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Brain MR image transformation, which is the process of transforming MR images of one type to 
another, is critical to several downstream neuroimaging tasks that include brain tissue and lesion 
volume estimation and lesion detection. In recent years, several deep learning-based methods 
have been applied to address this task; however, for the most part, they have tended to be 
deterministic. These methods provide a single transformed output for a given input image with no 
accompanying measure of confidence in the transformation process. In contrast to this, in this study, 
we demonstrate how a class of probabilistic conditional generative algorithms can be applied to MR 
image transformation and quantify the performance of these algorithms. We also demonstrate that 
the ability to generate multiple transformed images for a given input image can be used to estimate 
the uncertainty in the output and to detect out-of-distribution (OOD) input images. In particular, we 
apply conditional Generative Adversarial Networks (cGAN), Noise Conditional Score Networks (NCSN), 
and Denoising Diffusion Probabilistic Models (DDPM) to transform T1, T2, FLAIR, and proton density 
(PD) MR images. Through extensive computational experiments, we conclude that the probabilistic 
algorithms are more accurate than other benchmark methods, and among these, the diffusion models 
yield the most accurate transformation results. Within the diffusion models, DDPM demonstrates 
higher performance in terms of similarity metrics, and NCSN exhibits accurate distributional measures 
and computationally favorable characteristics. We also demonstrate how the generative models can 
be used to assess the confidence in a given transformation and to detect input images that contain 
pathology and/or artifacts.

Brain MR imaging is the primary method for diagnosing and monitoring patients with many neurological 
diseases and for performing brain-related research. Additionally, by tailoring MRI sequences, a variety of image 
types with different anatomical and pathological details can be acquired. However, in many instances, due to 
reasons that include the physical condition of a subject, the cost of additional acquisition time, and corruption 
of data, not all of the desired MR image types can be acquired. This can lead to undesired costs and burdens 
associated with additional scans and the exclusion of some subjects from a research study. This motivates the 
need to develop algorithms that can transform one MR image type into another.

Over the years, a wide range of methods have been developed for medical image transformation. More 
recently, Deep Learning (DL)-based methods have proven to be successful in this field1,2. This success stems 
from the inherent ability of these methods to represent the complex and highly nonlinear mappings that are 
found in many image transformation tasks. The reader is referred to survey articles on this topic3,4.

Medical image transformation can be categorized as inter-modality, which involves the transformation of 
images of one modality to another, or intra-modality, which involves the transformation from one image type or 
contrast to another one within the same modality. Examples of the former include transformation between MR, 
computed tomography (CT), and positron emission tomography images (PET) images5–8. Whereas examples of 
the latter include the transformation of MR images of one type to another. For example, the transformation of 
T2, T1, and FLAIR MR images. The focus of this work is intra-modality transformation of MR images, and in 
particular, on the conversion of structural MR images of one type to another.

There are two broad perspectives of viewing the image transformation problem. The first perspective, which 
is the one that is commonly used, is deterministic. In this case, the transformation itself is deterministic, and for 
one input, it generates a single instance of the output. Direct inference supervised methods9 can be considered 
the most straightforward DL-based algorithms based on a deterministic formulation. In these methods, the 
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model receives the input image and transforms it using a DL-based network. The network is trained using a loss 
function that measures the difference between the predicted and the target image. Different choices of network 
architectures and loss functions yield different methods. For example, Dinkla et al.10 use a convolutional neural 
network (CNN) based encoder-decoder and the mean absolute error loss function to transform brain T1 MR 
images to CT images. Similarly, Xiang et al.11 use a network with multiple embedding blocks and a least squares 
error loss to transform MR images to CT images.

An alternative perspective of the image transformation problem is the probabilistic approach, which is the 
main focus of this work. Within this approach, the transformation that maps an input image to the output is 
assumed to be probabilistic. Therefore, for a single input, it yields multiple possible transformed images that are 
sampled from a probability distribution conditioned on the input image. A simple thought experiment illustrates 
why for the brain MR image transformation problem this perspective is more appropriate. It is well known that 
due to the underlying physics, MR images can display significant variability12. Consider an example in which 
multiple devices are used to capture T2 images for a single subject. All these images would differ from each 
other and will still be considered valid T2 images for that subject. In this scenario, if we develop a method to 
convert a T1 image for this subject into a T2 image, then it is clear that the appropriate output is not a single 
image; rather, it is a collection of images, all of which may be considered as valid T2 images. In other words, 
probabilistic models aim to capture the conditional distribution of plausible target outputs given an input image. 
Rather than being manually specified, this distribution is implicitly learned from the training data and reflects 
the inherent variability present in real MR scans, arising from factors such as subject positioning, scanner and 
acquisition protocols, anatomical and pathological differences, as well as variations in image quality and noise 
characteristics.

Generative models are DL-based models that are based on probabilistic principles and are, therefore, 
appropriate for a broad range of applications13, including medical image transformation. Among these, 
conditional generative adversarial networks (cGANs)14–16 have been successfully employed in image-to-
image transformation tasks, including MR image transformation17,18. More recent studies have extended these 
approaches using hybrid adversarial architectures, such as MTSR-MRI19, which jointly performs modality 
translation and super-resolution. In general, GAN-based methods are difficult to work with since their training 
requires working with an adversarial loss, which leads to a min-max optimization problem that is harder to solve 
than the more common minimization problem. This difficulty is circumvented by diffusion models that generate 
multiple samples by utilizing the underlying score function of the probability density function and learn this 
score function by solving a minimization problem20–22. In recent years, diffusion models have found a wide 
range of applications in medical image transformation23–25, including the transformation of MR images26–29. One 
drawback of diffusion models is that they incur larger computational costs during the generation process, which 
happens over several hundred steps. Recently, several studies have focused on reducing computational time 
while aiming to preserve image quality, often by operating in latent space27. For instance, Ozbey et al. combine 
the diffusion process with an adversarial projection scheme to achieve faster image sampling during inference30. 
Also, Jiang et al. introduce Fast-DDPM, a denoising diffusion probabilistic model optimized for medical image-
to-image generation31. Fast-DDPM reduces both training and inference time by aligning training and sampling 
steps and using fewer time steps.

Beyond GAN and diffusion-based models, several recent works explore alternative generative frameworks 
for medical image transformation. Chen et al.32 propose Diffusion Prior Synthesis and Optimization (DPSO), a 
source-free diffusion framework that leverages a probability flow ODE and target-domain priors to synthesize 
cross-modality MR images without access to source-domain data. UniSyn33 is a foundation-style generative 
model that synthesizes multiple imaging modalities conditioned on metadata, enabling flexible multi-modal 
image generation. Yazdani et al. propose a flow-matching–based generative framework for efficient and high-
quality medical image synthesis34. The method learns continuous transport maps between noise and data 
distributions via flow matching, allowing faster one-step or few-step sampling. Applied to MRI synthesis tasks, 
the approach aims to achieve comparable or superior image quality and structural consistency relative to 
diffusion-based models while reducing inference time.

While the majority of the studies described above utilize conditional generative techniques, they often stop 
short of taking full advantage of the generative process. In most cases, for a given input image, they generate a 
single output image and treat this as the prediction. For example, the residual vision transformer (ResViT) model 
presented in35 is built based on the probabilistic formulation (GAN-based framework); however, in practice, it is 
used deterministically. We include this model in our comparisons as a benchmark due to the high performance 
of vision transformers reported in medical imaging tasks36. See Section ResViT for a brief explanation of this 
model. In contrast to this, in this work, we treat the generative algorithms as tools that allow us to sample from 
a conditional distribution and for a single input image generate an ensemble of output images. Thereafter, we 
use these images to generate our best guess for the output image and also quantify the pixel-wise uncertainty in 
this guess. We also demonstrate that a measure of this uncertainty can be used to determine whether the input 
image is tainted with artifacts or contains brain pathologies and is, therefore, out of distribution (OOD). We 
believe that the ability to detect anomalous input images without any supervised training will be an important 
component of a quality control process for image transformation. We also note that while a few prior works 
acknowledge the ability of generative models to produce multiple plausible outputs37,38, they typically do not 
analyze the resulting sample distributions or apply them to downstream tasks such as uncertainty quantification. 
Meanwhile, most existing approaches to uncertainty quantification in medical imaging rely on Bayesian 
inference or model ensembles39–41 and only a few rare studies, such as42, address uncertainty in the specific 
context of MR image transformation. In contrast, our work directly leverages the generative sample distribution 
to compute voxel-wise uncertainty and demonstrates its practical utility for detecting out-of-distribution inputs 
in brain MR images.
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In the current study, we also address a critical gap in the current understanding of generative models employed 
for transforming brain MR images. We implement and test three promising models, namely the conditional 
GAN (cGAN)43–46, a diffusion model based on the conditional noise-conditional score network (NCSN)20–22, 
and the conditional denoising diffusion probabilistic model (DDPM)47,48, and systematically compare their 
performance on two benchmark datasets. Through this comparison, we note that the diffusion models yield the 
most accurate results, followed by a deterministic Direct model based on the U-Net architecture, cGAN model, 
and finally the ResViT model. We believe that these results will help guide future practitioners in selecting 
appropriate models for their tasks.

The remainder of the manuscript is organized as follows. In the following section, we present results for 
the three generative models and two benchmark models applied to brain MR image transformation tasks. 
Thereafter, we discuss the performance of these algorithms and explicitly demonstrate the benefits of treating the 
image transformation problem as a problem of conditional image generation. The benefits include more accurate 
results and the ability to detect OOD input images. Thereafter, we describe in detail the models implemented 
and tested in this study, the datasets used for training and testing the models, and the metrics used for evaluating 
their performance. We end the manuscript with conclusions and remarks for future work.

