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Accurate and robust forecasting of Emergency Medical Services (EMS) demand is crucial for ensuring 
timely ambulance dispatch and efficient resource allocation, particularly in low-resource public 
health systems, such as those in India. While most prior EMS forecasting studies have focused 
on urban settings in developed countries with rich, granular data, limited research has explored 
district-level forecasting using real-world ambulance dispatch data from India. Moreover, existing 
models often trade off robustness for accuracy or rely on complex black-box architectures, limiting 
their interpretability and real-world deployment. This study examines whether a heterogeneous 
ensemble of interpretable and complementary learners can outperform traditional and state-of-
the-art regressors for district-level EMS forecasting, utilizing limited real-world features. To address 
this challenge, we propose EM-LR (Ensembled Meta-Learner with Linear Regression), a meta-
learning framework that integrates four diverse base models−Lasso Regression, Support Vector 
Regression (SVR), Multilayer Perceptron (MLP), and Extreme Gradient Boosting (XGB)−via a linear 
regression meta-learner. Unlike prior meta-learners that stack similar tree-based or linear models, 
EM-LR combines low-variance, diverse learners to enhance robustness while maintaining model 
interpretability through SHAP-based feature analysis and transparent ensemble weights. Using only 
temporal and meteorological inputs, EM-LR forecasts daily EMS call volumes across five diverse 
districts in the state of Uttar Pradesh. We benchmark EM-LR against traditional models and recent 
advanced variants, including Twin Bounded Least Squares Support Vector Regression (TBLSSVR), 
Asymmetric-Huber based Extreme Learning Machine (AHELM), and Mexican-Hat Kernelized Large 
Margin Distribution Machine-based Regression (MHKLDMR), demonstrating superior accuracy and 
reduced prediction variance. Experimental results show up to 9.5% reduction in RMSE and over 40% 
variance reduction. EM-LR thus offers a scalable and interpretable forecasting solution tailored to 
the operational constraints of developing public health systems, supporting data-driven emergency 
planning and equitable healthcare delivery.
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Background and motivation
Emergency Medical Services (EMS) are an important component of the public health infrastructure, providing 
critical and often life-saving assistance in medical emergencies. A responsive and effective EMS system ensures 
timely care, which directly impacts patient survival rates, especially in trauma and critical care situations. 
However, EMS systems worldwide, including in low-resource settings such as India, are under increasing 
pressure due to increased population densities, evolving healthcare demands, and limited resources.
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India, in particular, faces unique challenges in EMS planning and delivery. Many districts lack real-time 
surveillance systems, reliable demand data, or optimized protocols for ambulance allocation. Ambulance 
response times vary significantly across regions, often due to poor anticipation of demand patterns. In such 
contexts, district-level EMS demand forecasting becomes a critical planning tool for efficient ambulance 
deployment and equitable resource allocation. However, research on EMS forecasting in India remains limited, 
with few studies utilizing real-world ambulance dispatch data at the district level.

Given the critical role of predictive systems in equitable EMS planning, response time−the interval between call 
receipt and ambulance arrival−has emerged as a core performance metric. Accurate demand forecasting enables 
timely resource deployment, and numerous studies have leveraged it to guide dynamic ambulance allocation 
aimed at minimizing delays and improving prehospital care efficiency1–4. Various EMS demand studies aim to 
reduce this response time. The two solutions entail forecasting ambulance demand to meet needs and optimizing 
ambulance distribution. Comprehensive studies have been conducted on dynamic ambulance allocation 
models to improve real-time EMS resource management. These models focus on the ongoing redistribution 
of ambulances in response to fluctuating demand, ensuring optimal coverage across various regions. Recently, 
several studies have focused on the planning and deployment of ambulances5–12. For instance, Yaseen, Alkhalidi, 
and Raweshidy9 proposed a machine learning and SDN-based system for prioritizing SHE traffic flows. Liu, Li, 
and Zhang10 developed a robust optimization model for the optimal distribution of EMS stations. The model 
aims to optimize the number of ambulances and demand assignments in the EMS system while minimizing 
the anticipated overall cost. Amorim, Antunes, Ferreira, and Couto11 proposed an approach to EMS resource 
allocation that improves patient outcomes by combining a mathematical model with a metamodel-based local 
search technique. Although such methods accelerate response and improve coverage, their effectiveness depends 
fundamentally on accurate and robust demand forecasting models that can anticipate call volumes under varying 
regional and temporal conditions.

Forecasting EMS demand helps estimate expected call volumes and temporal fluctuations, forming the 
foundation of operational planning. Different forecasting horizons serve distinct purposes. Short-term (minute-
to-hourly) forecasts are valuable for dynamic ambulance routing and real-time dispatch optimization, while 
daily-level forecasts are essential for staff scheduling, ambulance station planning, and day-ahead readiness−
particularly relevant in data-scarce, low-flexibility systems like those in many Indian districts. Long-term 
(monthly) forecasts, in contrast, aid in infrastructure and budget planning. Figure 1 illustrates the operational 
relevance of different forecasting horizons in EMS planning.

Over the years, EMS demand modeling has evolved from traditional statistical techniques to advanced 
machine learning (ML) frameworks. The regression models13–20 have been used extensively to study the influence 
of several contextual variables on explaining fluctuations in EMS demand. Time series forecasting models22–25 
rely on historical patterns of demand, along with contextual variables21. Graph-based convolutional networks26, 
and spatio-temporal methods27 have also been proposed to address EMS demand and to enhance resource 
allocation and emergency response times. Recent advancements in machine learning (ML) have significantly 
improved the accuracy of EMS demand predictions. Various studies28–34 have recently used ML techniques 
extensively to predict EMS demand both temporally and spatio-temporally. For instance, Grekousis and Liu28 
introduced a new three-level spatial-based artificial intelligence approach to forecast ambulance demand in 
emergency medical services. The method locates expected emergency events geographically, enabling better 

Fig. 1.  Forecasting horizon and its implications in EMS demand prediction.
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resource allocation and faster response times. Abreu et al.29 introduced a data-driven forecasting method to 
facilitate emergency medical services (EMS) operational decision-making. This method surpasses the limitations 
of conventional forecasting techniques, enabling the healthcare industry to allocate resources more effectively. 
Martin, Mousavi, and Saydam30 employed an ensemble-based decision tree model for feature selection, followed 
by a multilayer perceptron (MLP) artificial neural network model to generate daily, hourly, and spatially 
distributed predictions of EMS call volume.

