.28

2010–2015 330.87 -4979.69 3220.45 611.48 3100.22 -816.89

2005–2010 322.48 -1785.97 5900.00 -1246.57 6185.33 3189.93

2000–2005 97.98 -1869.78 2217.00 1711.10 2777.89 2156.31

CC

2015–2020 62.50 -4376.43 4306.02 -461.54 3962.83 -469.45

2010–2015 -217.00 -4863.95 5490.36 136.79 4944.28 546.20

2005–2010 -55.35 -2627.08 5896.64 228.65 8390.47 3442.86

2000–2005 -86.15 -838.36 2581.38 94.52 2553.28 1751.40

Table 4.  Effects (contribution values) of influencing factors on LUCE from 2000–2020 (104t).
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Fig. 3.  (a) Influencing factors’ contribution values on LUCE from 2000–2020 in the BTH; (b) Influencing 
factors’ contribution values on LUCE from 2000–2020 in the YRD; (c) Influencing factors’ contribution values 
on LUCE from 2000–2020 in the MRYR; (d) Influencing factors’ contribution values on LUCE from 2000–
2020 in the PRD; (e) Influencing factors’ contribution values on LUCE from 2000–2020 in the CC.
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development from energy consumption, and advancing green and low-carbon transition have become critical 
challenges for China’s new urbanization and industrialization. To address this challenge, it is necessary to 
gradually improve energy utilization efficiency, reduce energy consumption intensity, and achieve sustained 
reduction in land-use carbon emissions during urban agglomeration development. However, the analysis reveals 
that the impact of industrial structure on carbon reduction in urban agglomerations has been relatively weak, 
as the energy structure of these urban agglomerations did not undergo any fundamental changes from 2000 to 
2020. To meet the “Dual Carbon” goals, a fundamental transformation of China’s energy structure should be 
prioritized. This transformation will determine whether clean energy can effectively replace fossil fuels and drive 
meaningful reductions in carbon emissions.

Cumulative decomposition contribution values of influencing factors
Based on the year 2000, the cumulative contribution values of various influencing factors—energy structure 
(ES), energy consumption intensity (ECI), economic development (ED), population size (PS), and industrial 
structure (IS)—on land-use carbon emissions (LUCE) in urban agglomerations was analyzed for the periods 
2000–2005, 2000–2010, 2000–2015, and 2000–2020 (Fig. S5).

The cumulative contribution values of ECI in all five urban agglomerations were negative, indicating a 
consistent inhibitory effect on LUCE. ECI, defined as the ratio of energy consumption to GDP, reflects regional 
energy efficiency. Lower ECI values indicate higher energy efficiency, which contributes to restraining LUCE 
growth. Enhancing energy efficiency is essential for achieving economic growth without increasing total energy 
consumption, thereby improving the quality and efficiency of economic development.

From 2000 to 2020, ED exerted an increasingly significant driving effect LUCE growth in all urban 
agglomerations except the PRD. ED, measured as per capita GDP, reflects the level of regional economic 
development and prosperity. While rapid economic growth generates material wealth, it also leads to elevated 
LUCE. Therefore, future economic development must prioritize low-carbon strategies, balancing ecological 
conservation with economic growth to mitigate LUCE.

ES, defined as the ratio of total LUCE to energy consumption, had a relatively weaker influence on LUCE 
compared to other factors. A higher cumulative contribution value of ES indicates greater energy pollution 
intensity and increased LUCE. There remains substantial potential to reduce carbon emissions by optimizing 
the energy structure, particularly through the adoption of cleaner energy sources such as renewables, solar, and 
wind power.

PS drove LUCE growth in the PRD and YRD. These two regions are characterized by rapid population 
growth and high population density. Strategies should focus on electrification, construction of urban clean 
energy infrastructure, and promotion of low-carbon lifestyles.

IS, represented by added value of the secondary economic sector, exerted a significant cumulative increasing 
effect on LUCE. This sector is predominantly composed of traditional high-pollution industries, such as steel, 
mining, and machinery manufacturing. To achieve the “Dual Carbon” goals, it is essential to facilitate the 
transition of key industries toward cleaner and more efficient energy sources, while simultaneously optimizing 
industrial structures to mitigate emissions.

