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Given the undeniable advantages of quantum computers, several methods have been proposed to 
create compact and versatile quantum systems. Among these methods, integrated quantum optics 
processors have garnered significant attention, leading to the proposal of various quantum-based 
optical devices. Since the advent of quantum computers, incoherence in qubit processes has posed 
a challenge, manifesting in numerous forms. This incoherence results in changes and distortions of 
system states during processing. While quantum optical systems have advantages over conventional 
technologies, they are not immune to this issue. In our research, we demonstrate that random 
imperfections in waveguide walls during manufacturing (etching) can be a major source of decoherence 
in quantum optical devices, potentially distorting quantum states over medium to long distances. 
We compare various semiconductor materials and fabrication technologies and find out that InP/
InGaAsP, SiON, Si3N4, and silica are suitable materials for fabricating quantum waveguides. In contrast, 
the silicon-on-insulator (SOI) platform has quantum crosstalk lengths of only 1 mm and 180 microns 
for 50 and 30% coupling as the minimum and maximum threshold conditions, respectively. Using 
conventional fabrication methods could lead to short quantum crosstalk lengths and hinder quantum 
processing capabilities. Hence, precise methods must be employed to effectively fabricate waveguides 
using SOI technology. Based on the decoherence properties, this work determines the appropriate 
quantum-grade platforms for devices utilized in quantum processing.

Keywords  Integrated quantum photonic circuits, Slab waveguide, Quantum crosstalk length, Imperfection, 
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Quantum processing has been proposed due to the demand for high-speed processing. Some characteristics 
of an ideal quantum processor are the ability to parallel and fast process, integration capability, and CMOS 
compatibility. It is tough to aggregate all these features in a chip. Moreover, electronic devices tend to be 
smaller and smaller; hence, the consideration of quantum mechanical effects is inevitable1. However, at these 
dimensions, the quantum mechanical behavior of atoms prevails, and hence, considering the quantum effects 
is crucial to designing the circuits. Although many efforts are underway using classical approaches to overcome 
these limitations, quantum algorithms must be processed by quantum-based devices for maximum efficiency2. 
Hence, the necessity of quantum computers is undeniable. The prominent advantage of the quantum computer 
compared to the conventional one is its speed in processing some algorithms. One of the most important of these 
is the algorithm that Shor presented in 19953. Five basic standards, presented as the fundamental requirements 
to realize the quantum computer, are as follows4. Hilbert Space control and manipulation, state preparation, 
state-specific quantum measurement, controlled unitary transformation, and low decoherence. Decoherence, 
the loss of quantum information due to unwanted interactions, is a significant obstacle to constructing quantum 
computers. It is very difficult to design a quantum system in which the effect of these interactions is minimized 
during the processing of quantum states and the coherence of the quantum states is maintained. Several 
algorithms have been proposed to correct the errors originating from these unwanted effects, including the 
famous algorithm proposed by Shor5. According to the accuracy threshold criterion, the decoherence must 
be at least 1 million times greater than the quantum switching time (time required for gate operations)4,6. This 
strict condition requires a powerful quantum system with very high coherence. Various other designs that have 
the so-called five standards have been proposed using electrons in atoms or ions7,8, photons9, cavity quantum 
electrodynamic10, atomic spin or magnetic resonance11,12, solid state13, and superconducting systems. Of all 
the systems presented, the photon-based quantum system technology is the most promising for the following 
reasons: low noise as a result of photons’ low interaction with the environment, easy manipulation, high-speed 
transition due to photon traveling speed, and most importantly, CMOS compatibility and well integration 
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capability. Several optical quantum gates, such as the NOT gate14, Fredkin gate15, control NOT gate9 Conditional-
phase switch16, have been proposed in recent years. There are many tools and facilities in quantum optics for 
quantum processing. It has been shown that any two-bit algebraic operation can be performed with a controlled-
NOT (CN) gate between two qubits and a rotation around a single bit17. The entanglement enables quantum 
systems to perform different calculations in parallel18. Providing methods of entangled states in quantum optics-
based systems is more diverse than in other systems. Atom-cavity systems, solid-state emitters, and spontaneous 
parametric down-conversion are utilized to generate entangled states. However, quantum processors based on 
quantum optics have a weak coherence level. The qubit can be implemented based on multiple degrees of freedom 
(DoFs), such as path, polarization, frequency, and transverse spatial modes, in photonic quantum circuits19–23. 
ññatial modes method is of increasing interest due to its compatibility with other quantum applications, 
such as implementing quantum interference21, on-chip transverse-mode entangled photon pair sources22, 
and 2-qubit quantum gates with mode encoding23. Since encoding qubits based on transverse spatial modes 
requires multimode devices, and many of the designed gates, such as the C-NOT and T-FLIF, induce multimode 
operations, our analysis in this paper essentially involves multimode waveguides. The present study investigates 
the modal crosstalk originating from the irregularities in the waveguide’s wall. Initially, we analytically examine 
the wall irregularities and demonstrate that they can induce coupling between modes in a multimode waveguide. 
Subsequently, we compare the analytical results with those obtained by the finite element method simulation. 
Furthermore, we calculate the wall coupling rate for a random wall shape using data from various manufacturing 
processes. Ultimately, by comparing multiple technologies and platforms, we demonstrate which one is most 
compatible with quantum applications.

