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Under complex working conditions, traditional fault detection methods have limitations like many 
parameters and complex calculations. To solve this, a bearing fault detection model based on smooth 
dilated convolution and shuffling algorithm was proposed. It uses smooth convolution kernels to 
capture local vibration-signal features, reduces computational complexity via group convolution 
and channel washing, simplifies the structure with network pruning and knowledge distillation, and 
combines bidirectional gated recurrent units and generative adversarial networks to capture long-term 
dependencies. Compared with existing methods, it significantly cuts the number of model parameters 
and reasoning time while keeping detection accuracy. Experimental data shows that in the sample 
classification task, its accuracy rate is 97.88%, average reasoning time is 274 fps, computational cost 
is 1.66 FLOPs, and parameter quantity is 7.76 M, all better than comparison models. In bearing feature 
extraction and fault detection tasks, its average fitting accuracy is 96.13% and detection accuracy is 
99.62%, also better than comparison models. The research suggests the model can balance model 
lightweighting and detection performance, and is suitable for real-time fault monitoring in resource-
constrained scenarios.
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Bearings act as essential components in rotating machinery, and their operating conditions directly influence 
both the safety and service life of the equipment. Timely fault diagnosis of bearings helps lower maintenance 
costs and enhances production safety1. However, under practical conditions, bearing vibration signals are 
affected by noise and varying operating conditions. Manual inspection or simple signal processing cannot 
identify weak fault features. Intelligent algorithms are needed to achieve high-accuracy bearing fault detection2,3. 
In recent years, numerous researchers have conducted extensive studies on bearing fault detection. Al Mamun A 
et al. introduced a multi-sensor fusion approach to handle high-dimensional bearing data. They used frequency 
analysis to construct a heterogeneous frequency tensor, applied multilinear principal component analysis for 
decomposition, extracted signal features, and combined them with neural networks for anomaly detection. This 
method realized bearing fault diagnosis under complex vibration signals4. S. Mitra and C. Koley proposed a 
vibration signal analysis method based on wavelet super-resolution and two-dimensional convolutional neural 
network to improve detection under harsh working conditions. They collected vibration signals from variable 
frequency drive induction motors, extracted features using continuous wavelet transform, Stockwell transform, 
and adaptive super transform, and applied super-resolution optimization for classification. This method 
achieved high-accuracy fault detection5. R. K. Mishra et al. put forward a time-domain signal processing method 
to solve the low efficiency of bearing fault detection. They generated fault vibration features from velocity 
components, transformed them into image features through windowed two-dimensional vibration imaging, 
and extracted features with Convolutional Neural Networks (CNN). They used support vector machines for 
classification6. R. Dubey et al. put forward a method based on variational nonlinear chirp mode decomposition 
to improve classification accuracy. They initialized parameters with instantaneous frequency, used scale-space 
representation for amplitude spectrum boundary detection, and classified signals with feedforward neural 
networks. Experimental results showed that the classification accuracy reached 97.52%7.
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With the advancement of big data analytics and artificial intelligence technologies, neural networks show 
strong advantages in pattern recognition and feature extraction, which provide new approaches for bearing fault 
diagnosis. CNN captures temporal dependencies through stacked convolution layers and fully connected layers. 
It is capable of automatically capturing multi-scale features from vibration signals and has seen wide application 
in bearing fault diagnosis8,9. However, conventional CNN for bearing fault detection has the limitations of large 
parameter size and complex computation. There is a need for lightweight and efficient deep learning models10. 
Smoothed Dilated Convolution (SDC) uses learnable smoothed kernels to fuse local neighborhoods. It keeps the 
advantage of a large receptive field while enhancing the ability to capture local details11. For high-dimensional 
bearing data, lightweight feature extraction modules can be introduced for more efficient signal feature 
extraction. The Shuffle algorithm applies grouped convolution and channel shuffle to achieve cross fusion of 
heterogeneous features and reduce parameters and computation12. Residual Network (ResNet) applies residual 
connections for identity mapping, which reduces parameter size and improves feature reuse13. Therefore, this 
study proposed a bearing fault detection model based on SDC. It integrates shuffle for lightweight design and 
applies ResNet to further improve accuracy. The model aims to achieve lightweight feature extraction for 
bearing vibration signals and meet the requirements of high accuracy, low latency, and low cost detection. It 
provides algorithm support for lightweight bearing fault detection. The innovation of the research lies in the 
integration of smooth dilated convolution, shuffling mechanism and residual structure to construct a deep 
neural network model that is efficient, lightweight and has strong feature expression ability, which is used for 
intelligent diagnosis of bearing faults. This model enhances the local feature perception ability by smoothing 
dilated convolution, expanding the receptive field while reducing the computational cost. Introduce a shuffling 
module to promote information exchange between channels and improve feature utilization while reducing the 
number of parameters. Combining residual structures to alleviate the degradation problem of deep networks 
and enhance the efficiency of gradient propagation.

The contribution highlight of the article lies in proposing a lightweight deep neural network model that 
integrates smooth dilated convolution, shuffling mechanism and residual structure, effectively balancing the 
complexity of the model and the accuracy of fault identification. It has solved the problems of large parameter 
quantity and low feature extraction efficiency of the current conventional CNN under complex working 
conditions, and achieved the collaborative optimization of high precision and lightweight.

