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Effect of waveguide wall roughness
on quantum signal transmission

E. Azough?, H. Ahmadi* & A. Rostami®2**

Given the undeniable advantages of quantum computers, several methods have been proposed to
create compact and versatile quantum systems. Among these methods, integrated quantum optics
processors have garnered significant attention, leading to the proposal of various quantum-based
optical devices. Since the advent of quantum computers, incoherence in qubit processes has posed

a challenge, manifesting in numerous forms. This incoherence results in changes and distortions of
system states during processing. While quantum optical systems have advantages over conventional
technologies, they are not immune to this issue. In our research, we demonstrate that random
imperfections in waveguide walls during manufacturing (etching) can be a major source of decoherence
in quantum optical devices, potentially distorting quantum states over medium to long distances.

We compare various semiconductor materials and fabrication technologies and find out that InP/
InGaAsP, SiON, SisNt., and silica are suitable materials for fabricating quantum waveguides. In contrast,
the silicon-on-insulator (SOI) platform has quantum crosstalk lengths of only 1 mm and 180 microns
for 50 and 30% coupling as the minimum and maximum threshold conditions, respectively. Using
conventional fabrication methods could lead to short quantum crosstalk lengths and hinder quantum
processing capabilities. Hence, precise methods must be employed to effectively fabricate waveguides
using SOI technology. Based on the decoherence properties, this work determines the appropriate
quantum-grade platforms for devices utilized in quantum processing.

Keywords Integrated quantum photonic circuits, Slab waveguide, Quantum crosstalk length, Imperfection,
Mode coupling

Quantum processing has been proposed due to the demand for high-speed processing. Some characteristics
of an ideal quantum processor are the ability to parallel and fast process, integration capability, and CMOS
compatibility. It is tough to aggregate all these features in a chip. Moreover, electronic devices tend to be
smaller and smaller; hence, the consideration of quantum mechanical effects is inevitable!. However, at these
dimensions, the quantum mechanical behavior of atoms prevails, and hence, considering the quantum effects
is crucial to designing the circuits. Although many efforts are underway using classical approaches to overcome
these limitations, quantum algorithms must be processed by quantum-based devices for maximum efficiency?.
Hence, the necessity of quantum computers is undeniable. The prominent advantage of the quantum computer
compared to the conventional one is its speed in processing some algorithms. One of the most important of these
is the algorithm that Shor presented in 1995°. Five basic standards, presented as the fundamental requirements
to realize the quantum computer, are as follows*. Hilbert Space control and manipulation, state preparation,
state-specific quantum measurement, controlled unitary transformation, and low decoherence. Decoherence,
the loss of quantum information due to unwanted interactions, is a significant obstacle to constructing quantum
computers. It is very difficult to design a quantum system in which the effect of these interactions is minimized
during the processing of quantum states and the coherence of the quantum states is maintained. Several
algorithms have been proposed to correct the errors originating from these unwanted effects, including the
famous algorithm proposed by Shor®. According to the accuracy threshold criterion, the decoherence must
be at least 1 million times greater than the quantum switching time (time required for gate operations)*°. This
strict condition requires a powerful quantum system with very high coherence. Various other designs that have
the so-called five standards have been proposed using electrons in atoms or ions”8, photons’, cavity quantum
electrodynamic!®, atomic spin or magnetic resonance'""'2, solid state'’, and superconducting systems. Of all
the systems presented, the photon-based quantum system technology is the most promising for the following
reasons: low noise as a result of photons’ low interaction with the environment, easy manipulation, high-speed
transition due to photon traveling speed, and most importantly, CMOS compatibility and well integration
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capability. Several optical quantum gates, such as the NOT gate!, Fredkin gate'®, control NOT gate’ Conditional-
phase switch!®, have been proposed in recent years. There are many tools and facilities in quantum optics for
quantum processing. It has been shown that any two-bit algebraic operation can be performed with a controlled-
NOT (CN) gate between two qubits and a rotation around a single bit'”. The entanglement enables quantum
systems to perform different calculations in parallel'3. Providing methods of entangled states in quantum optics-
based systems is more diverse than in other systems. Atom-cavity systems, solid-state emitters, and spontaneous
parametric down-conversion are utilized to generate entangled states. However, quantum processors based on
quantum optics have a weak coherence level. The qubit can be implemented based on multiple degrees of freedom
(DoFs), such as path, polarization, frequency, and transverse spatial modes, in photonic quantum circuits'*-%.
nnatial modes method is of increasing interest due to its compatibility with other quantum applications,
such as implementing quantum interference?!, on-chip transverse-mode entangled photon pair sources??,
and 2-qubit quantum gates with mode encoding®. Since encoding qubits based on transverse spatial modes
requires multimode devices, and many of the designed gates, such as the C-NOT and T-FLIE induce multimode
operations, our analysis in this paper essentially involves multimode waveguides. The present study investigates
the modal crosstalk originating from the irregularities in the waveguide’s wall. Initially, we analytically examine
the wall irregularities and demonstrate that they can induce coupling between modes in a multimode waveguide.
Subsequently, we compare the analytical results with those obtained by the finite element method simulation.
Furthermore, we calculate the wall coupling rate for a random wall shape using data from various manufacturing
processes. Ultimately, by comparing multiple technologies and platforms, we demonstrate which one is most
compatible with quantum applications.