Mode coupling in the slab waveguide due to imperfection
Since any practical waveguide can be approximated as a slab waveguide using effective index theory, we have 
employed the dual-mode slab waveguide to avoid further complexity. Figure 1a demonstrates an ideal slab 
waveguide with the core thickness (2d) equal to 1 μm, and the RI for core and cladding are ncore=1.9963 and 
nclad=1.44, respectively. As shown in Fig. 1c, this dimension is chosen so that the waveguide is two-mode and 
β 0 and β 1 are equal to 7.7601 × 106 and 6.7628 × 106 [1/m], respectively, for the wavelength of 1.55 μm. This 
waveguide is excited by a transverse electric (TE) field so that two-mode propagation occurs. The electric field 
for a single-mode waveguide is described by Eq. (1):

	
∼
E= CinE (x) .e(ω t−β z)� (1)

In which Cin is a complex number representing the amplitude, E (x) , is the mode profile, and β is the wave 
number. The expansion of a weighted aggregate of ideal normal modes can represent the propagated wave within 
the multi-mode waveguide24–27. Equation (2) demonstrates the wavefunction within a two-mode waveguide, 
depicted in (Fig. 1b), through the superposition of normal modes, E0 (x) and E1 (x), with the respective 
amplitude, C0, and C1, calculated by Eq. (3).

	 ψ = C0E0 (x) .e(ω t−β 0z) + C1E1 (x) .e(ω t−β 1z)� (2)

	
C0 = ⟨ψ|E0 (x)⟩

⟨E0 (x) |E0 (x)⟩ =
∫∞

−∞ ψ∗ × E0 (x) dx

∫∞
−∞ |E0 (x)|2 dx

� (3–1)

 

Fig. 1.  (a) 3-dimensional view of slab waveguide (b) TE Mode propagation through waveguide (c) The 
dispersion curve for the waveguide. The waveguide is designed so that at 1.55 μm, indicated by the vertical red 
line, the wave propagates with two normal modes. The 3D figure was created by Blender ver. 2.93 ​(​​​h​t​t​p​s​:​/​/​d​o​w​n​
l​o​a​d​.​b​l​e​n​d​e​r​.​o​r​g​/​r​e​l​e​a​s​e​/​​​​​)​.​​​​
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C1 = ⟨ψ|E1 (x)⟩

⟨E1 (x) |E1 (x)⟩ =
∫∞

−∞ ψ* × E1 (x) dx

∫∞
−∞ |E1 (x)|2 dx

� (3–2)

 
The electric field distribution in the slab waveguide is a solution of Eq. (4), where n is the position-dependent 

refractive index, and k is the vacuum wave vector.