Results
We implement a direct inference model based on a U-Net architecture (called the Direct model in this work) that 
solves the deterministic image transformation problem and is trained using a mean squared error loss. We also 
utilize a residual vision transformer (ResViT) model as a benchmark. Moreover, we implement a conditional 
Wasserstein GAN (cGAN), which comprises a generator and critic that are trained together using a Wasserstein 
loss. In addition, we implement two score-based diffusion models. These are the conditional versions of the 
noise-conditional score network (NCSN) model and the denoising diffusion probabilistic (DDPM) model. Both 
these models learn to transform samples generated from a zero-mean uncorrelated high-dimensional Gaussian 
distribution to samples from the desired conditional distribution of images by learning and using the score 
function for this transformation. They differ from each other in the variance of the Gaussian distribution. The 
NCSN model uses a distribution with a large variance, whereas the DDPM model uses a distribution with unit 
variance. All the models are trained and tested using the IXI49 (Information eXtraction from Images project) 
and OASIS50 (Open Access Series of Imaging Studies) datasets that include T1, T2, proton density (PD), and 
fluid-attenuated inversion recovery (FLAIR) images for healthy subjects and patients with Alzheimer’s disease. 
The probabilistic models generate multiple images for a single input image. For these models, the pixel-wise 
mean image obtained from these samples is used as the best guess, and the pixel-wise standard deviation image 
is used as a measure of uncertainty in the transformation. The performance of all models is evaluated against 
the ground truth by computing metrics like the structural similarity index (SSIM), peak signal-to-noise ratio 
(PSNR), learned perceptual image patch similarity (LPIPS)51, and boundary SSIM (BSSIM) between the ground 
truth and transformed images. Furthermore, the slice consistency SSIM (SCSSIM) metric is used to assess the 
consistency of the models in generating adjacent slices. These aspects of the work are described in detail in the 
Methods section.

In Figs. 1 and 2, we present typical results for all possible image transformation types within the IXI and 
OASIS datasets, respectively. Each dataset contains three different image types, and we transform images from 
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Fig. 1.  MR image transformation for an axial slice image from the IXI dataset. Column 1: input image; column 
2: target image; columns 3-4: predicted and error images for the direct model; columns 5-6: predicted and 
error images for the ResViT model; columns 7-9: predicted, error, and standard deviation images for cGAN; 
columns 10-12: predicted, error and standard deviation images for NCSN; columns: 13-15: predicted, error 
and standard deviation images for DDPM.
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one type to the other two. Consequently, in each figure, we present results that are organized in six rows based on 
the type of transformation. From left to right, in the first and second columns, we present the input and ground 
truth (labeled as target) images, respectively. In the remaining columns, we present model outputs. The third 
and fourth columns contain the predicted image and the error for the Direct model. Here, the error is defined as 
the absolute value of the pixel-wise difference between the target and the prediction. The fifth and sixth columns 
belong to the prediction and error of the ResViT model. The seventh to ninth columns contain the prediction, 
error, and pixel-wise standard deviation images for the cGAN model. Finally, columns 10-12 and 13-15 contain 
the corresponding results for the NCSN and DDPM models, respectively.

For each image in the test set, we evaluate the SSIM, PSNR, LPIPS, and BSSIM metrics between the predicted 
and target image and present the statistics in Fig. 3. For SSIM, PSNR, and BSSIM metrics, higher values indicate 
a closer match between the target and predicted images, while for LPIPS, lower values indicate better similarity. 
For SSIM and BSSIM, a value of 1, and for LPIPS, a value of 0, indicates a perfect match. Results for the IXI dataset 
are presented in the four left plots, while those for the OASIS dataset are presented in the right plots. Within 
each plot, we present results for all five models applied to six different transformation types in the form of a box 
plot. The rectangular extent of each box displays the interquartile range (IQR) where 50% of the values reside, 
and the whiskers depict the range of the values excluding the outliers. The outliers are displayed as markers in 
the plots and are defined as values that are smaller than 1.5 IQR below the 25th percentile and greater than 1.5 
IQR above the 75th percentile.

In Table 1, we present the numerical values of the SSIM, PSNR, LPIPS, and BSSIM for test subjects from 
the IXI and OASIS datasets. Each row contains numerical values (the average value and the standard deviation 
in parentheses) of the metrics. We used pairwise one-sided Wilcoxon signed-rank tests (p < 0.05) to assess 
statistical significance in the reported metrics. A model is considered the best if it performs significantly better 
than all other models, allowing multiple models to be considered best when differences between them are not 
significant. The best-performing models are highlighted in bold in Table  1 (also in Tables  2,  4, and  5). For each 
row, we highlight the model or models with the highest value of each similarity metric. For SSIM, we observe 
that out of the twelve transformations, the DDPM model is the most accurate in six cases, the NCSN is the 
most accurate in four cases, and the Direct model is the most accurate in two cases. For the PSNR metric, the 
DDPM and Direct models outperform other models in ten and two cases, respectively. When focusing on the 
LPIPS metric, the DDPM method yields the highest values in eleven out of twelve cases, and NCSN is the best 
in one case. For the BSSIM metric, DDPM performs best in six cases, followed by NCSN in four, and Direct and 
ResViT models each leading in one case. The cGAN model never achieves the highest value for BSSIM in any 
transformation.

In addition to exploring the performance of MR image transformation models using inputs from intra-dataset 
test subjects, we discuss how different models respond to input images outside of the distribution for which they 
were trained. We refer to these input images as out-of-distribution (OOD) images and aim to explore how the 
models respond to these inputs and the possibility of detecting these inputs using the generative property of the 
probabilistic models. For this purpose, we utilize several datasets with OOD inputs. In the first experiment, we 
pass T1 images from the OASIS test subjects to the T1 to T2 transformation models trained on the IXI dataset. 
We compare the T2 output images against the available targets using SSIM, PSNR, LPIPS, and BSSIM metrics. 
We show the average results in Table 2, where each row belongs to a metric. The numbers in the parentheses 
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Fig. 2.  MR image transformation for an axial slice image from the OASIS dataset. Column 1: input image; 
column 2: target image; columns 3-4: predicted and error images for the direct model; columns 5-6: predicted 
and error images for the ResViT model; columns 7-9: predicted, error, and standard deviation images for 
cGAN; columns 10-12: predicted, error and standard deviation images for NCSN; columns: 13-15: predicted, 
error and standard deviation images for DDPM.

 

Scientific Reports |         (2026) 16:2161 4| https://doi.org/10.1038/s41598-025-31958-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


indicate the changes compared to the results derived from a model trained and evaluated on the OASIS dataset. 
As expected, we observe that the majority of models demonstrate a decrease (indicated by a negative sign for 
SSIM, PSNR, and BSSIM and a positive sign for LPIPS) in their performance when transforming MR images 
using OOD inputs. We also observe that the highest decrease in the SSIM metric occurs in the NCSN, suggesting 
the possibility of a lower generalizability in these models. On the other hand, the ResViT model demonstrates 
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Fig. 3.  Boxplots of SSIM, PSNR, LPIPS, and BSSIM metrics for the IXI (left) and OASIS (right) datasets for 
the Direct (blue), ResViT (green), cGAN (gray), NCSN (brown), and DDPM (pink) models. Each plot contains 
results for the six distinct image transformation types.
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Direct ResViT cGAN NCSN DDPM

SSIM: IXI

T 1 T 2 91.93 (1.67) 90.75 (1.76) 93.80 (1.91) 94.62 (1.95) 94.50 (1.83)

T 2 T 1 92.36 (1.72) 87.42 (2.42) 90.22 (2.37) 91.26 (2.90) 95.10 (1.61)

T 1 P D 89.68 (1.93) 89.42 (1.66) 92.79 (2.17) 94.31 (1.80) 92.42 (2.06)

P D T 1 91.79 (1.91) 87.47 (2.05) 89.72 (2.13) 91.41 (2.41) 95.35 (1.28)

T 2 P D 97.26 (1.56) 96.32 (1.78) 94.61 (1.51) 96.73 (1.87) 97.13 (1.35)

P D T 2 97.85 (0.93) 97.31 (1.16) 94.84 (2.70) 97.83 (0.62) 97.91 (1.17)

SSIM: OASIS

T 1 T 2 88.94 (3.27) 92.00 (2.55) 91.82 (2.80) 92.69 (3.03) 92.47 (2.71)

T 2 T 1 93.08 (3.06) 91.39 (3.23) 90.35 (3.02) 92.15 (3.22) 93.15 (2.63)

T 1 F LAIR 92.15 (3.71) 91.45 (2.39) 88.83 (2.16) 92.29 (2.24) 92.82 (2.59)

F LAIR T 1 92.52 (3.26) 91.29 (3.26) 91.14 (3.08) 92.69 (3.33) 93.73 (2.33)

T 2 F LAIR 91.89 (2.48) 89.69 (2.57) 84.86 (3.06) 91.38 (2.47) 89.06 (2.13)

F LAIR T 2 89.24 (1.83) 90.36 (1.93) 89.58 (1.77) 92.08 (1.90) 91.50 (2.02)

PSNR: IXI

T 1 T 2 25.66 (1.18) 25.55 (0.96) 27.25 (1.54) 28.10 (1.67) 29.52 (1.42)

