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Accurate and robust forecasting of Emergency Medical Services (EMS) demand is crucial for ensuring
timely ambulance dispatch and efficient resource allocation, particularly in low-resource public
health systems, such as those in India. While most prior EMS forecasting studies have focused

on urban settings in developed countries with rich, granular data, limited research has explored
district-level forecasting using real-world ambulance dispatch data from India. Moreover, existing
models often trade off robustness for accuracy or rely on complex black-box architectures, limiting
their interpretability and real-world deployment. This study examines whether a heterogeneous
ensemble of interpretable and complementary learners can outperform traditional and state-of-
the-art regressors for district-level EMS forecasting, utilizing limited real-world features. To address
this challenge, we propose EM-LR (Ensembled Meta-Learner with Linear Regression), a meta-
learning framework that integrates four diverse base models-Lasso Regression, Support Vector
Regression (SVR), Multilayer Perceptron (MLP), and Extreme Gradient Boosting (XGB)-via a linear
regression meta-learner. Unlike prior meta-learners that stack similar tree-based or linear models,
EM-LR combines low-variance, diverse learners to enhance robustness while maintaining model
interpretability through SHAP-based feature analysis and transparent ensemble weights. Using only
temporal and meteorological inputs, EM-LR forecasts daily EMS call volumes across five diverse
districts in the state of Uttar Pradesh. We benchmark EM-LR against traditional models and recent
advanced variants, including Twin Bounded Least Squares Support Vector Regression (TBLSSVR),
Asymmetric-Huber based Extreme Learning Machine (AHELM), and Mexican-Hat Kernelized Large
Margin Distribution Machine-based Regression (MHKLDMR), demonstrating superior accuracy and
reduced prediction variance. Experimental results show up to 9.5% reduction in RMSE and over 40%
variance reduction. EM-LR thus offers a scalable and interpretable forecasting solution tailored to
the operational constraints of developing public health systems, supporting data-driven emergency
planning and equitable healthcare delivery.

Keywo rds Ensemble model, Lasso regression, Artificial neural network, Extreme gradient boosting, Robust
ML, Support vector regression, SHapley Additive Explanations (SHAP), Interpretable machine learning,
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Background and motivation

Emergency Medical Services (EMS) are an important component of the public health infrastructure, providing
critical and often life-saving assistance in medical emergencies. A responsive and effective EMS system ensures
timely care, which directly impacts patient survival rates, especially in trauma and critical care situations.
However, EMS systems worldwide, including in low-resource settings such as India, are under increasing
pressure due to increased population densities, evolving healthcare demands, and limited resources.
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India, in particular, faces unique challenges in EMS planning and delivery. Many districts lack real-time
surveillance systems, reliable demand data, or optimized protocols for ambulance allocation. Ambulance
response times vary significantly across regions, often due to poor anticipation of demand patterns. In such
contexts, district-level EMS demand forecasting becomes a critical planning tool for efficient ambulance
deployment and equitable resource allocation. However, research on EMS forecasting in India remains limited,
with few studies utilizing real-world ambulance dispatch data at the district level.

Given the critical role of predictive systems in equitable EMS planning, response time—the interval between call
receipt and ambulance arrival-has emerged as a core performance metric. Accurate demand forecasting enables
timely resource deployment, and numerous studies have leveraged it to guide dynamic ambulance allocation
aimed at minimizing delays and improving prehospital care efficiency' ™. Various EMS demand studies aim to
reduce this response time. The two solutions entail forecasting ambulance demand to meet needs and optimizing
ambulance distribution. Comprehensive studies have been conducted on dynamic ambulance allocation
models to improve real-time EMS resource management. These models focus on the ongoing redistribution
of ambulances in response to fluctuating demand, ensuring optimal coverage across various regions. Recently,
several studies have focused on the planning and deployment of ambulances!2. For instance, Yaseen, Alkhalidi,
and Raweshidy® proposed a machine learning and SDN-based system for prioritizing SHE traffic flows. Liu, Li,
and Zhang!® developed a robust optimization model for the optimal distribution of EMS stations. The model
aims to optimize the number of ambulances and demand assignments in the EMS system while minimizing
the anticipated overall cost. Amorim, Antunes, Ferreira, and Couto!! proposed an approach to EMS resource
allocation that improves patient outcomes by combining a mathematical model with a metamodel-based local
search technique. Although such methods accelerate response and improve coverage, their effectiveness depends
fundamentally on accurate and robust demand forecasting models that can anticipate call volumes under varying
regional and temporal conditions.

Forecasting EMS demand helps estimate expected call volumes and temporal fluctuations, forming the
foundation of operational planning. Different forecasting horizons serve distinct purposes. Short-term (minute-
to-hourly) forecasts are valuable for dynamic ambulance routing and real-time dispatch optimization, while
daily-level forecasts are essential for staff scheduling, ambulance station planning, and day-ahead readiness—
particularly relevant in data-scarce, low-flexibility systems like those in many Indian districts. Long-term
(monthly) forecasts, in contrast, aid in infrastructure and budget planning. Figure 1 illustrates the operational
relevance of different forecasting horizons in EMS planning.

Over the years, EMS demand modeling has evolved from traditional statistical techniques to advanced
machine learning (ML) frameworks. The regression models'>-?* have been used extensively to study the influence
of several contextual variables on explaining fluctuations in EMS demand. Time series forecasting models??~%°
rely on historical patterns of demand, along with contextual variables?!. Graph-based convolutional networks?,
and spatio-temporal methods?” have also been proposed to address EMS demand and to enhance resource
allocation and emergency response times. Recent advancements in machine learning (ML) have significantly
improved the accuracy of EMS demand predictions. Various studies?®3* have recently used ML techniques
extensively to predict EMS demand both temporally and spatio-temporally. For instance, Grekousis and Liu
introduced a new three-level spatial-based artificial intelligence approach to forecast ambulance demand in
emergency medical services. The method locates expected emergency events geographically, enabling better
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Fig. 1. Forecasting horizon and its implications in EMS demand prediction.
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resource allocation and faster response times. Abreu et al.?’ introduced a data-driven forecasting method to

facilitate emergency medical services (EMS) operational decision-making. This method surpasses the limitations
of conventional forecasting techniques, enabling the healthcare industry to allocate resources more effectively.
Martin, Mousavi, and Saydam30 employed an ensemble-based decision tree model for feature selection, followed
by a multilayer perceptron (MLP) artificial neural network model to generate daily, hourly, and spatially
distributed predictions of EMS call volume.