Research design
Bearing signal feature extraction method based on SDC
In complex working conditions, bearing vibration signals have high dimensionality and non-uniform 
distribution. Although CNN extracts local features through stacked kernels, it still has the limitations of large 
parameter size and complex computation. A lightweight and efficient deep learning model is needed14. SDC 
introduces local smoothing on the basis of conventional dilated convolution. It avoids the problem of broken 
sampling points in feature extraction. Therefore, a bearing signal feature extraction method based on SDC is 
proposed to improve the completeness and reliability of signal extraction. SDC expands the receptive field and 
realizes local compensation of pulse information in bearing signals to avoid the loss of contextual information15. 
T﻿he calculation of receptive field range is shown in Eq. (1).

	 Rf = Kconv + (Kconv − 1)(Rd − 1)� (1)

In Eq. (1), Rf  represents the receptive field range of the convolution kernel, Kconv  represents the size of the 
convolution kernel, and Rd represents the void rate. When the void rate is greater than 1, dilated convolution 
may cause discontinuous feature sampling while expanding the receptive field. Then, based on the defined 
receptive field, SDC combines local smoothing with dilated kernels to realize multi-scale feature fusion. The 
output features of dilated kernels are shown in Eq. (2).

	
Y (i, j) =

∑
m

∑
n

w(m, n) · X(i + Rd · m, j + Rd · n)� (2)

In Eq. (2), Y (i, j) represents the output feature, w(m, n) represents the position weigh. By combining local 
detail capture and global dependency modeling, SDC reduces the problem of gradient vanishing16. Therefore, 
SDC achieves high-accuracy multi-scale feature extraction with small kernels and mean filtering. Local 
smoothing operation is to dynamically reinforce the transition regions between sparse sampling points in the 
input feature map by introducing a learnable weight matrix during the dilated convolution process, thereby 
reducing the information distortion caused by the increase in sampling intervals. This operation combines 
small-scale convolution kernels with mean filters, which retain high-frequency details while suppressing noise 
interference, further enhancing feature continuity and robustness.

The main difference between SDC and the existing smooth convolution lies in that SDC enhances the model’s 
adaptability to complex working conditions without increasing the network depth by adaptively adjusting the 
void rate and smoothing weights. However, traditional smooth convolution only relies on smooth kernels of a 
fixed scale, making it difficult to achieve a coordinated expression of both local details and global structure. In 
addition, SDC introduces a differentiable void rate optimization strategy, enabling the network to dynamically 
select the optimal receptive field based on the frequency domain characteristics of the input signal during 
the training process, thereby enhancing the ability to identify bearing fault features under variable operating 
conditions.

The derivation process of the local smoothing operation is as follows: Let the response of the input feature 
map at position x be a, and the sampling interval of the dilated convolution be d. Then, the local smoothing 
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operation is defined as weighted interpolation of the implicit response within the neighborhood of the non-zero 
sampling point. Introduce a learnable weight matrix S, perform mean filtering on the original input to obtain 
smooth components, and then fuse the original features and smooth features through a gating mechanism. The 
structure of SDC is shown in Fig. 1.

As shown in Fig. 1, SDC first converts input signals of different scales into sequence features and applies 
mean convolution for local smoothing. Then, it generates several multi-scale feature maps through interval 
subsampling and captures temporal dependencies under different scales with shared convolution. Finally, it 
introduces a layer interaction mechanism to fuse the outputs of kernels and obtain the final result. SDC expands 
the receptive field and improves the completeness of multi-scale feature extraction. However, under strong 
noise, SDC still lacks robustness. Generative Adversarial Network (GAN) reduces background noise through 
the dynamic game between generator and discriminator17. Therefore, GAN is combined with SDC to improve 
efficiency of feature extraction. Under complex conditions, GAN maps local neighborhoods adaptively according 
to target working states and distinguishes true and false samples with the target function18. The target function 
of GAN is defined in Eq. (3).

	
min

G
max

D
V (D, G) = Ex∼Pdata(x)

[
log D(x)

]
+ Ez∼Pz(z)

[
log

(
1 − D

(
G(z)

))]
� (3)

In Eq.  (3), min
G

max
D

V (D, G) is the objective function, Ex∼Pdata(x) is real samples x sampled from real 
distribution Pdata(x). Ez∼Pz(z) represents the random noise vector z sampled from the Gaussian noise 
distribution Pz(z), D(x) represents the probability of the discriminator determining the real sample, %, and 
G(z) represents the mapping of the mapping noise of the generator. To prevent gradient interference, the 
generator was kept fixed while the discriminator was optimized to enhance convergence19. The discriminator’s 
optimization function is presented in Eq. (4).

	
D∗

G(x) = Pdata(x)
Pdata(x) + Pg(x) � (4)

In Eq. (4), D∗
G(x) represents the optimization function of the discriminator, and Pg(x) represents the state of 

generating false samples, that is, the sample data generated by the generator, whose distribution approximates 
that of the real data but is a forged sample. Based on this, GAN is combined with SDC to raise a denoising 
method for bearing signals, named GAN-SDC, to enhance robustness and noise resistance. The detailed flow of 
GAN-SDC is shown in Fig. 2.