T 2 T 1 25.28 (2.88) 19.07 (2.14) 21.23 (3.02) 19.87 (2.79) 26.22 (3.67)

T 1 P D 22.39 (2.63) 22.68 (1.72) 24.61 (3.31) 25.37 (3.48) 27.18 (2.35)

P D T 1 24.25 (2.92) 19.16 (2.07) 19.87 (2.61) 20.13 (2.54) 28.51 (3.47)

T 2 P D 29.42 (4.72) 27.07 (5.06) 23.34 (3.28) 28.15 (5.71) 32.46 (3.33)

P D T 2 32.21 (2.39) 30.93 (2.53) 25.90 (4.71) 30.93 (1.79) 34.48 (2.50)

PSNR: OASIS

T 1 T 2 21.58 (1.83) 24.87 (1.19) 24.99 (1.28) 25.49 (1.52) 26.20 (1.41)

T 2 T 1 22.40 (2.87) 20.61 (2.30) 21.36 (1.94) 20.62 (2.38) 24.64 (2.38)

T 1 F LAIR 26.03 (3.38) 20.64 (2.17) 18.71 (1.66) 21.84 (2.15) 25.22 (3.19)

F LAIR T 1 20.85 (2.64) 20.49 (2.33) 20.49 (2.28) 20.88 (2.56) 24.87 (2.59)

T 2 F LAIR 26.26 (3.26) 20.28 (1.91) 19.01 (1.38) 21.21 (2.19) 23.44 (1.96)

F LAIR T 2 22.00 (1.32) 24.25 (0.91) 23.84 (0.83) 25.20 (1.05) 26.45 (1.12)

LPIPS: IXI

T 1 T 2 0.063 (0.008) 0.034 (0.008) 0.049 (0.006) 0.043 (0.010) 0.033 (0.008)

T 2 T 1 0.046 (0.011) 0.070 (0.016) 0.074 (0.014) 0.070 (0.018) 0.030 (0.007)

T 1 P D 0.062 (0.016) 0.034 (0.010) 0.046 (0.010) 0.047 (0.011) 0.031 (0.009)

P D T 1 0.055 (0.011) 0.072 (0.014) 0.085 (0.014) 0.068 (0.013) 0.028 (0.007)

T 2 P D 0.016 (0.010) 0.024 (0.012) 0.040 (0.010) 0.019 (0.011) 0.007 (0.003)

P D T 2 0.019 (0.006) 0.019 (0.007) 0.038 (0.019) 0.015 (0.004) 0.011 (0.005)

LPIPS: OASIS

T 1 T 2 0.096 (0.022) 0.040 (0.007) 0.044 (0.009) 0.045 (0.017) 0.040 (0.008)

T 2 T 1 0.055 (0.017) 0.047 (0.018) 0.059 (0.017) 0.047 (0.017) 0.035 (0.012)

T 1 F LAIR 0.055 (0.022) 0.045 (0.011) 0.063 (0.012) 0.045 (0.011) 0.039 (0.013)

F LAIR T 1 0.059 (0.017) 0.048 (0.018) 0.052 (0.017) 0.050 (0.017) 0.035 (0.012)

T 2 F LAIR 0.069 (0.016) 0.052 (0.011) 0.100 (0.013) 0.051 (0.011) 0.054 (0.008)

F LAIR T 2 0.098 (0.013) 0.045 (0.005) 0.052 (0.005) 0.047 (0.006) 0.044 (0.005)

BSSIM: IXI

T 1 T 2 88.91 (2.30) 92.94 (2.58) 91.45 (2.53) 92.69 (2.58) 92.84 (2.57)

T 2 T 1 88.70 (2.32) 83.60 (2.80) 83.06 (2.80) 85.07 (3.54) 92.66 (2.30)

T 1 P D 86.79 (3.43) 91.77 (2.44) 89.72 (2.54) 92.01 (2.32) 91.06 (2.61)

P D T 1 87.58 (2.21) 83.58 (2.29) 82.02 (2.52) 85.21 (2.75) 93.14 (1.95)

T 2 P D 96.57 (2.09) 94.72 (2.46) 92.17 (2.16) 95.68 (2.43) 96.99 (1.41)

P D T 2 96.53 (1.33) 96.50 (1.65) 92.02 (4.42) 97.41 (0.77) 97.78 (1.25)

BSSIM: OASIS

T 1 T 2 86.93 (3.47) 90.56 (3.01) 89.97 (3.31) 90.94 (3.56) 90.64 (3.17)

Continued
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the lowest changes in the SSIM and BSSIM metrics. This can stem from the fact that the ResViT model benefits 
from a sub-model that is pre-trained using a gigantic medical imaging dataset, facilitating higher generalizability 
across inputs. We further notice that LPIPS shows minimal changes compared to other metrics for most models.

In another experiment, we use sample input MR images with artifacts and brain pathologies (MS lesions and 
brain tumors) from three pubic datasets discussed in Datasets and Pre-processing. We show several examples 
of the outputs of the models using OOD inputs in Fig. 4. In this figure, from left to right, the first and second 
columns belong to the input and target images, where the target image is only available for images with pathology, 
as images with artifacts do not have T2 ground truth images. The third, fifth, and seventh columns represent 
the output images, and the fourth, sixth, and eighth columns show the standard deviation images, respectively, 
for the cGAN, NCSN, and DDPM models. Each row belongs to the input image with the indicated MR image 
anomaly. The first, second, and third rows correspond to images with artifacts: a strong RF zipper artifact 
(dashed-line shaped strong signals), an MR image reconstruction artifact, and a low SNR issue. We observe that 
all three models produce less reliable results when using images outside the distribution of the training dataset. 
We note that the Direct and ResViT models also yield inaccurate results, which are not shown here for brevity. 
We also observe that the probabilistic models exhibit responses with different characteristics to these inputs in 
their standard deviation images. We particularly see an increase in the standard deviation values, especially for 
the cGAN and NCSN models. While OOD inputs are more likely to result in inaccurate outputs, the information 
derived from the standard deviation images can be utilized to detect these potential inaccuracies, an option that 
is not available for deterministic models. The next row belongs to an image with a brain tumor marked as (t). 
As can be seen in the target column, the tumor area yields a hyperintense signal region in the target T2 image. 
However, the models reconstructed the tumor as a hypo-intense area in their outputs. This inaccuracy stems 
from the fact that the images with tumors are not included in the training data. In this example, the cGAN 
model does not demonstrate an increase in the standard deviation in the areas with the tumor. In contrast, the 
standard deviation is significantly higher in a relatively large area around the tumor for the NCSN model. The 
DDPM model shows an increase in the standard deviation for the areas close to the tumor. In the last row, the 
input image contains a white matter lesion marked as (msl). As can be seen, all three models have been relatively 
successful in reconstructing the lesion area and present slightly higher standard deviations almost globally.

The probabilistic models allow the evaluation of the pixel-wise standard deviation in the transformed 
images, which can be considered as a measure of uncertainty. It is worth considering whether this measure 
of uncertainty depends on whether the input image is OOD. From Fig. 4, we observe that this might be the 
case since the standard deviation in the transformed images for OOD input images is typically larger than the 
standard deviation for normal images.

To explore the dependency of the standard deviation values on OOD inputs, we introduce a scalar score 
σ̂ calculated as the value of pixel-wise standard deviation averaged over all voxels of the brain for a given 3D 
image volume. The values of raw scores σ̂ are demonstrated as swarm plots in three sets shown in the first row 
of Fig. 5 for cGAN, NCSN, and DDPM models. In each plot, the left column (normal) contains results obtained 
by transforming normal images from 144 IXI test subjects and evaluating σ̂ for each subject using the T1 to T2 
transformation model trained on the IXI training dataset. The left columns (OOD) contain calculated σ̂ for 

Direct ResViT cGAN NCSN DDPM

SSIM 85.86 (-3.08) 91.05 (-0.95) 89.02 (-2.80) 88.43 (-4.26) 91.04 (-1.43)

PSNR 22.97 (+1.39) 24.12 (-0.75) 23.60 (-1.39) 24.38 (-1.11) 25.24 (-0.96)

LPIPS 0.080 (-0.016) 0.050 (+0.010) 0.071 (+0.027) 0.081 (+0.036) 0.054 (+0.014)

BSSIM 82.11 (-4.82)  89.26 (-1.30) 86.40 (-3.57) 86.18 (-4.76) 88.48 (-2.16)

Table 2.  Average calculated similarity metrics for T1 to T2 transformations using the model trained on the 
IXI dataset but evaluated on test subjects from the OASIS dataset (OOD inputs). The values in the parentheses 
show the changes in the performance compared to the models that are also trained on the OASIS dataset. A 
negative value for SSIM, PSNR, and BSSIM and a positive value for LPIPS indicate that the performance is 
lower when using OOD inputs and vice versa.