Recent advancements in machine learning (ML) have significantly improved the accuracy of EMS demand
predictions. While accuracy is a critical metric for predictive models, robustness is equally important, as it
defines the model’s ability to deliver consistent results under varying conditions, especially in critical domains
such as EMS demand forecasting. Many advanced ML models demonstrate high accuracy but exhibit significant
variance across folds or datasets, undermining their reliability. Additionally, many models operate as “black
box” systems, providing limited insight into their decision-making processes. In critical fields such as healthcare,
interpretability and robustness are essential for fostering trust, enabling accountability, and providing accurate
predictions. This study addresses the triple challenge of accuracy, robustness, and interpretability by proposing
EM-LR (Ensembled Meta-Learner with Linear Regression), a SHapley Additive Explanations (SHAP)* featured
meta-learning framework designed to prioritize robustness and interpretability while maintaining competitive
accuracy. By carefully curating a set of diverse, stable base models, EM-LR addresses the limitations of single-
model approaches and mitigates the destabilizing effects of high-variance predictors. Additionally, SHAP
provides a global and local explanation of feature importance, ensuring that the selected features contribute
meaningfully to the predictions.

Meta-learning is an approach in machine learning that focuses on optimally combining predictions from
multiple base models to enhance overall performance. It has been successfully applied in various domains,
including speech recognition, energy forecasting, and natural language processing. In the context of emergency
medical services (EMS), prior studies by Ramgopal et al.*® and Megouo et al.’” have explored meta-learning
frameworks to forecast EMS dispatches. However, these studies predominantly rely on stacking similar types
of base learners, such as generalized linear models, generalized additive models, and tree-based algorithms like
Random Forest (RF) and Extreme Gradient Boosting (XGB). For instance, Decision Trees and RF are also used
in the ensemble models proposed in®®. This lack of model diversity can lead to overfitting and instability, as
similar models tend to produce highly correlated predictions®. Moreover, these frameworks are often designed
for data-rich environments, limiting their adaptability to regions with sparse data availability. These limitations
highlight the need for a robust, interpretable, and generalizable meta-learning ensemble that can perform
effectively even in data-scarce EMS settings.

Research gap and study contributions

While ensemble methods have demonstrated strong results in domains such as finance, energy, and NLP, their
application to EMS forecasting remains limited, particularly in developing countries. Existing EMS forecasting
studies often depend on rich spatial, demographic, or hospital-level variables that are rarely available in public
health datasets. Furthermore, past meta-learners have tended to stack similar base models (e.g., tree-based or
boosting methods), which increases the risk of overfitting and correlated prediction errors®®.

This study investigates whether a heterogeneous, low-variance meta-learning ensemble can achieve
accuracy comparable to advanced nonlinear regressors—such as the Asymmetric-Huber Loss function-based
ELM (AHELM)?*’, Twin Bounded Least Squares Support Vector Regression (TBLSSVR)*’, and Mexican-Hat
Kernelized LDMR (MHKLDMR)*'~while maintaining computational efficiency and partial explainability
through feature-level insights. The central research question is: "Can a diverse ensemble of complementary
learners forecast daily district-level EMS demand as effectively as complex state-of-the-art models, using only
minimal temporal and meteorological features, while ensuring robustness and generalizability in data-scarce
environments?”

To this end, we propose EM-LR (Ensembled Meta-Learner with Linear Regression), which strategically
combines four diverse base learners—Lasso Regression??, Support Vector Regression (SVR)*, Multilayer
Perceptron (MLP)*, and Extreme Gradient Boosting (XGB)*-within a meta-learning framework. These
models were chosen for their complementary strengths in handling linearity, nonlinearity, regularization, and
structured data. A linear regression meta-learner aggregates its predictions to enhance robustness and maintain
model transparency at the ensemble level. SHAP-based feature analysis further strengthens interpretability by
identifying key temporal and meteorological drivers of EMS demand.

Key contributions of this study are as follows:

« Contextual novelty: This study is one of the first district-level EMS forecasting models tailored to India’s
public health system, utilizing real-world ambulance dispatch data and only minimal features (e.g., day of the
week, temperature, humidity, wind speed).

« Algorithmic innovation: We propose EM-LR, a novel heterogeneous meta-learning ensemble that stacks
four diverse base learners—spanning linear, kernel, neural, and tree-based paradigms—and integrates them
through a transparent linear regression meta-learner. Unlike past EMS meta-learners that rely on homoge-
neous tree ensembles, EM-LR reduces overfitting and prediction correlation while improving interpretability
and robustness®%,

« Benchmarking against recent models: We rigorously benchmark EM-LR against both traditional models
and recent state-of-the-art regressors such as TBLSSVR, AHELM, MHKLDMR to demonstrate performance
gains and variance reduction.
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« Explainability via feature analysis integration: We incorporate SHAP- and correlation-based feature rele-
vance analysis within the meta-learning pipeline, enabling transparent understanding of how each temporal
and weather variable influences EMS demand.

« Practical deployability and generalization: EM-LR demonstrates strong generalization performance across
five demographically diverse districts, despite relying only on minimal temporal and meteorological inputs.
This robustness across varied local conditions makes it a promising and scalable forecasting solution for EMS
planning in real-world, data-scarce public health settings.

The remainder of this paper is structured as follows: The "Methods” section details the EM-LR methodology, the
“Experimental Setup” section presents the dataset and experimental design, next, the "Results and Discussion”
section presents performance findings and feature-level insights, and the “Conclusion” section concludes the
study.

Methods

Study area

Uttar Pradesh (UP), India’s most populous state, faces significant challenges in managing Emergency Medical
Services (EMS) due to its geographical diversity and socio-economic conditions. This study examines
five districts—Lucknow, Agra, Kanpur Nagar, Varanasi, and Gorakhpur—selected to represent the diverse
characteristics of UP.

Lucknow

Lucknow, the capital of Uttar Pradesh, has a humid subtropical climate. During the study period, Lucknow
experienced extremely hot summers, with temperatures reaching as high as 51 °C. Winters were cool, with
temperatures dropping to around 15 °C. The monsoon season brought an average daily rainfall of about 5 mm;
the highest recorded rainfall during the study period was 180 mm. Regarding EMS dispatch, the minimum daily
dispatch was 0, while the maximum daily demand reached 85. On average, 13 EMS units were dispatched daily
during this period.

Agra

Agra has a semiarid climate characterized by distinct summer, monsoon, and winter seasons. Summers were
hot and dry, with temperatures as high as 49 °C during the study period. Winters were cool, with temperatures
dropping to around 4 °C. The average daily rainfall in Agra during the study period’s monsoon season was 4.4
mm, with the highest recorded rainfall at 119.7 mm. Regarding EMS dispatch, the minimum daily dispatch was
0, while the maximum daily demand reached 36. On average, 6 EMS units were dispatched each day during this
period.

Kanpur Nagar

Kanpur is situated on the banks of the Ganges River and thus has a humid subtropical climate, characterized by
hot and dry summers. During the study period, the districts summer temperature was as high as 51 °C. Winters
were cooler, with temperatures dropping to around 19 °C. During the monsoon season in the study period,
Kanpur experienced an average daily rainfall of 4.1 mm, with the highest recorded rainfall reaching 108 mm.
Regarding EMS dispatch, the minimum daily dispatch in Kanpur was 0, indicating days with no emergency
demands. However, the maximum daily demand reached 41. On average, 8 EMS units were dispatched each day
during this period.