	 ∇ 2Ey (x) + n2(x, z)k2Ey (x) = 0� (4)

 n2(x, z) can be considered as an aggregate of two individual parts in which n2
0 is the invariant part of the 

refractive index and ∆ n2 (x, z) ,  describes the effects of imperfection on the change in the refractive index25.

	 n2 (x, z) = n2
0 + ∆ n2 (x, z)� (5)

Substituting Eq. (2) in Eq. (5) and using normal mode orthogonality leads to Eq. (6), where P is the incident 
power per unit length, and Cm and Cn, are complex coefficients introduced in Eq. (3)27,28:

	

∂ 2Cm (z)
∂ z2 − 2iβ m

∂ Cm (z)
∂ Z

= − β mk2
0

2ω µ P

∑
n = 0,1
n ̸= m

Cn (z)
ˆ ∞

−∞
E∗

m∆ n2Endx� (6)

These coefficients are constant without any coupling. The coupling caused by any imperfection, such as wall 
imperfections or longitudinal inhomogeneities in the refractive index, leads to energy transfer between two 
modes and consequently changes the coefficients along the waveguide length. Considering C0 and C1 slowly 
varying amplitudes, Eq. (6) for two modes that can be coupled is written as Eq. (7), where the coupling coefficient, 
κ01, is given by:

	
∂ C0 (z)

∂ Z
= −κ 01 C1 (z)� (7–1)

 

	
∂ C1 (z)

∂ Z
= κ ∗

01 C0 (z)� (7–2)

 

	
κ 01 = [ k2

0

−4iω µ P

ˆ ∞

−∞
ϵ ∗

0∆ n2ϵ 1dx]� (7–3)

 
Introducing ∆ P as the power loss of the incident mode due to mode conversion and neglecting trivial 

backward wave coupling due to significant phase mismatch, β 0 + β 1, the relative power loss, ∆ P
P , is given 

by25:

	
∆ P

P
=

∣∣C+
0 (L)

∣∣2� (8)

The modal analysis of the slab waveguide with a thickness of 2d yields two types of modes, even and odd, as 
expressed by Eq. (9), in which κ and γ are given by Eqs. (10), and k0 is the free space wave vector25. :

	

ϵ even (x) =




√
2ω µ P

β d+ β
γ

cos (κ x) |x| ≤ d
√

2ω µ P

β d+ β
γ

cos (κ dx) e−γ (x−d) x ≥ d
� (9–1)

 

	

ϵ odd (x) =




√
2ω µ P

β d+ β
γ

sin (κ x) |x| ≤ d
√

2ω µ P

β d+ β
γ

sin (κ dx) e−γ (x−d) x ≥ d
� (9–2)

 

	 κ =
√

k0
2n2

core − β 2� (10–1)
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	 γ =
√

β 2 − k0
2n2

clad
� (10–2)

γ =
√

β 2 − k0
2n2

clad 
The coupling coefficient between the first two modes (Eq. (7)) can be written using Eq. (9) as:

	

κ 01 = − k2
0(n2

f − n2
c)

2i

√(
β 0d + β 0

γ 0

) (
β 1d + β 1

γ 1

)
ˆ ∞

−∞
cos (κ x) sin (κ x) ∆ n2(x, z)dx

� (11)

Wall imperfection-induced coupling
The incident mode retains its power during propagation in the ideal waveguide; however, any inhomogeneity 
in the refractive index or roughness in the waveguide wall can cause power mode conversion. Figure 2 shows 
a slab waveguide in which the interface between the core and cladding regions deviates slightly from being 
straight. The roughnesses of up and down interfaces are expressed by f(z) and h(z) herein and are considered 
tiny compared to the thickness of the waveguide. Therefore, the modes can be regarded as unchanged, and the 
perturbation method can be utilized to analyze the wave propagation. Moreover, the roughness-induced loss is 
neglected herein because the roughness is tiny. The frequency spectrum of f(z) and h(z) can be determined using 
the Fourier transform. As shown in Fig. 2, a frequency component corresponding to β 0 − β 1 is necessary for 
power exchange between modes.

Wave propagation in such a waveguide is similar to that in a waveguide with a sinusoidal wall with a period 
of 2π /(β 0 − β 1) frequency. For arbitrary core-cladding interface shapes, the coupling coefficient is obtained 
using Eq. (12), where L is the perturbation length27.