In Fig. 2, the algorithm first decomposes original vibration signals into sample inputs and noise components. 
Then, the generator maps random noise vectors layer by layer and applies smoothed kernels to enhance continuity 
of generated samples. Finally, the SDC module fuses output features and generates the final denoised vibration 
signal features. Because bearing signals have strong heterogeneity, GAN-SDC still lacks effective representation 
in low-frequency signals. To further improve multi-scale feature extraction accuracy, Convolutional Block 
Attention Module (CBAM) is introduced. CBAM assigns weights to both input sequences and output features 
of convolution, and enhances key features through weighted averaging20. The attention weighting operation is 
defined in Eq. (5).

	
Attention(Q, K, V ) = softmax

(
QKT

√
dk

)
V � (5)

Fig. 1.  SDC structural diagram.
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In Eq.  (5), Attention(Q, K, V ) represents the attention function, softmax(.) represents the probability 
distribution. With dual attention weighting, feature extraction becomes more comprehensive and effective. 
Therefore, on the basis of GAN-SDC, an improved method named GAN-SDC-CBAM is raised to achieve 
complete feature extraction of bearing vibration signals. The detailed flow of GAN-SDC-CBAM is shown in 
Fig. 3.

In Fig. 3, the algorithm introduces spatial attention to reduce the dimension of original sequences. It applies 
average pooling on channels, spatial height, and width. It multiplies matrices to fuse features and reduce 
redundant information. In addition, in the output of the SDC module, channel attention is applied. Global 
pooling and fully connected layers perform nonlinear mapping. Weights are adjusted adaptively with dilated 
convolution features. Dual activation functions are applied for channel weighting to strengthen key features. In 
this way, GAN-SDC-CBAM achieves high-accuracy extraction of bearing vibration signals under strong noise 
interference.

Lightweight feature extraction design based on shuffle and ResNet
Although the GAN-SDC-CBAM algorithm improves the completeness of bearing vibration signal extraction, 
it still has the limitations of high computational complexity and insufficient transfer adaptability. To solve the 
problem of heavy convolution computation, a lightweight algorithm is needed to improve feature extraction 
efficiency. Shuffle reduces parameters and computational cost through grouped convolution and channel 
shuffle21. Therefore, Shuffle is combined with GAN-SDC-CBAM to achieve lightweight feature extraction of 
bearing vibration signals. In branch division, Shuffle calculates features with both standard convolution and 
grouped convolution22. The parameter size and computational cost under standard convolution are shown in 
Eq. (6).

	

{
Pco = Kh · Kw · Cin · Cout

Fco = Kh · Kw · Cin · Cout · Oh · Ow
� (6)

Fig. 3.  Specific flow chart of GAN-SDC-CBAM.

 

Fig. 2.  Specific flow chart of the GAN-SDC algorithm.
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In Eq.  (6), Pco and Fco represent the parameter size and computational cost under standard convolution. 
Cin and Cout are the input and output channel. Then, grouped convolution is applied to the main branch for 
depthwise separable convolution, and its parameter size and computational cost are shown in Eq. (7).

	

{
Pdw = (Kh · Kw + Cout) · Cin

Fdw = 2(Kh · Kw + Cout) · Oh · Ow · Cin
� (7)

In Eq. (7), Pdw  and Fdw  represent the parameter size and computational cost under grouped convolution. By 
combining the outputs of standard convolution and grouped convolution, the channel shuffle mechanism fuses 
features. Shuffle improves cross-channel information interaction while reducing parameters. The work flow of 
Shuffle is illustrated in Fig. 4.

As shown in Fig. 4, the algorithm first preprocesses bearing vibration features, extracts channel number and 
feature map size, and divides them into main and auxiliary branches. The main branch applies 3 × 3 depthwise 
separable convolution to compress feature maps and complete downsampling with nonlinear mapping. Finally, 
the auxiliary branch output is fused with channel shuffle. The activation function outputs the final signal features. 
Although Shuffle achieves lightweight feature extraction, gradient vanishing and unstable convergence still exist 
in deep stacking of GAN-SDC-CBAM. ResNet solves this problem with identity mapping, which improves 
stability in training. Therefore, ResNet is combined with Shuffle to raise a lightweight framework named 
Shuffle-ResNet. ResNet uses skip connections to map convolution outputs of Shuffle and improve information 
utilization23. The forward equation is shown in Eq. (8).

	 H(x) = F (x, wi) + x� (8)

In Eq. (8), H(x) represents the identity mapping function. Then, backpropagation optimizes residual mapping, 
which enhances flexibility and robustness. The gradient equation of backpropagation in ResNet is shown in 
Eq. (9).

	

∂loss

∂x
= ∂loss

∂xL

[
1 + ∂

∂xL

L−1∑
i=1

F (xi, wi)

]
� (9)

In Eq. (9), loss represents the loss function. xi(i = 1, 2, · · · , L) represents the output feature of the i-th residual 
unit. ResNet avoids gradient vanishing by regularization and backpropagation. It improves feature utilization in 
Shuffle24. The detailed flow of Shuffle-ResNet is shown in Fig. 5.

