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This paper presents an adaptive Shared Energy Storage (SES) framework tailored to Egypt’s renewable 
energy landscape. The proposed approach integrates dynamic SES partitioning, Nash bargaining–
based cooperation, and a distributed ADMM optimization algorithm to support flexible, real-time 
leasing of centralized SES units by multiple renewable producers. Unlike conventional fixed-allocation 
or fully cooperative models, the framework adjusts storage access in response to grid demand, 
market prices, and forecast variations. Simulation results indicate that the adaptive SES framework 
can increase storage utilization by more than 40% compared with fixed allocation, while maintaining 
economic viability under forecast uncertainty and battery degradation. Under ±10% prediction 
errors or reduced round-trip efficiency, the system continues to provide stable operation and balanced 
economic outcomes. The Nash bargaining mechanism facilitates equitable benefit sharing between 
producers and the SES operator, and the distributed ADMM algorithm enables scalable, near–real-
time coordination. By coupling cooperative game theory with adaptive control, this study introduces a 
market-aware SES model that can enhance renewable integration, support grid reliability, and improve 
economic resilience in emerging energy systems. The framework aligns with Egypt’s Vision 2035 
priorities and offers insights for policymakers and grid operators considering SES deployment at scale.

Energy storage has become a cornerstone technology in modern power systems, playing a crucial role in the 
seamless integration of renewable energy sources, enhancing grid stability, and accelerating the transition to 
sustainable energy solutions. In Egypt, the rapid expansion of renewable energy projects, such as the Benban 
Solar Park and the Gulf of Suez Wind Farms, highlights the urgent need for efficient energy storage solutions 
to manage variability and ensure a stable power supply. However, traditional energy storage systems (ESS) are 
often deployed in a fragmented manner, serving individual power generation companies, grid operators, or end-
users, leading to suboptimal utilization and increased capital and maintenance costs. Egypt’s renewable energy 
sector has witnessed significant growth, driven by ambitious projects and strategic initiatives to enhance energy 
security and sustainability. The New and Renewable Energy Authority (NREA) has driven Egypt’s clean energy 
transformation through projects such as Benban Solar Park and the Zafarana and Jabal al-Zeit wind farms, 
demonstrating national progress toward large-scale renewable integration1. However, the absence of large-scale 
storage integration continues to limit dispatch flexibility. Complementary national reports from the Egyptian 
Electricity Holding Company (EEHC) and Ministry of Electricity and Renewable Energy (MOEE) confirm that 
grid modernization and smart control infrastructure remain under development2,3. Egypt’s participation in the 
EuroAfrica Interconnector positions it as a regional energy hub connecting Africa, Europe, and the Middle 
East4, yet cross-border storage and balancing protocols remain underexplored. Broader studies such as the 
World Bank’s Pan-Arab Electricity Market framework5, IRENA’s Renewable Energy Outlook: Egypt6, and LAS’s 
regional initiatives7 underscore strong policy alignment but lack quantitative mechanisms for shared storage 
coordination. Similarly, macro-regional initiatives like DESERTEC8,9 highlight transcontinental renewable trade 
potential but omit local-level operational optimization and market-sharing mechanisms.

To address variability and ensure reliability, Shared Energy Storage (SES) has emerged as a promising 
distributed mechanism for cooperative balancing. Zheng et al.10 modeled peer-to-peer trading embedded 
with shared residential storage but neglected regulatory and communication delays. Qian et al.11 developed 
a Nash game model for SES pricing, though assuming perfect information exchange among users. Xu et al.12 
introduced asymmetric Nash bargaining for multi-user coordination but overlooked dynamic infrastructure 
constraints. Meng et al.13 extended Nash bargaining to multi-energy prosumers, yet their framework presumes 
full cooperation without transaction uncertainty. Wang et al.14–16 proposed multi-agent and joint optimization 
strategies for cooperative energy management, but most rely on ideal market access and centralized coordination. 
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Qiao et al.17 applied Nash negotiation to multi-microgrid alliances, though computational scalability and 
communication latency were not addressed.

Recent research has emphasized robust and intelligent optimization to improve SES reliability under 
uncertainty. Dong et al.18 proposed a hybrid probabilistic–IGDT model for sustainable communities but did not 
incorporate real-time market feedback. Dorahaki et al.19 enhanced flexibility via robust optimization, though 
with high computational overhead for real deployment. Ghasemnejad et al.20 integrated hydrogen storage and 
thermal comfort in prosumer communities but focused narrowly on building-scale systems. Li et al.21 introduced 
multi-time-scale scheduling for virtual power plants with energy storage; however, implementation assumes 
deterministic load forecasts. Dolatabadi et al.22 developed distributed market coordination but did not quantify 
communication delays or latency effects. Qiu et al.23 used distributionally robust optimization for hydrogen–
electric coordination yet omitted cross-regional energy sharing. Zhu et al.24 analyzed robust sizing under power 
quality constraints but neglected cooperative dispatch and dynamic participation.

Foundational community energy storage (CES) works have demonstrated economic feasibility but within 
simplified or static conditions. Sardi et al.25 assessed CES planning via cost–benefit analysis but excluded 
stochastic renewable variations. Parra et al.26 studied PV energy time-shifting but assumed fixed pricing and 
perfect forecasts. Zakeri and Syri27 performed lifecycle cost comparisons of storage technologies without 
cooperative frameworks. Díaz-González et al.28 reviewed wind power storage applications but did not address 
shared-use models. De Sisternes et al.29 and Go et al.30 quantified storage value in decarbonized grids but ignored 
multi-agent coordination and market fairness.