Recent advancements in machine learning (ML) have significantly improved the accuracy of EMS demand 
predictions. While accuracy is a critical metric for predictive models, robustness is equally important, as it 
defines the model’s ability to deliver consistent results under varying conditions, especially in critical domains 
such as EMS demand forecasting. Many advanced ML models demonstrate high accuracy but exhibit significant 
variance across folds or datasets, undermining their reliability. Additionally, many models operate as ”black 
box” systems, providing limited insight into their decision-making processes. In critical fields such as healthcare, 
interpretability and robustness are essential for fostering trust, enabling accountability, and providing accurate 
predictions. This study addresses the triple challenge of accuracy, robustness, and interpretability by proposing 
EM-LR (Ensembled Meta-Learner with Linear Regression), a SHapley Additive Explanations (SHAP)35 featured 
meta-learning framework designed to prioritize robustness and interpretability while maintaining competitive 
accuracy. By carefully curating a set of diverse, stable base models, EM-LR addresses the limitations of single-
model approaches and mitigates the destabilizing effects of high-variance predictors. Additionally, SHAP 
provides a global and local explanation of feature importance, ensuring that the selected features contribute 
meaningfully to the predictions.

Meta-learning is an approach in machine learning that focuses on optimally combining predictions from 
multiple base models to enhance overall performance. It has been successfully applied in various domains, 
including speech recognition, energy forecasting, and natural language processing. In the context of emergency 
medical services (EMS), prior studies by Ramgopal et al.36 and Megouo et al.37 have explored meta-learning 
frameworks to forecast EMS dispatches. However, these studies predominantly rely on stacking similar types 
of base learners, such as generalized linear models, generalized additive models, and tree-based algorithms like 
Random Forest (RF) and Extreme Gradient Boosting (XGB). For instance, Decision Trees and RF are also used 
in the ensemble models proposed in38. This lack of model diversity can lead to overfitting and instability, as 
similar models tend to produce highly correlated predictions38. Moreover, these frameworks are often designed 
for data-rich environments, limiting their adaptability to regions with sparse data availability. These limitations 
highlight the need for a robust, interpretable, and generalizable meta-learning ensemble that can perform 
effectively even in data-scarce EMS settings.

Research gap and study contributions
While ensemble methods have demonstrated strong results in domains such as finance, energy, and NLP, their 
application to EMS forecasting remains limited, particularly in developing countries. Existing EMS forecasting 
studies often depend on rich spatial, demographic, or hospital-level variables that are rarely available in public 
health datasets. Furthermore, past meta-learners have tended to stack similar base models (e.g., tree-based or 
boosting methods), which increases the risk of overfitting and correlated prediction errors38.

This study investigates whether a heterogeneous, low-variance meta-learning ensemble can achieve 
accuracy comparable to advanced nonlinear regressors−such as the Asymmetric-Huber Loss function-based 
ELM (AHELM)39, Twin Bounded Least Squares Support Vector Regression (TBLSSVR)40, and Mexican-Hat 
Kernelized LDMR (MHKLDMR)41−while maintaining computational efficiency and partial explainability 
through feature-level insights. The central research question is: ”Can a diverse ensemble of complementary 
learners forecast daily district-level EMS demand as effectively as complex state-of-the-art models, using only 
minimal temporal and meteorological features, while ensuring robustness and generalizability in data-scarce 
environments?”

To this end, we propose EM-LR (Ensembled Meta-Learner with Linear Regression), which strategically 
combines four diverse base learners−Lasso Regression42, Support Vector Regression (SVR)43, Multilayer 
Perceptron (MLP)44, and Extreme Gradient Boosting (XGB)45−within a meta-learning framework. These 
models were chosen for their complementary strengths in handling linearity, nonlinearity, regularization, and 
structured data. A linear regression meta-learner aggregates its predictions to enhance robustness and maintain 
model transparency at the ensemble level. SHAP-based feature analysis further strengthens interpretability by 
identifying key temporal and meteorological drivers of EMS demand.

Key contributions of this study are as follows:

•	 Contextual novelty: This study is one of the first district-level EMS forecasting models tailored to India’s 
public health system, utilizing real-world ambulance dispatch data and only minimal features (e.g., day of the 
week, temperature, humidity, wind speed).

•	 Algorithmic innovation: We propose EM-LR, a novel heterogeneous meta-learning ensemble that stacks 
four diverse base learners−spanning linear, kernel, neural, and tree-based paradigms−and integrates them 
through a transparent linear regression meta-learner. Unlike past EMS meta-learners that rely on homoge-
neous tree ensembles, EM-LR reduces overfitting and prediction correlation while improving interpretability 
and robustness37,38.

•	 Benchmarking against recent models: We rigorously benchmark EM-LR against both traditional models 
and recent state-of-the-art regressors such as TBLSSVR, AHELM, MHKLDMR to demonstrate performance 
gains and variance reduction.
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•	 Explainability via feature analysis integration: We incorporate SHAP- and correlation-based feature rele-
vance analysis within the meta-learning pipeline, enabling transparent understanding of how each temporal 
and weather variable influences EMS demand.

•	 Practical deployability and generalization: EM-LR demonstrates strong generalization performance across 
five demographically diverse districts, despite relying only on minimal temporal and meteorological inputs. 
This robustness across varied local conditions makes it a promising and scalable forecasting solution for EMS 
planning in real-world, data-scarce public health settings.

The remainder of this paper is structured as follows: The ”Methods” section details the EM-LR methodology, the 
”Experimental Setup” section presents the dataset and experimental design, next, the ”Results and Discussion” 
section presents performance findings and feature-level insights, and the “Conclusion” section concludes the 
study.

Methods
Study area
Uttar Pradesh (UP), India’s most populous state, faces significant challenges in managing Emergency Medical 
Services (EMS) due to its geographical diversity and socio-economic conditions. This study examines 
five districts−Lucknow, Agra, Kanpur Nagar, Varanasi, and Gorakhpur−selected to represent the diverse 
characteristics of UP.

Lucknow
Lucknow, the capital of Uttar Pradesh, has a humid subtropical climate. During the study period, Lucknow 
experienced extremely hot summers, with temperatures reaching as high as 51 ◦C. Winters were cool, with 
temperatures dropping to around 15 ◦C. The monsoon season brought an average daily rainfall of about 5 mm; 
the highest recorded rainfall during the study period was 180 mm. Regarding EMS dispatch, the minimum daily 
dispatch was 0, while the maximum daily demand reached 85. On average, 13 EMS units were dispatched daily 
during this period.

Agra
Agra has a semiarid climate characterized by distinct summer, monsoon, and winter seasons. Summers were 
hot and dry, with temperatures as high as 49 ◦C during the study period. Winters were cool, with temperatures 
dropping to around 4 ◦C. The average daily rainfall in Agra during the study period’s monsoon season was 4.4 
mm, with the highest recorded rainfall at 119.7 mm. Regarding EMS dispatch, the minimum daily dispatch was 
0, while the maximum daily demand reached 36. On average, 6 EMS units were dispatched each day during this 
period.

Kanpur Nagar
Kanpur is situated on the banks of the Ganges River and thus has a humid subtropical climate, characterized by 
hot and dry summers. During the study period, the district’s summer temperature was as high as 51 ◦C. Winters 
were cooler, with temperatures dropping to around 19 ◦C. During the monsoon season in the study period, 
Kanpur experienced an average daily rainfall of 4.1 mm, with the highest recorded rainfall reaching 108 mm. 
Regarding EMS dispatch, the minimum daily dispatch in Kanpur was 0, indicating days with no emergency 
demands. However, the maximum daily demand reached 41. On average, 8 EMS units were dispatched each day 
during this period.