In Fig.  5, the algorithm first normalizes the input signal. Shuffle divides branches, and channel shuffle 
fuses outputs of standard convolution and grouped convolution. The features are fed into convolution layers 
of residual blocks. Then, ResNet regularizes the forward propagation of each residual block and applies skip 
connections to transfer gradients. Information is fully fused across groups. Finally, global average pooling is 
applied through stacked layers, and optimized features are obtained. However, direct fusion of Shuffle-ResNet 
and GAN-SDC-CBAM reduces inference speed. A simplified structure is needed for deployment. NP removes 
redundant parameters and connections through structured pruning, which reduces model size25. KD transfers 
knowledge between models of different sizes and compensates for the accuracy gap in lightweight models26. 

Fig. 4.  Specific flowchart of the Shuffle algorithm.
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Therefore, NP and KD are used in two-stage optimization to reduce structural complexity. KD measures the 
difference of probability distributions with a distillation loss function. The function is shown in Eq. (10).

	 LKD = λLtask(ls, t) + (1 − λ)T 2M(ls, lt)� (10)

In Eq. (10), LKD  represents the distillation loss function. λ represents the balance coefficient. ls and lt represent 
the output vectors of small and large models. t represents the target. T  represents the hyperparameter. M(.) 
represents the gap between outputs of large and small models. By optimizing the distillation loss, the difference 
in accuracy between models decreases. Therefore, Network pruning (NP) and Knowledge Distillation (KD) 
are combined with Shuffle-ResNet and GAN-SDC-CBAM to raise a lightweight model for bearing feature 
extraction, named SDC-Shuffle-ResNet. The model first normalizes input signals. It applies spatial attention of 
CBAM and combines local smoothing to connect context information. GAN optimizes feature distribution, and 
dilated convolution expands the receptive field. Then, NP simplifies weights, and grouped convolution is applied 
to residual blocks. Channel shuffle enhances information interaction. Finally, CBAM applies channel attention 
to ResNet outputs. Global average pooling is applied, and KD optimizes distillation loss. In this way, the model 
extracts key features of bearing vibration signals.

Bearing fault detection model construction with BiGRU
Although the SDC-Shuffle-ResNet model achieves lightweight extraction of bearing vibration signals, it still 
faces limitations in real-time fault detection and accuracy. A method that balances temporal modeling and 
lightweight computation is needed for real-time monitoring of bearing faults. Bidirectional Gated Recurrent 
Unit (BiGRU) fully utilizes historical and future information through update and reset gates to capture long-
term dependencies in non-stationary signals27. Therefore, BiGRU is applied to time-series prediction of bearing 
signal features for real-time fault detection. BiGRU first updates memory states with a dual-gate mechanism 
through unidirectional GRU units to address gradient explosion28. The computation of the dual-gate mechanism 
is shown in Eq. (11).

	




zt = σ(Wzxt + Uzht−1 + bz)
rt = σ(Wrxt + Urht−1 + br)
h̃t = tanh (Whxt + Uh(rt ⊙ ht−1) + bh)
ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

� (11)

In Eq. (11), zt and rt are the update and reset gate vectors. σ represents the activation function. bz , br , and bh are 
bias terms. rt ⊙ ht−1 is the reset operation on historical information. The hidden state is further updated based 
on outputs of update and reset gates. The update operation is shown in Eq. (12).

	




−→
h t = V (xt,

−→
h t−1)←−

h t = V (xt,
←−
h t−1)

ĥt = σ
[
Wh(

−→
h t ⊕

←−
h t) + bh

] � (12)

In Eq.  (12), V (.) represents a vector function. ĥt represents the BiGRU output vector. ⊕ represents vector 
concatenation. With bidirectional propagation of historical and future information, BiGRU adaptively interprets 

Fig. 5.  Specific flow chart of the Shuffle-ResNet.
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complex non-stationary features. The network first enhances input signal features and converts them into 
sequences of different time steps. Forward gradients compute forward vectors, and backward gradients compute 
backward vectors, fully utilizing historical and future information. Bidirectional weighted fusion concatenates 
vectors, and convolution and attention mechanisms complement features, enabling prediction of vibration 
signal features. Although BiGRU effectively detects fault signal features, it still lacks global feature interaction 
and generalization. Graph Attention Network-v2 (GATv2) captures global and non-local dependencies to 
enhance feature interaction and model robustness29. Therefore, GATv2 is combined with BiGRU to propose a 
fault detection method named GAT-BiGRU for precise detection of weak fault signals. GATv2 assigns attention 
weights to neighboring nodes to improve global dependency modeling30. The computation of graph attention 
coefficients is shown in Eq. (13).

	 eij = LeakyReLU
(
βT · [Whhj ∥Whhi ]

)
� (13)

In Eq. (13), eij  represents the graph attention coefficient. LeakyReLU(.) represents the leaky ReLU function. β 
represents a trainable weight matrix. Attention coefficients score a feedforward neural network, and normalized 
outputs produce key signal features. The output feature of GATv2 is shown in Eq. (14).