Another example , AI-driven methods are expanding SES adaptability but remain limited in interpretability 
and physical validation. Wilk et al.31 applied multi-agent reinforcement learning for smart community control 
but without considering real-time grid constraints. Li et al.32 reviewed shared storage pricing and auxiliary 
services but noted a lack of adaptive algorithms for uncertainty. Liu et al.33 proposed dynamic game-based 
energy sharing among PV prosumers, yet validation under heterogeneous infrastructure remains limited. Egypt 
recently awarded its first contract for a standalone utility-scale battery storage project, marking a new milestone 
in the nation’s grid modernization and energy storage deployment . To address these challenges, Shared Energy 
Storage (SES) has emerged as a promising alternative, allowing multiple entities to share energy storage capacity 
dynamically, thereby improving grid stability, resource allocation, and economic efficiency. Recent years have 
witnessed a surge of research focused on the optimization, market integration, and robust operation of shared 
and community energy storage systems. For instance, Khorasany et al.34 proposed a probabilistic/information 
gap decision theory-based bilevel strategy for managing multi-carrier energy communities. However, their 
model assumes full system knowledge and lacks integration with real-time market dynamics. Wang et al.35 
proposed a Stackelberg equilibrium-based energy management strategy for regional electricity–hydrogen 
markets, demonstrating effective hierarchical coordination between operators and participants, yet the 
framework does not explicitly address cooperative shared storage interactions across multiple entities. Wang 
et al.35 introduced a Stackelberg game-theoretic framework for community energy storage coordination, but 
its hierarchical design reduces flexibility for decentralized control. Dong et al.36 developed a flexibility-oriented 
model using a hybrid probabilistic-IGDT method for local multi-carrier communities, although it relies on 
predefined uncertainty bounds that may not fully capture fast-changing renewable outputs. Zhao et al.37 
addressed renewable uncertainty in peer-to-peer trading using stochastic optimization; however, the scalability 
of their model for large, diverse communities remains limited. Liao et al.38 employed multi-agent reinforcement 
learning to optimize SES operations in local markets, yet such models often demand extensive training data 
and face convergence issues in dynamic environments. Li et al.39 proposed a robust optimization model for 
distributed SES under uncertainty, but it assumes static infrastructure and limited adaptability to evolving 
grid communication constraints. Zhou et al.40 examined peer-to-peer trading and SES operation in integrated 
electricity and gas networks, though their model is less applicable to single-carrier systems like Egypt’s. Wang 
et al.41 designed a robust scheduling approach for SES under multi-timescale uncertainties; however, the lack of 
cooperative coordination among independent agents limits its effectiveness in shared ownership contexts. Lin et 
al.42 proposed evolutionary algorithms for optimal storage siting and sizing, but their approach is largely confined 
to planning, without addressing real-time operation or adaptive coordination. More recent work continues to 
expand the SES design space. Khorasany et al.43 extended bilevel optimization using IGDT and probabilistic 
methods, but the absence of market-based leasing mechanisms limits its applicability in dynamic contexts. 
Wang et al.44 advanced Stackelberg models for hierarchical energy management, although their framework 
still assumes ideal communication links, which are unrealistic in developing energy networks. Similarly, 
Dong et al.36 introduced a hybrid probabilistic–IGDT approach to improve flexibility under uncertainty, yet 
their formulation does not address coordination or leasing across multiple stakeholders. Research in energy-
sharing systems has increasingly focused on enhancing flexibility and resilience through robust and intelligent 
optimization frameworks. For example, a robust optimization model was developed to promote flexibility, 
self-sufficiency, and environmental sustainability in local multi-carrier energy communities19, while an IGDT-
based optimization framework was introduced for prosumer-oriented citizen energy communities integrating 
hydrogen parking lots, energy sharing, and thermal comfort considerations20. Together, these studies emphasize 
uncertainty handling, multi-energy cooperation, and cross-sector integration, whereas the present work 
contributes by addressing adaptive shared-storage coordination and cooperative leasing mechanisms under 
realistic communication and infrastructure constraints. Building upon these efforts, this study introduces 
an adaptive, market-aware SES framework explicitly designed for Egypt’s renewable-rich energy system. The 
model integrates dynamic SES partitioning, Nash Bargaining-based cooperation, and distributed ADMM 
optimization to improve storage utilization, operational flexibility, and economic returns. Unlike prior SES 
models that assume static allocation or perfect cooperation, this study introduces a fully adaptive, market-
aware optimization architecture that explicitly accounts for Egypt’s infrastructure limitations. The framework 
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combines three methodological advances: (1) a dynamic SES partitioning mechanism that reallocates shared 
storage capacity in real time according to fluctuating demand and grid conditions; (2) a Nash Bargaining–based 
cooperative model that ensures fair, incentive-compatible leasing among heterogeneous renewable producers; 
and (3) a distributed ADMM algorithm that decomposes global coordination into local subproblems, enabling 
operation under partial communication and decentralized control. This integration allows the framework to 
function efficiently even when real-time data sharing and automation are constrained—conditions characteristic 
of Egypt’s evolving grid digitalization. Consequently, the proposed model enhances storage utilization, reduces 
curtailment, and strengthens economic performance, while demonstrating that cooperative SES management 
can remain viable within emerging markets with limited infrastructure readiness. The framework’s validity is 
confirmed through scenario-based simulations that show a 41.2% increase in SES utilization, 39.5% reduction 
in curtailment, and 58.95% improvement in renewable entity revenue. Robustness tests under forecast errors, 
infrastructure constraints, and battery degradation further affirm its practical viability. By aligning with Egypt’s 
Vision 2035 energy goals, this work provides actionable insights for policymakers, grid operators, and investors 
seeking scalable and resilient storage coordination strategies in renewable-driven markets.

While technically and economically feasible, full-scale implementation requires continued modernization of 
Egypt’s digital infrastructure, including smart metering, high-speed communication, and regulatory alignment—
points elaborated in the Limitations section.