Prediction of land-use carbon emissions based on Markov model
Land-use data from 2015 to 2020 for the five urban agglomerations were employed to analyze land-use transition 
probabilities, generate medium- and short-term predictions, and establish a stable transition probability matrix 
through cross-validation. A land-use stochastic matrix was constructed for each urban agglomeration on the 
ArcGIS platform. Based on this stochastic matrix, an initial state transition probability matrix was derived for 
each urban agglomeration (Table S6).

Taking 2020 as the initial state matrix and applying a five-year cycle, the Markov model was used to predict 
land-use changes in each urban agglomeration for 2025 (Table 5). The Markov model is suitable for projecting 
land-use changes to 2025 due to its short-term predictability, policy relevance, and data reliability. Its dependence 
on historical transition probabilities ensures higher accuracy over shorter periods, while the 2025 timeframe 
corresponds with China’s 14th Five-Year Plan, enabling direct applicability of the projections to current policy 
objectives.

As shown in Table 5, ConL in all urban agglomerations except the MRYR is projected to increase from 2020 
to 2025. Notably, ConL in the CC is expected to rise by 19.8%, while its CulL will decrease by 1.62%. Similarly, 
CulL in other urban agglomerations is also projected to decline during this period. Moreover, the increase in 
carbon source lands (mainly ConL) by 2025 is anticipated to surpass the growth of key carbon sink lands—
GL, FL, and W. This indicates that ConL expansion is the principal driver of land-use changes across urban 
agglomerations. In contrast, carbon sink lands such as GL, FL, and W are not projected to increase substantially, 
highlighting the challenges in reconciling urban expansion with ecological conservation.

Based on the projected land-use cover changes, Table 6 and Fig. S6 present the evolution trends of land-
use carbon emissions and carbon sinks in each urban agglomeration by 2025. The persistent expansion of 
construction land continues to pose a major challenge to low-carbon development, highlighting the necessity of 
industrial structure transformation, upgrading, and optimization.

To project regional LUCE intensity for 2025, we applied a linear regression model based on 2000–2020 
GDP data for each urban agglomeration (Fig. S7). The 2025 GDP projections are presented in Table 7, which 
were used to calculate LUCE intensity in 2025. Table 7 shows that China’s “Dual Carbon” goals include an 18% 
reduction in LUCE intensity by 2025 relative to 2020 levels. However, the result reveals that none of the five 
urban agglomerations will achieve this target. Although the urban agglomerations of MRYR, BTH, and YRD 
demonstrate improvement, their reduction rates remain below the national target. The PRD and CC urban 
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agglomerations exhibit particularly significant challenges, with the PRD’s LUCE intensity projected to increase 
by 3.26%.

Carbon emission reduction policy pathways based on empirical findings
To address the identified challenges, targeted strategies with explicit implementation pathways are proposed 
for each urban agglomeration. For the BTH and MRYR, enhancing energy efficiency in heavy industries 
should prioritize the phase-out of outdated coal-dependent production capacities in sectors such as steel, 
while accelerating the deployment of waste heat recovery systems and green hydrogen-based direct reduced 
iron technologies. The transition to renewable energy should focus on developing distributed photovoltaic 
systems integrated with industrial parks and utilizing regional wind power bases to supply clean electricity for 
industrial processes. In the YRD and PRD, leveraging technological advances should involve implementing 
AI-driven energy management platforms and industrial internet systems to optimize energy use in electronics 
and automotive manufacturing. Scaling up solar and wind energy adoption requires expanding rooftop solar 

Year Value BTH YRD MRYR PRD CC

2025

GDP (predictive value) (100 million yuan) 107,134 237,059 110,883 105,451 78,132

Net LUCE(predictive value) (104t) 31,707 44,765 19,111 10,040 10,110

LUCE intensity(104t/100 million) 0.296 0.189 0.172 0.095 0.129

Growth rate of LUCE intensity (%) -8.92 -7.89 -6.52 3.26 0.00

2020

GDP(100 million yuan) 86,521 205,106 93,932 89,522 68,229

Net LUCE(104t) 28,129 42,126 17,181 8206 8813

LUCE intensity(104t/100 million) 0.325 0.205 0.184 0.092 0.129

Table 7.  Land-use carbon emissions intensity in 2025 and 2020.