 

Direct ResViT cGAN NCSN DDPM

T 2 T 1 90.92 (3.72) 88.98 (3.85) 86.28 (3.75) 89.68 (3.82) 89.50 (3.61)

T 1 F LAIR 90.23 (4.04) 90.54 (2.49) 88.07 (2.22) 91.05 (2.49) 91.14 (3.22)

F LAIR T 1 90.85 (3.44) 89.26 (3.60) 88.43 (3.36) 90.91 (3.63) 90.96 (2.59)

T 2 F LAIR 88.76 (2.95) 88.61 (2.53) 81.07 (2.53) 90.23 (2.34) 86.47 (2.38)

F LAIR T 2 86.58 (2.19) 88.71 (2.27) 87.38 (2.06) 90.11 (2.32) 89.17 (2.36)

Table 1.  Statistics (mean and standard deviation in parentheses) of SSIM, PSNR, LPIPS, and BSSIM metrics 
for test subjects from IXI and OASIS datasets for Direct, ResViT, cGAN, NCSN, and DDPM models. Each row 
lists the metrics for the indicated transformation, with the best results (the highest for SSIM, PSNR, and BSSIM 
and the lowest for LPIPS) highlighted in bold font.
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subjects with artifacts (shown in orange), those with MS lesions (in green), and those with brain tumors (in 
red), from which five examples are displayed in Fig. 4. This column also shows results for input images from the 
OASIS dataset, which are considered OOD, as the model is trained on the healthy subjects from the IXI dataset, 
but the OASIS dataset contains subjects with Alzheimer’s and those in the aging stages. From Fig. 5, we observe 
that a large value of σ̂ is often an indicator of OOD input images for the cGAN and NCSN models. We also 
observe that this conclusion can not be generalized to σ̂ values calculated for the DDPM model.

These are further examined by using σ̂ as a score to classify the input images as either normal or OOD. We 
do this by varying the threshold for this classification to generate a receiver operating characteristic (ROC) curve 
and computing the area under this curve (AUC). This is shown in the left part of Fig. 6 for σ̂ values. Recall that 
for a perfect classifier, AUC is equal to 1, whereas an AUC of 0.5 corresponds to performance no better than a 
random guess. As shown in the plot legends, the AUC for the cGAN, NCSN, and DDPM models are respectively 
0.976, 0.850, and 0.421. These results indicate that the scores calculated from the outputs of the cGAN and 
NCSN models are effective in classifying input images as normal or OOD. The right plot in Fig. 6 presents the 
F1 scores computed to evaluate the classification performance based on the normalized uncertainty values σ̂ for 
the cGAN, NCSN, and DDPM models, where the maximum achievable F1 scores, as indicated in the legend, are 
0.905, 0.819, and 0.395. The F1 score serves as a balanced metric that combines both precision and recall (See 
Evaluation metrics and statistical measures for the definition).

Despite the strong discriminative performance of σ̂ scores in separating normal and OOD inputs, further 
analyses revealed that these values were not well-calibrated for the binary classification task. This was reflected 
in higher error values for the expected calibration error (ECE), Brier score, and negative log-likelihood (NLL) 
shown in the first three columns of Table 3 (see Evaluation metrics and statistical measures for definitions). 
We applied isotonic regression calibration to the scalar OOD scores σ̂ produced by the cGAN, NCSN, and 
DDPM models. Calibration was performed on the validation set, using five-fold cross-validation on the in-
distribution (ID) data combined with a randomly selected subset of OOD samples to ensure balanced coverage 
of both classes. This procedure learns a monotonic mapping that adjusts raw uncertainty estimates (σ̂) so that 
their magnitudes better reflect empirical probabilities of belonging to the OOD class. The resulting calibration 
models were subsequently applied to rescale the OOD scores of the unseen test data, ensuring that all reported 
reliability metrics correspond to held-out samples. As shown in the second part of Table 3, the calibrated scores, 
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Fig. 4.  Response of models to out-of-distribution (OOD) input images. Column 1: input image; column 
2: target image (when available); column 3-4: output and standard deviation images for the cGAN model; 
columns 5-6: transformed image and standard deviation for NCSN; columns 7-8: transformed image and 
standard deviation for DDPM. Rows 1, 2, and 3: images with RF zipper, reconstruction artifact, and low SNR; 
rows 4-5: images with brain tumor and white matter MS lesion pathologies.
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denoted as (σ̄), yielded substantially lower ECE, NLL, and Brier score values, with only a slight reduction 
in AUC. The calibrated σ̄ distributions, shown in the second row of Fig.  5, demonstrate probabilistically 
meaningful separations between in-distribution and OOD inputs, making calibrated scores more generalizable 
and interpretable.

Fig. 6.  Left: ROC curves comparing the classification performance of cGAN, NCSN, and DDPM models based 
on the raw calculated average standard deviation σ̂ for detecting normal from OOD images. The closer the 
curve is to the top-left corner, the better the model. Right: F1 score curve for different threshold values. A high 
F1 score indicates that the model has both high precision and high recall, meaning it makes few false positives 
and false negatives.

 

Fig. 5.  Distribution of σ̂, a measure calculated from the standard deviation images, for cGAN, NCSN, and 
DDPM models. Distributions are divided into left: normal input images and right: out-of-distribution (OOD) 
or images with pathology or artifact, as indicated with different colors in the legend. The first and second rows 
show the score values before and after calibration using the isotonic regression method.
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Discussion
In the first part of this section, we investigate the discussed models in terms of their quantitative accuracy and the 
qualitative characteristics of their outputs. In the second part, we briefly provide examples of the neuroimaging 
implications and considerations that need to be taken into account when utilizing these models.

Images from the IXI dataset are of better quality and display less heterogeneity when compared with 
images from the OASIS dataset. Some images in the OASIS dataset suffer from low contrast and poor image 
quality. Consequently, on average, all image transformation methods perform better on the IXI dataset. This 
is seen clearly by computing the average SSIM, PSNR, LPIPS, and BSSIM values for each method over all six 
transformation types for the two datasets. These values are reported in Table 4, where we observe that for every 
method, all metrics are higher for the IXI dataset.

We note that while the outputs of the models are generated as batches of 2D slices, they are then stacked to 
reconstruct 3D volumes. All evaluation metrics (SSIM, PSNR, LPIPS, and BSSIM) in this work are computed 
based on normalized 3D volumes rather than slice-wise averages to ensure that the evaluation metrics reflect 
any potential inconsistencies across slices. To further assess volumetric coherence, we introduced a slice-
consistency metric, SCSSIM, that measures the stability of inter-slice similarity across the reconstructed volume 
(see Evaluation metrics and statistical measures section for definition). The computed values are presented in 
Table 5. As shown, all methods achieved high slice-consistency scores (ranging from 97.20 to 99.25), indicating 
that the models preserve spatial continuity across slices.

From Table 4, we conclude that the cGAN model yields the lowest value for the PSNR, LPIPS, and BSSIM, and 
the second lowest for the SSIM metric. We speculate that the cause is the distortion observed at the boundaries 
of different types of brain tissues, as also reflected in low BSSIM values. These distortions are most clearly seen 
in the transformed T1 images. We show an example in Fig. 7, where for a test sample slice from the IXI dataset, 
we have plotted the target T1 image, a zoomed-in region of interest (ROI) in this image that encompasses the 
ventricles and basal ganglia, the corresponding transformed ROIs generated by the Direct, ResViT, cGAN, 
NCSN, and DDPM methods, and the ROI in the input T2 image. We will return to Fig. 7 in this section in 
order to illustrate qualitative trends observed in our study. As mentioned, in the cGAN output ROI of Fig. 7, 
we observe that the boundaries between subcortical structures like the thalamus and putamen (marked as (t) 
and (p) in the target image) and the white matter appear to be distorted in the transformed cGAN image. We 
note that these distortions are also observed in other images generated by the cGAN method. Our experience is 
consistent with other reports17 that claim that GAN-based models struggle to generate fine features and edges 

Direct ResViT cGAN NCSN DDPM

IXI

SSIM 93.48 91.45 92.66 94.36 95.40

PSNR 26.54 24.08 23.70 25.43 29.73

LPIPS 0.044 0.042 0.055 0.044 0.024

BSSIM 90.85 90.52 88.41 91.35 94.08

OASIS

SSIM 91.30 91.03 89.43 92.21 92.12

PSNR 23.19 21.86 21.40 22.54 25.14

LPIPS 0.072 0.046 0.062 0.047 0.041

BSSIM 89.05 89.44 86.87 90.49 89.65

COMBINED

SSIM 92.87 91.33 91.76 93.76 94.48

PSNR 25.60 23.46 23.06 24.62 28.44

LPIPS 0.052 0.043 0.057 0.045 0.029

BSSIM 90.34 90.22 87.98 91.11 92.84

Table 4.  Average similarity metrics (SSIM, PSNR, LPIPS, and BSSIM) for the Direct, ResViT, cGAN, NCSN, 
and DDPM methods. Averages are calculated over all six transformation types for all test subjects in the IXI 
and OASIS datasets. The last three rows, labeled “COMBINED”, represent the average metrics for each method 
across both datasets and all transformations.

 

normalized scores (σ̂) calibrated scores

cGAN NCSN DDPM cGAN NCSN DDPM

AUC 0.976 0.850 0.421 0.973 0.843 0.438

ECE 0.182 0.169 0.449 0.043 0.088 0.249

Brier score 0.218 0.214 0.222 0.044 0.092 0.283

NLL 0.723 0.698 0.760 0.256 0.437 1.129

Table 3.  Performance metrics for binary classification of normal versus out-of-distribution OOD input images 
based on the normalized calculated mean of standard deviation σ̂ (left) and the score values after calibration 
using the isotonic regression method (right). The best value in each row (the highest for AUC and the lowest 
for the other metrics) is highlighted using bold font.
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in transformed images. This is a significant drawback since it can lead to erroneous volumetric measurements in 
downstream tasks in MR imaging.