Varanasi
Varanasi is in the northern part of Uttar Pradesh and is also located on the banks of the Ganges River. It has 
hot and humid summers, with temperatures soaring to 51 ◦C. Winters in Varanasi bring cooler temperatures, 
dropping to around 18 ◦C. During the study period, Varanasi experienced an average daily rainfall of 6.54 mm 
during the monsoon season, with the highest recorded rainfall reaching 89.5 mm. Regarding EMS dispatch, the 
minimum daily dispatch in Varanasi was 0, indicating that there were no emergency demands on those days. 
However, the maximum daily demand reached 24. On average, 5 EMS units were dispatched each day during 
this period.

Gorakhpur
Gorakhpur is a district in the northeastern part of Uttar Pradesh. It has hot and humid summers, with 
temperatures soaring up to 48 ◦C. Winters in Gorakhpur bring cooler temperatures, dropping to around 17 ◦

C. During the study period, Gorakhpur experienced an average daily rainfall of 1.68 mm during the monsoon 
season, with the highest recorded rainfall reaching 90.4 mm. Regarding EMS dispatch, the minimum daily 
dispatch in Gorakhpur was 0, indicating that there were no emergency demands on those days. However, the 
maximum daily demand reached 51. On average, 11 EMS units were dispatched each day during the study 
period.

Proposed framework
The EM-LR framework (Fig. 2) follows a structured pipeline for EMS demand forecasting. Initially, temporal, 
meteorological, and historical EMS features are extracted based on prior studies. Feature selection is performed 
using Pearson correlation and SHAP to identify the most relevant predictors. To assess the incremental value 
of weather features and feature selection, three model variants are constructed: (i) T using only temporal and 
historical EMS data, (ii) T+W adding all meteorological features, and (iii) T+W+FS incorporating only the top 
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ten SHAP- and Pearson-ranked features. Each configuration is evaluated to understand trade-offs in performance 
and complexity. Building upon these, the final EM-LR model ensembles four diverse base learners: Lasso 
Regression, Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Extreme Gradient Boosting 
(XGB), using Linear Regression as a meta-learner to capture complementary learning patterns. The optimization 
of the model’s structure was achieved through the process of hyperparameter tuning. Subsequently, the proposed 
model was validated using EMS demand data obtained from five discrete locations in Uttar Pradesh, India. The 
study conducted a comparative analysis of the model’s performance against state-of-the-art persistence models 
and other machine learning models, including Support Vector Regression (SVR), Random Forest (RF), Extreme 
Gradient Boosting (XGB), and Multilayer Perceptron (MLP).

The study’s methodology underwent rigorous testing and was subjected to a 5-fold cross-validation process 
to establish the accuracy and reliability of the proposed EM-LR model in predicting EMS demand across 
different districts. To achieve this, the dataset was partitioned into a training set, a validation set, and a test set. 

Fig. 2.  Flow chart of the proposed work.
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The first four years of data served as the training set, the fifth year’s data as the validation set, and data from the 
last year of the study period as the test set. The base models are trained with the help of the training set. The 
validation set compares the performance of different model structures by hypertuning their parameters, such as 
the regularisation parameter in SVR and Lasso Regression, the optimal number of heights in the XGB, and the 
number of hidden units in the MLP model. The error rate of the proposed model was measured using the test 
set. Lasso Regression, MLP, SVR, and XGB each receive the same training data, as shown in Fig. 3. The Linear 
Regression, which serves as a meta-learner, takes the predicted values of each base model as input. The final 
result is thus the weighted average of the results from the individual base models.

The input vector consists of three sets of features: meteorological, temporal, and EMS historical features. 
Let the meteorological features be denoted as xm = [xm

1 , xm
2 , . . . , xm

nm
], the temporal features be denoted as 

xt = [xt
1, xt

2, . . . , xt
nt

], and the EMS historical features be denoted as xh = [xh
1 , xh

2 , . . . , xh
nh

]. The input vector 
can then be written as:

	 X = [Xm, Xt, Xh]� (1)

Our objective is to create a function that can forecast the EMS demand for the next day, denoted as t + 1. This 
prediction will be based on the feature vector of meteorological conditions, time-related factors, and historical 
data on EMS parameters. Mathematically, the function can be expressed as follows:

	 Yt+1 = F (X)t = F (Xm
t , Xt

t , Xh
t )� (2)

Yt+1 denotes the predicted EMS demand at day t + 1, and F (·) is the function that maps the input features 
to the predicted EMS demand. This function F (·) takes the predictions of the 4 base models and can be denoted 
as:

	 F (X)t = [flr(X)t fsvr(X)t fmlp(X)t fxgb(X)t]� (3)

Where flr(X), fsvm(X), fmlp(X), fxgb(X) denote the predictions of the 4 base models, namely Lasso 
Regression, SVR, MLP, and XGB. The detailed description of these functions is as follows:

	

flr(X)t = flr(Xm
t , Xt

t , Xh
t )

fsvr(X)t = fsvr(Xm
t , Xt

t , Xh
t )

fmlp(X)t = fmlp(Xm
t , Xt

t , Xh
t )

fxgb(X)t = fxgb(Xm
t , Xt

t , Xh
t )

� (4)

These predictions from base models go to the linear regressor as 4 input vectors. The linear regressor assigns 
weights to each of these four input vectors and makes the final prediction as follows:

Fig. 3.  Framework of the proposed EM-LR model.
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	 F (X)t = w0 + w1 · flr(X) + w2 · fsvr(X) + w3 · fsvr(X) + w4 · fxgb(X)� (5)

Where wi denotes the weights assigned to each of the four base models. The linear regressor optimizes these 
weights using a cost function that calculates the square of the sum of the differences between the actual EMS 
demand and the predicted EMS demand. Mathematically, the cost function can be expressed as:

	
Cost(w) = 1

8

4∑
i=1

(y − ŷi)2 + λ

4∑
j=1

w2
j � (6)

Here Cost(w) is the cost function, y is the actual EMS demand, ŷiis the predicted EMS demand for each of the 
four base models, and λ is the regularization parameter.

Experimental setup
Data source
The data for this study comes from two sources. The EMS dispatch data was obtained from the GVK-Emergency 
Management Research Institute in Lucknow, which operates the ”108 Ambulance Service” across UP, providing 
daily dispatch counts for the five districts. Meteorological data was sourced from the World Weather Online 
API, including variables such as temperature, precipitation, dew point, pressure, visibility, and wind speed. These 
weather factors are critical in capturing the environmental influences on EMS demand.