 

UA CulL FL GL W ConL UL Total

BTH 416.30 -300.21 -7.19 -19.23 31617.42 -0.08 31707.01

YRD 403.31 -373.54 -1.50 -47.68 44784.34 -0.02 44764.91

MRYR 498.46 -972.04 -1.36 -54.66 19641.17 -0.09 19111.48

PRD 49.13 -192.63 -0.22 -8.34 10192.31 0 10040.25

CC 506.55 -373.27 -2.87 -7.78 9987.84 -0.01 10110.46

Table 6.  Prediction of land-use carbon emissions in urban agglomerations in 2025 (104t).

 

UA CulL FL GL W ConL UL

BTH

2025 9,864,959 4,661,682 3,266,721 759,906 2,767,365 162,053

2020 10,364,740 4,577,857 3,378,177 661,510 2,478,975 158,327

Growth -499,781 83,825 -111,456 98,396 288,390 3726

Growth rate (%) -4.82 1.83 -3.30 14.87 11.63 2.35

YRD

2025 9,557,029 5,800,295 679,611 1,884,648 3,014,580 48,036

2020 10,092,422 5,818,920 725,181 1,885,424 2,765,385 34,031

Growth -535,393 -18,625 -45,570 -776 249,195 14,005

Growth rate (%) -5.30 -0.32 -6.28 -0.04 9.01 41.15

MRYR

2025 11,811,912 15,093,842 616,282 2,160,419 1,461,620 186,015

2020 12,706,597 17,383,605 856,214 2,285,583 1,518,031 187,684

Growth -894,685 -2,289,763 -239,932 -125,164 -56,411 -1669

Growth rate (%) -7.04 -13.17 -28.02 -5.48 -3.72 -0.89

PRD

2025 1,164,320 2,991,160 100,710 329,664 870,256 500

2020 1,196,989 2,921,205 95,255 355,067 8,062,917 667

Growth -32,669 69,955 5455 -25,403 63,965 -167

Growth rate (%) -2.73 2.39 5.73 -7.15 7.93 -25.04

CC

2025 11,503,572 5,796,168 1,304,917 307,581 865,202 27,105

2020 11,692,674 5,164,523 1,044,743 316,380 722,215 18,480

Growth -189,102 631,645 260,174 -8799 142,987 8625

Growth rate (%) -1.62 12.23 24.90 -2.78 19.80 46.67

Table 5.  Prediction of land-use change and growth rate in urban agglomerations in 2025 (hm2).
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installations in manufacturing zones and offshore wind farms, supported by smart grid upgrades. For the CC, 
advancing clean energy projects should emphasize expanding hydropower capacity along the upper Yangtze 
River tributaries and deploying natural gas-fired peaking plants to enhance grid stability, while establishing 
green hydrogen production hubs in resource-rich areas like Sichuan to decarbonize the chemical and fertilizer 
industries.

Sustainable urbanization is essential, especially in the YRD and PRD, where rapid population growth is 
occurring. Sustainable urban planning must incorporate population migration trends into infrastructure 
development. In the PRD, this entails guiding labor-intensive industries and their workforces to relocate from 
core cities such as Guangzhou and Shenzhen to peripheral areas like Zhaoqing and Huizhou by enhancing 
regional transport connectivity and establishing specialized industrial parks supported by targeted housing 
policies for talent. Public transportation investments should prioritize cross-city metro systems and intercity 
high-speed rail to reduce vehicle emissions. Green infrastructure development should incorporate sponge city 
facilities and building-integrated photovoltaics. In the BTH and CC, balanced regional development requires 
transferring energy-intensive industries from Beijing and Chengdu to secondary cities such as Zhangjiakou and 
Mianyang, alongside incentives for high-value service sectors in core cities to alleviate population pressure. This 
strategy mitigates emissions from urban sprawl by fostering polycentric development patterns.

Industrial structure optimization is a critical priority for all urban agglomerations, necessitating sector-
specific roadmaps. Financial incentives should be provided to promote clean and efficient energy technologies 
along with tax credits for carbon capture pilot projects in cement and chemical plants. For the MRYR and CC, 
transitioning traditional industries should focus on the food and light textile sectors in the CC by implementing 
circular economy models—such as utilizing agricultural waste for bioenergy production in Chongqing’s food 
processing clusters—and upgrading chemical industries in the MRYR through cogeneration and wastewater 
recycling.