The model with the lowest SSIM and slightly higher PSNR and BSSIM is ResViT. We observe from Fig. 7 
that, unlike cGAN, this model is successful in generating fine features and tissue boundaries. This can also 
be observed as a higher value of BSSIM for this model compared to the cGAN model. However, a closer look 
at atypical slices reveals that the ResViT model occasionally produces areas of false positives (cloud shapes 
outside the brain) and false negatives (missing part of the brain in the output). We note that the former is 
resolvable using appropriate post-processing. However, the latter is unrecoverable as part of the brain will be 
excluded from the output. We speculate that in patch-based hybrid models such as ResViT, small tissue islands 
can fall across patch boundaries, fragmenting their representation and making them prone to suppression 
during reconstruction. Improving spatial resolution, using overlapping or hierarchical patch embeddings52,53, 
and proper preprocessing, such as applying skull stripping after transformation, can mitigate this effect. We 
provide an example for this issue in Fig. 8, where the lower parts of the temporal lobes, where the white arrows 
are pointed in the input image, are missing in the output of the ResViT model.

The calculated metrics for the Direct model are relatively acceptable. However, visual inspection of the 
outputs suggests that this method generally produces transformed images that are blurry. From Fig. 7, we can 
clearly see that the ROI generated by the Direct method is blurry when compared with the target ROI and the 
ROIs generated by most other methods. We observe this trend for the Direct method for most transformation 
types and test samples. One possible explanation for this trend could be the use of the mean-squared error as 
a loss function. However, we found that this trend persisted when we changed the loss function to the mean 
absolute error function (results not shown here).

The DDPM model has the highest overall SSIM, PSNR, LPIPS, and BSSIM values, whereas the NCSN model 
yields the second-highest SSIM and BSSIM values. A visual inspection of the transformed images produced by 
these models in Fig. 7 reveals that both generate qualitatively accurate images. However, a close look at the image 

Input image Target image ResViT output

Fig. 8.  An example of false negative areas (shown using the white arrows in the input image), where parts of 
the brain are missing in the output of the ResViT model.

 

NCSN Output (ROI)

hypo-intense noisesccp

Target Image

ROI

t

Target Image (ROI) Direct Output (ROI) ResViT Output (ROI) cGAN Output (ROI) DDPM Output (ROI) Input Image (ROI)

Fig. 7.  T2 to T1 transformation from the IXI test dataset. From left to right: target T1 image with a square-
shaped region of interest (ROI), followed by images of the ROI for the target image, transformed images 
generated by the Direct, ResViT, cGAN, DDPM, and NCSN models, and the input image. In the ROI target 
image, the thalamus (t) and putamen (p), and in the DDPM image, the splenium of the corpus callosum (scc) 
and two hypo-intense pixels are marked by arrows.

 

Direct ResViT cGAN NCSN DDPM

IXI 99.09 98.84 98.77 99.10 99.25

OASIS 97.20 98.12 97.28 98.04 97.66

COMBINED 98.56 98.64 98.36 98.81 98.80

Table 5.  Average slice consistency similarity metrics (SCSSIM) for the Direct, ResViT, cGAN, NCSN, and 
DDPM methods. Averages are calculated over all six transformation types for all test subjects in the IXI and 
OASIS datasets. The last row, labeled “COMBINED”, represents the average metrics for each method across 
both datasets and all transformations.
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generated by the DDPM method indicates the presence of two hypo-intense pixels posterior to the splenium of 
the corpus callosum (marked as “scc” in the figure). We find these artifacts to be an occasional occurrence in 
the images generated by the DDPM method. As discussed in Supplementary Notes online, we speculate that 
this model exhibits a numerical instability for the MR image transformation problem that results in producing 
outlier pixels with extremely large or small (negative) values. The outlier values can be corrected by employing a 
denoising step described in the Methods section. However, extra care is needed when working with this model. 
We note that the similarity metrics for the DDPM method reported in Tables 1 and 4 are obtained after applying 
this denoising step.

In summary, considering SSIM as the primary quantitative metric, the DDPM model shows higher accuracy 
compared to NCSN (by 1.73%) as the second-best model. However, both models generate transformed images 
with comparable quality. Additionally, the former exhibits numerical instability, whereas the latter does not.

As we mentioned, the probabilistic formulation in the generative models allows a series of additional 
analyses that are not possible when working with deterministic models. Specifically, for any given pixel in the 
input images, we have a distribution of output values in the generated samples and a single ground truth value. 
Performing various analyses on univariate pixel-wise data can provide insights into the characteristics of these 
models and the distribution of their outputs. One of these aspects is whether the distribution of the outputs 
aligns with the observed target data. One way to assess this is through regression calibration plots54, which 
visualize the relationship between predicted confidence levels and the empirical coverage, i.e., the actual fraction 
of targets whose true values fall within the corresponding predicted confidence intervals. For example, whether 
10% of the target values lie within the 10% confidence intervals calculated based on the samples generated by 
the model, and so on.

We illustrate these regression calibration plots in Fig. 9 for the T1-to-T2 transformation of generative models 
on the IXI (left) and OASIS (right) datasets. A well-calibrated model produces a curve that closely follows the 
diagonal. Deviations below the diagonal indicate overconfident predictions (distributions of samples are too 
narrow), while curves above suggest underconfident predictions (distributions too wide). We note that the term 
“calibration” was also used in the context of binary classification of normal and OOD inputs from the standard 
deviation values. In the context of binary classification, the targets are labels with values of zero or one, and the 
scores form a distribution of values for the probability of belonging to the normal or OOD class. Here, in the 
context of regression calibration, the targets and outputs have continuous values. As shown, the orange curve, 
especially for the IXI dataset, is closest to the diagonal, indicating that the NCSN model is better calibrated 
compared to others. In contrast, the DDPM model tends to be underconfident, with true pixel values too often 
falling within the predicted intervals of samples. This suggests that the distributions of DDPM outputs are overly 
broad, reflecting standard deviations that are larger than what they should be. On the other hand, the cGAN 
model exhibits calibration curves that often lie below the diagonal, indicating overconfidence. This may arise 
from limited diversity in the generated outputs or from systematic bias in the predictions. We observed similar 
trends in transformations other than T1 to T2, which are not reported here for brevity.

The effectiveness of OOD detection based on the scores calculated from the standard deviation images is 
linked to model calibration. While NCSN uncertainty is well-calibrated and reliably captures ID variability, 
cGAN exhibits overconfident predictions for ID inputs but displays larger standard deviation image scores 
for OOD inputs. This behavior may arise from the adversarial training dynamics in cGAN, which amplify 
differences when encountering unfamiliar inputs. In contrast, DDPM produces broadly high uncertainty for all 
inputs, reducing the discriminative power of the scores for OOD detection. These observations highlight that 
both calibration quality and sensitivity to deviations determine how ensemble-derived uncertainties can be used 
to detect out-of-distribution images.
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Fig. 9.  Regression calibration plot for T1 to T2 transformations using cGAN, NCSN, and DDPM models 
trained and evaluated on IXI (left) and OASIS (right) datasets.
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We provide a number of additional analyses based on the generative property of the cGAN, NCSN, and DDPM 
models in Supplementary Notes online. Specifically, we utilize the Shapiro-Wilk test to assess the normality of 
the distribution of the outputs. The results suggest that the outputs of the NCSN model demonstrate significantly 
higher normality compared to the other two models. We further investigate the impact of the number of samples 
on the accuracy of the outputs and the statistical measures, such as cumulants, in Supplementary Notes online.

In addition to quantitative evaluation and exploring the differences in the characteristics of the discussed 
models, recognizing the extent of their reliability is critical, especially in clinical contexts. For example, are 
models equally successful in all combinations of input and output contrasts, or are pathological features such 
as lesions preserved in the output images? To answer the first question, we note the differences when analyzing 
the metrics across all transformations in Table 1. For example, the DDPM model attains the two highest SSIM 
metrics when converting PD to T2 (97.91) and T2 to PD (97.13) images from the IXI dataset. This can be 
attributed to the inherent similarity in tissue contrast between these two MR image types, particularly in water-
rich tissues. On the other hand, we observe the lowest SSIM when converting T2 to FLAIR (89.06) and FLAIR 
to T2 (91.50) images. One of the reasons for this drop in performance is the absence of certain features in the 
input image that are clearly observed in the target image. For example, when compared with the T2 images, 
FLAIR images are designed to demonstrate high sensitivity in highlighting white matter lesions and some other 
normal or pathological regions that appear as hyper-intense periventricular voxels. This is seen in Fig. 10, where 
in the target FLAIR image, we have marked several hyper-intense periventricular regions (pv) and white matter 
lesions (wm) that are very difficult to locate in the input T2 image. The transformed FLAIR image generated by 
the DDPM model is relatively successful in reconstructing periventricular hyper-intense regions, but fails to 
generate white matter lesions, as they are absent in the input image. We observe similar patterns in the output 
of other models.

We further conduct an experiment to investigate the ability of the models in preserving pathological features. 
We perform T1 to T2 image transformation using inputs that contain MS lesions from the MSSEG dataset. We 
illustrate an example of the outputs in Fig. 11. From left to right, the first and second images show the input 
image and the area within the highlighted ROI in the input image. The last and second-to-last images are the 
target images and the target image within the ROI. The remaining images (third to eighth) are the outputs of the 
models. The red curves indicate the MS lesion areas provided through manual segmentation by experts. As seen, 
most models have been relatively successful in reconstructing the lesions in their output. We quantify the ability 
of the models to preserve the lesions by calculating the Pearson correlation coefficient between the intensity of 
pixels within the lesion areas of the outputs and the target images. The results for the Direct, ResViT, cGAN, 
NCSN, and DDPM are respectively 0.748, 0.696, 0.669, 0.705, and 0.711. These numbers indicate a relatively 
strong correlation between the values of the output and target images within the lesion areas. This experiment 
presents an example of the successful preservation of pathologies in the output.