Mode coupling in the slab waveguide due to imperfection

Since any practical waveguide can be approximated as a slab waveguide using effective index theory, we have
employed the dual-mode slab waveguide to avoid further complexity. Figure 1a demonstrates an ideal slab
waveguide with the core thickness (2d) equal to 1 pm, and the RI for core and cladding are n_ ,=1.9963 and
n =144, respectively. As shown in Fig. lc, this dimension is chosen so that the waveguide is two-mode and
B o and B ; are equal to 7.7601 x 10° and 6.7628 x 10° [1/m], respectively, for the wavelength of 1.55 pm. This
waveguide is excited by a transverse electric (TE) field so that two-mode propagation occurs. The electric field
for a single-mode waveguide is described by Eq. (1):

E: CinE () elwt=p2) (1)

In which Cj, is a complex number representing the amplitude, E (z) , is the mode profile, and f is the wave
number. The expansion of a weighted aggregate of ideal normal modes can represent the propagated wave within
the multi-mode waveguide?*~?’. Equation (2) demonstrates the wavefunction within a two-mode waveguide,
depicted in (Fig. 1b), through the superposition of normal modes, Eo (z) and E: (z), with the respective
amplitude, Cj, and C, calculated by Eq. (3).
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Fig. 1. (a) 3-dimensional view of slab waveguide (b) TE Mode propagation through waveguide (c) The
dispersion curve for the waveguide. The waveguide is designed so that at 1.55 pum, indicated by the vertical red
line, the wave propagates with two normal modes. The 3D figure was created by Blender ver. 2.93 (https://down
load.blender.org/release/).
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The electric field distribution in the slab waveguide is a solution of Eq. (4), where n is the position-dependent
refractive index, and k is the vacuum wave vector.

VEy (z) + n’(z,2)k°Ey (z) = 0 4)

n?(x, 2) can be considered as an aggregate of two individual parts in which n3 is the invariant part of the
refractive index and A n? (x, 2), describes the effects of imperfection on the change in the refractive index®.

n® (x,z) =ng + An® (z,2) (5)

Substituting Eq. (2) in Eq. (5) and using normal mode orthogonality leads to Eq. (6), where P is the incident

power per unit length, and Cy, and C,,, are complex coefficients introduced in Eq. (3)
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These coeflicients are constant without any coupling. The coupling caused by any imperfection, such as wall
imperfections or longitudinal inhomogeneities in the refractive index, leads to energy transfer between two
modes and consequently changes the coefficients along the waveguide length. Considering C; and C, slowly
varying amplitudes, Eq. (6) for two modes that can be coupled is written as Eq. (7), where the coupling coefficient,

K,y> is given by:

(9 Co (Z)
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Introducing A P as the power loss of the incident mode due to mode conversion and neglecting trivial
backward wave coupling due to significant phase mismatch, 8, + [ ;, the relative power loss, A—PP, is given

by*:

AP
= = (8)
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The modal analysis of the slab waveguide with a thickness of 2d yields two types of modes, even and odd, as
expressed by Eq. (9), in which x and y are given by Egs. (10), and kO is the free space wave vector?. :
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The coupling coeflicient between the first two modes (Eq. (7)) can be written using Eq. (9) as:

2/ 2 2 )
ko (nf TLC) cos (,‘i CE) sin (K/ 1;) A n2($, z)dx

2i\/(50d+ 20) (5.a+22) /*00 (11)

Wall imperfection-induced coupling
The incident mode retains its power during propagation in the ideal waveguide; however, any inhomogeneity
in the refractive index or roughness in the waveguide wall can cause power mode conversion. Figure 2 shows
a slab waveguide in which the interface between the core and cladding regions deviates slightly from being
straight. The roughnesses of up and down interfaces are expressed by f(z) and h(z) herein and are considered
tiny compared to the thickness of the waveguide. Therefore, the modes can be regarded as unchanged, and the
perturbation method can be utilized to analyze the wave propagation. Moreover, the roughness-induced loss is
neglected herein because the roughness is tiny. The frequency spectrum of f(z) and h(z) can be determined using
the Fourier transform. As shown in Fig. 2, a frequency component corresponding to 5, — 3 ; is necessary for
power exchange between modes.

Wave propagation in such a waveguide is similar to that in a waveguide with a sinusoidal wall with a period
of 2w /(8 o — B 1) frequency. For arbitrary core-cladding interface shapes, the coupling coeflicient is obtained
using Eq. (12), where L is the perturbation length?’.

Kol = —

ot — — k3 (nf —n?) /ao 1 {/L(f(z)fd)efi(ﬁofﬁ')zdzf /L(h(z)+d)e’i(’3“7ﬁ')zd2 da
. B8 B J  —oo L J 0 J 0 (12)
2i[(Bod+ 20) (8,d+21)

The wall imperfection is assumed to be sinusoidal, as given by Egs. (13), in which the maximum value of the
roughness is 1% of the core thickness (2d).

f(2) =001%xdx*sin((B,— 1) *2) (13-1)
f(2) =0.01lxdx*sin((By—8,)*z)+d
h(z) =—-001xdx*sin((Bg—B1)*xz2 +0)—d, 0 =0orm (13-2)

There is no coupling between modes for 6 = 0; however, the coupling occurs for 0 = 7. For a waveguide
without imperfections in refractive index and geometry, the modes are orthogonal; hence, there is no coupling
between them. This orthogonality is expressed by a zero-overlap integral given by Eq. (14)%%.
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Fig. 2. Dielectric slab waveguide with distorted core-cladding interface. f(z)-d is an arbitrary function that
describes the random variations of the upper core-cladding boundary of the waveguide. The frequency
spectrum of this function includes the frequency corresponding to 3, — 3 ;, which provides a phase-
matching condition. This frequency causes coupling between the TEO and TE1 modes. This waveguide is
equivalent to a waveguide with a sinusoidal wall with a period of 2n/( 8 , — 3 ;) frequency. The 3D figure was
created by Blender ver. 2.93 (https://download.blender.org/release/).
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Fig. 3. (a) Shape of the modes Ei (x) and E> (x) and their product E1 (z)* E2 (x) , in the ideal slab
waveguide. (b) The waveguide with the antisymmetric sinusoidal walls has a nonzero overlap integral. (c)
The waveguide has symmetric sinusoidal walls with zero overlap integral. (d) Finite element simulation of the
waveguide depicted in (b). (e) Finite element simulation of the waveguide depicted in (c).
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Fig. 4. Coupling between modes in a slab waveguide w1th smusmdal walls. The maximum value of roughness
is10 nmand 3, — 8 1=997,300. The variation of |Co| and |C’1| derived by (a) the FEM. (b) Egs. (7) and
(12).

F(2)+d
/ Eg () An? () Bx () dz = 0 (14)

h(z)—d
Figure 3a shows the shape of modes, F1 (z) and E- (z) and their product E; (z)* E2 (z). Any imperfection
that disrupts the geometrical symmetry results in a nonzero overlap integral and coupling between modes. For
imperfections expressed by Eq. (13), theta=pi leads to antisymmetric disruption, demonstrated in (Fig. 33);
therefore, the coupling between the first two modes occurs, as seen in (Fig. 3d). Nevertheless, theta=0 (Fig. 33)
cannot cause coupling, depicted in (Fig. 3e), because it does not break symmetry.