Regional cooperation and policy integration are essential for realizing the “Dual Carbon” objectives. Urban 
agglomerations should establish technology-sharing platforms, including joint R&D centers for carbon capture 
technologies between the CC and BTH, and adopt standardized carbon accounting protocols consistent with 
international standards. Policy integration necessitates aligning regional industrial layouts with carbon reduction 
targets—for example, integrating the CC’s “Chengdu-Chongqing Hydrogen Corridor” initiative with national 
green hydrogen certification systems to facilitate cross-regional trading. Harmonizing regional development 
strategies with national goals also requires coordinated electricity market mechanisms that enable industries 
in the YRD, PRD, and MRYR to utilize renewable energy from solar and wind bases in western China through 
ultra-high-voltage transmission grids, thereby ensuring coherent implementation of decarbonization objectives.

The analysis of cumulative decomposition contributions reveals the interdependence among economic, 
demographic, and industrial drivers of LUCE. Addressing these challenges requires spatially explicit strategies 
integrating technological retrofitting, demographic management, and institutional innovation. Through the 
implementation of tailored pathways—such as industrial electrification in the BTH and population-guided 
infrastructure planning in the PRD—China’s urban agglomerations can achieve the “Dual Carbon” goals while 
sustaining economic resilience.

The predictions of land-use cover changes underscore the persistent challenges in managing land-use changes 
within China’s urban agglomerations. The continuous expansion of ConL and the reduction of CulL emphasize 
the necessity for sustainable land-use strategies that balance urban development with ecological conservation. 
Although the 18% reduction target of LUCE intensity by 2025 serves as a national average benchmark, the 
findings indicate persistent difficulties in lowering LUCE among urban agglomerations. These challenges 
arise from ongoing construction land expansion, dependence on energy-intensive industries, and inadequate 
advancement in transitioning toward low-carbon energy sources and industrial structures. Addressing these 
issues necessitates an integrated strategy that combines industrial transformation, optimization of energy 
structure, sustainable urban planning, and region-specific policies. By prioritizing these actions, urban 
agglomerations can make substantial progress toward fulfilling the “Dual Carbon” objectives and promoting 
sustainable development.

Discussion
A multi-regional framework for decarbonization policy enhancement
This study develops an integrated carbon accounting framework that integrates both direct energy emissions 
and construction land decomposition, advancing beyond traditional emissions-focused models7,45. Comparative 
analysis reveals marked regional disparities: the energy-intensive BTH urban agglomeration exhibits significantly 
higher carbon intensities than its southern counterparts, such as the YRD and PRD. Notably, the YRD and PRD 
exhibit enhanced carbon sink capacities through strategic industrial upgrades and energy structure optimization, 
indicating the need for region-specific emission reduction pathways.

Furthermore, this study integrates spatial-temporal pattern analysis with the identification of emission 
drivers, specifically addressing the regional variations emphasized in the decarbonization pathways of IPCC 
AR646. The operational framework demonstrates distinct carbon neutrality approaches: the BTH requires 
technological upgrades, the YRD and MRYR demand spatial reconfiguration, while the CC and PRD need 
enhanced carbon sink management.

Pathways for regional low-carbon transition
This study identifies four mutually reinforcing mechanisms for decarbonizing urban agglomerations. Compared 
with monocentric urban systems47, coordinated spatial planning emerges as the most effective approach, 
particularly through the following implementation strategies:

Scientific Reports |         (2026) 16:2083 14| https://doi.org/10.1038/s41598-025-31817-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Spatial coupling of land use and industry
This study identifies industrial composition, particularly the expansion of secondary industries, as a more 
dominant driver of land conversion than demographic factors. The analysis indicates inadequate protection 
of carbon sinks, highlighting the need to enhance conservation of critical ecological spaces—such as 
forests, grasslands, and water bodies—that provide natural carbon sequestration. The findings underscore 
the disproportionate land-use impacts from energy-intensive secondary industries, calling for three key 
interventions: (1) establishing scientifically defined urban growth boundaries to balance development and 
ecological preservation; (2) implementing carbon sink management through restrictions on deforestation, 
optimized greening of marginal lands, and creation of ecological corridors; and (3) accelerating industrial 
transition by promoting clean energy adoption in heavy industries and facilitating technology-driven upgrades 
in traditional manufacturing sectors.