Varanasi

Varanasi is in the northern part of Uttar Pradesh and is also located on the banks of the Ganges River. It has
hot and humid summers, with temperatures soaring to 51 °C. Winters in Varanasi bring cooler temperatures,
dropping to around 18 °C. During the study period, Varanasi experienced an average daily rainfall of 6.54 mm
during the monsoon season, with the highest recorded rainfall reaching 89.5 mm. Regarding EMS dispatch, the
minimum daily dispatch in Varanasi was 0, indicating that there were no emergency demands on those days.
However, the maximum daily demand reached 24. On average, 5 EMS units were dispatched each day during
this period.

Gorakhpur

Gorakhpur is a district in the northeastern part of Uttar Pradesh. It has hot and humid summers, with
temperatures soaring up to 48 °C. Winters in Gorakhpur bring cooler temperatures, dropping to around 17 °
C. During the study period, Gorakhpur experienced an average daily rainfall of 1.68 mm during the monsoon
season, with the highest recorded rainfall reaching 90.4 mm. Regarding EMS dispatch, the minimum daily
dispatch in Gorakhpur was 0, indicating that there were no emergency demands on those days. However, the
maximum daily demand reached 51. On average, 11 EMS units were dispatched each day during the study
period.

Proposed framework

The EM-LR framework (Fig. 2) follows a structured pipeline for EMS demand forecasting. Initially, temporal,
meteorological, and historical EMS features are extracted based on prior studies. Feature selection is performed
using Pearson correlation and SHAP to identify the most relevant predictors. To assess the incremental value
of weather features and feature selection, three model variants are constructed: (i) T using only temporal and
historical EMS data, (ii) T+W adding all meteorological features, and (iii) T+W+FS incorporating only the top
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Fig. 2. Flow chart of the proposed work.

ten SHAP- and Pearson-ranked features. Each configuration is evaluated to understand trade-offs in performance
and complexity. Building upon these, the final EM-LR model ensembles four diverse base learners: Lasso
Regression, Support Vector Regression (SVR), Multilayer Perceptron (MLP), and Extreme Gradient Boosting
(XGB), using Linear Regression as a meta-learner to capture complementary learning patterns. The optimization
of the model’s structure was achieved through the process of hyperparameter tuning. Subsequently, the proposed
model was validated using EMS demand data obtained from five discrete locations in Uttar Pradesh, India. The
study conducted a comparative analysis of the model’s performance against state-of-the-art persistence models
and other machine learning models, including Support Vector Regression (SVR), Random Forest (RF), Extreme
Gradient Boosting (XGB), and Multilayer Perceptron (MLP).

The study’s methodology underwent rigorous testing and was subjected to a 5-fold cross-validation process
to establish the accuracy and reliability of the proposed EM-LR model in predicting EMS demand across
different districts. To achieve this, the dataset was partitioned into a training set, a validation set, and a test set.
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The first four years of data served as the training set, the fifth year’s data as the validation set, and data from the
last year of the study period as the test set. The base models are trained with the help of the training set. The
validation set compares the performance of different model structures by hypertuning their parameters, such as
the regularisation parameter in SVR and Lasso Regression, the optimal number of heights in the XGB, and the
number of hidden units in the MLP model. The error rate of the proposed model was measured using the test
set. Lasso Regression, MLP, SVR, and XGB each receive the same training data, as shown in Fig. 3. The Linear
Regression, which serves as a meta-learner, takes the predicted values of each base model as input. The final
result is thus the weighted average of the results from the individual base models.

The input vector consists of three sets of features: meteorological, temporal, and EMS historical features.

Let the meteorologlcal features be denoted as x™ = [z]", 25", ..., x5 ], the temporal features be denoted as
x' =[x}, x5,..., %], and the EMS historical features be denoted as x" = [z}, 5, ..., nh] The input vector

can then be written as:
X =[x" X" X" (1)

Our objective is to create a function that can forecast the EMS demand for the next day, denoted as ¢ + 1. This
prediction will be based on the feature vector of meteorological conditions, time-related factors, and historical
data on EMS parameters. Mathematically, the function can be expressed as follows:

Yoy = F(X)e = P(X]", X[, X{') @)
Yi+1 denotes the predicted EMS demand at day ¢ + 1, and F(+) is the function that maps the input features

to the predicted EMS demand. This function F'(-) takes the predictions of the 4 base models and can be denoted
as:

F(X)t = [flr(X)t fSW(X)t fmlp(X)t fmgb(X)t} (3)

Where fir(X), fsom(X), fmip(X), fegs(X) denote the predictions of the 4 base models, namely Lasso
Regression, SVR, MLP, and XGB. The detailed description of these functions is as follows:

flr(X) fl’r(Xt ,Xt7Xt)

fsvr(X)t 'r‘(Xt ,Xt7Xt)
g @)

fmlp(X)t P(Xt >Xt7Xt)

fng(X)t (Xt >Xt7Xth)

These predictions from base models go to the linear regressor as 4 input vectors. The linear regressor assigns
weights to each of these four input vectors and makes the final prediction as follows:
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Fig. 3. Framework of the proposed EM-LR model.
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F(X)t = wo + w1 - flr(X) + we - fsvr(X) + ws - fS’U’V‘(-X) + wy - fng(X) (5)

Where w; denotes the weights assigned to each of the four base models. The linear regressor optimizes these
weights using a cost function that calculates the square of the sum of the differences between the actual EMS
demand and the predicted EMS demand. Mathematically, the cost function can be expressed as:

4

4
1
Cost(w) = 3 Z(y — yfi)Q + A Z w? (6)
j=1

=1

Here Cost(w) is the cost function, y is the actual EMS demand, gjis the predicted EMS demand for each of the
four base models, and A is the regularization parameter.

Experimental setup

Data source

The data for this study comes from two sources. The EMS dispatch data was obtained from the GVK-Emergency
Management Research Institute in Lucknow, which operates the 108 Ambulance Service” across UP, providing
daily dispatch counts for the five districts. Meteorological data was sourced from the World Weather Online
API, including variables such as temperature, precipitation, dew point, pressure, visibility, and wind speed. These
weather factors are critical in capturing the environmental influences on EMS demand.

To develop robust EMS demand prediction models, the data underwent preprocessing. Temporal features such
as year, month, weekday, and weekend indicators were extracted to capture time-based trends. Meteorological
variables were averaged over the preceding seven days to account for lagged effects. Historical EMS dispatch data
was included by calculating the average dispatches over the previous seven days and counts from days lagged by
14, 21, and 28 days, capturing short- and long-term trends.

Performance evaluation metrics

The forecasting performance of all models was evaluated using four widely adopted error metrics: Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), Mean Bias Error (MBE), and Mean Absolute Percentage Error
(MAPE). These measures collectively capture both the magnitude and direction of prediction errors, enabling a
balanced assessment of model accuracy and stability.

MAE and RMSE quantify average deviation and error dispersion, respectively, while MBE indicates systematic
bias (under- or over-prediction). MAPE expresses the relative percentage error, facilitating intuitive comparison
across districts with varying EMS call volumes. All metrics were computed on the test sets for each district, and
lower values indicate superior predictive performance and generalization.