	

κ 01 = − k2
0(n2

f − n2
c)

2i

√(
β 0d + β 0

γ 0

) (
β 1d + β 1

γ 1

)
ˆ ∞

−∞

1
L

[ˆ L

0
(f (z) − d) e−i(β 0−β 1)zdz −

ˆ L

0
(h (z) + d) e−i(β 0−β 1)zdz

]
dx

� (12)

The wall imperfection is assumed to be sinusoidal, as given by Eqs. (13), in which the maximum value of the 
roughness is 1% of the core thickness (2d).

	 f (z) = 0.01 ∗ d ∗ sin ((β 0 − β 1) ∗ z)� (13–1)

f (z) = 0.01 ∗ d ∗ sin ((β 0 − β 1) ∗ z) +d 

	 h (z) = −0.01 ∗ d ∗ sin ((β 0 − β 1) ∗ z + θ ) − d, θ = 0 or π � (13–2)

 
There is no coupling between modes for θ = 0; however, the coupling occurs for θ = π. For a waveguide 

without imperfections in refractive index and geometry, the modes are orthogonal; hence, there is no coupling 
between them. This orthogonality is expressed by a zero-overlap integral given by Eq. (14)28,29.

Fig. 2.  Dielectric slab waveguide with distorted core-cladding interface. f(z)-d is an arbitrary function that 
describes the random variations of the upper core-cladding boundary of the waveguide. The frequency 
spectrum of this function includes the frequency corresponding to β 0 − β 1, which provides a phase-
matching condition. This frequency causes coupling between the TE0 and TE1 modes. This waveguide is 
equivalent to a waveguide with a sinusoidal wall with a period of 2π/( β 0 − β 1) frequency. The 3D figure was 
created by Blender ver. 2.93 (https://download.blender.org/release/).
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ˆ f(z)+d

h(z)−d

E∗
0 (x) ∆ n2 (x) E1 (x) dx = 0� (14)

Figure 3a shows the shape of modes, E1 (x) and E2 (x) and their product E1 (x)* E2 (x). Any imperfection 
that disrupts the geometrical symmetry results in a nonzero overlap integral and coupling between modes. For 
imperfections expressed by Eq. (13), theta = pi leads to antisymmetric disruption, demonstrated in (Fig. 33); 
therefore, the coupling between the first two modes occurs, as seen in (Fig. 3d). Nevertheless, theta = 0 (Fig. 33) 
cannot cause coupling, depicted in (Fig. 3e), because it does not break symmetry.

The alteration of mode amplitudes is obtained using the finite element method (FEM) and is depicted in (Fig. 
4a). The results obtained by coupled mode equations (Eq. (7)), given in (Fig. 4b), confirm the simulation results.

Furthermore, both results indicate that the coupling length, which represents the length at which the 
electromagnetic energy is completely transferred from one mode to another, is 325 μm. Two other core-cladding 
interface profiles are assumed herein: square and saw tooth. As seen from Fig. 5a, b, the square wall shape’s 
deviation amplitude is considered 7.5 nm. The period of change in the z-direction is similar to the previous 
one; the change in the up and down interfaces has a 180 ° phase difference. The coupling process is illustrated in 
(Fig. 5c, d) for the analytic and simulation results, respectively. Moreover, the 2-dimensional simulation results 
are presented in (Fig. 5e), where the transformation from the first mode to the second and vice versa is visible.

Fig. 4.  Coupling between modes in a slab waveguide with sinusoidal walls. The maximum value of roughness 
is 10 nm and β 0 − β 1=997,300. The variation of |C0|2 and |C1|2, derived by (a) the FEM. (b) Eqs. (7) and 
(12).

 

Fig. 3.  (a) Shape of the modes E1 (x) and E2 (x) and their product E1 (x)* E2 (x) , in the ideal slab 
waveguide. (b) The waveguide with the antisymmetric sinusoidal walls has a nonzero overlap integral. (c) 
The waveguide has symmetric sinusoidal walls with zero overlap integral. (d) Finite element simulation of the 
waveguide depicted in (b). (e) Finite element simulation of the waveguide depicted in (c).
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Figure 6a, b show the deviation amplitude of 25 nm for the saw tooth. The period of change in the z direction 
equals the square shape with a 180° phase difference between the up and down interfaces. The results obtained 
using coupled-mode equations and FEM simulation are demonstrated in (Fig. 6c, d), respectively. Similar to the 
previous figure, the mode transformation can be seen in (Fig. 6e).