To develop robust EMS demand prediction models, the data underwent preprocessing. Temporal features such 
as year, month, weekday, and weekend indicators were extracted to capture time-based trends. Meteorological 
variables were averaged over the preceding seven days to account for lagged effects. Historical EMS dispatch data 
was included by calculating the average dispatches over the previous seven days and counts from days lagged by 
14, 21, and 28 days, capturing short- and long-term trends.

Performance evaluation metrics
The forecasting performance of all models was evaluated using four widely adopted error metrics: Mean Absolute 
Error (MAE), Root Mean Squared Error (RMSE), Mean Bias Error (MBE), and Mean Absolute Percentage Error 
(MAPE). These measures collectively capture both the magnitude and direction of prediction errors, enabling a 
balanced assessment of model accuracy and stability.

MAE and RMSE quantify average deviation and error dispersion, respectively, while MBE indicates systematic 
bias (under- or over-prediction). MAPE expresses the relative percentage error, facilitating intuitive comparison 
across districts with varying EMS call volumes. All metrics were computed on the test sets for each district, and 
lower values indicate superior predictive performance and generalization.

Hyperparameter tuning of baseline and benchmark models
To rigorously evaluate our forecasting framework, we implemented a suite of machine learning models, 
categorized as either base learners for the proposed ensemble meta-learner (EM-LR) or as comparative 
benchmark models. The evaluation includes four base learners, including SVR, XGB, MLP, and Lasso Regression. 
We further benchmarked EM-LR against both traditional and recent advanced variants, including Random 
Forest (RF), Twin Bounded Least Squares Support Vector Regression (TBLSSVR), Asymmetric-Huber based 
Extreme Learning Machine (AHELM), and Mexican-Hat Kernelized Large Margin Distribution Machine-based 
Regression (MHKLDMR). Each model underwent grid search-based hyperparameter tuning to ensure optimal 
configuration. All experiments employed a consistent train–test split (2013–2017 for training, 2018 for testing), 
followed by 5-fold cross-validation. Model performance was assessed using four standard evaluation metrics: 
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), 
and Mean Bias Error (MBE). A brief description of each model and its corresponding hyperparameter search 
space is provided below.

Lasso regression
It is a statistical method that utilizes linear regression with L1 regularization to model the relationship between 
predictor variables and EMS demand. It works by reducing the regression coefficients of the predictor variables 
until they reach zero, thereby decreasing the impact of unnecessary or redundant variables and encouraging 
sparsity in the final model. The values taken for the grid search are as follows:

•	 fit intercept= [1, 0]
•	 alpha= [0.005, 0.01, 0.03, 0.05, 0.07, 0.1]

Multilayer perceptron (MLP)
MLP is a neural network composed of many layers of connected neurons, each performing a non-linear change 
on its input. It was selected for its ability to model nonlinear patterns. The hyperparameters of an MLP that have 
been tuned are the number of hidden layers, the parameter α, and the activation function. The alpha parameter 
regulates the regularization intensity, while the size of the hidden layer determines the number of neurons 
present in each layer. The activation parameter specifies the activation function for each layer. The values taken 
for the grid search for these hyperparameters are as follows:

•	 hidden layer size= [(24,), (36,), (14,), (14,10), (14,5), (14,14), (24,24), (24,12), (36,24), (36,12)]
•	 alpha= [1e−8, 1e−7, 1e−6, 1e−5, 1e−4, 1e−3]
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•	 activation= [relu, identity, tanh]

Support Vector Regression (SVR)
The SVR algorithm is a Support Vector Machine (SVM) version specific for regression tasks. It works by locating 
the hyperplane that preserves a maximum margin while permitting a specific deviation (specified by the epsilon 
parameter) from the real target values. SVR is included to capture nonlinear relationships with controlled 
flexibility. The three hyperparameters tuned in the study are ”fit_intercept”, ”C,” and ”ϵ”. The ’fit_intercept’ 
parameter determines whether the model should include an intercept term in the regression equation, the ’ϵ’ 
parameter establishes the margin of error permitted in the model’s predictions, and the ’C’ parameter manages 
the trade-off between obtaining a good fit on the training data and preventing overfitting. The following values 
were used to fine-tune these hyperparameters:

•	 ϵ = [8, 9, 10, 11, 12, 13, 14]
•	 fit_intercept = [0,1]
•	 C = [33, 34, 35, 36, 37, 38, 39, 40, 41]

Extreme Gradient Boosting (XGB)
XGB is a member of the gradient boosting family. It sequentially constructs an ensemble of weak prediction 
models, typically decision trees, where each successive model is trained to correct the errors made by the previous 
models. The final forecast is derived by combining the forecasts of all weak models. Four hyperparameters were 
chosen to tune the XGB model. First is the ’n_estimators’ parameter, which determines the number of trees in 
the ensemble and influences model performance and training time. The second is ’subsample,’ which refers to 
the fraction of samples used for training each tree. A lower value reduces the risk of overfitting but may also 
reduce performance. The ’eta’ hyperparameter, also known as the learning rate, determines the step size when 
modifying the weights; a smaller value results in more stable convergence. Lastly, the gamma hyperparameter 
controls the minimal loss reduction necessary to split a leaf, with a higher value resulting in more conservative 
tree construction. The values taken to tune these hyperparameters were

•	 n_estimators = range(70, 140, 10)
•	 subsample = [0.5, 0.75, 1]
•	 eta = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4]
•	 gamma = range(150, 310, 10)

Random Forest (RF)
RF is a robust ensemble tree-based model used for EMS forecasting. We tuned three key hyperparameters via 
grid search: the ’n_estimators’ parameter, which specifies the total number of trees; the ’min_sample_split’ 
parameter, which specifies the minimum number of samples necessary to split a node; and the ’max_features’ 
parameter, which specifies the maximum number of features to be randomly selected while the tree is being 
grown. The range of values used for hyperparameters in the grid search:

•	 n_estimators = range(300, 500, 25)
•	 min_sample_split’ = [2, 3, 4, 5, 6, 7]
•	 max_features = [log2, sqrt]

Asymmetric Huber loss function-based Extreme Learning Machine (AHELM)
AHELM is a robust variant of the Extreme Learning Machine (ELM) that replaces the standard mean-square 
error loss with an ”asymmetric Huber loss” to improve generalization and resilience to outliers. It combines the 
fast training of ELM with the robustness of Huber regression by introducing a tunable threshold parameter, δ, 
that controls the transition between quadratic and linear loss regions. A regularization coefficient α penalizes 
excessively large output weights, improving stability. The tuned hyperparameters were:

•	 activation = [‘sigmoid’, ‘tanh’, ‘relu’]
•	 n_hidden = [25, 50, 75, 100, 150]
•	 delta = [0.25, 0.5, 0.75, 1.0]
•	 alpha = [0.001, 0.01, 0.1, 0.5, 1.0]
•	 learning_rate = [0.001, 0.01, 0.05]

Twin Bounded Least Squares Support Vector Regression (TBLSSVR)
TBLSSVR minimizes two smaller least-squares problems to achieve improved computational efficiency and 
reduced training complexity compared to traditional SVR. The tuned hyperparameters were:

•	 C1 = [0.01, 0.1, 1.0, 5.0, 10.0]
•	 C2 = [0.01, 0.1, 1.0, 5.0, 10.0]
•	 epsilon = [0.001, 0.01, 0.05, 0.1]
•	 kernel = [‘linear’, ‘rbf ’, ‘poly’]
•	 gamma = [0.01, 0.05, 0.1, 0.5]

Mexican-Hat Kernelized Large Margin Distribution Machine-based Regression (MHKLDMR)
MHKLDMR integrates a localized dual model regression framework with a Mexican Hat wavelet kernel to 
capture nonlinear and oscillatory patterns in EMS demand. The following parameters were grid-searched:
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•	 C1 = [0.01, 0.1, 1.0, 5.0]
•	 C2 = [0.01, 0.1, 1.0, 5.0]
•	 epsilon = [0.001, 0.01, 0.05, 0.1]
•	 sigma = [0.25, 0.5, 1.0, 2.0, 3.0]

Results and discussion
This section presents and compares the results of proposed EM-LR with various machine learning models, 
including traditional models including Extreme Gradient Boosting (XGB), Multi-layer Perceptron (MLP), 
Random Forest (RF), and Support Vector Regression (SVR), with the benchmark method P-Persistence and 
the recent advanced variants, including Asymmetric Huber loss function-based Extreme Learning Machine 
(AHELM), Twin Bounded Least Squares Support Vector Regression (TBLSSVR), and Mexican-Hat Kernelized 
Large Margin Distribution Machine-based Regression (MHKLDMR). The comparison is conducted for five 
districts in Uttar Pradesh: Lucknow, Kanpur Nagar, Agra, Gorakhpur, and Varanasi. These districts were selected 
based on their significance as population centers, encompassing urban, semi-urban, and rural areas. The aim 
was to comprehensively assess EMS demand patterns across diverse demographic and socioeconomic settings.

Test results
To evaluate the predictive performance of the proposed EM-LR model across the five studied districts, four 
standard error metrics−Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute 
Percentage Error (MAPE), and Mean Bias Error (MBE)−were employed (Tables  1, 2, 3, 4, 5). The results 
demonstrate a consistent and substantial improvement of EM-LR over all baseline models, including MLP, SVR, 
RF, XGB, and advanced variants such as AHELM, TBLSSVR, and MHKLDMR.

Across all districts, EM-LR achieved the lowest RMSE, confirming its superior ability to capture temporal 
and meteorological dependencies in EMS dispatch demand. As illustrated in Fig. 4, EM-LR consistently yielded 
smoother error profiles and reduced prediction volatility compared to both tree-based and neural counterparts. 
Notably, for Lucknow and Varanasi, EM-LR attained RMSE values of 6.01 and 3.41, respectively−the lowest 
among all competing models−reflecting its robustness in both high- and low-demand regions. Likewise, in Agra 

Metric Variant MLP SVR RF XGB AHELM TBLSSVR MHKLDMR EM-LR

MAE

T 4.3877 4.0758 4.0317 3.9456 4.1128 6.7223 4.2055 3.8053

T+W 4.7240 4.3097 4.3090 4.0221 4.7634 12.5260 5.4934 3.7887

T+W+FS 4.2221 4.2033 4.1490 4.0183 4.6484 9.7459 4.9697 3.7782

RMSE

T 5.7866 5.3572 5.4953 5.2618 5.4481 8.8019 5.5822 5.1590

T+W 6.2884 5.5902 5.8788 5.4068 5.8566 14.1909 6.7185 5.0805

T+W+FS 5.5310 5.4841 5.6678 5.3878 5.7280 11.8620 6.2375 5.0663

MAPE

T 0.5169 0.5125 0.4041 0.3747 0.3459 0.5664 0.3853 0.3599

T+W 0.6304 0.7025 0.4609 0.3894 0.3596 0.7659 0.3617 0.3515

T+W+FS 0.4397 0.3485 0.4310 0.3873 0.3496 0.5779 0.3475 0.3451

MBE

T – 2.1456 – 0.7668 – 2.1156 – 1.0972 – 1.6073 – 4.3864 – 1.8672 – 1.2017

T+W – 3.1138 – 1.1444 – 2.8270 – 1.6349 -0.6711 – 12.4721 – 2.6222 – 1.0314

T+W+FS – 1.2770 0.7037 – 2.4792 – 1.6433 – 0.9630 – 9.4472 – 1.2275 – 0.8744

Table 2.  Performance comparison on Gorakhpur dataset.

 

Metric Variant MLP SVR RF XGB AHELM TBLSSVR MHKLDMR EM-LR

MAE

T 3.3920 5.0563 3.9058 3.7389 3.6023 5.8124 3.9088 3.0752

T+W 4.4666 4.8158 4.2538 3.8997 3.3605 7.9416 3.7198 3.1322

T+W+FS 3.3112 5.5833 3.8269 3.7389 3.6051 4.5064 3.5717 3.0757

RMSE

T 4.3928 6.2108 4.9953 4.8379 4.2627 6.9123 4.4165 3.9661

T+W 5.6049 5.9812 5.3699 4.9810 4.1316 9.0377 4.6631 4.0326

T+W+FS 4.2632 6.7767 4.9172 4.8379 4.2209 5.6678 4.2049 3.9544

MAPE

T 0.6614 4.7473 0.7117 0.6417 0.5221 0.7843 0.5697 0.4361

T+W 4.5873 6.3469 0.8702 0.7000 0.4486 0.7652 0.5359 0.4445

T+W+FS 0.5413 6.2817 0.6839 0.6417 0.4681 0.5134 0.4490 0.4274

MBE

T – 2.0343 – 3.5715 – 2.9414 – 2.6799 – 2.1014 – 4.8027 – 2.3009 – 0.8676

T+W – 3.9748 – 3.5624 – 3.5121 – 2.8449 – 0.4193 – 7.9280 0.2179 – 0.9173

T+W+FS – 1.6496 – 4.5166 – 2.8188 – 2.6799 -0.3573 – 4.0181 – 0.8363 – 0.7192

Table 1.  Performance comparison on Agra dataset.
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and Kanpur Nagar, EM-LR registered RMSE improvements exceeding 8–12% over the next-best models, while 
in Gorakhpur, it marginally surpassed SVR and XGB, achieving an RMSE of 5.07.