Hyperparameter tuning of baseline and benchmark models

To rigorously evaluate our forecasting framework, we implemented a suite of machine learning models,
categorized as either base learners for the proposed ensemble meta-learner (EM-LR) or as comparative
benchmark models. The evaluation includes four base learners, including SVR, XGB, MLP, and Lasso Regression.
We further benchmarked EM-LR against both traditional and recent advanced variants, including Random
Forest (RF), Twin Bounded Least Squares Support Vector Regression (TBLSSVR), Asymmetric-Huber based
Extreme Learning Machine (AHELM), and Mexican-Hat Kernelized Large Margin Distribution Machine-based
Regression (MHKLDMR). Each model underwent grid search-based hyperparameter tuning to ensure optimal
configuration. All experiments employed a consistent train—test split (2013-2017 for training, 2018 for testing),
followed by 5-fold cross-validation. Model performance was assessed using four standard evaluation metrics:
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE),
and Mean Bias Error (MBE). A brief description of each model and its corresponding hyperparameter search
space is provided below.

Lasso regression

It is a statistical method that utilizes linear regression with L1 regularization to model the relationship between
predictor variables and EMS demand. It works by reducing the regression coefficients of the predictor variables
until they reach zero, thereby decreasing the impact of unnecessary or redundant variables and encouraging
sparsity in the final model. The values taken for the grid search are as follows:

« fit intercept= [1, 0]
« alpha=[0.005, 0.01, 0.03, 0.05, 0.07, 0.1]

Multilayer perceptron (MLP)

MLP is a neural network composed of many layers of connected neurons, each performing a non-linear change
on its input. It was selected for its ability to model nonlinear patterns. The hyperparameters of an MLP that have
been tuned are the number of hidden layers, the parameter «, and the activation function. The alpha parameter
regulates the regularization intensity, while the size of the hidden layer determines the number of neurons
present in each layer. The activation parameter specifies the activation function for each layer. The values taken
for the grid search for these hyperparameters are as follows:

« hidden layer size= [(24,), (36,), (14,), (14,10), (14,5), (14,14), (24,24), (24,12), (36,24), (36,12)]
o alpha= [1678, 1le™7,1e7 %, 17, 174, 1673]
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« activation= [relu, identity, tanh]

Support Vector Regression (SVR)

The SVR algorithm is a Support Vector Machine (SVM) version specific for regression tasks. It works by locating
the hyperplane that preserves a maximum margin while permitting a specific deviation (specified by the epsilon
parameter) from the real target values. SVR is included to capture nonlinear relationships with controlled
flexibility. The three hyperparameters tuned in the study are “fit_intercept’, ”C,” and ”¢”. The ’fit_intercept’
parameter determines whether the model should include an intercept term in the regression equation, the ’e’
parameter establishes the margin of error permitted in the model’s predictions, and the ’C’ parameter manages
the trade-off between obtaining a good fit on the training data and preventing overfitting. The following values
were used to fine-tune these hyperparameters:

. €=[8,9,10,11,12,13, 14]
« fit_intercept = [0,1]
« C=33, 34,35, 36, 37, 38, 39, 40, 41]

Extreme Gradient Boosting (XGB)

XGB is a member of the gradient boosting family. It sequentially constructs an ensemble of weak prediction
models, typically decision trees, where each successive model is trained to correct the errors made by the previous
models. The final forecast is derived by combining the forecasts of all weak models. Four hyperparameters were
chosen to tune the XGB model. First is the 'n_estimators’ parameter, which determines the number of trees in
the ensemble and influences model performance and training time. The second is subsample; which refers to
the fraction of samples used for training each tree. A lower value reduces the risk of overfitting but may also
reduce performance. The eta’ hyperparameter, also known as the learning rate, determines the step size when
modifying the weights; a smaller value results in more stable convergence. Lastly, the gamma hyperparameter
controls the minimal loss reduction necessary to split a leaf, with a higher value resulting in more conservative
tree construction. The values taken to tune these hyperparameters were

 n_estimators = range(70, 140, 10)
 subsample = [0.5, 0.75, 1]

o eta=[0.01,0.05,0.1,0.2,0.3, 0.4]
o gamma = range(150, 310, 10)

Random Forest (RF)

RF is a robust ensemble tree-based model used for EMS forecasting. We tuned three key hyperparameters via
grid search: the 'n_estimators’ parameter, which specifies the total number of trees; the ‘min_sample_split’
parameter, which specifies the minimum number of samples necessary to split a node; and the ‘max_features’
parameter, which specifies the maximum number of features to be randomly selected while the tree is being
grown. The range of values used for hyperparameters in the grid search:

« n_estimators = range(300, 500, 25)
o min_sample_split’ = [2, 3,4, 5,6, 7]
« max_features = [log2, sqrt]

Asymmetric Huber loss function-based Extreme Learning Machine (AHELM)

AHELM is a robust variant of the Extreme Learning Machine (ELM) that replaces the standard mean-square
error loss with an “asymmetric Huber loss” to improve generalization and resilience to outliers. It combines the
fast training of ELM with the robustness of Huber regression by introducing a tunable threshold parameter, 6,
that controls the transition between quadratic and linear loss regions. A regularization coefficient o penalizes
excessively large output weights, improving stability. The tuned hyperparameters were:

« activation = [‘sigmoid;, ‘tanh) ‘relu’]
o n_hidden = 25, 50, 75, 100, 150]

o delta = [0.25, 0.5, 0.75, 1.0]

« alpha =[0.001, 0.01, 0.1, 0.5, 1.0]

o learning rate = [0.001, 0.01, 0.05]

Twin Bounded Least Squares Support Vector Regression (TBLSSVR)
TBLSSVR minimizes two smaller least-squares problems to achieve improved computational efficiency and
reduced training complexity compared to traditional SVR. The tuned hyperparameters were:

« C1=[0.01,0.1, 1.0, 5.0, 10.0]

« C2=1[0.01,0.1, 1.0, 5.0, 10.0]

« epsilon = [0.001, 0.01, 0.05, 0.1]
o kernel = [‘linear, ‘rbf’, ‘poly’]

« gamma = [0.01, 0.05, 0.1, 0.5]

Mexican-Hat Kernelized Large Margin Distribution Machine-based Regression (MHKLDMR)
MHKLDMR integrates a localized dual model regression framework with a Mexican Hat wavelet kernel to
capture nonlinear and oscillatory patterns in EMS demand. The following parameters were grid-searched:
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Metric | Variant | MLP SVR RF XGB AHELM | TBLSSVR | MHKLDMR | EM-LR
T 3.3920 5.0563 3.9058 3.7389 3.6023 5.8124 3.9088 3.0752
MAE | T+W 4.4666 4.8158 4.2538 3.8997 3.3605 7.9416 3.7198 3.1322
T+W+ES | 3.3112 5.5833 3.8269 3.7389 3.6051 4.5064 3.5717 3.0757
T 4.3928 6.2108 4.9953 4.8379 4.2627 6.9123 4.4165 3.9661
RMSE | T+W 5.6049 5.9812 5.3699 4.9810 4.1316 9.0377 4.6631 4.0326
T+W+ES | 4.2632 6.7767 49172 4.8379 4.2209 5.6678 4.2049 3.9544
T 0.6614 4.7473 0.7117 0.6417 0.5221 0.7843 0.5697 0.4361
MAPE | T+W 4.5873 6.3469 0.8702 0.7000 0.4486 0.7652 0.5359 0.4445
T+W+ES | 0.5413 6.2817 0.6839 0.6417 0.4681 0.5134 0.4490 0.4274
T -2.0343 | - 3.5715 | -2.9414 | -2.6799 | -2.1014 | -4.8027 -2.3009 -0.8676
MBE T+W —-3.9748 | -3.5624 | - 3.5121 | -2.8449 | - 0.4193 | -7.9280 0.2179 -0.9173
T+W+ES | - 1.6496 | - 4.5166 | —2.8188 | - 2.6799 | -0.3573 | -4.0181 -0.8363 -0.7192

Table 1. Performance comparison on Agra dataset.