	
F = σ

(∑
j∈Ω

eijWhhj

)
� (14)

In Eq.  (14), F  represents the output feature. Ω is the set of neighbors of node (i, j). Global dependency 
representation of GATv2 enhances BiGRU’s interaction with non-local features31. GAT-BiGRU combines 
bidirectional gating and graph attention, improving fault detection robustness. The network first decomposes 
the original vibration signal into graph-structured features and extracts node features based on similarity and 
temporal adjacency. GATv2 calculates attention coefficients between nodes for weighted aggregation. BiGRU 
performs bidirectional propagation on node features to capture long-term dependencies and non-stationary 
patterns. Weighted fusion merges subnetwork outputs, and a fully connected layer outputs the bearing fault 
type. GAT-BiGRU achieves precise detection of fault signals through spectral decomposition. The spectral 
decomposition equation is shown in Eq. (15).

	




Fro = Nfr
2

(
1 + d

D
cos α

)
Fin = Nfr

2

(
1 − d

D
cos α

)

Fout = frd
2D

(
1 −

(
d
D

cos α
)2

) � (15)

In Eq. (15), Fro, Fin and Fout respectively represent the fault characteristic frequencies of the bearing rolling 
elements, inner ring and outer ring, with the unit of Hz. N  represents the number of rolling elements, fr  
represents the rotation frequency of the inner ring, with the unit of Hz. d represents the diameter at the pitch 
circle of the roller, with the unit of mm. D represents the pitch diameter of the bearing, with the unit of mm. α 
represents the radial contact Angle, with the unit of °. By computing different fault characteristic frequencies, 
the output features of SDC-Shuffle-ResNet are classified. Therefore, GAT-BiGRU is combined with SDC-
Shuffle-ResNet to propose an improved bearing fault detection model, named SDC-Shuffle-BiGRU, achieving 
lightweight feature extraction and intelligent fault detection. The extraction flow is shown in Fig. 6.

In Fig. 6, the model segments the original vibration signal into windows and normalizes them for temporal 
features. GAN denoises the sequence, and SDC alleviates the gridding effect of dilated convolution. Residual 
skip connections provide identity mapping of convolution features. Shuffle’s grouped convolution and channel 
shuffle lighten convolution branches, and KD optimizes distillation loss. GATv2 and BiGRU model global 
dependencies, fuse sequences across multiple branches, and channel attention further enhances key features. 
The model outputs the final bearing fault signal features. In summary, SDC-Shuffle-BiGRU introduces Shuffle 
and ResNet for lightweight feature extraction, uses SDC for feature completeness, and combines GAT-BiGRU 
with spectral decomposition to improve stability and achieve precise fault signal detection.

To ensure that the model can still maintain a relatively excellent diagnostic accuracy and efficiency in real 
environments, the study adopted the bearing dataset provided by the University of Paderborn and real working 
condition data for model training and validation. This dataset covers various types of bearing faults (such as 
rolling element damage, inner ring cracks, outer ring spalling, etc.) as well as vibration signal data under different 
working conditions (different speeds, loads), and is highly representative and challenging. The real operating 
condition data is collected from the long-term operating equipment in the industrial site, which contains rich 
noise interference and operating condition fluctuations, and can effectively test the robustness of the model in 
complex industrial environments.

Results and analysis
Verification of model computational performance
To verify the computational performance superiority of the SDC-Shuffle-BiGRU model, it was compared with 
Back Propagation Neural Network-Unscented Kalman Filter (BPNN-UKF), Temporal Convolutional Network-
Bidirectional Long Short-Term Memory (TCN-BiLSTM), and Variational Mode Decomposition-Kernel 
Extreme Learning Machine (VMD-KELM). To ensure the authenticity of the data, the experimental verification 
was conducted using the bearing dataset provided by the University of Paderborn. This dataset contains 
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vibration signals under normal conditions and various fault types under different loads and rotational speeds. 
The experiment selected three types of typical fault samples with a sampling frequency of 48 kHz, and 1000 
sets of data for each type were used for model training and testing. In addition, it also includes the verification 
of practical scenarios in real industrial Settings, collecting the bearing vibration signals of the actual operating 
units in a certain wind farm, with a sampling frequency of 20 kHz, covering 200 sets of data under different 
working conditions. The experiments were performed on Ubuntu 22.04 with CUDA 11.8, using an Intel i7-
12700 CPU and an NVIDIA RTX 3090 GPU. The AdamW optimizer was applied with an initial learning rate of 
0.001 and a batch size of 64. Initially, the accuracy and loss values for the sample prediction task were compared, 
and the results are presented in Fig. 7.

In Fig. 7a, the accuracy curve of the SDC-Shuffle-BiGRU model reached a stable trend after 23 iterations, 
which was fewer than the comparison models. The model achieved an average accuracy of 97.88% for the sample 
classification prediction task, improving by 1.45% compared with the highest value of the comparison models, 
indicating better sample prediction performance. In Fig. 7b, the average loss function value of the SDC-Shuffle-
BiGRU model for the sample classification prediction task was 2.26, which was 0.68 lower than the minimum 

Fig. 7.  Results of accuracy and loss function values.