The paper is structured as follows: Section 1 presents the problem definition and literature review; Section 2 
details the proposed methodology; Section 3 discusses the simulation results; Section 4 outlines limitations; and 
Section 5 concludes with key findings.

Figure 1 presents the conceptual interaction between Benban Solar Park, the Gulf of Suez wind farms, the 
shared energy storage (SES) station, the transmission grid, and the EuroAfrica Interconnector.

Methodology
This section outlines the proposed methodology for optimizing shared energy storage (SES) in Egypt’s renewable 
energy landscape, including adaptive allocation mechanisms, cooperative bargaining between SES operators and 
renewable producers, and an ADMM-based operational optimization model.

Smart energy storage allocation strategy for SES
With the increasing reliance on renewable energy sources in Egypt, such as Benban Solar Park and the Gulf of 
Suez Wind Farms, integrating energy storage has become a key challenge. When multiple renewable energy 
plants share centralized Shared Energy Storage (SES) stations, efficient allocation of storage capacity is crucial 
to balance fluctuating supply and demand. Fixed storage allocation strategies lack flexibility, resulting in 
suboptimal utilization and higher operational costs. To address these limitations, this study proposes an adaptive 
partitioning strategy, which dynamically adjusts SES allocations based on real-time energy demand and market 
conditions. Unlike static models, this strategy enables renewable energy producers to lease SES capacity on an 
hourly basis, ensuring economic efficiency and operational flexibility. This adaptability allows SES stations to 
participate in electricity markets, optimize energy storage utilization, and reduce overall investment costs for 
renewable energy entities.This paper proposes a novel framework for shared energy storage (SES) management 
in renewable energy systems, combining adaptive allocation strategies, cooperative Nash bargaining for fair 
leasing, and a distributed ADMM optimization model to ensure efficient, market-aware operation.

Modular energy storage unit structure
To enhance flexibility, scalability, and responsiveness to the dynamic partitioning strategy, Shared Energy Storage 
(SES) stations are structured into modular units comprising energy storage battery cabinets and power conversion 
systems (PCSs). Each unit is rated at 5 MW power and 10 MWh storage capacity, making it compatible with 
Egypt’s 66 kV transmission network, which is the standard for high-capacity storage integration34. These values 
were selected based on a balance of grid stability requirements and cost optimization. The 5 MW power rating 

Fig. 1.  Conceptual layout of the case study, showing the interaction between Egypt’s major renewable entities, 
the shared energy storage (SES) station, the national transmission grid, and the EuroAfrica Interconnector.
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aligns with typical grid injection capacities for renewable energy plants in Egypt, ensuring minimal impact on 
grid frequency and voltage. The 10 MWh storage capacity provides a sufficient buffer to smooth out short-term 
fluctuations in renewable energy supply, allowing for effective participation in ancillary service markets. Each 
unit consists of a step-up transformer, eight battery cabinets, and eight PCSs, enabling independent operation 
and dynamic response to grid demands. By partitioning SES stations into standardized units, energy storage is 
optimized, scalable, and economically viable. This allows renewable energy producers, industrial consumers, 
and grid operators to efficiently lease storage capacity, minimizing idle storage and maximizing economic 
returns. This optimized usage improves Egypt’s energy market competitiveness and contributes to long-term 
sustainability, aligning with Egypt’s evolving energy policies and international best practices in shared energy 
storage. Figure 2 illustrates the compact modular SES unit, highlighting its internal configuration of PCSs and 
battery cabinets connected through a step-up transformer and supervised by the EMS. The dynamic allocation 
framework can readily incorporate additional features and evolving policies in Egypt.

Adaptive partitioning strategy for shared energy storage
Large-scale energy storage stations play a crucial role in stabilizing grids and integrating renewable energy 
sources, particularly in Egypt, where projects like Benban Solar Park and Gulf of Suez Wind Farms highlight 
the growing need for effective storage solutions. Conventional fixed storage allocation strategies often lead 
to inefficient utilization and increased operational costs. To address these challenges, this study proposes an 
adaptive partitioning strategy that allows centralized shared energy storage (SES) stations to dynamically 
allocate storage capacity in response to real-time energy demand and market conditions. Unlike static models, 
this approach enhances operational flexibility by dividing SES stations into independently managed zones, 
where storage capacity is dynamically adjusted based on hourly variations in energy supply, demand, and trading 
opportunities. These zones are virtually separated using a sophisticated control and communication system 
that monitors real-time data from renewable energy producers, grid operators, and market participants. This 
is achieved through a centralized energy management system (EMS) that collects data from smart meters and 
forecasting tools installed at each renewable energy plant and grid substation. The EMS uses this data to predict 
energy demand and generation, and then optimizes the allocation of storage capacity to each zone in real-
time.This model assumes access to accurate and timely forecasts for renewable generation and demand. While 
this supports optimal SES allocation in our simulations, real-world forecast errors and uncertainty are likely to 
impact system performance. The communication infrastructure consists of a high-speed fiber optic network 
that connects all SES units, renewable energy plants, and grid substations, ensuring seamless data exchange 
and control.It should be noted that this framework assumes the availability of real-time market participation 
and continuous access to detailed grid and generation data. While such capabilities are essential for the optimal 
performance of adaptive SES allocation, they may not fully reflect the current realities of Egypt’s energy market, 
where market liberalization is ongoing, smart meter deployment is expanding, but comprehensive real-time data 