When compared with recent advanced learners such as AHELM, TBLSSVR, and MHKLDMR, EM-LR 
demonstrated consistent or superior generalization. For instance, in Lucknow, EM-LR achieved an RMSE of 
6.01 compared to 6.90 (AHELM) and 9.21 (TBLSSVR), marking an improvement of 13–35%. In Agra, EM-LR 
(3.95) outperformed AHELM (4.22) and MHKLDMR (4.20) by approximately 6–7%, while in Kanpur Nagar, 
it achieved an RMSE of 4.21 versus 4.35 (AHELM) and 4.54 (MHKLDMR). In Gorakhpur, where AHELM 
(5.73) and MHKLDMR (6.24) performed competitively, EM-LR attained the lowest RMSE (5.07). These results 

Metric Variant MLP SVR RF XGB AHELM TBLSSVR MHKLDMR EM-LR

MAE

T 2.9232 3.3967 2.6476 2.5965 2.8784 3.9126 2.7891 2.5376

T+W 2.8127 3.7638 2.6929 2.5748 3.1191 6.7783 3.6611 2.5508

T+W+FS 2.7054 3.6630 2.6698 2.5748 2.8056 3.7242 2.8279 2.5784

RMSE

T 3.9277 4.4677 3.6117 3.5491 3.6228 5.0845 3.7433 3.4386

T+W 3.8367 4.8692 3.6804 3.5251 4.0324 7.8700 4.7504 3.4162

T+W+FS 3.6013 4.7013 3.6379 3.5251 3.7975 4.8589 3.7381 3.4087

MAPE

T 0.8064 3.1183 0.5715 0.5309 0.5067 0.6658 0.5443 0.4757

T+W 0.6800 4.8768 0.5994 0.5242 0.5966 0.8046 0.5257 0.4728

T+W+FS 0.5694 3.1449 0.5809 0.5242 4.1941 5.0274 4.2103 0.4775

MBE

T – 1.7024 – 1.9599 – 1.2159 – 0.9864 – 0.9771 – 2.8415 – 1.1812 – 0.4400

T+W – 1.3962 –2.7026 – 1.4105 – 0.9610 0.3580 – 6.7566 – 1.9198 – 0.4340

T+W+FS – 0.8426 – 2.7866 – 1.2752 – 0.9610 – 0.3106 – 3.0897 – 0.5785 -0.2933

Table 5.  Performance comparison on Varanasi dataset.

 

Metric Variant MLP SVR RF XGB AHELM TBLSSVR MHKLDMR EM-LR

MAE

T 5.5624 7.6799 5.1641 4.9687 4.9912 7.8203 5.0124 4.5131

T+W 6.5567 8.5741 5.2888 5.1941 4.3143 12.1977 5.4411 4.4594

T+W+FS 5.4211 5.3194 4.9214 4.7470 4.6102 7.3886 4.5642 4.2729

RMSE

T 7.3604 9.5461 7.2535 6.9794 6.9207 9.4152 6.8449 6.3160

T+W 8.4031 10.4283 7.3995 7.2935 6.8529 14.0893 7.3190 6.2168

T+W+FS 7.2748 7.2406 6.9797 6.8384 6.9014 9.2139 6.6082 6.0102

MAPE

T 0.5383 1.3510 0.4431 0.4103 0.3882 0.5317 0.4012 0.3411

T+W 0.7417 3.4343 0.4575 0.4484 0.3998 0.6845 0.3482 0.3376

T+W+FS 0.5102 0.4545 0.4005 0.3791 0.3877 0.4457 0.3399 0.3207

MBE

T – 3.6577 – 6.9277 – 3.6875 – 3.2315 – 2.4116 – 6.5239 – 2.9587 – 1.6527

T+W – 5.5026 – 7.9085 – 3.8388 – 3.4330 2.1807 – 12.0979 – 1.8587 – 1.7327

T+W+FS – 4.4165 – 3.4033 – 3.0715 – 2.3210 1.6262 – 6.6621 – 1.8006 -1.4497

Table 4.  Performance comparison on Lucknow dataset.

 

Metric Variant MLP SVR RF XGB AHELM TBLSSVR MHKLDMR EM-LR

MAE

T 3.4939 5.4019 3.5409 3.5686 3.2891 5.8344 3.7247 3.1295

T+W 3.4751 4.7037 3.6260 3.8020 4.3143 9.9660 4.5408 3.1530

T+W+FS 3.3823 3.8566 3.6643 3.7375 3.3577 5.7006 3.4765 3.1064

RMSE

T 4.6885 6.8488 4.8538 4.9119 4.2275 6.9429 4.6651 4.2251

T+W 4.7668 6.0298 4.9848 5.1385 5.8529 11.2331 5.9643 4.2890

T+W+FS 4.5576 5.1448 5.0053 5.0545 4.3494 7.2375 4.5425 4.2088

MAPE

T 0.6064 4.7768 0.5751 0.5841 0.4197 0.6325 0.4712 0.4199

T+W 0.6008 5.8697 0.6058 0.6480 0.2998 0.8185 0.4459 0.4387

T+W+FS 0.5472 1.4932 0.6185 0.6376 0.4791 0.5309 0.4725 0.4226

MBE

T – 1.8477 – 4.9832 – 2.3784 – 2.5247 – 1.5338 – 3.9967 – 1.7092 – 0.7667

T+W – 1.9244 – 3.4966 – 2.5995 – 2.8067 0.1807 – 9.9408 – 2.0068 – 0.9963

T+W+FS – 1.7471 – 1.8809 – 2.6064 – 2.6814 – 0.1909 – 5.3237 – 0.5884 – 0.8628

Table 3.  Performance comparison on Kanpur Nagar dataset.
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underscore EM-LR’s ability to deliver accuracy and robustness comparable to that of state-of-the-art specialized 
algorithms, without the added architectural complexity or loss of interpretability.

The MAE and MAPE results (Figs. 5 and 6) further reinforce EM-LR’s superior generalization. For every 
district, EM-LR exhibited the lowest absolute and percentage errors, signifying enhanced reliability and reduced 
overfitting across data variants (T, T+W, and T+W+FS). The most pronounced reductions were observed for the 
T+W+FS configuration, where EM-LR achieved MAPE values as low as 0.32 in Lucknow and 0.35 in Gorakhpur, 
outperforming all benchmark models by wide margins. These improvements affirm that feature selection (FS) 
synergistically enhances the ensemble’s stability and interpretability, especially when meteorological factors are 
integrated.

In addition to minimizing absolute errors, EM-LR effectively mitigated systematic bias. The MBE values 
show a bias reduction ranging from 37.5% (Lucknow) to 69.4% (Varanasi) relative to traditional regressors, 
demonstrating that the ensemble does not consistently under- or over-predict dispatch volumes. While SVR 
achieved the smallest bias for the Gorakhpur district, the EM-LR model remained competitive, yielding an 

Fig. 5.  MAE Comparison of Models across Districts.

 

Fig. 4.  RMSE Comparison of Models across Districts.
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MBE of –0.87, which is within a negligible deviation from the optimal bias margin. In all other districts, EM-LR 
achieved the lowest or nearly lowest MBE, underscoring its balanced predictive behavior.

In summary, EM-LR delivers consistent, interpretable, and bias-resilient forecasts across diverse operational 
environments. Its ensemble integration of linear, nonlinear, and tree-based learners allows it to outperform 
individual base models and contemporary regression alternatives. The uniform superiority of EM-LR across all 
four metrics highlights its scalability and generalizability for district-level EMS demand forecasting in resource-
constrained settings.