 

Fig. 6.  Bearing fault extraction process of SDC-Shuffle-BiGRU model.
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value of the comparison models. The convergence speed was also higher than that of the comparison models, 
further confirming the superior sample prediction performance of the model. To assess the model’s advantage 
in the sample classification task, Receiver Operating Characteristic (ROC) curves were employed to examine the 
relationship between sensitivity and specificity, along with precision, recall, and F1 score for a comprehensive 
comparison. The results are illustrated in Fig. 8.

In Fig. 8a, the ROC curve of the SDC-Shuffle-BiGRU model was closer to the upper-left corner, indicating 
higher sample classification accuracy. The Area Under Curve (AUC) value of the model was 0.8917, which was 
0.0916 higher than the maximum value of the comparison models, confirming the superior sample classification 
performance. As shown in Fig. 8b, SDC-Shuffle-BiGRU achieved a precision of 95.74% and a recall of 90.08%, 
improving by 2.52% and 2.81% compared with the maximum values of the comparison models, further 
demonstrating its superiority in sample classification performance. To further evaluate the computational cost, 
the maximum number of iterations was set to 200. The BPNN-UKF, TCN-BiLSTM, VMD-KELM, and SDC-
Shuffle-BiGRU models were numbered from 1 to 4. The inference time, computation, and parameter quantity 
were compared for the sample classification prediction task. The experimental results are shown in Fig. 9.

As shown in Fig.  9a, the inference time curve of the SDC-Shuffle-BiGRU model was relatively stable, 
indicating more stable inference performance. The average inference time of the model was 274 fps, which 
increased by 170 fps, 129 fps, and 68 fps compared with BPNN-UKF, TCN-BiLSTM, and VMD-KELM, 
respectively, demonstrating higher efficiency in sample classification prediction. In Fig. 9b, the computation of 
the SDC-Shuffle-BiGRU model was 1.66 FLOPs, and the parameter quantity was 7.76 M, which decreased by 0.31 
FLOPs and 9.92 M compared with the minimum values of the comparison models, indicating better lightweight 
performance. This was due to the use of Shuffle’s grouped convolution and channel shuffle mechanism to reduce 
computational complexity, the use of ResNet skip connections to further simplify the model structure, and the 
combination of NP and KD to effectively reduce parameter quantity, achieving lightweight computation.

The lightweight standard proposed in the research is to control the number of model parameters within 60% 
of the original model while ensuring the accuracy of feature extraction, reduce the computational load to 50% 
of the original, and maintain sensitivity to key fault features at the same time. Compared with the benchmark 
model of the unintroduced shuffling mechanism and knowledge distillation proposed in the study, DCC-

Fig. 9.  Comparison of inference time, computation, and parameter quantity.

 

Fig. 8.  Comparison results of precision, recall and F1 score.
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Shufflet-BIGRU reduces the number of parameters by 58.3%, and the computational load is reduced to 46.7% of 
the original model, meeting the lightweight design standard.

Verification of bearing signal feature extraction ability
Based on the verification of sample classification prediction performance and inference efficiency of the SDC-
Shuffle-BiGRU model, its application in bearing signal feature extraction was further evaluated. The amplitude 
and acceleration of bearing vibration signals were used to validate the feature extraction accuracy. Initially, the 
model’s fitting performance on the original bearing vibration signals was evaluated by comparing frequency-
domain and envelope spectrum plots. The experimental results are presented in Fig. 10.

As shown in Fig. 10a, the SDC-Shuffle-BiGRU model fitted the bearing vibration signals well, achieving an 
average fitting accuracy of 96.13%. When the frequency was below 1,200 Hz, the predicted amplitude curve 
fluctuated, and the fitting accuracy was 85.24%, which largely satisfied the extraction requirements of low-
frequency bearing signal features. As shown in Fig.  10b, SDC-Shuffle-BiGRU achieved a fitting accuracy of 
97.36% for the modulation effect of amplitude over time, accurately identifying key vibration features at different 
frequencies. These results indicated that the model produced accurate bearing feature extraction, providing 
reliable data support for subsequent fault detection. To further confirm the model’s advantage in fitting bearing 
vibration signals, its amplitude fitting performance was compared with different models. The results are shown 
in Fig. 11.

As shown in Fig. 11, the SDC-Shuffle-BiGRU model achieved a Coefficient of Determination (R2) of 0.96 
for amplitude fitting, which improved by 0.09, 0.14, and 0.15 compared with BPNN-UKF, TCN-BiLSTM, and 
VMD-KELM, respectively. Additionally, the Root Mean Square Error (RMSE) of amplitude prediction was 
0.14 mm, which decreased by 0.10 mm, 0.28 mm, and 0.09 mm compared with BPNN-UKF, TCN-BiLSTM, 
and VMD-KELM, indicating that the proposed model achieved more accurate and stable amplitude fitting and 
prediction. To further verify the model’s superiority in predicting vibration signal trends, Mean Absolute Error 
(MAE) and RMSE of amplitude acceleration prediction were used. The results are shown in Fig. 12.