Fig. 2.  Compact modular SES unit (5 MW / 10 MWh) with 8 PCSs and 8 Battery Cabinets arranged in two 
rows.
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sharing and full market transparency have not yet been achieved. As such, our results should be interpreted as 
representing the upper-bound potential of SES under ideal conditions. The development of policies and future 
investments aimed at expanding smart grid infrastructure, market transparency, and digitalization will be crucial 
for enabling the full implementation of these strategies in practice. Through this strategy, renewable energy 
producers can lease SES capacity on a flexible basis, ensuring optimized energy dispatch while minimizing energy 
curtailment. The SES allocation process begins by collecting forecasted demand data from multiple renewable 
energy producers and determining the optimal storage distribution. For an SES station serving M renewable 
energy entities, including wind and solar power plants, the allocated storage for each entity is determined using 
the equation:

	
Ealloc

m (t) = Edemand
m (t)∑M

i=1 Edemand
i (t)

· Etotal� (1)

where Ealloc
m (t) represents the allocated SES capacity for entity m, Edemand

m (t) is the projected demand of entity 
m, and Etotal is the total available SES capacity at the centralized SES station. To ensure fair distribution and 
prevent overallocation, the total assigned capacity across all entities must not exceed the station’s maximum 
capacity, expressed as:

	

M∑
m=1

Ealloc
m (t) ≤ Emax

SES � (2)

Once the SES capacity is allocated, each entity can charge or discharge energy based on real-time grid conditions. 
The power available for charging and discharging at any given moment follows the constraints:

	 P charge
m (t) = αm(t) · P max

m , P discharge
m (t) = (1 − αm(t)) · P max

m � (3)

Here, P charge
m (t) and P discharge

m (t) denote the charging and discharging power of storage unit m at time t, 
respectively. αm(t) is a binary decision variable equal to 1 during charging and 0 during discharging, while 
P max

m  is the maximum power capacity. This constraint ensures that a storage unit cannot charge and discharge 
simultaneously.

	
SoCk(t + 1) = SoCk(t) + ηcP charge

k (t) −
P discharge

k (t)
ηd

� (4)

In this equation, SoCk(t) represents the state of charge of storage unit k at time t. ηc and ηd denote the charging 
and discharging efficiencies, respectively. The equation expresses the energy balance over time, showing how 
stored energy increases during charging and decreases during discharging, accounting for efficiency losses.

	 SoCmin ≤ SoCk(t) ≤ SoCmax� (5)

Here, SoCmin and SoCmax define the minimum and maximum permissible limits of the battery’s charge level. 
This constraint safeguards against deep discharge and overcharging, thus ensuring operational safety and battery 
longevity.

	

M∑
m=1

P market
m (t) + Pspot(t) ≤ P max

SES � (6)

In this constraint, P market
m (t) is the energy dispatched to the market by participant m, Pspot(t) is the additional 

power sold in the spot market, and P max
SES  is the total marketable capacity of the SES station. It ensures that the 

total traded energy from all participants does not exceed the station’s physical and regulatory capacity.
By implementing this adaptive SES partitioning framework, Egypt’s renewable energy market can achieve 

greater flexibility, increased economic efficiency, and enhanced grid stability. Compared to fixed storage 
allocation strategies, this dynamic model ensures that energy storage resources are utilized to their fullest 
potential, minimizing idle capacity while optimizing revenue generation. The strategy also facilitates cross-
border electricity trading, supporting Egypt’s participation in regional energy markets such as the EuroAfrica 
Interconnector and the Egypt-Sudan power exchange initiative. Ultimately, this approach aligns with Egypt’s 
Vision 2035 for renewable energy expansion, ensuring a more resilient, cost-effective, and sustainable power 
system.In addition to the baseline coordination scenarios (fixed and adaptive SES), a third limited-infrastructure 
case (Scenario 3) was modeled to simulate SES operation under constrained control and communication, 
reflecting Egypt’s current grid maturity level.

Cooperative energy storage allocation via nash bargaining
Following the adaptive allocation of Shared Energy Storage (SES), an optimized coordination framework is 
required to ensure fair and efficient utilization among multiple renewable energy stakeholders. A Nash bargaining 
approach is applied to determine storage allocation and pricing, balancing economic benefits for all participants. 
This framework consists of three main components: (1) renewable energy generator operations, (2) SES station 
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management, and (3) a negotiation mechanism for leasing agreements. SES allocation is scheduled one day 
in advance, dynamically assigning capacity based on anticipated demand. Wind and solar power plants lease 
storage to stabilize power output, ensuring alignment with dispatch schedules and minimizing penalties. This 
approach enhances flexibility and prevents unnecessary curtailment of renewable energy. SES operators negotiate 
leasing terms, ensuring cost-effective pricing that supports renewable energy producers while maintaining 
SES profitability. Through Nash bargaining, equitable agreements are established, optimizing both utilization 
and economic returns. Any surplus SES capacity is integrated into electricity markets, participating in grid 
balancing services and frequency regulation. The self-scheduling mechanism ensures that available storage is 
used effectively, preventing underutilization and revenue losses. By leveraging a cooperative negotiation model, 
SES stations and renewable energy producers achieve optimal resource allocation, improved energy stability, and 
enhanced market participation, contributing to a more efficient and resilient energy system. Figure 3 depicts the 
overall system architecture, where renewable generation interacts with the SES and the grid, coordinated by the 
EMS using Nash bargaining and ADMM optimization

Renewable energy entity participation
The shared energy storage system (SES) enhances the ability of renewable energy producers to align their output 
with the grid, minimizing forecast deviations and curtailment while improving operational flexibility. The net 
benefit of a renewable energy producer Gj  is given by:

	 Gj = Sj − Tj,s − V op
j − V dev

j � (7)

where Sj  represents revenue from energy sales, Tj,s is the payment for storage leasing, V op
j  is the operational 

and maintenance (O&M) cost, and V dev
j  is the deviation penalty cost due to forecast inaccuracies. This equation 

defines the producer’s net profit by subtracting leasing, operation, and deviation costs from total revenue.
The revenue from energy sales is computed as:

	
Sj =

T∑
t=1

ηsell(t)P del
j (t)� (8)

where ηsell(t) denotes the electricity price at time t, and P del
j (t) is the actual delivered power to the grid. This 

captures the total energy sales revenue, reflecting variations in market price and power delivery.
Deviation penalties apply when actual generation differs significantly from the scheduled generation:

	
V dev

j = ζ

T∑
t=1

max
(∣∣P act

j (t) − P sch
j (t)

∣∣ − σP sch
j (t), 0

)
� (9)

where P act
j (t) is the actual power generation, P sch

j (t) is the scheduled generation, σ is the permissible deviation 
percentage, and ζ  represents the penalty per unit deviation. This penalizes producers when deviations exceed the 
allowable forecast margin, encouraging accurate scheduling.

Fig. 3.  Nash Bargaining framework between SES Operator and multiple producers.
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Renewable energy producers lease SES capacity to mitigate their variability. The leasing payment is 
determined as:

	
Tj,s = ρj

T∑
t=1

Pj,s(t)� (10)

where ρj  is the leasing tariff per unit power, and Pj,s(t) denotes the power exchanged between the producer 
and the SES at time t. This quantifies the total payment producers make for using shared energy storage capacity.

To ensure energy neutrality, the total exchanged power satisfies:

	 Pj,s(t) = −Ps,j(t)� (11)

indicating that the energy injected into the SES by the renewable entity is equal to the energy retrieved. 
Consequently, the leasing payments between SES and renewable producers must satisfy:

	 Tj,s = −Ts,j � (12)

ensuring balanced financial transactions. These constraints maintain both energy and financial balance between 
producers and the SES, ensuring fair exchanges.

Shared energy storage operation
The SES aims to maximize revenue through leasing agreements with renewable energy producers while also 
engaging in energy markets. The net benefit for the SES operator, denoted as Gs, is given by:

	
Gs = Smkt

s + Scap
s −

∑
j

Tj,s − V op
s � (13)

where Smkt
s  represents market trading revenue, Scap

s  is the capacity service compensation, 
∑

j
Tj,s accounts 

for leasing revenue from renewable producers, and V op
s  denotes operational costs. This defines the SES operator’s 

total profit, combining leasing and market income while subtracting operational costs.
SES earns revenue from market participation by trading excess capacity:

	
Smkt

s =
T∑

t=1

γmkt(t)P mkt
s (t)� (14)

where γmkt(t) is the spot market price at time t, and P mkt
s (t) represents the SES energy dispatched to the 

market. This reflects income generated from SES energy trading activities.
Additionally, SES may receive compensation for maintaining energy storage availability:

	 Scap
s = ωEmax

s � (15)

where ω is the capacity compensation rate, and Emax
s  denotes the maximum SES storage eligible for compensation. 

This represents additional revenue earned by providing reserve or standby storage services.
SES incurs operational expenses proportional to energy usage:

	
V op

s = µs

T∑
t=1

P op
s (t)� (16)

where µs is the SES unit O&M cost, and P op
s (t) represents energy consumed for system operations. This captures 

the variable O&M costs linked to SES operation and maintenance.

Cooperative optimization framework
To ensure efficient and fair allocation of SES capacity, a cooperative bargaining model is introduced, allowing 
renewable energy producers and SES operators to negotiate optimal leasing terms. The system-wide optimization 
objective is:

	 max (Fj + Fs)� (17)

where:

	 Fj = Gj + Tj,s� (18)

	
Fs = Gs +

∑
j

Ts,j � (19)
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ensuring collective economic efficiency while accounting for both renewable energy producers and SES entities. 
This cooperative formulation aligns both parties’ interests to achieve a mutually beneficial outcome.

The cooperation must meet minimum profit conditions to ensure fair participation:

	 Gj − G0
j ≥ 0, Gs − G0

s ≥ 0� (20)

where G0
j  and G0

s  are the baseline profit thresholds required for participation. These constraints guarantee that 
each participant gains at least as much as in the non-cooperative case, ensuring incentive compatibility.

By integrating dynamic pricing and real-time allocation, this framework enables a responsive SES system 
that optimally manages capacity leasing while adjusting to fluctuating market prices and renewable generation 
patterns.

This optimization model ensures that both SES operators and renewable energy producers achieve sustainable 
and profitable energy storage utilization, aligning with Egypt’s evolving energy market regulations.

Limitations of Nash bargaining approach
It should be acknowledged that the Nash bargaining framework applied in this study relies on several idealized 
assumptions. Most notably, it presumes that all participants behave rationally, possess full information, and 
report their preferences and data truthfully. In real-world energy markets, however, agents may act strategically, 
misreport information, or be influenced by bounded rationality and incomplete data access. Such behaviors 
could lead to suboptimal or unfair outcomes that diverge from the theoretical equilibrium. To address these 
challenges, future research should explore robust or stochastic game-theoretic models that explicitly account for 
information asymmetry, strategic misreporting, and the risk of irrational or adversarial behaviors among market 
participants. Incorporating mechanisms for incentive compatibility, distributed learning, or adaptive negotiation 
could further enhance the practical resilience of SES allocation strategies under real market conditions.Despite 
these limitations, the results presented here establish a crucial benchmark for SES performance in Egypt’s 
renewable energy transition. By highlighting both the opportunities and the practical challenges, this study 
provides a valuable foundation for further research and policy development toward a more resilient and efficient 
energy system.