Input image Input image (ROI) Direct (ROI) ResViT (ROI) cGAN (ROI) NCSN (ROI) DDPM (ROI) Target image (ROI) Target image

Fig. 11.  The results of T1 to T2 transformation of the discussed models for an input image with MS lesions. 
From left to right, the input image and the area within the highlighted ROI in the input image, the outputs of 
the indicated models, the target image within the ROI, and the target image are shown. The red curves indicate 
the manually segmented MS lesion areas.

 

DDPM

Fig. 10.  T2 to FLAIR transformation from the OASIS test dataset using the DDPM model. From left to right: 
the target FLAIR image, the ROI in the target image with white matter lesions (wm) and periventricular hyper-
intense regions (pv), the ROI in the transformed image, and the ROI in the input T2 image.
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Another example is the effectiveness of the models in performing several image transformations on the 
OASIS test subjects that exhibit a range of pathologies, such as brain atrophy and Alzheimer’s disease lesions. 
However, we note that this is not always the case. We provided an example in Fig. 4, where the models fail 
to regenerate the brain tumor in their output. Therefore, beyond the extensive evaluations provided here, the 
selection of training data, the expectations from the outputs, and the evaluation strategies should be tailored 
based on the subsequent tasks. These are widely accepted points for any deep learning-based model in order to 
provide reliable outputs. However, the generative models hold the significance of providing tools that can warn 
the end-user when the outputs are more likely to be unreliable.

Methods
Problem formulation
We assume that a dataset of N paired MR images of an input and an output type is available. This dataset is 
denoted by S = {(x(i), y(i))}N

i=1, where x(i) ∈ RNX  are images of the input type, y(i) ∈ RNY  are images of 
the output type, and NX  and NY  are the number of pixels in the output and input images, respectively. In this 
study, NX = NY  and each image is a two-dimensional axial image of the brain. It is further assumed that each 
image pair corresponds to the same physical slice and belongs to the same subject.

Deterministic formulation (direct model)
In the deterministic formulation of the problem, given an input image, the aim is to solve a nonlinear regression 
problem to estimate the pixel intensity of the output image. To solve this problem, we assume that there exists 
a function, f : RNX �−→ RNY , that directly transforms the pixel intensity of the input image to the output 
image through a nonlinear transformation. We model f  using a neural network and denote it by f̃ . This model 
is trained by minimizing a loss function that measures the difference between the output of the model and the 
target or ground truth for all images in the training dataset. This loss function is given by

	
L (f̃) = 1

2N

N∑
i=1

|y(i) − f̃(x(i))|2.� (1)

The trained model is f̃∗ = arg min
f̃

L (f̃) and is referred as the direct model. We use this model as a simple 

baseline and compare the performance of the probabilistic models against it. In order to make a fair comparison, 
a similar U-Net neural network architecture is used for all models, i.e., the direct model, the generator in the 
cGAN, the score network in the NCSN, and the denoiser in the DDPM. (see Supplementary Notes online for 
details.)

Probabilistic formulation
In the probabilistic framework, we treat the input and output image types as random variables X  and Y , 
respectively. The dataset S represents samples drawn from the joint density function pXY (x, y). Using S, we 
aim to train deep generative models that receive a new input image X = x̂ and can generate an ensemble 
of likely transformed generated images sampled from the conditional distribution, yg ∼ pY |X(y|x̂). These 
generated samples can be used to compute any desired statistic, including the sample mean, which is treated as 
the best guess for the inferred transformed image, and the sample standard deviation image, which is interpreted 
as a measure of uncertainty in the transformed image. We solve the probabilistic problem using three distinct 
generative models: conditional Wasserstein generative adversarial networks (cGAN), noise conditional score 
networks (NCSN), and denoising diffusion probabilistic models (DDPM) methods. These are described next.

Conditional Wasserstein generative adversarial network (cGAN)
As shown in Fig. 12, the cGAN architecture consists of two deep neural networks, a generator g and a critic or 
discriminator d. The generator, g : RNX × RNZ �−→ RNY , receives an input image x and an instance of the 
random latent vector z ∈ RNZ  and generates an output image yg = g(x, z). The latent variable is sampled from 

Fig. 12.  The conditional Wasserstein generative adversarial network (cGAN) architecture used in this work. 
The generator g receives the input image x, and generates a synthesized image yg  for any random latent vector 
z. The critic d distinguishes between the generated synthesized image yg  and target image y paired with x. 
The training process involves updating g such that its outputs are indistinguishable from real images by d and 
updating d to become better at distinguishing the generated images from real ones.
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a simple, known probability distribution, pZ . In this work, each component of the latent vector is independent 
and sampled from a standard normal distribution. By using a given input image x along with multiple instances 
of z drawn from pZ , the generator generates an ensemble of transformed images for a single input image. These 
images may be treated as samples drawn from a conditional distribution denoted by yg ∼ pg

Y |X .
The critic d : RNX × RNY �−→ R receives a pair of images and distinguishes between the pairs drawn 

from the true dataset, i.e., (x, y) ∼ pXY , and pairs where the output image type is generated by the generator 
network, i.e., (x, yg), where yg ∼ pg

Y |X . This is accomplished by requiring the critic to yield larger values for 
images from the true dataset and smaller values for the images from the generated dataset. This leads to an 
adversarial loss function44 given by

	

L (d, g) = E
(x, y) ∼ pXY

yg ∼ pg
Y |X

[d(x, y) − d(x, yg)],
� (2)

and determining the optimal networks by solving a min-max optimization problem,

	

d∗(g) = arg max
d


L (d, g) + λ E

(x, y) ∼ pXY

yg ∼ pg
Y |X

[(∥∂yd(x, ŷ)∥ − 1)2].


 , � (3)

	
g∗ = arg min

g

L (d∗(g), g). � (4)

We note that the second term in Equation 3 is the gradient penalty term45, λ is the penalty parameter, and 
ŷ = ϵy + (1 − ϵ)yg  where ϵ ∼ U (0, 1). It can be shown that the optimal critic (d∗) measures the Wasserstein-1 
distance between the true joint distribution and its generated counterpart46, and therefore the optimal generator 
(g∗) aims to minimize this distance. This, in turn, implies that the generated conditional distribution pg

Y |X  is 
close to the true conditional distribution pY |X .

We further note that the generator implemented in this work accepts z as input through a set of conditional 
instance normalization (CIN)55 blocks, as discussed in Supplementary Notes online. This is an example of the 
neural network considerations to incorporate stochasticity in generative models. In other words, a model can be 
constructed based on a probabilistic formulation while still lacking the appropriate design to generate multiple 
samples per input image. These models provide predictions in a deterministic fashion, a common practice in the 
literature, and therefore, lose any information derived from the distribution of generated images. See the ResViT 
model discussed next as an example.

Residual vision transformation (ResViT)
The ResViT35 model also uses a generative adversarial network architecture, where the generator consists of a 
hybrid architecture of encoder, information bottleneck, and decoder. The encoder and decoder contain deep 
convolutional layers, and the information bottleneck consists of several stacked residual transformer (ART) 
blocks. Each ART block contains a transformer module, a CNN module, and external skip connections. The 
discriminator model contains several convolutional layers. When converting a single MR image type to another, 
the original implementation is designed to provide a single output (See Supplementary Notes online for details).

Diffusion models
As illustrated in Fig. 13, the workflow of diffusion-based models (NCSN and DDPM) consists of a forward noising 
process (from right to left) and a backward denoising process (from left to right). In the unconditional version of a 
diffusion model, during the noising process, a sample is drawn from the true initial distribution y = y0 ∼ p0(y), 

Fig. 13.  Forward noising and backward denoising processes in diffusion models. During training (from right 
to left) sample images go through several noising steps. This provides a series of images with different levels 
of noise. These images are used to train a model that receives a noisy image and time t and provides an output 
that is used to generate a less noisy image. After training, generating samples involves (from left to right) 
starting from a noise image and generating less noisy images, leading to the final generated image.
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i.e., an image from the training dataset, and an uncorrelated noise with variance βt = σ2
t , t = 1 . . . T  is added 

to it. This process is repeated until the image looks like pure noise, i.e., yT ∼ N (µ, βT I), where I ∈ RNY  
denotes the identity matrix. The data from the forward noising process is used to train a denoising neural 
network that receives a noisy image yt ∼ pt(y) and generates an image yt−1 ∼ pt−1(y) with slightly less noise. 
This network is applied to an image drawn from the distribution of pure noise yT ∼ N (µ, βT I) in multiple 
denoising steps, t = T . . . 1, to generate a sample from p0(y). In the conditional version of this algorithm, the 
noising and denoising steps are conditioned on the input image x.