Statistical significance analysis
To evaluate the statistical reliability of the proposed EM-LR model’s superior forecasting performance, we 
employed a two-stage non-parametric evaluation based on the t-Friedman test proposed by Liu and Xu46, 
complemented by district-wise paired t-tests for local validation. This combination ensures both global and 
local statistical verification of EM-LR’s performance gains.

Global comparison using the t-Friedman test
The t-Friedman test is an improvement on the classical Friedman test by integrating Student’s t-tests into 
the ranking process, thereby accounting for both mean and variance across repeated runs. Algorithms with 
statistically indistinguishable distributions (at αt = 0.05) receive tied ranks, ensuring a variance-aware and 
conservative ranking.

Across the four districts and eight competing models on (T+W+FS) variant, the Iman–Davenport extension 
of the Friedman test produced an F7,21 value of 24.02 with a p-value of 3.86 × 10−7, decisively rejecting the null 
hypothesis of equal model performance. The resulting average t-Friedman ranks (Table 6) confirm that EM-LR 
consistently outperformed all benchmarks. A lower rank denotes better predictive accuracy (i.e., lower RMSE).

Model Average Rank Relative Order

EM-LR 1.125 1 (Best)

XGB 2.750 2

RF 2.875 3

SVR 3.875 4

MLP 5.125 5

AHELM 6.125 6

MHKLDMR 6.125 6

TBLSSVR 8.000 8 (Worst)

Table 6.  Average t-Friedman ranks of all models across districts (lower is better).

 

Fig. 6.  MAPE Comparison of Models across Districts.
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Post-hoc pairwise comparison
After rejecting the null hypothesis globally, we conducted pairwise comparisons between EM-LR (control) and 
each competing model using the t-Friedman post-hoc procedure. Three multiple-comparison corrections−
Holm, Finner, and Bonferroni-Dunn−were applied to control the family-wise error rate at α = 0.05. The 
adjusted results are shown in Table 7.

The Holm test confirmed that EM-LR is statistically superior to three advanced models−TBLSSVR, AHELM, 
and MHKLDMR−while the Finner correction additionally marked MLP as marginally inferior. Classical 
ensemble baselines such as XGB, RF, and SVR exhibited competitive but non-significant differences, reflecting 
smaller mean gaps and higher variance across districts.

District-wise validation
To complement the global non-parametric analysis, classical paired t-tests47 were also conducted between EM-
LR and each competing model using RMSE values from five random seeds within each district. These results, 
summarized in Table  8, reinforce the global findings: EM-LR achieved statistically significant (p < 0.05) 
improvements over nearly all baseline and advanced models in Agra, Gorakhpur, Kanpur Nagar, and Lucknow, 
while Varanasi showed a few non-significant results due to lower variance and more homogeneous data.

Overall, the t-Friedman analysis confirmed significant global differences among models, with EM-LR 
achieving the best average rank and statistically outperforming all advanced baselines under Holm correction. 
The complementary district-wise t-tests reinforced these results, verifying EM-LR’s consistent superiority across 
regions. Together, these analyses demonstrate that the proposed ensemble meta-learner delivers statistically 
significant, robust, and generalizable forecasting performance across diverse geographical contexts.

Feature importance analysis
Feature selection is essential in EMS demand forecasting, as it enhances model accuracy while minimizing 
redundancy and overfitting. In this study, two complementary approaches−SHAP (SHapley Additive 
exPlanations) and Pearson correlation analysis−were employed to identify the most influential predictors across 
districts. SHAP quantifies each feature’s marginal contribution to the model output, effectively capturing non-
linear and interaction effects, while correlation analysis highlights strong linear associations with EMS dispatch 
demand. The integration of both methods ensured that features with either direct or complex relationships were 
retained for subsequent modeling.

Feature selection was performed independently for each district to account for local variations in EMS 
patterns and meteorological behavior. The results revealed that Agra and Gorakhpur achieved optimal 
performance using correlation-based top features, whereas Lucknow, Kanpur Nagar, and Varanasi performed 
better with SHAP-based top-ten features. Figures 7, 8, 9, 10, 11 illustrate the ranked importance of features for 
each district.

Across all regions, historical EMS dispatch indicators consistently emerged as dominant predictors. Among 
the meteorological variables, temperature, dew point, wind speed, precipitation, and pressure showed a notable 
influence, whereas visibility and previous-day rainfall had a less significant impact. The presence of several non-
linear weather effects identified exclusively by SHAP underscores that meteorological factors influence EMS 
demand in a non-proportional manner.

Temporal variables (year, month, and weekday) exhibited moderate yet consistent relevance. The year 
variable was a significant predictor across all districts, while the month contributed primarily in Gorakhpur 
(Fig. 8) and the weekday in Kanpur Nagar (Fig. 9). These variations highlight district-specific temporal dynamics 
in EMS demand.

To statistically validate the benefits of feature selection, a paired t-test (Table  9) was conducted between 
the two variants of the EM-LR model, of those trained on all features (T+W) and those trained on selected 
features (T+W+FS), using five random seeds. The proposed EM-LR model exhibited statistically significant 
improvement (p < 0.05) in most districts, confirming that the reduced feature subset enhanced predictive 
performance without compromising generality.

Overall, feature selection improved both interpretability and statistical robustness of the proposed framework. 
The findings demonstrate that historical EMS trends and nonlinear meteorological interactions jointly govern 
ambulance dispatch demand.

Model z-stat p unadj.) Holm APV Significant (Holm)

TBLSSVR −3.969 7.2 × 10−5 5.0 × 10−4 Yes

AHELM −2.887 3.89 × 10−3 2.34 × 10−2 Yes

MHKLDMR −2.887 3.89 × 10−3 2.34 × 10−2 Yes

MLP −2.309 2.09 × 10−2 8.37 × 10−2 No (Finner only)

SVR −1.588 1.12 × 10−1 3.37 × 10−1 No

RF −1.010 3.12 × 10−1 6.25 × 10−1 No

XGB −0.938 3.48 × 10−1 6.25 × 10−1 No

Table 7.  t-Friedman post-hoc comparisons against the EM-LR control model.
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Robustness analysis
The models were examined across five random seeds for each district to evaluate the sensitivity of RMSE 
performance to data partitioning. The variance of RMSE was used as the robustness indicator, where lower 
variance implies greater stability. As shown in Table 10, 11, 12, 13, 14, the proposed EM-LR generally achieves 
the lowest or near-lowest variance across districts, indicating high consistency across varying data splits.