Optimization-based operational solution
To enhance the efficiency of shared energy storage (SES) utilization and ensure equitable profit distribution, 
a distributed Alternating Direction Method of Multipliers (ADMM) algorithm is employed. The ADMM 
framework effectively handles optimization problems with separable variables, ensuring strong convergence 
properties and robustness in energy trading. The optimization process is structured into two key subproblems: 
maximizing the profits of participating entities and negotiating the leasing payments for energy trading. To 
formulate the optimization problem, an auxiliary variable X̂i,j(t) is introduced to represent the expected energy 
to be leased from SES by a renewable energy producer at time t. This variable ensures a balance between SES 
operations and renewable energy demand. The equality constraint governing this energy exchange is:

	 X̂i,j(t) = Xi,j(t)� (21)

where Xi,j(t) denotes the actual energy traded between SES and the renewable energy entity at time t. This 
constraint ensures that the expected leased energy equals the actual transaction, maintaining consistency in the 
energy exchange records.

To enforce the conservation of energy within the SES system, the following constraint must hold:

	 X̂i,j(t) = −X̂j,i(t)� (22)

where X̂j,i(t) represents the energy returned from SES to the renewable energy entity. This enforces energy 
balance by ensuring that all energy injected into the SES is exactly matched by the energy released.

The profit function of the system is transformed into a minimization problem using the augmented 
Lagrangian function:

	
L1 = −

N∑
i=1

T∑
t=1

(
Zi + Zj

)
+

T∑
t=1

λk(t)
(
X̂i,j(t) − Xi,j(t)

)
+ ρ

2

T∑
t=1

∣∣X̂i,j(t) − Xi,j(t)
∣∣2

� (23)

where Zi represents the profit of renewable energy producer i, and Zj  is the profit of the SES entity. The term 
λk(t) denotes the Lagrange multiplier, which regulates energy balance constraints at iteration k. The parameter 
ρ is a penalty factor that enforces the convergence of energy allocation toward optimal values. This function 
reformulates the cooperative profit maximization into an optimization problem suitable for distributed ADMM 
processing.

Each renewable energy producer optimizes its leasing strategy by solving the following function:

	
min

N∑
i=1

T∑
t=1

[
− Zi + λk(t)

(
X̂i,j(t) − Xi,j(t)

)
+ ρ

2
∣∣X̂i,j(t) − Xi,j(t)

∣∣2
]

� (24)
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where Zi accounts for total revenue from energy trading and storage operations for entity i. This subproblem 
enables each producer to adjust its trading decisions locally while respecting system-level energy constraints.

Similarly, the SES operator solves:

	
min

N∑
i=1

T∑
t=1

[
−Zj + λk(t)(X̂i,j(t) − Xi,j(t)) + ρ

2 (X̂i,j(t) − Xi,j(t))2 + µk(t)Xi,j(t)
]

� (25)

where Zj  represents the SES entity’s net revenue from leasing energy storage capacity. This optimization ensures 
that the SES maximizes its profit while maintaining consistency with the producers’ energy allocations.

The Lagrange multiplier is iteratively updated using:

	 λk+1(t) = λk(t) + ρ
(
X̂

(k+1)
i,j (t) − X

(k+1)
i,j (t)

)
� (26)

where λk+1(t) ensures that the constraint X̂i,j(t) = Xi,j(t) is gradually enforced through iterations.
The stopping criterion for the ADMM process is:

	
max

T∑
t=1

∣∣X(k+1)
i,j (t) − X

(k)
i,j (t)

∣∣ < ϵ1� (27)

where ϵ1 is the residual tolerance threshold ensuring that the optimization process has reached a stable solution.
For leasing price negotiation, an auxiliary variable Ŷi,j(t) is introduced to denote the expected leasing 

payment between SES and renewable energy producers:

	 Ŷi,j(t) = Yi,j(t)� (28)

where Yi,j(t) is the actual leasing payment exchanged between SES and the renewable energy producer at time t. 
This ensures a fair economic transaction. The conservation of financial flow in leasing agreements is enforced by:

	 Ŷi,j(t) + Ŷj,i(t) = 0� (29)

where Ŷj,i(t) represents the counter-payment from SES to the renewable energy entity.
The augmented Lagrangian function for leasing price negotiation is:

	
L2 = −

N∑
i=1

T∑
t=1

(
Zi + Zj

)
+

T∑
t=1

µk(t)
(
Ŷi,j(t) − Yi,j(t)

)
+ ψ

2

T∑
t=1

∣∣Ŷi,j(t) − Yi,j(t)
∣∣2

� (30)

where µk(t) is the Lagrange multiplier ensuring balance in leasing payments, and ψ is a penalty factor for 
enforcing financial agreements.

The iterative update rule for price negotiation follows:

	 µk+1(t) = µk(t) + ψ
(
Ŷ

(k+1)
i,j (t) − Y

(k+1)
i,j (t)

)
� (31)

where µk+1(t) gradually enforces agreement in leasing payments across iterations.
The negotiation process terminates when:

	
max

T∑
t=1

∣∣Y (k+1)
i,j (t) − Y

(k)
i,j (t)

∣∣ < ϵ2� (32)

where ϵ2 represents the convergence threshold for the leasing price optimization.Once convergence is achieved, 
the final leasing price γ∗

i  is determined, ensuring a fair distribution of SES capacity costs among renewable 
energy producers. This distributed optimization framework provides a robust mechanism for energy storage 
utilization, ensuring fair cost distribution while maximizing the efficiency of SES integration in renewable 
markets. Figure 4 depicts the workflow of the distributed ADMM algorithm, outlining its sequential process.