The coupling length increases with the increasing value of interface roughness—the more roughness, the 
larger the coupling coefficient and, consequently, the smaller the coupling length (Eq. (15))29.

	
D = π

2k01
� (15)

The sinusoidal core-cladding interface is used to investigate the effect of imperfection on the coupling length. 
The sinusoidal alteration, with a maximum of 5 nm, depicted in (Fig. 7a), causes the coupling shown in (Fig. 
7b), which represents a coupling length of 330 μm. However, considering the maximum sinusoidal alteration of 
15 nm, shown in (Fig. 7c), results in the coupling depicted in (Fig. 7d). As is expected, the increasing roughness 
in the core-cladding interface increases the coupling between modes and consequently decreases the coupling 
length to 113 μm. The functions f(z) and h(z) are generally random, depending on various parameters such as 
fabrication technology; hence, solving the coupled mode equations is complicated in this case. For this reason, 
the statistical evaluation is required to investigate mode coupling. Therefore, the average of random amplitudes 
is utilized instead of the exact value of amplitudes, which are not accessible. To this end, the ensemble average 
of ?|Cn (z)|2?, defined as average mode power, is used to investigate the energy transfer between modes28. 
Changes in average power can be expressed by:

Fig. 6.  (a) and (b) are the core-cladding interface with a saw tooth shape at the up and down boundaries. 
The maximum value of roughness is 25 nm (c), as shown by the variation of probabilities obtained from 
coupled mode equations. (d) The variation of probabilities obtained by FEM. (e) 2-dimensional view of wave 
propagation.

 

Fig. 5.  (a) and (b) are the core-cladding interface with a square shape at the up and down boundaries. The 
maximum value of roughness is 7.5 nm (c), the variation of probabilities obtained by coupled mode equations. 
(d) The variation of probabilities obtained by FEM. (e) 2 d 2-dimensional view of wave propagation.
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∂Pn (z)
∂Z

=
⟨

∂Cn (z)
∂Z

Cn (z)∗
⟩

+
⟨

∂Cn (z)∗

∂Z
Cn (z)

⟩
� (16)

Utilizing the coupled mode equations given by Eq. (7), the coupled equations representing the power transfer 
between modes are obtained as23:

	
∂P0 (z)

∂Z
= |κ01|2

⟨
|F (∆β10)|2

⟩
(P1 (z) − P0 (z))� (17–1)

	
∂P1 (z)

∂Z
= |κ01|2

⟨
|F (∆β10)|2

⟩
(P0 (z) − P1 (z))� (17–2)

 

	

⟨
|F (∆β10)|2

⟩
=

∞
∫

−∞
R (x) ei∆βmnxdx� (17–3)

 
Where R(x) is the autocorrelation function of f(z) and κ 01 is obtained by Eq. (11) and given by:

	

κ 01 = k2
0

2i
(n2

f − n2
c) cos (κ 0d) sin (κ 1d)√(

β 0d + β 0
γ 0

) (
β 1d + β 1

γ 1

) � (18)

One of the most widely used statistical properties for the stationary random process is its autocorrelation 
function, and according to the definition, it is written as follows:

	 R (u) = ⟨f (z) f (z − u)⟩ � (19)

u is the displacement in the z-direction. The correlation function measures the correlation between two adjacent 
points on the walls, separated by 1 m. Various reports have been presented that announce this function has a 
Gaussian distribution30–33:

	
R (u) = σ 2exp

(
− u2

D2

)
� (20)

Where σ  and D are the variance and correlation length of f(z), respectively. Table 1 reports typical values of and 
D of the devotion function f(z) for different waveguides. In Fig. 8, different autocorrelation values are plotted 
versus u. A dashed line demonstrates the average of these functions. The values of D and sigma are 56 nm and 
6 nm, respectively30.

The function 
⟨

|F (∆β10)|2
⟩

, that appeared in Eq.  8 calculates the power spectrum of the correlation 
function by taking the Fourier transform of R (u).