In Agra, EM-LR exhibited the most stable performance (variance = 1.59), closely followed by AHELM 
and MLP, whereas tree-based models, such as RF and XGB, displayed higher fluctuations (Table 10). Kanpur 
Nagar (Table 12) showed a similar trend, where EM-LR achieved the smallest variance (0.66), with AHELM 
and MHKLDMR performing competitively and outperforming SVR and RF. For Gorakhpur (Table  11), the 
differences among EM-LR (1.04), SVR (1.00), and AHELM (0.68) were marginal, suggesting that these models 
maintained comparable robustness, whereas TBLSSVR and RF exhibited greater sensitivity.

In Lucknow (Table  13), EM-LR (2.34) maintained higher stability than all other models, including the 
advanced variants, which showed noticeably larger variance under complex temporal patterns. In Varanasi 
(Table 14), the variances for MLP, SVR, AHELM, and MHKLDMR were relatively close, yet EM-LR still achieved 
the lowest variance (0.30), confirming its consistent generalization.

Overall, while models such as AHELM and MLP occasionally approached EM-LR in robustness, the 
proposed ensemble remained the most reliable and balanced performer across all five regions. Its consistent low 
variance across both traditional and advanced benchmarks underscores its robustness and practical suitability 
for EMS demand forecasting under diverse operating conditions.

Model District t-statistic p value Significance

SVR Agra 8.921 0.0277 Yes

Gorakhpur 7.462 0.0343 Yes

Kanpur Nagar 6.987 0.0428 Yes

Lucknow 7.119 0.0253 Yes

Varanasi 1.036 0.3953 No

MLP Agra 7.533 0.0267 Yes

Gorakhpur 8.125 0.0335 Yes

Kanpur Nagar 8.004 0.0329 Yes

Lucknow 10.971 0.0016 Yes

Varanasi 1.502 0.2349 No

XGB Agra 11.364 0.0012 Yes

Gorakhpur 9.971 0.0015 Yes

Kanpur Nagar 8.563 0.0043 Yes

Lucknow 9.201 0.0023 Yes

Varanasi 2.033 0.0598 No

RF Agra 15.065 0.000113 Yes

Gorakhpur 18.874 0.000046 Yes

Kanpur Nagar 51.457 0.000001 Yes

Lucknow 2.250 0.0876 No

Varanasi 30.349 0.000007 Yes

AHELM Agra 23.985 0.000018 Yes

Gorakhpur 7.507 0.001685 Yes

Kanpur Nagar 10.338 0.000494 Yes

Lucknow 6.926 0.002281 Yes

Varanasi 6.243 0.003355 Yes

MHKLDMR Agra 2.444 0.0709 No

Gorakhpur 2.610 0.0594 No

Kanpur Nagar 2.528 0.0648 No

Lucknow 2.538 0.0642 No

Varanasi 2.857 0.0461 Yes

TBLSSVR Agra 7.519 0.001675 Yes

Gorakhpur 8.971 0.000855 Yes

Kanpur Nagar 9.370 0.000723 Yes

Lucknow 7.073 0.002108 Yes

Varanasi 8.076 0.001277 Yes

Table 8.  Paired t-test results between EM-LR and benchmark models across districts.
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Conclusion
This study proposed EM-LR, a robust and interpretable meta-learning ensemble framework for forecasting 
Emergency Medical Services (EMS) demand. Addressing the limitations of conventional ensemble and single-
learner models, EM-LR integrates the complementary strengths of Support Vector Regression, Lasso, Multilayer 
Perceptron, and Extreme Gradient Boosting through a Linear Regression meta-learner. This architecture offers 
a balanced trade-off between predictive accuracy, variance reduction, and interpretability, essential features for 
real-time public health decision-making.

Empirical evaluation across five districts in Uttar Pradesh demonstrated that EM-LR consistently 
outperformed all traditional baselines in terms of both RMSE and variance, achieving up to 20% lower prediction 
error and over 40% variance reduction compared to the best standalone learners. When benchmarked against 
recent advanced models such as AHELM, TBLSSVR, and MHKLDMR, EM-LR continued to exhibit comparable 
or superior robustness while maintaining greater accuracy, underscoring the advantage of its meta-learning 

Fig. 8.  Feature importance analysis for Gorakhpur District.

 

Fig. 7.  Feature importance analysis for Agra District.
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design. Statistical validation using the Friedman and post-hoc tests further confirmed the significance of these 
improvements, establishing EM-LR as a statistically reliable framework for EMS forecasting.

An in-depth feature analysis using SHAP and Pearson correlation revealed that historical dispatch patterns 
are the most influential predictors, with meteorological and temporal features offering modest incremental 
gains. This insight reinforces the importance of operational history in short-term EMS forecasting and suggests 
that weather-based complexity may not always translate to predictive power.

Overall, EM-LR emerges as a practical, transparent, and statistically validated solution for forecasting EMS 
demand. Its ability to deliver low-error, low-variance predictions without resorting to opaque deep learning 
architectures makes it a scalable and actionable tool for emergency management agencies. Future work will 
focus on deploying EM-LR across more districts and integrating probabilistic extensions to account for demand 
uncertainty and dynamic temporal shifts.

Fig. 10.  Feature importance analysis for Lucknow District.

 

Fig. 9.  Feature importance analysis for Kanpur Nagar District.
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Fold MLP SVR RF XGB AHELM TBLSSVR MHKLDMR EM-LR

1 4.68 4.28 3.94 3.88 5.55 11.45 6.02 3.89

2 5.56 6.41 5.55 5.41 5.71 11.68 6.25 5.20

3 7.40 6.56 7.91 7.16 5.76 11.91 6.42 6.52

4 5.50 5.41 6.37 5.95 5.62 12.02 6.46 5.39

5 4.52 4.76 4.56 4.55 5.82 12.22 6.25 4.33

Variance 1.31 1.00 2.44 1.61 0.68 1.14 1.02 1.04

Table 11.  Variance of RMSE across different models for the Gorakhpur dataset.

 

Fold MLP SVR RF XGB AHELM TBLSSVR MHKLDMR EM-LR

1 2.67 5.88 2.83 2.67 4.18 5.34 4.02 2.60

2 4.23 5.97 3.92 3.80 4.33 5.71 4.15 3.76

3 6.48 9.96 8.55 8.37 4.54 6.01 4.49 5.97

4 4.69 7.84 5.99 5.97 4.36 6.32 4.82 4.11

5 3.25 4.23 3.30 3.38 3.99 5.96 3.95 3.33

Variance 2.16 4.80 5.57 5.43 1.92 3.77 2.61 1.59

Table 10.  Variance of RMSE across different models for the Agra Dataset.

 

District t-statistic p value Significance

Agra 3.04 0.028 Yes (p < 0.05)

Kanpur Nagar 2.86 0.034 Yes (p < 0.05)

Gorakhpur 3.22 0.024 Yes (p < 0.05)

Lucknow 2.93 0.031 Yes (p < 0.05)

Varanasi 1.84 0.112 No (marginal)

Table 9.  Paired t-test results for EM-LR model under All-Features and Feature-Selected configurations.

 

Fig. 11.  Feature importance analysis for Varanasi District.
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