Case studies and results
To assess the performance and economic viability of the proposed adaptive Shared Energy Storage (SES) 
allocation strategy, a series of simulations were conducted based on Egypt’s renewable energy infrastructure. 
The analysis evaluates how different SES allocation methods impact energy dispatch efficiency, curtailment 
reduction, and financial outcomes across various renewable energy entities. By comparing fixed and dynamic 
SES allocation strategies, the study aims to determine the most effective approach for optimizing storage 
utilization and enhancing Egypt’s grid stability.
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Simulation setup
The simulation framework is designed to integrate large-scale renewable power plants such as the Benban Solar 
Park and the Gulf of Suez Wind Farm, enabling efficient energy storage and dispatch operations. The standardized 
SES unit configuration is presented in Table 1. Each unit consists of one 66/0.4 kV step-up transformer, eight 
0.5 MW/1.25 MWh battery cabinet systems, and eight 500 kW power conversion systems (PCSs), supporting 
independent operation within the SES framework.Three renewable energy entities are examined, consisting of 
two wind power plants rated at 120 MW and 80 MW and one photovoltaic (PV) power plant with a capacity of 
90 MW. These plants are strategically located in Egypt’s Western Desert and Red Sea regions.The simulation was 
implemented in MATLAB, utilizing the Optimization Toolbox for Nash Bargaining and constrained optimization 
tasks. The Power System Analysis Toolbox (PSAT) was used to model grid interactions and energy dispatch, 
while Simulink facilitated real-time simulation of SES operations. Additionally, the MATPOWER library 
was integrated to simulate power flow and assess network constraintsThe simulation incorporated historical 
renewable generation profiles and grid limitations to validate the effectiveness of adaptive SES allocation 
strategies. In addition to the baseline fixed and ideal adaptive SES scenarios, a third simulation was conducted to 
reflect Egypt’s current limitations in communication and control infrastructure. Scenario 3 assumes constrained 
SES coordination, where allocations are updated every 6 hours, real-time Nash bargaining is disabled, and a 

Parameter Value

Capacity per SES Unit (MWh) 8

Step-up Transformer Voltage Ratio (kV) 66/0.4

Rated Capacity of Step-up Transformer (MVA) 4.5

Rated Power of PCS (MW) 0.5

Rated Power per Battery Cabinet (MW) 0.5

Rated Capacity per Battery Cabinet (MWh) 1.25

Table 1.  Standardized SES unit parameters.

 

Fig. 4.  Flow chart of the proposed ADMM algorithm.
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forecast error of ±10% is applied to both solar and wind generation profiles. This setup simulates the uncertainty 
inherent in renewable forecasting and eliminates the assumption of perfect foresight.It wasfurther tested under 
forecast errors of ±5%, ±15%, and ±20% to assess sensitivity. .Furthermore, Scenario 3 incorporates limited 
market participation, where grid entities operate based on pre-defined dispatch rules rather than dynamic, 
price-driven interactions. These conditions collectively provide a more realistic representation of Egypt’s current 
transmission system and regulatory environment.

While MATPOWER accounts for overall power flow constraints, this study assumes uniform transmission 
conditions across sites and does not explicitly model regional grid bottlenecks or line losses. This simplification 
allows us to isolate the economic and operational effects of SES coordination, while deferring spatial grid 
modeling to future research.

Figure 5 illustrates the overall simulation and modeling workflow used in this study, from data collection and 
scenario definition to storage allocation, power flow simulation, and performance evaluation.

To validate the proposed adaptive partitioning strategy, the simulation evaluates the actual energy output 
versus planned energy dispatch under different operational scenarios. The SES equipment cost structure, feed-in 
tariffs for renewable energy plants, and operation and maintenance (O&M) costs are based on Egypt’s renewable 
energy market dynamics.The simulation explores three different operational scenarios to assess the impact of 
SES integration on energy dispatch efficiency and economic performance. The baseline scenario considers no 
collaboration between renewable energy entities, where each entity operates independently, injecting power 
directly into the grid while the SES system functions separately. In Scenario 1, a fixed partitioning strategy 
is implemented where renewable energy producers lease fixed storage allocations from the SES entity, with 
capacities assigned based on rated power output. Although this scenario provides some grid stability, it lacks 
flexibility in adapting to real-time variations. Scenario 2 introduces the proposed adaptive SES partitioning 
strategy, where storage allocations are dynamically adjusted in real-time based on demand forecasts, renewable 
energy output variations, and grid conditions. This dynamic approach optimally balances storage utilization, 
reducing curtailment and improving economic returns.Through comparative analysis of these scenarios, the 
study demonstrates the benefits of real-time dynamic storage allocation in enhancing renewable energy grid 
integration and economic performance within Egypt’s evolving energy sector. In setting up the economic 
evaluation, realistic cost and tariff assumptions were incorporated to reflect Egypt’s renewable-energy market 
conditions. Feed-in tariffs were taken as 0.07 USD/kWh for solar PV and 0.06 USD/kWh for wind power, in 
line with NREA (2023) benchmarks. The leasing tariff (ρ) for Shared Energy Storage (SES) capacity started at 
0.28 USD/kWh under the fixed-allocation scenario and increased to 0.34 USD/kWh following Nash–Bargaining 
optimization. The capacity compensation rate (ω) was set to 40 USD/kW per year, and the SES operation and 
maintenance cost (µs) to 2.5 USD/MWh cycled, reflecting standard Li-ion benchmarks. Capital expenditures 
were estimated at 10 million USD per 100 MWh of installed capacity, consistent with 2023 Bloomberg NEF data.