	
P1 (z) = |C0|2 + |C1|2

2 +
(

|C1|2 − |C0|2

2

)
e−2γ (e−ia∆ β )z � (21–1)

 

Fig. 7.  Investigation of the effect of roughness amplitude in mode coupling. (a) The sinusoidal core-cladding 
interface with a maximum roughness of 5 nm (b) illustrates the probability of amplitude alteration due to 
imperfection coupling, as shown in (a). The coupling length is 330 μm (c), the sinusoidal core-cladding 
interface with the maximum roughness of 15 nm (d), and probability amplitudes alteration due to coupling for 
imperfection depicted in (c). The coupling length is 113 μm.
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P0 (z) = |C0|2 + |C1|2

2 +
(

|C0|2 − |C1|2

2

)
e−2γ (eia∆ β )z � (21–2)

 

	

γ =

∣∣∣∣∣∣
k2

0

2i

cos (κ0d) sin (κ1d)√(
β0d + β0

γ0

) (
β1d + β1

γ1

)

∣∣∣∣∣∣

2
〈

|F (∆β10)|2
〉

� (21–3)

 
From an information point of view, the length that coupling causes the probability amplitudes to be equal 

is defined as quantum crosstalk length because, in that situation, the transmitted quantum information cannot 
be extracted from the perturbed one that was received. Let’s assume the first mode probability amplitude is 1 
and the second one is zero, which denotes the transmission of the ground state. This state is transformed into 
a superposition of the ground (first mode) and excited states (second mode) due to coupling between these 
states. If the share of the excited state in the superposition is below 50%, it can be inferred from the received 
data that the transmitted one because the probability amplitudes are obtained in output measurement. Both 
probability amplitudes for the ground state and the second state are equal in 50% coupling and hence cannot 
be recognized that the transmitted state is the ground state. Therefore, the length that the weight of both modes 
in superposition comes to 0.5 is the quantum crosstalk length. This factor is especially important in quantum 
processing and the realization of Qubits. To derive the quantum crosstalk length, Eq. (21) are first utilized to 
obtain the power related to each mode depicted in (Fig. 9a). It is observed that the quantum crosstalk length is 
650 μm. Furthermore, the finite element method is used to end absolute value squaed, close angle bracket and 
open angle bracket absolute value cap C sub 1he calculation of 

⟨
|C0|2

⟩
 and 

⟨
|C1|2

⟩
 are required. 1 million 

different randomness are applied to Eq. (12) to obtain the coupling coefficient and consequently the complex 
amplitudes are calculated using Eq. (7). The results are demonstrated in (Fig. 9b).

Table 1 presents the values of σ and D in some CMOS-compatible platforms. Furthermore, the results for 
InP/InGaAsP platform, which is not CMOS-compatible, are also presented in Table 1 for comparison. The core 

Fig. 8.  The autocorrelation function. D represents the correlation length.

 

Technology SOI

Si3N4 SiON InP/InGaAsP SilicaFabrication technique Anisotropic etching Oxidation smoothing Conventional fabrication

ncore 3.47 3.47 3.47 1.9963 1.51 1.54 1.46

nclad 1.44 1.44 1.44 1.44 1.44 1.44 1.44

2d [µ m] 0.4 0.4 0.4 1 2.5 2.5 5

β 0[1/m] 1.29 × 107 1.29 × 107 1.29 × 107 7.77 × 106 6.06 × 106 6.19 × 106 5.901 × 106

β 1[1/m] 9.08 × 106 9.08 × 106 9.08 × 106 6.83 × 106 5.9 × 106 6 × 106 5.858 × 106

σ [nm] 2 1 10 14 3 5 4

D [nm] 50 50 50 50 50 50 50

Quantum crosstalk length 21 mm > 50 mm 1 mm 39 mm > 50 mm > 50 mm > 50 mm

References 35–37 35–37 35–37 38,39 40 41,42 43

Table 1.  Calculated quantum crosstalk length for waveguides with different fabrication technologies.
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thickness, d, is determined so that all waveguides are two-mode at 1.55 μm. It is reminded that the current 
research is based on two-mode waveguides at a wavelength of 1.55 micrometers.