Metric | Variant | MLP SVR RF XGB AHELM | TBLSSVR | MHKLDMR | EM-LR
T 4.3877 4.0758 4.0317 3.9456 4.1128 6.7223 4.2055 3.8053
MAE | T+W 4.7240 4.3097 4.3090 4.0221 4.7634 12.5260 5.4934 3.7887
T+W+ES | 4.2221 4.2033 4.1490 4.0183 4.6484 9.7459 4.9697 3.7782
T 5.7866 5.3572 5.4953 5.2618 5.4481 8.8019 5.5822 5.1590
RMSE | T+W 6.2884 5.5902 5.8788 5.4068 5.8566 14.1909 6.7185 5.0805
T+W+ES | 5.5310 5.4841 5.6678 5.3878 5.7280 11.8620 6.2375 5.0663
T 0.5169 0.5125 0.4041 0.3747 0.3459 0.5664 0.3853 0.3599
MAPE | T+W 0.6304 0.7025 0.4609 0.3894 0.3596 0.7659 0.3617 0.3515
T+W+ES | 0.4397 0.3485 0.4310 0.3873 0.3496 0.5779 0.3475 0.3451
T —-2.1456 | - 0.7668 | —2.1156 | - 1.0972 | - 1.6073 | - 4.3864 -1.8672 -1.2017
MBE T+W -3.1138 | - 1.1444 | - 2.8270 | - 1.6349 | -0.6711 | -12.4721 |-2.6222 -1.0314
T+W+ES | - 1.2770 | 0.7037 —2.4792 | - 1.6433 | - 0.9630 | -9.4472 -1.2275 -0.8744

Table 2. Performance comparison on Gorakhpur dataset.

« C1=1[0.01,0.1, 1.0, 5.0]
« C2=1[0.01,0.1, 1.0, 5.0]
« epsilon = [0.001, 0.01, 0.05, 0.1]
« sigma =[0.25,0.5, 1.0, 2.0, 3.0]

Results and discussion

This section presents and compares the results of proposed EM-LR with various machine learning models,
including traditional models including Extreme Gradient Boosting (XGB), Multi-layer Perceptron (MLP),
Random Forest (RF), and Support Vector Regression (SVR), with the benchmark method P-Persistence and
the recent advanced variants, including Asymmetric Huber loss function-based Extreme Learning Machine
(AHELM), Twin Bounded Least Squares Support Vector Regression (TBLSSVR), and Mexican-Hat Kernelized
Large Margin Distribution Machine-based Regression (MHKLDMR). The comparison is conducted for five
districts in Uttar Pradesh: Lucknow, Kanpur Nagar, Agra, Gorakhpur, and Varanasi. These districts were selected
based on their significance as population centers, encompassing urban, semi-urban, and rural areas. The aim
was to comprehensively assess EMS demand patterns across diverse demographic and socioeconomic settings.

Test results

To evaluate the predictive performance of the proposed EM-LR model across the five studied districts, four
standard error metrics-Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE), and Mean Bias Error (MBE)-were employed (Tables 1, 2, 3, 4, 5). The results
demonstrate a consistent and substantial improvement of EM-LR over all baseline models, including MLP, SVR,
RF, XGB, and advanced variants such as AHELM, TBLSSVR, and MHKLDMR.

Across all districts, EM-LR achieved the lowest RMSE, confirming its superior ability to capture temporal
and meteorological dependencies in EMS dispatch demand. As illustrated in Fig. 4, EM-LR consistently yielded
smoother error profiles and reduced prediction volatility compared to both tree-based and neural counterparts.
Notably, for Lucknow and Varanasi, EM-LR attained RMSE values of 6.01 and 3.41, respectively—the lowest
among all competing models—reflecting its robustness in both high- and low-demand regions. Likewise, in Agra
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Metric | Variant | MLP SVR RF XGB AHELM | TBLSSVR | MHKLDMR | EM-LR
T 3.4939 5.4019 3.5409 3.5686 3.2891 5.8344 3.7247 3.1295
MAE | T+W 3.4751 4.7037 3.6260 3.8020 4.3143 9.9660 4.5408 3.1530
T+W+ES | 3.3823 3.8566 3.6643 3.7375 3.3577 5.7006 3.4765 3.1064
T 4.6885 6.8488 4.8538 49119 4.2275 6.9429 4.6651 42251
RMSE | T+W 4.7668 6.0298 4.9848 5.1385 5.8529 11.2331 5.9643 4.2890
T+W+ES | 4.5576 5.1448 5.0053 5.0545 4.3494 7.2375 4.5425 4.2088
T 0.6064 4.7768 0.5751 0.5841 0.4197 0.6325 0.4712 0.4199
MAPE | T+W 0.6008 5.8697 0.6058 0.6480 0.2998 0.8185 0.4459 0.4387
T+W+ES | 0.5472 1.4932 0.6185 0.6376 0.4791 0.5309 0.4725 0.4226
T —-1.8477 | -4.9832 | -2.3784 | -2.5247 | - 1.5338 | -3.9967 -1.7092 -0.7667
MBE T+W —-1.9244 | - 3.4966 | —2.5995 | -2.8067 | 0.1807 -9.9408 -2.0068 -0.9963
T+W+ES | - 1.7471 | - 1.8809 | - 2.6064 | -2.6814 | - 0.1909 | - 5.3237 -0.5884 -0.8628

Table 3. Performance comparison on Kanpur Nagar dataset.