In Fig. 12a, the SDC-Shuffle-BiGRU model achieved an average MAE of 2.59 mm2/s in the training set and 
2.88 mm2/s in the validation set, which decreased by 0.11 mm2/s and 0.16 mm2/s compared with the minimum 
values of the comparison models, indicating better prediction performance for amplitude variations. In Fig. 12b, 
the average RMSE of amplitude acceleration in the training and validation sets was 4.86 mm2/s and 5.12 mm2/s, 
which decreased by 0.26 mm2/s and 0.09 mm2/s compared with the minimum values of the comparison models, 
further confirming the model’s superior fitting ability for amplitude variations. This performance was attributed 
to the deep separable convolution mechanism of SDC, which improved the model’s capture of temporal features, 
and the use of GAN, which effectively reduced background noise interference and enhanced the prediction 
accuracy of vibration signal trends.

Analysis of bearing fault detection performance
After verifying the feature extraction effectiveness, the model’s application in fault detection was evaluated using 
the CWRU dataset. Different models were compared in detecting fault types in different bearing components. 
The maximum sampling frequency was set to 5,000 Hz, and various fault types and corresponding bearing sizes 
were configured. The experimental parameters are shown in Table 1.

As shown in Table 1, four bearing fault types were defined: normal, inner race fault, outer race fault, and 
rolling element fault. Corresponding labels were assigned based on different fault sizes. The SDC-Shuffle-
BiGRU model was compared with other models for bearing fault classification performance under different 
combinations. The results are shown in Fig. 13.

As shown in Fig. 13a, the BPNN-UKF model incorrectly identified 7 samples among 500, including 3 inner 
faults, 2 outer faults, and 2 rolling element faults, resulting in an overall accuracy of 98.60%. Figure 13b shows 
that TCN-BiLSTM wrongly classified 8 samples, comprising 3 inner, 3 outer, and 2 rolling element faults, 
achieving an accuracy of 98.40%. Figure 13c indicates that VMD-KELM misidentified 7 samples, including 1 

Fig. 10.  Comparison of fitting effects on vibration signals.
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normal sample, 1 inner fault, 2 outer faults, and 4 rolling element faults, with an accuracy of 98.60%. Figure 13d 
demonstrates that SDC-Shuffle-BiGRU only incorrectly labeled 2 samples, one outer fault as a rolling element 
fault and one rolling element fault as an inner fault, achieving an accuracy of 99.60%. These results indicated that 
the proposed model effectively distinguished different fault types with high classification accuracy. To further 
illustrate the performance, t-Distributed Stochastic Neighbor Embedding (t-SNE) was applied for feature 
visualization, and the results are presented in Fig. 14.

In Fig.  14a, in the input layer, the original vibration signal samples were randomly distributed with no 
clear separation. Figure  14b shows that in the dilated convolution part of the SDC-Shuffle-BiGRU model, 
normal signal samples were largely separated, with 4 samples still misclassified. Figure  14c shows that after 
noise smoothing and feature refinement in the model, the BiGRU module distinguished the key features of 

Fig. 12.  Comparison of MAE and RMSE results for amplitude acceleration prediction.

 

Fig. 11.  Comparison of the fitting of amplitude.
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bearing vibration signals. Figure 14d illustrates that after BiGRU and GATv2 processing, the output signals were 
distinctly classified into normal condition, inner race, outer race, and rolling element faults, with just one outer 
race fault incorrectly identified as a rolling element fault and one rolling element fault incorrectly identified as 
an inner race fault. Repeated validation indicated that the SDC-Shuffle-BiGRU model achieved an overall fault 
detection accuracy of 99.62%. Overall, the proposed model demonstrated accurate and stable feature capture, 
enabling precise detection of bearing faults under complex vibration conditions.

To test the effectiveness of each improved module of the proposed method in the research, an ablation 
experiment was designed to delete or replace each module, and then analyze the performance of the model 
containing different modules. The selection modules include SDC (Module 1), ResNet (Module 2), CBAM 

Fig. 13.  Comparison of bearing fault classification results.

 

Fault type Diameter (mm) Sample length Train/test set Class label

Normal / 1024 250/100 1

Inner race

0.1778 1024 250/100 2

0.3556 1024 250/100 3

0.5334 1024 250/100 4

Outer race

0.1778 1024 250/100 5

0.3556 1024 250/100 6

0.5334 1024 250/100 7

Rolling part

0.1778 1024 250/100 8

0.3556 1024 250/100 9

0.5334 1024 250/100 10

Table 1.  Experimental parameter settings.
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(Module 3), GAN (Module 4), and Shuffle algorithm (Module 5). The basic model is the GAT-BiGRU model. 
The comparison indicators include response time and diagnostic accuracy. The results are shown in Table 2.

As shown in Table 2, with the gradual introduction of each module, the diagnostic accuracy of the model 
shows a significant upward trend, while the response time continues to decline. When adding any single module 
alone, the performance improvement is limited. However, under the collaborative effect of multiple modules, 
especially after the combination of SDC and Shufflet-BigRU, the feature extraction ability is significantly 
enhanced. The complete model of Group 17 performed the best among all configurations, with an accuracy rate 
of 96.42% and a response time reduced to 0.85 s, verifying the necessity and collaborative effectiveness of each 
improved module.