Noise conditional score network (NCSN)
The noising process in the NCSN method involves adding a noise to the initial image y0,

	 yt = y0 +
√

βtϵ, t = 1 . . . T,� (5)

where ϵ ∼ N (0, I) ∈ RNY , and the variances βt are hyper-parameters that are selected according to a schedule21. 
The training process in the NCSN learns a neural network model s̃(y, x, t) : RNY × RNX × R �−→ RNY , that 
approximates the score function ∇ log(pY |X(y|x, t)) of the time dependent conditional distribution. This is 
achieved by defining an objective function

	

L (s̃) = 1
2T

T∑
t=1

βt E
(x, y0) ∼ pXY

yt ∼ p(yt|y, t)

[∣∣∣∣s̃(yt, x, t) + yt − y0

βt

∣∣∣∣
2
]

,� (6)

where the optimal score network model is given by s̃∗ = arg min
s̃

L (s̃). The term within the square 
parentheses in Equation 6 is similar in form to a regression loss. Therefore, we recognize that the output of a fully 
trained score network is given by s̃∗(yt, x, t) ≈ −(yt − y0)/βt. By rearranging this equation, we note that 
y0 ≈ βts̃

∗(yt, x, t) + yt. That is, the value of the score function, when multiplied by the variance βt, is what 
should be added to the perturbed image yt to generate the image without noise (y0) at any step t. In practice, 
the denoising process in NCSN is performed iteratively through T steps of Langevin MC21, where at any step, a 
less noisy image yt−1 is generated using

	 yt−1 = yt + γts̃
∗(yt, x, t) +

√
2γtϵ.� (7)

Here γt = λγβt/β1 is the step size, λγ  is a hyper-parameter, and β1 is the variance for the first time step 
(typically the smallest βt). The sampling process begins by selecting yT ∼ N (0, βT I) and a given input image 
x, and using these in the equation above. This results in y0, which is a single sample of the transformed image 
generated conditioned on x. This process is repeated to generate multiple samples.

Denoising diffusion probabilistic models (DDPM)
The noising process in the DDPM method also involves adding a tailored noise to y0,

	 yt =
√

ᾱty0 +
√

1 − ᾱtϵ,� (8)

where αt = 1 − βt and ᾱt =
∏t

s=1 αs
56 and ϵ ∼ N (0, I). In the DDPM method, unlike NCSN, the variances 

are limited to be between zero and one as βt ∈ (0, 1), t = 1 . . . T , such that β1 < β2 < · · · < βT . The noisy 
image yt generated through Equation 8 and its counterpart from the initial distribution y0 are used to train a 
denoiser function in the form of a neural network η̃ : RNY × RNX × R �−→ RNY . This network is trained 
using the loss function56,

	

L (η̃) = 1
2T

T∑
t=1

E
(x, y0) ∼ pXY

ϵ ∼ N (0, I)

[∣∣η̃(
√

ᾱty0 +
√

1 − ᾱtϵ, x, t) − ϵ
∣∣2

]
,� (9)

where the optimal denoiser is given by η̃∗ = arg min
η̃

L (η̃). Similar to the NCSN, the loss function in Equation 

9 resembles a regression loss. Further, by comparing the term within the bracket in Equation 9 and the noising 
process (Equation 8), we observe that the denoiser learns to estimate a measure of noise added to the clear image; 
that is, η̃∗(yt, x, t) ≈ ϵ.

The DDPM model used in this study48 is an extension of an earlier model56. The training of this model 
involves minimization of a hybrid loss that contains an additional term so that the model also learns the sequence 
of noise scales β̃(t) for t = 1 . . . T , instead of accepting them as parameters defined by the user. This network is 
denoted by β̃(t), and it is trained concurrently with η̃. The denoising process in the DDPM method is given by

	
yt−1 = 1√

αt

(
yt − 1 − αt√

1 − ᾱt

η̃∗ (yt, x, t)
)

+
√

β̃(t)ϵ.� (10)
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The sampling process begins by sampling yT ∼ N (0, I), selecting an input image x, and using these in 
Equation 10. These iterations end with the y0, which is a sample of the transformed image conditioned on the 
input image x.

The NCSN and DDPM methods share many common features, including beginning with a sample drawn 
from a simple Gaussian distribution, iteratively denoising this sample using Langevin dynamics, and using a 
neural network that is trained using a simple regression loss. The key difference between the two methods is in 
the initial distribution from which samples are generated. In the NCSN method, this is a multivariate Gaussian 
distribution with zero mean and a very large variance, whereas in the DDPM method, it is a multivariate Gaussian 
distribution with zero mean but with a variance of unity. The reader is referred to57 for a unified description of 
these methods and their connections with the theory of stochastic differential equations.

Evaluation of mean and standard deviation images
For all three generative models (cGAN, NCSN, and DDPM), the inference process begins by using a 2D axial 
image of the brain x as input. Thereafter, in the cGAN model, n samples of the latent vectors, z with dimension 
NZ = 128 are used as input to the generator, which generates n images y(i), i = 1, · · · , n from the desired 
conditional distribution. For the diffusion models, the process is similar; however, the dimension of z is the 
same as that of y (1282). These samples are treated as the initial condition in the denoising process, which 
terminates in the generated images y(i), i = 1, · · · , n. We note that the sampling process in the diffusion 
models is computationally expensive since it involves T = 1000 steps. We also note that we used n = 20 as the 
number of samples throughout this work. In Supplementary Notes online, we briefly discuss the impact of this 
number on the distributional characteristics and accuracy of the outputs.

All three generative models generate an ensemble of images from the conditional distribution, which is 
used to compute a single pixel-wise mean image, ȳ = 1

n

∑n

i=1 y(i) and a pixel-wise standard deviation image 
y′ = ( 1

n

∑n

i=1 (y(i) − ȳ)2)1/2, where the operations are interpreted as being pixel-wise.
Transformed images from the DDPM model demonstrate isolated points with hyper or hypo-intense voxel 

intensities following the process described above. These voxels are identified by looking for outliers in the pixel-
wise standard deviation image. They are eliminated by replacing the mean intensity value with its pixel-wise 
median. We note that the generative capability of the DDPM model allows us to compute the pixel-wise mean, 
median, and standard deviation values and, therefore, eliminate these outliers (see Supplementary Notes online 
for a brief note).

Evaluation metrics and statistical measures
Here, we briefly discuss the metrics used to measure the similarity between individual output images and their 
counterparts from the test dataset. We also briefly define the statistical measurements and metrics related to 
binary classification, uncertainty, and distributional behavior of the models discussed throughout this work.

Image to image similarity metrics  1) Structural similarity index measure (SSIM) is an image similarity metric 
that is used in this work to assess the similarity between the outputs of the models and the target images in the 
form of 3D volumes. SSIM measures the similarity based on local patterns of intensity and incorporates lumi-
nance, contrast, and structural information. SSIM values range from zero to one, where a SSIM value of one is 
indicative of a perfect match. In this work, calculated SSIM values are reported as a percentage. 2) Peak signal-to-
noise ratio (PSNR) quantifies the fidelity of a reconstructed image by comparing the maximum signal intensity 
to the magnitude of the reconstruction error. While higher PSNR typically indicates better image quality, it 
does not always correlate well with perceived visual similarity58. 3) Learned perceptual image patch similarity 
(LPIPS)51 computes the distance between deep feature representations extracted from a pre-trained deep neural 
network (AlexNet in this work). The LPIPS distance between two arbitrary images y(1) and y(2) is computed as

	
LPIPS(y(1), y(2)) =

∑
l

1
HlWl

∑
h,w

∥∥wl ⊙
(
ϕl(y(1))h,w − ϕl(y(2))h,w

)∥∥2

2
,� (11)

where ϕl(y(i))h,w  is the latent representation of image y(i) at location (h, w) in layer l of the pre-trained neural 
network. wl are weights associate to layer l for calculating LPIPS, and ⊙ denotes element-wise multiplication. 
We note that LPIPS provides a measure of error (not similarity); therefore, lower values of LPIPS indicate better 
perceptual similarity between x and y, with the value of zero indicating a perfect match. 4) The Boundary 
SSIM (BSSIM) metric is a variant of SSIM that measures similarity between edge maps of images rather than 
raw intensities of the whole images. By applying SSIM to edges extracted via the Sobel filter, BSSIM emphasizes 
structural fidelity at region boundaries, highlighting successful tissue reconstruction during transformation. The 
SCSSIM metric between two arbitrary 3D volumes Y (1) and Y (2) is defined as

	
SCSSIM(Y (1), Y (2)) = 1 − 1

N − 1

N−1∑
i=1

∣∣∣SSIM(Y (1)
i , Y

(1)
i+1) − SSIM(Y (2)

i , Y
(2)
i+1)

∣∣∣ ,� (12)

where Y (1)
i  and Y (1)

i  denote the i-th out of N axial slices of the generated and target volumes, respectively. 
Any sudden changes between consecutive slices, captured by SSIM as a local structural deviation, result in a 
lower score, reflecting reduced volumetric smoothness. A score of one indicates a perfect match in inter-slice 
differences between the generated and target images. We also computed the Fréchet Inception Distance (FID) 
using several pre-trained feature extractors. However, the results did not exhibit consistent trends across models 
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or modalities, in line with prior observations59. We speculate that FID quantifies distribution-level similarity 
and is more suitable for unconditional image generation. Therefore, we focused on LPIPS, which more directly 
reflects perceptual correspondence between paired MR images.