Therefore, it can be expected that the thickness of the waveguide core in each manufacturing technology 
will have different values due to the difference in the refractive index of the core. The quantum crosstalk length 
exceeds 50 mm in the SOI, silica, and Si3N4 platforms, which is acceptable for optical waveguides used in 
quantum technologies. The atomic force microscopy (AFM) image of the waveguides produced on the SOI 
platform shows that the deviation from the roughness criterion of the waveguide walls is a maximum of 2 nm, 
which is described by a correlation length of 50 nm with a Gaussian distribution, as given in Eq. (20)23. The 
SOI-based waveguides can be fabricated using three methods: conventional fabrication, oxidation smoothing, 
and anisotropic etching, with the values of σ and D listed in (Table 1)18. As shown in Fig. 10, among these three 
methods, the traditional method has the shortest quantum crosstalk length, approximately 1 mm. It should be 
noted that if we restrict the maximum power coupling more strictly, the quantum crosstalk length becomes 
shorter and more reliable. For example, when the probability amplitudes of the first and second modes are 0.6 
and 0.4, respectively, the length of the amplitudes becomes 0.5, which is shorter than in the previous case. In 
Table 2, we have examined the challenge of how the quantum crosstalk length values change if the maximum 
allowed energy transfer is 30 and 40%. Under these conditions, in the case of SOI with the traditional method, 
the quantum crosstalk length decreases by about 70 and 80% for 30 and 40% coupling, respectively. The silicon 
nitride platform’s quantum crosstalk length decreases to 7 and 13.9 mm. The quantum crosstalk lengths of 400 
and 700 μm are obtained for silica in 30 and 40% coupling, respectively. However, since the SION and indium 
phosphide exhibit considerable quantum crosstalk lengths at 50% coupling, despite decreases in coupling of 30 
and 40%, the quantum crosstalk length remains larger than 50 mm.

Technology SOI

Si3N4 SiON InP/InGaAsP SilicaQuantum crosstalk length Anisotropic Etching Oxidation Smoothing Conventional Fabrication

50% coupling 21 mm > 50 mm 1 mm 39 mm > 50 mm > 50 mm > 50 mm

40% coupling 7 mm 29 mm 300 μm 13.9 mm > 50 mm > 50 mm > 50 mm

30% coupling 4 mm 16 mm 180 μm 7 mm > 50 mm > 50 mm > 50 mm

Table 2.  Quantum crosstalk length for different platforms in different defined maximum coupling.

 

Fig. 10.  Comparison of power coupling in waveguides fabricated using the SOI method.

 

Fig. 9.  (a) The ensemble average of probability amplitudes obtained by averaging 106 samples. (b) modes’ 
power obtained by Eqs. (21) Both of them represent a quantum crosstalk length of about 550 [µm].
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Figure 11a illustrates the quantum crosstalk lengths of different platforms in comparison with one another. 
Contrary to the InP/InGaAsP and SiON waveguides (Fig. 11b), depicts the quantum crosstalk length in SOI, 
silica, and Si3N4 waveguides are suitable for quantum applications.

Conclusion
Various undesirable random processes can disrupt the quantum information processing in integrated photonics. 
In this research, the nonidealities of the core-cladding interface in optical waveguides, as one of the sources 
of disruption, were investigated. Initially, the shape of the core-cladding interface was considered sinusoidal, 
square, and sawtooth, and their effects on mode coupling were investigated. Secondly, the imperfection in the 
core-cladding interface was supposed to occur due to a random process. Investigating random phenomena 
requires statistical analysis; hence, the average power coupling equations were utilized instead of the conventional 
coupled-mode equations. Five popular platforms, including silicon-on-insulator (SOI), silicon nitride, silica, 
SION, and indium phosphide, were considered herein to determine their quantum crosstalk length as a criterion 
for the maximum length of the optical waveguide usable for quantum photonic devices. Furthermore, the 
quantum crosstalk length was obtained for three fabrication methods in the SOI platform. The SOI platform, 
implemented using conventional fabrication technology, represents a minimum quantum crosstalk length of 
1 mm. Oxidation smoothing in SOI results in the best quantum crosstalk length of 50 mm. Similarly, the SION 
and InP platforms also represent the quantum crosstalk length of 50 mm.

Data availability
All data generated and analyzed during the current study are available from the corresponding author on rea-
sonable request.
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