The alteration of mode amplitudes is obtained using the finite element method (FEM) and is depicted in (Fig.
4a). The results obtained by coupled mode equations (Eq. (7)), given in (Fig. 4b), confirm the simulation results.

Furthermore, both results indicate that the coupling length, which represents the length at which the
electromagnetic energy is completely transferred from one mode to another, is 325 pm. Two other core-cladding
interface profiles are assumed herein: square and saw tooth. As seen from Fig. 5a, b, the square wall shape’s
deviation amplitude is considered 7.5 nm. The period of change in the z-direction is similar to the previous
one; the change in the up and down interfaces has a 180 ° phase difference. The coupling process is illustrated in
(Fig. 5¢, d) for the analytic and simulation results, respectively. Moreover, the 2-dimensional simulation results
are presented in (Fig. 5e), where the transformation from the first mode to the second and vice versa is visible.
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Fig. 5. (a) and (b) are the core-cladding interface with a square shape at the up and down boundaries. The
maximum value of roughness is 7.5 nm (c), the variation of probabilities obtained by coupled mode equations.
(d) The variation of probabilities obtained by FEM. (e) 2 d 2-dimensional view of wave propagation.
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Fig. 6. (a) and (b) are the core-cladding interface with a saw tooth shape at the up and down boundaries.
The maximum value of roughness is 25 nm (c), as shown by the variation of probabilities obtained from
coupled mode equations. (d) The variation of probabilities obtained by FEM. (e) 2-dimensional view of wave

propagation.

Figure 6a, b show the deviation amplitude of 25 nm for the saw tooth. The period of change in the z direction
equals the square shape with a 180° phase difference between the up and down interfaces. The results obtained
using coupled-mode equations and FEM simulation are demonstrated in (Fig. 6¢, d), respectively. Similar to the
previous figure, the mode transformation can be seen in (Fig. 6e).

The coupling length increases with the increasing value of interface roughness—the more roughness, the
larger the coupling coefficient and, consequently, the smaller the coupling length (Eq. (15))%.

™

(15)

- 2ko1

The sinusoidal core-cladding interface is used to investigate the effect of imperfection on the coupling length.
The sinusoidal alteration, with a maximum of 5 nm, depicted in (Fig. 7a), causes the coupling shown in (Fig.
7b), which represents a coupling length of 330 um. However, considering the maximum sinusoidal alteration of
15 nm, shown in (Fig. 7c), results in the coupling depicted in (Fig. 7d). As is expected, the increasing roughness
in the core-cladding interface increases the coupling between modes and consequently decreases the coupling
length to 113 um. The functions f(z) and h(z) are generally random, depending on various parameters such as
fabrication technology; hence, solving the coupled mode equations is complicated in this case. For this reason,
the statistical evaluation is required to investigate mode coupling. Therefore, the average of random amplitudes
is utilized 1nstead of the exact value of amplitudes, which are not accessible. To this end, the ensemble average
of ?|Cy (2)]??, defined as average mode power, is used to investigate the energy transfer between modes®®
Changes in average power can be expressed by:
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Fig. 7. Investigation of the effect of roughness amplitude in mode coupling. (a) The sinusoidal core-cladding
interface with a maximum roughness of 5 nm (b) illustrates the probability of amplitude alteration due to
imperfection coupling, as shown in (a). The coupling length is 330 um (c), the sinusoidal core-cladding
interface with the maximum roughness of 15 nm (d), and probability amplitudes alteration due to coupling for
imperfection depicted in (c). The coupling length is 113 um.