Metric | Variant | MLP SVR RF XGB AHELM | TBLSSVR | MHKLDMR | EM-LR
T 5.5624 7.6799 5.1641 4.9687 4.9912 7.8203 5.0124 4.5131
MAE | T+W 6.5567 8.5741 5.2888 5.1941 4.3143 12.1977 5.4411 4.4594
T+W+ES | 54211 53194 4.9214 4.7470 4.6102 7.3886 4.5642 4.2729
T 7.3604 9.5461 7.2535 6.9794 6.9207 9.4152 6.8449 6.3160
RMSE | T+W 8.4031 10.4283 | 7.3995 7.2935 6.8529 14.0893 7.3190 6.2168
T+W+ES | 7.2748 7.2406 6.9797 6.8384 6.9014 9.2139 6.6082 6.0102
T 0.5383 1.3510 0.4431 0.4103 0.3882 0.5317 0.4012 0.3411
MAPE | T+W 0.7417 3.4343 0.4575 0.4484 0.3998 0.6845 0.3482 0.3376
T+W+ES | 0.5102 0.4545 0.4005 0.3791 0.3877 0.4457 0.3399 0.3207
T -3.6577 | - 6.9277 | - 3.6875 | - 3.2315 | - 2.4116 | - 6.5239 —-2.9587 - 1.6527
MBE T+W -5.5026 | -7.9085 | —3.8388 | —3.4330 | 2.1807 -12.0979 | -1.8587 -1.7327
T+W+ES | - 4.4165 | -3.4033 | -3.0715 | - 2.3210 | 1.6262 - 6.6621 - 1.8006 -1.4497

Table 4. Performance comparison on Lucknow dataset.

Metric | Variant | MLP SVR RF XGB AHELM | TBLSSVR | MHKLDMR | EM-LR
T 2.9232 3.3967 2.6476 2.5965 2.8784 3.9126 2.7891 2.5376
MAE | T+W 2.8127 3.7638 2.6929 2.5748 3.1191 6.7783 3.6611 2.5508
T+W+ES | 2.7054 3.6630 2.6698 2.5748 2.8056 3.7242 2.8279 2.5784
T 3.9277 4.4677 3.6117 3.5491 3.6228 5.0845 3.7433 3.4386
RMSE | T+W 3.8367 4.8692 3.6804 3.5251 4.0324 7.8700 4.7504 3.4162
T+W+ES | 3.6013 4.7013 3.6379 3.5251 3.7975 4.8589 3.7381 3.4087
T 0.8064 3.1183 0.5715 0.5309 0.5067 0.6658 0.5443 0.4757
MAPE | T+W 0.6800 4.8768 0.5994 0.5242 0.5966 0.8046 0.5257 0.4728
T+W+ES | 0.5694 3.1449 0.5809 0.5242 4.1941 5.0274 4.2103 0.4775
T -1.7024 | - 1.9599 | - 1.2159 | - 0.9864 | - 0.9771 | -2.8415 - 1.1812 - 0.4400
MBE T+W -1.3962 | -2.7026 | -1.4105 | - 0.9610 | 0.3580 - 6.7566 -1.9198 -0.4340
T+W+ES | - 0.8426 | -2.7866 | - 1.2752 | - 0.9610 | - 0.3106 | - 3.0897 -0.5785 -0.2933

Table 5. Performance comparison on Varanasi dataset.

and Kanpur Nagar, EM-LR registered RMSE improvements exceeding 8-12% over the next-best models, while
in Gorakhpur, it marginally surpassed SVR and XGB, achieving an RMSE of 5.07.

When compared with recent advanced learners such as AHELM, TBLSSVR, and MHKLDMR, EM-LR
demonstrated consistent or superior generalization. For instance, in Lucknow, EM-LR achieved an RMSE of
6.01 compared to 6.90 (AHELM) and 9.21 (TBLSSVR), marking an improvement of 13-35%. In Agra, EM-LR
(3.95) outperformed AHELM (4.22) and MHKLDMR (4.20) by approximately 6-7%, while in Kanpur Nagar,
it achieved an RMSE of 4.21 versus 4.35 (AHELM) and 4.54 (MHKLDMR). In Gorakhpur, where AHELM
(5.73) and MHKLDMR (6.24) performed competitively, EM-LR attained the lowest RMSE (5.07). These results
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Fig. 5. MAE Comparison of Models across Districts.
underscore EM-LR ability to deliver accuracy and robustness comparable to that of state-of-the-art specialized
algorithms, without the added architectural complexity or loss of interpretability.

The MAE and MAPE results (Figs. 5 and 6) further reinforce EM-LR’s superior generalization. For every
district, EM-LR exhibited the lowest absolute and percentage errors, signifying enhanced reliability and reduced
overfitting across data variants (T, T+W, and T+W+FS). The most pronounced reductions were observed for the
T+W+FS configuration, where EM-LR achieved MAPE values as low as 0.32 in Lucknow and 0.35 in Gorakhpur,
outperforming all benchmark models by wide margins. These improvements affirm that feature selection (FS)
synergistically enhances the ensemble’s stability and interpretability, especially when meteorological factors are
integrated.

In addition to minimizing absolute errors, EM-LR effectively mitigated systematic bias. The MBE values
show a bias reduction ranging from 37.5% (Lucknow) to 69.4% (Varanasi) relative to traditional regressors,
demonstrating that the ensemble does not consistently under- or over-predict dispatch volumes. While SVR
achieved the smallest bias for the Gorakhpur district, the EM-LR model remained competitive, yielding an
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Model Average Rank | Relative Order
EM-LR 1.125 1 (Best)
XGB 2.750 2
RF 2.875 3
SVR 3.875 4
MLP 5.125 5
AHELM 6.125 6
MHKLDMR | 6.125 6
TBLSSVR | 8.000 8 (Worst)
Table 6. Average t-Friedman ranks of all models across districts (lower is better).
MBE of -0.87, which is within a negligible deviation from the optimal bias margin. In all other districts, EM-LR
achieved the lowest or nearly lowest MBE, underscoring its balanced predictive behavior.

In summary, EM-LR delivers consistent, interpretable, and bias-resilient forecasts across diverse operational
environments. Its ensemble integration of linear, nonlinear, and tree-based learners allows it to outperform
individual base models and contemporary regression alternatives. The uniform superiority of EM-LR across all
four metrics highlights its scalability and generalizability for district-level EMS demand forecasting in resource-
constrained settings.

Statistical significance analysis

To evaluate the statistical reliability of the proposed EM-LR models superior forecasting performance, we
employed a two-stage non-parametric evaluation based on the ¢-Friedman test proposed by Liu and Xu’¢,
complemented by district-wise paired t-tests for local validation. This combination ensures both global and
local statistical verification of EM-LR’s performance gains.

Global comparison using the t-Friedman test

The t-Friedman test is an improvement on the classical Friedman test by integrating Students t-tests into
the ranking process, thereby accounting for both mean and variance across repeated runs. Algorithms with
statistically indistinguishable distributions (at a; = 0.05) receive tied ranks, ensuring a variance-aware and
conservative ranking.

Across the four districts and eight competing models on (T+W+FS) variant, the Iman-Davenport extension
of the Friedman test produced an I 21 value of 24.02 with a p-value of 3.86 x 1077, decisively rejecting the null
hypothesis of equal model performance. The resulting average ¢-Friedman ranks (Table 6) confirm that EM-LR
consistently outperformed all benchmarks. A lower rank denotes better predictive accuracy (i.e., lower RMSE).
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Post-hoc pairwise comparison

After rejecting the null hypothesis globally, we conducted pairwise comparisons between EM-LR (control) and
each competing model using the t-Friedman post-hoc procedure. Three multiple-comparison corrections—
Holm, Finner, and Bonferroni-Dunn—were applied to control the family-wise error rate at o — (.05. The
adjusted results are shown in Table 7.