The proposed integrated approach addresses spatial planning and industrial restructuring simultaneously, 
providing a sustainable urbanization pathway that reconciles economic growth with environmental protection.

Synergistic spillover optimization
This study demonstrates that the five urban agglomerations should strengthen low-carbon synergies through 
three institutionalized spatial mechanisms, extending the concept of infrastructure synergy48. First, collaborative 
integration of resources and technology between central cities and surrounding areas enhances value chain 
efficiency while avoiding redundant investments. Second, multi-level governance necessitates standardized 
protocols for infrastructure, carbon accounting, and green finance to align economic and environmental 
objectives. Third, evolving leadership models toward collaborative platforms—such as cross-regional eco-
industrial partnerships—support polycentric systems that balance decarbonization with growth imperatives. 
Subsequent development requires smart specialization strategies incorporating industry-specific spatial spillover 
analysis to optimize inter-city cooperation without undermining regional competitiveness.

Urban planning reforms for sustainable development
The spatial configuration of core economic zones, such as the PRD and YRD, significantly shapes land use and 
carbon emission patterns. This necessitates urban planning that emphasizes integrated low-carbon strategies 
spanning the energy, transportation, and industrial sectors. Meanwhile, policymakers should promote behavioral 
interventions to foster sustainable consumption patterns and long-term low-carbon lifestyles, thereby alleviating 
demand-side emission pressures.

Technology-governance co-evolution
Cross-regional analysis reveals distinct decarbonization pathways that necessitate adaptive governance-
technology synergy. Technologically advanced urban agglomerations, such as the BTH, YRD and PRD, 
achieve success through cleantech ecosystems that integrate green innovation with industrial symbiosis, 
leading to substantial reductions in LUCE. In contrast, resource-intensive regions such as the CC and MRYR 
urban agglomerations achieve comparable decarbonization outcomes through land rehabilitation systems and 
ecological conservation. These findings extend conventional single-pathway LUCE theories49, demonstrating 
that effective decarbonization governance must balance two critical dimensions: facilitating cross-regional 
technology diffusion while maintaining local ecological carrying capacities.

Conclusions
Studying LUCE is crucial for mitigating greenhouse gases and controlling global temperatures. In China, urban 
agglomerations serve as major economic growth engines yet face challenges in reconciling development with 
carbon reduction. This study examines LUCE in five major urban agglomerations across China, employing 
GIS, the LMDI model, and Markov chains to evaluate spatiotemporal patterns and influencing factors. 
The results reveal several key findings: (1) The PRD exhibited rapid LUCE growth driven by economic and 
population expansion, while growth slowed in the BTH, MRYR, YRD, and CC. (2) LUCEE improved across 
all urban agglomerations, with the PRD demonstrating the most advanced low-carbon practices. (3) Economic 
development and industrial structure were primary drivers of LUCE growth, while reductions in energy 
consumption intensity helped mitigate it. (4) Despite increased clean energy utilization, fossil fuels remained 
dominant, thereby limiting the contribution of energy structure to LUCE reduction. (5) By 2025, construction 
land expansion is projected to drive LUCE growth, with LUCE intensity declining in the PRD but improving in 
other regions.

This study advances LUCE research by analyzing spatiotemporal patterns, drivers, and regional variations, 
providing insights for policymakers to develop targeted carbon reduction and land-use planning strategies. Key 
limitations include: (1) reliance on five-year interval data from 2000 to 2020, which may obscure finer-scale 
LUCE dynamics; (2) LUCE calculations employing fixed coefficients for five land types and IPCC estimates for 
construction land, potentially improvable with additional energy data; and (3) insufficient analysis of resource 
coupling (water, soil, energy) and economic or policy impacts. Future research should address these gaps to 
enhance the comprehensiveness of LUCE understanding.

Data availability
The data used to support the findings of this study are available from the corresponding author upon request.
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