(16)

oP, () ] 0C, (2) ) 9C, (2)°
9z _< a7 () >+<azc"(z)>

Utilizing the coupled mode equations given by Eq. (7), the coupled equations representing the power transfer
between modes are obtained as®:

8P0 (Z)

97 = ko1 |* {|F (AB10)*) (Pi(2) — Po(2)) (17-1)
OP,
L) ki (1F (B0)P) (Po(2) — P (2) (17-2)
(IF(AB0)*) = [ R(x)e ™ *dp (17-3)
Where R(x) is the autocorrelation function of f(z) and « o1 is obtained by Eq. (11) and given by:
_ kj 2 2 cos (k od) sin (k 1d)
Kol = 2% (nf - nc) (18)

Y(ooa+52) (00+22)

One of the most widely used statistical properties for the stationary random process is its autocorrelation
function, and according to the definition, it is written as follows:

R(u) = (f(2)f(z =) (19)
u is the displacement in the z-direction. The correlation function measures the correlation between two adjacent
points on the walls, separated by 1 m. Various reports have been presented that announce this function has a
Gaussian distribution®-33;

(20)

R (u) = o %exp <—11;2>

Where o and D are the variance and correlation length of f(z), respectively. Table 1 reports typical values of and
D of the devotion function f(z) for different waveguides. In Fig. 8, different autocorrelation values are plotted
versus u. A dashed line demonstrates the average of these functions. The values of D and sigma are 56 nm and
6 nm, respectively>’.

The function <\F (A610)|2> , that appeared in Eq. 8 calculates the power spectrum of the correlation

function by taking the Fourier transform of R (u).
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Technology SOI
Fabrication technique Anisotropic etching | Oxidation smoothing | Conventional fabrication | Si,N, SiO,, InP/InGaAsP | Silica
Neore 3.47 3.47 3.47 1.9963 1.51 1.54 1.46
Nolad 1.44 1.44 1.44 1.44 1.44 1.44 1.44
2d [p m)] 0.4 0.4 0.4 1 2.5 2.5 5
B o[1/m] 1.29x107 1.29%107 1.29x107 7.77%x 10 | 6.06x10° | 6.19x 10° 5.901x 10°
B 1 [1/m] 9.08x 10° 9.08x 10° 9.08x 10° 6.83x10° | 5.9x10° | 6x10° 5.858 x 10°
o [nm] 2 1 10 14 3 5 4
D [nm)] 50 50 50 50 50 50 50
Quantum crosstalk length | 21 mm >50 mm 1 mm 39 mm >50 mm | >50 mm >50 mm
References 35-37 35-37 35-37 38,39 40 41,42 43

Table 1. Calculated quantum crosstalk length for waveguides with different fabrication technologies.
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Fig. 8. The autocorrelation function. D represents the correlation length.
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From an information point of view, the length that coupling causes the probability amplitudes to be equal
is defined as quantum crosstalk length because, in that situation, the transmitted quantum information cannot
be extracted from the perturbed one that was received. Let’s assume the first mode probability amplitude is 1
and the second one is zero, which denotes the transmission of the ground state. This state is transformed into
a superposition of the ground (first mode) and excited states (second mode) due to coupling between these
states. If the share of the excited state in the superposition is below 50%, it can be inferred from the received
data that the transmitted one because the probability amplitudes are obtained in output measurement. Both
probability amplitudes for the ground state and the second state are equal in 50% coupling and hence cannot
be recognized that the transmitted state is the ground state. Therefore, the length that the weight of both modes
in superposition comes to 0.5 is the quantum crosstalk length. This factor is especially important in quantum
processing and the realization of Qubits. To derive the quantum crosstalk length, Eq. (21) are first utilized to
obtain the power related to each mode depicted in (Fig. 9a). It is observed that the quantum crosstalk length is
650 um. Furthermore, the finite element method is used to end absolute value squaed, close angle bracket and
open angle bracket absolute value cap C sub lhe calculation of < \C’o|2> and < |Ch \2> are required. 1 million

different randomness are applied to Eq. (12) to obtain the coupling coefficient and consequently the complex
amplitudes are calculated using Eq. (7). The results are demonstrated in (Fig. 9b).