Classification evaluation  1) The F1 score is employed to evaluate the binary classification performance for dis-
tinguishing normal inputs from OOD inputs. It is defined as the harmonic mean of precision and recall, provid-
ing a single metric that balances false positives and false negatives. In this work, the predicted uncertainty values 
σ̂ are converted to binary labels ŷi using a threshold, and then compared against the true labels yi ∈ {0, 1} (nor-
mal or OOD) to determine the counts of true positives (TP), false positives (FP), and false negatives (FN). The 
F1 score is then computed as

	
F1 = 2 · Precision · Recall

Precision + Recall
, where Precision = T P

T P + F P
, and Recall = T P

T P + F N
.� (13)

A higher F1 score indicates better balance between correctly detecting OOD samples and minimizing false 
alarms, reflecting more reliable classification performance. 2) In binary classification, the Brier score quantifies 
the mean squared error between the predicted probabilities σ̂i and the true binary labels yi ∈ {0, 1}, without 
converting predictions to discrete labels. It jointly assesses both the accuracy and calibration of probabilistic 
predictions, where lower Brier scores correspond to better predictive performance. Formally, the Brier score is 
defined as:

	
Brier Score = 1

N

N∑
i=1

(σ̂i − yi)2 ,� (14)

where N is the total number of samples. 3) In the context of binary classification, the Negative Log-Likelihood 
(NLL), also known as log loss, is a measure of how well a classifier predicts the true labels. It penalizes confident 
but incorrect predictions more heavily and is defined as:

	
NLL = − 1

N

N∑
i=1

[yi log(σ̂i) + (1 − yi) log(1 − σ̂i)] ,� (15)

where yi is the true label and σ̂i is the predicted probability for class OOD. 4) Expected calibration error (ECE) 
measures the discrepancy between predicted confidence and empirical accuracy. Given M confidence bins, ECE 
is computed as

	
ECE =

M∑
m=1

nm

N
|acc(m) − conf(m)| ,� (16)

where nm is the number of samples in bin m, and acc(m) and conf(m) are the empirical accuracy and average 
confidence in that bin, respectively. For example, we expect to observe 10% of values within a 10% confidence 
interval of the distribution of the outputs in a well-calibrated model. ECE provides a measure for calibration 
error, and a calibration method aims to reduce this error by updating the scores that better represent the true 
likelihood of outcomes60

Distributional measures  1) The Shapiro-Wilk test is a statistical normality check that evaluates whether a set 
of samples is drawn from a normal distribution. In the Shapiro–Wilk test, the null hypothesis is that the data 
are drawn from a normal distribution. Therefore, for samples that yield a p-value greater than the chosen sig-
nificance level (p > 0.05 in this work), we fail to reject the null hypothesis. This means there is no statistically 
significant evidence to conclude that the samples deviate from normality. 2) Cumulants are statistical descriptors 
that characterize a probability distribution. They are derived from the cumulant generating function

	 K(t) = logE[etX ].� (17)

The first four cumulants are: the mean κ1 = E[X] = µ, the variance κ2 = Var(X) = σ2, the third-order 
cumulant κ3 = E[(X − µ)3] (skewness), and the fourth-order cumulant κ4 = E[(X − µ)4] − 3σ4. We use 
the Shapiro-Wilk test and cumulants to analyze the distribution of the outputs in generative models

Datasets and pre-processing
We use two public datasets with multiple image types, IXI49 and OASIS50, for training and evaluation of the 
proposed methods. The IXI dataset consists of 600 MR images of three types: T1-weighted (T1), T2-weighted 
(T2), and proton density (PD). The scans are collected in three different hospitals in London from normal 
healthy subjects. Of these, 575 image sets passed QC (those with missing images and realignment issues were 
removed), from which 357, 74, and 144 images were used for the training, validation, and testing of the models. 
We balanced our datasets to have the appropriate number of scans from each hospital in the training, validation, 
and test datasets.
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OASIS-3 is a public longitudinal dataset for normal aging and Alzheimer’s disease, consisting of T1, T2, and 
fluid-attenuated inversion recovery (FLAIR) images. Within this dataset, we used images from the participants 
that contain all image types scanned in the same MRI session. Out of 243 images, 156, 31, and 56 are used for 
training, validation, and testing, respectively.

For images in the IXI dataset, we use the FLIRT module of FSL61 to realign the 3D T1 images to the spaces of 
the T2 images, as they have the narrowest axial field of view. This is done by first using T1 images as the reference, 
as they have the highest resolution, and then using the inverse transformation to provide T1 images in T2 space. 
For the OASIS dataset, we align T2 and FLAIR images to a reference T1 image. Thereafter, we extract brains from 
all images by using the T1 image in a brain extraction algorithm62 to generate a mask that is applied to all images. 
Finally, we perform min-max normalization for all images in both datasets.

In addition to the above datasets used for training and evaluating models, we use a set of sample images 
from three publicly available datasets as out-of-distribution (OOD) inputs. The first set contains seven images 
with common artifacts from the FSL example box of MR images63. This set includes images with a strong RF 
zipper, two images with motion artifact, significant rotation, reconstruction artifacts, low SNR, and a strong 
bias field. These are T1 images without any artifact-free or target images from other contrasts available. The 
second set contains 14 images from patients with multiple sclerosis selected from the MICCAI MS segmentation 
challenge64 (MSSEG). Finally, the last set consists of 14 images with brain tumors taken from the Multimodal 
Brain Tumor Segmentation Challenge (BraTS) validation dataset65–67.

Conclusions
We have investigated the effectiveness of several deterministic and probabilistic deep learning methods in 
transforming MR images. To that end, we implemented and evaluated a U-Net-based direct inference and a 
residual vision transformer model as benchmarks. The former is based on a deterministic formulation, while the 
latter has a probabilistic formulation but is implemented to generate outputs deterministically. We implemented 
and extensively evaluated the conditional version of three major generative models, namely, the Conditional 
Generative Adversarial Network (cGAN), the Denoising Diffusion Probabilistic Model (DDPM), and the Noise 
Conditional Score Network (NCSN). We trained all these models on the publicly available IXI and OASIS 
datasets and then applied the trained models to transform T1, T2, FLAIR, and PD MR images. We quantified 
this performance by computing the SSIM, PSNR, LPIPS, and BSSIM image similarity metrics. We concluded 
that the two diffusion models consistently yielded more accurate transformations. When comparing two 
diffusion models, the DDPM model yields higher accuracy, especially with larger samples (n ≥ 5) and remains 
more robust when encountering inputs from slightly different distributions. However, the DDPM model exhibits 
certain issues. Especially, it produces isolated pixels with outlier values. On the other hand, the NCSN model 
yields slightly lower accuracy. However, the NCSN model demonstrates several favorable characteristics. For 
example, it is faster and achieves higher accuracy with a lower number of samples (n < 5). Also, the outputs of 
this model are artifact-free and do not require any additional post-processing.

We also investigated the utility of the generative property of the models, i.e., their ability to produce an 
ensemble of outputs for a given input image. In particular, in addition to the standard MR images, we 
incorporated several out-of-distribution (OOD) sets of inputs, including images with artifacts and pathologies, 
such as Alzheimer’s disease, multiple sclerosis (MS) lesions, and brain tumors. Thereafter, for each input image, 
we computed the average pixel-wise standard deviation using the three probabilistic models. We concluded that 
this quantity effectively distinguished OOD images from their regular counterparts in cGAN and NCSN models.

In clinical research, the proposed image transformation models can generate image contrasts that are 
otherwise unavailable, thereby improving data completeness for downstream analyses. The accompanying 
uncertainty-based OOD detection provides an automated quality control mechanism that enhances analytical 
reliability by excluding low-quality data and reducing the time and cost of manual inspection. From a clinical 
standpoint, this framework could be integrated into image reconstruction or transformation pipelines to 
automatically flag uncertain outputs for radiologist review. Although deep learning–based models are not yet 
routinely embedded in clinical workflows, the proposed approach offers a practical and transparent pathway 
toward uncertainty-aware, quality-controlled image generation.

While the diffusion models (NCSN and DDPM) achieved higher accuracy than the other models, they were 
also more computationally demanding, particularly during inference. Training times were approximately 42 h 
for DDPM, 29 h for NCSN, 25 h for cGAN, and 47 h for ResViT (9 h + 38 h for sequential phases). The DDPM 
and NCSN models required about 15 s and 13 s, respectively, to generate a single slice on an NVIDIA A40 GPU 
(48 GB), whereas the cGAN, ResViT, and Direct models completed the task in under 0.1 s. Training with a batch 
size of 16 required approximately at least 16–24 GB of GPU memory, while inference could be performed on 
less advanced GPUs (e.g., NVIDIA GeForce RTX 2080). The cGAN model required additional memory during 
training due to its dual-network architecture and the gradient penalty term. Sampling for diffusion models can 
be further accelerated using batched inputs, resulting in approximately 4 and 2.5 seconds of generation time per 
image for the DDPM and NCSN models, respectively.

We also conducted several analyses to explore the characteristics of the distribution of the samples produced 
by the generative models. We used the Shapiro-Wilk test to investigate the normality of the distribution of 
values generated for individual pixels. We concluded that approximately 89% of distributions in NCSN outputs 
demonstrate normality. This value is about 51% and 41% for the cGAN and DDPM models, respectively. We 
further investigated the calibration errors for the outputs of these models. Again, the NCSN model exhibited 
the best calibration properties among the generative models. In contrast, the cGAN and DDPM model outputs 
showed overconfidence and underconfidence, respectively.

In this work, we have focused on implementing and quantifying the performance of the proposed models in 
terms of image similarity metrics and exploring their distributional measures and characteristics for uncertainty 
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quantification. A potential follow-up study could explore the use of transformed images in downstream tasks. 
For instance, most structural analysis software, like FreeSurfer, primarily rely on T1 MR scans. In the follow-up 
study, one could consider the use of native T1 images and T1 images obtained from transforming T2 images in 
FreeSurfer and compare the resulting outputs from the two sets. The outputs would include quantities of clinical 
interest, such as the volume of brain tissues. An analysis of this type would also provide the groundwork for 
determining whether MR images of a given type, such as T2 images, can effectively replace T1 images in clinical 
applications.

Data availability
The data generated and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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