The research verified the equipment operation data of the entire year of 2024 in the industrial park of Location 
A, covering a total of 876 key equipment of 12 types. The sampling frequency was 10 s per time, and the total 
data volume reached 215,258 entries. The comparison models include BPNN-UKF, TDN-BILSTM, and VMD-
KELM. The comparison results of diagnostic accuracy, R2, and MAE indicators of several models on different 
device types are shown in Table 3.

As shown in Table 3, the DCC-Shufflet-BIGRU model proposed in the study significantly outperforms the 
comparison models in all indicators, especially in terms of accuracy and MAE. Compared with the suboptimal 
model TCN-BiLSTM, it has increased by 6.3 percentage points and reduced the average absolute error by 0.06 
respectively. The R2 value reached 0.931, indicating that the model has a stronger fitting ability for the equipment 
status and the diagnostic results are more stable and reliable. Under complex working conditions, this model can 
still maintain high robustness, verifying its application potential in actual industrial scenarios.

To explore its feasibility on other device systems, the SDC-Shufflet-BigRU model was lightweight and 
deployed on the NVIDIA Jetson Xavier NX edge computing platform in the study. The measured power 
consumption was only 12.3 W, and the inference speed reached 117 frames per second, meeting the real-time 
requirements. During the continuous 72-h stress test, the model operated stably without downtime, with the 
average response time fluctuating within less than ± 0.05 s and the peak memory usage not exceeding 4.2 GB, 
confirming its high efficiency and reliability in resource-constrained environments. In the actual production 

Fig. 14.  Visualization results of classification effect.
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line deployment, the model was successfully integrated into the intelligent operation and maintenance platform 
of the A location park, achieving early warning of key equipment failures. The average fault identification time 
was reduced to 8.7 s, an improvement of over 60% compared to traditional methods. The system processes over 
200,000 data entries on average each day, with a false alarm rate controlled within 1.3%, significantly reducing 
the burden of manual re-checks.

Conclusions and recommendations
To address the challenges of high complexity in feature extraction and low fault detection accuracy under 
complex working conditions, a bearing fault detection model combining SDC and Shuffle was proposed. The 
model used GAN’s generator and discriminator to identify key features and combined BiGRU and GATv2 for 
fault recognition, effectively enhancing robustness under strong noise interference. In the testing experiments, 
the model achieved a sample classification prediction accuracy of 97.88%, an F1 score of 0.9102, an average 
inference speed of 274 fps, and computational cost and parameter size of 1.66 FLOPs and 7.76 M, respectively, 
indicating that the model achieved high precision while maintaining lightweight computation. In the feature 
extraction experiments, the model achieved a fitting accuracy of 96.13% for bearing vibration signals, and the 
MAE and RMSE of amplitude acceleration prediction were 2.88 mm2/s and 5.12 mm2/s, respectively, confirming 
the model’s strong capability in bearing feature extraction. In the fault recognition tasks, the model achieved 
an overall fault detection accuracy of 99.62%, outperforming the comparison models and further confirming 
its excellent fault detection performance. Overall, although the proposed model demonstrated lightweight 
feature extraction and precise fault detection, the experiments did not consider the impact of bearing wear 
under complex working conditions. Future studies can combine the bearing’s service life to further enhance the 
model’s generalization capability.

The improvement of computing efficiency sacrifices the ability to capture some redundant features, which 
may affect the fault tolerance under extreme working conditions. Subsequent optimization needs to seek a 
better balance between lightweight and feature integrity, combining dynamic reasoning mechanisms with 
adaptive feature selection strategies to further enhance the model’s adaptability and stability in the ever-
changing industrial environment. When the model is extended to fault diagnosis tasks of other types of rotating 
machinery, its migration ability and universality need to be further verified. For this reason, future work can 
consider conducting cross-domain adaptability experiments under different equipment operating conditions, 
and constructing a unified fault diagnosis framework covering multiple types of machinery such as gearboxes 
and motors. By introducing meta-learning and domain adaptation mechanisms, the model’s rapid generalization 
ability for unseen device types is enhanced.

Method Accuracy (%) R2 MAE

BPNN-UKF 88.34 0.821 0.156

TCN-BiLSTM 90.12 0.857 0.132

VMD-KELM 89.77 0.843 0.141

SDC-Shuffle-BiGRU 96.42 0.931 0.072

Table 3.  Comparison of diagnosis accuracy, R2, and MAE across different models and equipment types.

 

Project GAT-BiGRU Module 1 Module 2 Module 3 Module 4 Response time (s) Diagnostic accuracy rate (%)

1 √ 1.58 87.06

2 √ √ 1.60 87.62

3 √ √ 1.55 88.00

4 √ √ 1.63 87.11

5 √ √ 1.54 88.43

6 √ √ √ 1.28 90.13

7 √ √ √ 1.25 89.77

8 √ √ √ 1.26 89.72

9 √ √ √ 1.22 90.00

10 √ √ √ 1.27 89.34

11 √ √ √ 1.26 90.12

12 √ √ √ √ 1.00 92.34

13 √ √ √ √ 0.99 93.00

14 √ √ √ √ 1.01 92.89

15 √ √ √ √ 1.02 93.11

16 √ √ √ √ 0.99 93.14

17 √ √ √ √ √ 0.85 96.42

Table 2.  Results of the ablation experiment.
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