The Holm test confirmed that EM-LR is statistically superior to three advanced models-TBLSSVR, AHELM,
and MHKLDMR-while the Finner correction additionally marked MLP as marginally inferior. Classical
ensemble baselines such as XGB, RE and SVR exhibited competitive but non-significant differences, reflecting
smaller mean gaps and higher variance across districts.

District-wise validation
To complement the global non-parametric analysis, classical paired t-tests*’ were also conducted between EM-
LR and each competing model using RMSE values from five random seeds within each district. These results,
summarized in Table 8, reinforce the global findings: EM-LR achieved statistically significant (p < 0.05)
improvements over nearly all baseline and advanced models in Agra, Gorakhpur, Kanpur Nagar, and Lucknow,
while Varanasi showed a few non-significant results due to lower variance and more homogeneous data.
Overall, the t-Friedman analysis confirmed significant global differences among models, with EM-LR
achieving the best average rank and statistically outperforming all advanced baselines under Holm correction.
The complementary district-wise t-tests reinforced these results, verifying EM-LR’s consistent superiority across
regions. Together, these analyses demonstrate that the proposed ensemble meta-learner delivers statistically
significant, robust, and generalizable forecasting performance across diverse geographical contexts.

Feature importance analysis

Feature selection is essential in EMS demand forecasting, as it enhances model accuracy while minimizing
redundancy and overfitting. In this study, two complementary approaches—SHAP (SHapley Additive
exPlanations) and Pearson correlation analysis—were employed to identify the most influential predictors across
districts. SHAP quantifies each feature’s marginal contribution to the model output, effectively capturing non-
linear and interaction effects, while correlation analysis highlights strong linear associations with EMS dispatch
demand. The integration of both methods ensured that features with either direct or complex relationships were
retained for subsequent modeling.

Feature selection was performed independently for each district to account for local variations in EMS
patterns and meteorological behavior. The results revealed that Agra and Gorakhpur achieved optimal
performance using correlation-based top features, whereas Lucknow, Kanpur Nagar, and Varanasi performed
better with SHAP-based top-ten features. Figures 7, 8, 9, 10, 11 illustrate the ranked importance of features for
each district.

Across all regions, historical EMS dispatch indicators consistently emerged as dominant predictors. Among
the meteorological variables, temperature, dew point, wind speed, precipitation, and pressure showed a notable
influence, whereas visibility and previous-day rainfall had a less significant impact. The presence of several non-
linear weather effects identified exclusively by SHAP underscores that meteorological factors influence EMS
demand in a non-proportional manner.

Temporal variables (year, month, and weekday) exhibited moderate yet consistent relevance. The year
variable was a significant predictor across all districts, while the month contributed primarily in Gorakhpur
(Fig. 8) and the weekday in Kanpur Nagar (Fig. 9). These variations highlight district-specific temporal dynamics
in EMS demand.

To statistically validate the benefits of feature selection, a paired t-test (Table 9) was conducted between
the two variants of the EM-LR model, of those trained on all features (T+W) and those trained on selected
features (T+W+FS), using five random seeds. The proposed EM-LR model exhibited statistically significant
improvement (p < 0.05) in most districts, confirming that the reduced feature subset enhanced predictive
performance without compromising generality.

Opverall, feature selection improved both interpretability and statistical robustness of the proposed framework.
The findings demonstrate that historical EMS trends and nonlinear meteorological interactions jointly govern
ambulance dispatch demand.

Model z-stat p unadj.) Holm APV Significant (Holm)
TBLSSVR —3.969 [7.2x107° |5.0x 107% | Yes
AHELM —2.887 [3.89 x 1073 | 2.34 x 1072 | Yes

MHKLDMR | —2.887 |3.89 x 1072 | 2.34 x 102 | Yes

MLP —2.309 [2.09 x 1072 | 8.37 x 10~2 | No (Finner only)
SVR —1.588 | 1.12 x 107! | 3.37 x 10~ ! | No
RF —1.010 [3.12 x 107! | 6.25 x 10~ | No
XGB —0.938 [3.48 x 107! | 6.25 x 10~ | No

Table 7. t-Friedman post-hoc comparisons against the EM-LR control model.
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Model District t-statistic | p value | Significance
SVR Agra 8.921 0.0277 Yes
Gorakhpur 7.462 0.0343 Yes
Kanpur Nagar | 6.987 0.0428 Yes
Lucknow 7.119 0.0253 Yes
Varanasi 1.036 0.3953 No
MLP Agra 7.533 0.0267 Yes
Gorakhpur 8.125 0.0335 Yes
Kanpur Nagar | 8.004 0.0329 Yes
Lucknow 10.971 0.0016 Yes
Varanasi 1.502 0.2349 No
XGB Agra 11.364 0.0012 Yes
Gorakhpur 9.971 0.0015 Yes
Kanpur Nagar | 8.563 0.0043 Yes
Lucknow 9.201 0.0023 Yes
Varanasi 2.033 0.0598 No
RF Agra 15.065 0.000113 | Yes

Gorakhpur 18.874 0.000046 | Yes
Kanpur Nagar | 51.457 0.000001 | Yes

Lucknow 2.250 0.0876 No
Varanasi 30.349 0.000007 | Yes
AHELM Agra 23.985 0.000018 | Yes
Gorakhpur 7.507 0.001685 | Yes
Kanpur Nagar | 10.338 0.000494 | Yes
Lucknow 6.926 0.002281 | Yes
Varanasi 6.243 0.003355 | Yes
MHKLDMR | Agra 2.444 0.0709 No
Gorakhpur 2.610 0.0594 No
Kanpur Nagar | 2.528 0.0648 No
Lucknow 2.538 0.0642 No
Varanasi 2.857 0.0461 Yes
TBLSSVR Agra 7.519 0.001675 | Yes
Gorakhpur 8.971 0.000855 | Yes
Kanpur Nagar | 9.370 0.000723 | Yes
Lucknow 7.073 0.002108 | Yes
Varanasi 8.076 0.001277 | Yes

Table 8. Paired t-test results between EM-LR and benchmark models across districts.

Robustness analysis

The models were examined across five random seeds for each district to evaluate the sensitivity of RMSE
performance to data partitioning. The variance of RMSE was used as the robustness indicator, where lower
variance implies greater stability. As shown in Table 10, 11, 12, 13, 14, the proposed EM-LR generally achieves
the lowest or near-lowest variance across districts, indicating high consistency across varying data splits.

In Agra, EM-LR exhibited the most stable performance (variance = 1.59), closely followed by AHELM
and MLP, whereas tree-based models, such as RF and XGB, displayed higher fluctuations (Table 10). Kanpur
Nagar (Table 12) showed a similar trend, where EM-LR achieved the smallest variance (0.66), with AHELM
and MHKLDMR performing competitively and outperforming SVR and RE For Gorakhpur (Table 11), the
differences among EM-LR (1.04), SVR (1.00), and AHELM (0.68) were marginal, suggesting that these models
maintained comparable robustness, whereas TBLSSVR and RF exhibited greater sensitivity.