Table 1 presents the values of 0 and D in some CMOS-compatible platforms. Furthermore, the results for
InP/InGaAsP platform, which is not CMOS-compatible, are also presented in Table 1 for comparison. The core
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Fig. 10. Comparison of power coupling in waveguides fabricated using the SOI method.
Technology SOI
Quantum crosstalk length | Anisotropic Etching | Oxidation Smoothing | Conventional Fabrication | Si,N, SiOy InP/InGaAsP | Silica
50% coupling 21 mm >50 mm 1 mm 39 mm >50 mm | >50 mm >50 mm
40% coupling 7 mm 29 mm 300 um 13.9mm | >50 mm | >50 mm >50 mm
30% coupling 4 mm 16 mm 180 pm 7 mm >50 mm | >50 mm >50 mm

Table 2. Quantum crosstalk length for different platforms in different defined maximum coupling.

thickness, d, is determined so that all waveguides are two-mode at 1.55 pm. It is reminded that the current
research is based on two-mode waveguides at a wavelength of 1.55 micrometers.

Therefore, it can be expected that the thickness of the waveguide core in each manufacturing technology
will have different values due to the difference in the refractive index of the core. The quantum crosstalk length
exceeds 50 mm in the SO silica, and Si,N, platforms, which is acceptable for optical waveguides used in
quantum technologies. The atomic force microscopy (AFM) image of the waveguides produced on the SOI
platform shows that the deviation from the roughness criterion of the waveguide walls is a maximum of 2 nm,
which is described by a correlation length of 50 nm with a Gaussian distribution, as given in Eq. (20)**. The
SOI-based waveguides can be fabricated using three methods: conventional fabrication, oxidation smoothing,
and anisotropic etching, with the values of o and D listed in (Table 1)'%. As shown in Fig. 10, among these three
methods, the traditional method has the shortest quantum crosstalk length, approximately 1 mm. It should be
noted that if we restrict the maximum power coupling more strictly, the quantum crosstalk length becomes
shorter and more reliable. For example, when the probability amplitudes of the first and second modes are 0.6
and 0.4, respectively, the length of the amplitudes becomes 0.5, which is shorter than in the previous case. In
Table 2, we have examined the challenge of how the quantum crosstalk length values change if the maximum
allowed energy transfer is 30 and 40%. Under these conditions, in the case of SOI with the traditional method,
the quantum crosstalk length decreases by about 70 and 80% for 30 and 40% coupling, respectively. The silicon
nitride platform’s quantum crosstalk length decreases to 7 and 13.9 mm. The quantum crosstalk lengths of 400
and 700 pm are obtained for silica in 30 and 40% coupling, respectively. However, since the SION and indium
phosphide exhibit considerable quantum crosstalk lengths at 50% coupling, despite decreases in coupling of 30
and 40%, the quantum crosstalk length remains larger than 50 mm.
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. 11. Comparison of quantum crosstalk length in waveguides produced by different technologies. (a)

Among the three low crosstalk length technologies — SOI, Si3N4, and Silica —the SOI waveguide has the
lowest quantum crosstalk length. (b) SION and InP/InGaAsP have quantum crosstalk lengths exceeding 50
microns.

Figure 11a illustrates the quantum crosstalk lengths of different platforms in comparison with one another.

Contrary to the InP/InGaAsP and SiON waveguides (Fig. 11b), depicts the quantum crosstalk length in SOIL,
silica, and Si3N4 waveguides are suitable for quantum applications.

Co

nclusion

Various undesirable random processes can disrupt the quantum information processing in integrated photonics.
In this research, the nonidealities of the core-cladding interface in optical waveguides, as one of the sources
of disruption, were investigated. Initially, the shape of the core-cladding interface was considered sinusoidal,
square, and sawtooth, and their effects on mode coupling were investigated. Secondly, the imperfection in the
core-cladding interface was supposed to occur due to a random process. Investigating random phenomena
requires statistical analysis; hence, the average power coupling equations were utilized instead of the conventional
coupled-mode equations. Five popular platforms, including silicon-on-insulator (SOI), silicon nitride, silica,
SION, and indium phosphide, were considered herein to determine their quantum crosstalk length as a criterion

for

the maximum length of the optical waveguide usable for quantum photonic devices. Furthermore, the

quantum crosstalk length was obtained for three fabrication methods in the SOI platform. The SOI platform,
implemented using conventional fabrication technology, represents a minimum quantum crosstalk length of
1 mm. Oxidation smoothing in SOI results in the best quantum crosstalk length of 50 mm. Similarly, the SION
and InP platforms also represent the quantum crosstalk length of 50 mm.
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