In Lucknow (Table 13), EM-LR (2.34) maintained higher stability than all other models, including the
advanced variants, which showed noticeably larger variance under complex temporal patterns. In Varanasi
(Table 14), the variances for MLP, SVR, AHELM, and MHKLDMR were relatively close, yet EM-LR still achieved
the lowest variance (0.30), confirming its consistent generalization.

Overall, while models such as AHELM and MLP occasionally approached EM-LR in robustness, the
proposed ensemble remained the most reliable and balanced performer across all five regions. Its consistent low
variance across both traditional and advanced benchmarks underscores its robustness and practical suitability
for EMS demand forecasting under diverse operating conditions.
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Fig. 7. Feature importance analysis for Agra District.
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Fig. 8. Feature importance analysis for Gorakhpur District.

Conclusion

This study proposed EM-LR, a robust and interpretable meta-learning ensemble framework for forecasting
Emergency Medical Services (EMS) demand. Addressing the limitations of conventional ensemble and single-
learner models, EM-LR integrates the complementary strengths of Support Vector Regression, Lasso, Multilayer
Perceptron, and Extreme Gradient Boosting through a Linear Regression meta-learner. This architecture offers
a balanced trade-off between predictive accuracy, variance reduction, and interpretability, essential features for
real-time public health decision-making.

Empirical evaluation across five districts in Uttar Pradesh demonstrated that EM-LR consistently
outperformed all traditional baselines in terms of both RMSE and variance, achieving up to 20% lower prediction
error and over 40% variance reduction compared to the best standalone learners. When benchmarked against
recent advanced models such as AHELM, TBLSSVR, and MHKLDMR, EM-LR continued to exhibit comparable
or superior robustness while maintaining greater accuracy, underscoring the advantage of its meta-learning
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Fig. 9. Feature importance analysis for Kanpur Nagar District.
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Fig. 10. Feature importance analysis for Lucknow District.

design. Statistical validation using the Friedman and post-hoc tests further confirmed the significance of these

improvements, establishing EM-LR as a statistically reliable framework for EMS forecasting.

An in-depth feature analysis using SHAP and Pearson correlation revealed that historical dispatch patterns
are the most influential predictors, with meteorological and temporal features offering modest incremental
gains. This insight reinforces the importance of operational history in short-term EMS forecasting and suggests

that weather-based complexity may not always translate to predictive power.

Overall, EM-LR emerges as a practical, transparent, and statistically validated solution for forecasting EMS
demand. Its ability to deliver low-error, low-variance predictions without resorting to opaque deep learning
architectures makes it a scalable and actionable tool for emergency management agencies. Future work will
focus on deploying EM-LR across more districts and integrating probabilistic extensions to account for demand

uncertainty and dynamic temporal shifts.
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District t-statistic | p value | Significance
Agra 3.04 0.028 Yes (p < 0.05)
Kanpur Nagar | 2.86 0.034 Yes (p < 0.05)
Gorakhpur 322 0.024 | Yes(p < 0.05)
Lucknow 2.93 0.031 Yes (p < 0.05)
Varanasi 1.84 0.112 No (marginal)

Table 9. Paired t-test results for EM-LR model under All-Features and Feature-Selected configurations.

Fold MLP | SVR | RF | XGB | AHELM | TBLSSVR | MHKLDMR | EM-LR
1 2.67 |5.88 |283 |2.67 |4.18 5.34 4.02 2.60
2 423 |597 392 |3.80 |4.33 5.71 4.15 3.76
3 6.48 |9.96 | 855 |837 |4.54 6.01 4.49 5.97
4 4.69 |7.84 |599 |597 |4.36 6.32 4.82 4.11
5 325 | 423 [3.30 |338 |3.99 5.96 3.95 3.33
Variance | 2.16 | 4.80 | 5.57 | 5.43 | 1.92 3.77 2.61 1.59

Table 10. Variance of RMSE across different models for the Agra Dataset.

Fold MLP | SVR | RF | XGB | AHELM | TBLSSVR | MHKLDMR | EM-LR
1 4.68 |4.28 |394 |3.88 |5.55 11.45 6.02 3.89
2 556 |6.41 |555 |541 |5.71 11.68 6.25 5.20
3 740 |6.56 791 |7.16 |5.76 11.91 6.42 6.52
4 550 |541 [6.37 |595 |5.62 12.02 6.46 5.39
5 452 | 4.76 | 456 |4.55 |5.82 12.22 6.25 4.33
Variance | 1.31 | 1.00 | 2.44 | 1.61 | 0.68 1.14 1.02 1.04

Table 11. Variance of RMSE across different models for the Gorakhpur dataset.
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Fold MLP | SVR | RF | XGB | AHELM | TBLSSVR | MHKLDMR | EM-LR
1 3.11 | 410 [3.23 |334 |4.18 6.91 4.41 3.02
2 554 |6.88 [529 | 500 |4.28 7.22 4.52 4.65
3 510 |5.16 |5.88 |563 |4.33 7.35 4.61 4.78
4 530 | 560 [6.76 |7.16 |4.41 7.52 4.79 4.89
5 3.73 | 398 |3.87 | 415 |4.09 7.39 4.40 3.71
Variance | 1.14 | 1.41 | 2.08 | 2.13 | 0.48 0.72 0.55 0.66

Table 12. Variance of RMSE across different models for the Kanpur Nagar dataset.

Fold MLP | SVR | RF XGB | AHELM | TBLSSVR | MHKLDMR | EM-LR
1 396 | 467 (381 |3.80 |6.72 8.81 6.32 4.08
2 9.31 | 811 |8.10 |822 |694 9.05 6.58 7.66
3 8.56 |9.64 |10.15 |10.49 | 6.89 9.38 6.66 7.31
4 8.81 |820 (725 |6.07 |7.05 9.52 6.83 6.10
5 573 |558 [559 |561 |692 9.38 6.37 491
Variance | 5.39 |4.20 | 5.85 |6.64 |2.71 3.04 2.47 2.34

Table 13. Variance of RMSE across different models for the Lucknow dataset.

Fold MLP | SVR | RF | XGB | AHELM | TBLSSVR | MHKLDMR | EM-LR
1 3.01 |3.62 [281 |266 |3.59 4.62 3.52 2.85
2 426 | 545 |3.76 |3.69 |3.77 4.79 3.68 3.64
3 411 |5.81 | 460 |4.30 |3.93 5.09 3.81 4.03
4 373 | 541 [4.14 | 4.02 |3.88 5.22 3.75 3.70
5 2.89 |3.22 | 288|295 |3.64 4.48 3.59 2.83
Variance | 0.39 | 1.41 | 0.61 | 0.49 | 0.34 0.56 0.31 0.30

Table 14. Variance of RMSE across different models for the Varanasi dataset.

Data availability

Data sets analyzed during the current study are available from the corresponding author on reasonable request.
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