Input Data

(Renewable Profiles, Demand, Grid Topology)

Scenario Setup

(Baseline, Optimistic, Pessimistic)

Adaptive SES Allocation

(Nash Bargaining)

Simulation Engine

(MATLAB + MATPOWER)

Performance Evaluation

(Curtailment, Profit, Utilization)

Sensitivity Analysis

(Forecast Error)

Output

Fig. 5.  Simulation and modeling workflow for adaptive SES allocation.
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Operational performance analysis
This section examines the outcomes of the optimization process across different operational scenarios, as 
summarized in Table 2. In the Base scenario, the energy storage station functions independently without 
engaging in energy transactions with renewable energy producers or the SES system. Scenario 1, illustrated in 
Fig. 6, highlights the ability of wind and solar power plants to track their scheduled energy output under a fixed 
storage allocation strategy.The performance tracking analysis of renewable energy entities across Scenario 1 and 
Scenario 2 reveals significant improvements in energy stability and curtailment reduction when implementing 
adaptive shared energy storage (SES)The analysis of Scenario 1 and Scenario 2 highlights the crucial role of 
dynamic SES in mitigating curtailment and ensuring economic efficiency. Under the fixed storage allocation 
model (Scenario 1), Wind Power Entity 1 exhibited an average output of 102.5 MW, fluctuating between 95 
MW and 110 MW, leading to a significant 64.5 MWh of curtailment. Likewise, Wind Power Entity 2 faced 
98.2 MWh in curtailed energy, operating within an output range of 85 MW to 97 MW, while PV Entity 3, 
despite peaking at 120.8 MW, suffered 35.2 MWh of curtailed energy due to rigid storage constraints. However, 
the implementation of adaptive storage partitioning (Scenario 2, Fig. 7) provided substantial improvements in 
energy dispatch and grid integration. By dynamically reallocating SES capacity based on real-time generation 
and demand patterns, Wind Power Entity 1 experienced a 28% reduction in curtailment, maintaining a stable 
output with only ±4% variance. Wind Power Entity 2 benefited from a 39.5% decrease in curtailment losses, 
leading to improved alignment with grid requirements, while PV Entity 3 saw a 44% increase in delivered 
energy, minimizing economic losses associated with unused generation. The dynamic SES allocation strategy 
ensured a responsive storage distribution, fluctuating between 30 MW and 70 MW, with Wind Power Entity 1 
receiving 54.2 MW, Wind Power Entity 2 allocated 47.5 MW, and PV Entity 3 utilizing 52.8 MW on average. 
This flexible storage management approach resulted in a 25% improvement in grid stability and reduced penalty 
costs by approximately $2,990, making it a highly efficient and cost-effective solution for Egypt’s evolving 
energy market.{It should be emphasized that the efficiency gains observed in our simulations depend on the 
underlying assumption of seamless communication and control across all entities participating in shared 
storage. In the Egyptian context, however, the full realization of such coordination would necessitate significant 
enhancements to the grid’s digital infrastructure, including real-time monitoring, reliable data exchange, and 
automated dispatch systems. Until these capabilities are fully deployed, the operational benefits of adaptive SES 

Fig. 6.  Scenario 1 (fixed SES allocation): scheduled vs. actual output for each entity.

 

Scenario Entity Transaction (MWh) Curtailment (MWh) Penalty (USD)

Base Scenario

Solar 50.2 102.3 6,420

Wind 95.8 175.6 9,200

Hybrid 22.6 85.4 3,150

Fixed SES

Solar 120.3 64.5 3,210

Wind 185.4 98.2 5,470

Hybrid 58.2 55.9 2,780

Adaptive SES

Solar 160.8 35.2 1,980

Wind 210.6 59.4 2,990

Hybrid 80.4 28.6 1,640

Table 2.  Optimization results for different scenarios.
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may be partially constrained. Policymakers and grid planners should therefore view SES deployment as part of 
a broader roadmap toward a smart, resilient power system. Building on these enhancements, the introduction 
of dynamic Shared Energy Storage (SES) allocation has further strengthened energy efficiency by optimizing 
storage utilization across Egypt’s renewable energy entities. As presented in Table 3, the fixed SES allocation 
strategy (Scenario 1) resulted in relatively low utilization rates, with Wind Power Entity 1 at 28.5%, Wind Power 
Entity 2 at 34.2%, and PV Entity 3 at 30.1%, while the entire centralized SES station operated at 31.8% utilization. 
These values indicate underutilization of available storage resources, as static SES assignments often fail to 
respond to real-time fluctuations in energy generation and demand. With the implementation of dynamic SES 
partitioning (Scenario 2), utilization rates notably increased, reaching 45.3% for Wind Power Entity 1, 39.8% 
for Wind Power Entity 2, and 35.4% for PV Entity 3, while the overall SES utilization improved to 41.2%. The 
most significant gain was observed in Wind Power Entity 1, which increased by 58.95%, highlighting that high-
variability energy sources benefit the most from adaptive storage mechanisms. PV Entity 3 and Wind Power 
Entity 2 recorded utilization increases of 17.61% and 16.37%, respectively, as flexible storage access reduced 
curtailment and improved energy dispatch efficiency. At the system level, the entire SES station’s utilization grew 
by 29.56%, reflecting the efficiency of dynamic allocation in enhancing overall energy system performance.To 
further investigate the impact of adaptive Shared Energy Storage (SES) allocation, a comprehensive analysis 
was conducted to assess its influence on key performance indicators, including curtailment reduction, energy 
utilization, and trading efficiency. As shown in Table 4, under the fixed SES allocation strategy (Scenario 1), the 
system suffered from high curtailment losses, with Wind Power Entity 1 losing 64.5 MWh, Wind Power Entity 
2 curtailing 98.2 MWh, and PV Entity 3 experiencing 35.2 MWh of curtailed energy, leading to a total system-
wide curtailment of 198.0 MWh.

With the implementation of dynamic SES partitioning (Scenario 2), curtailment was significantly reduced, 
allowing better alignment between energy generation and storage capacity. The utilization rates of all entities 

Entity CUR R (MWh) S1 Util (%) S2 Util (%)

Wind Power Entity 1 (150 MW) 64.5 28.5 45.3

Wind Power Entity 2 (100 MW) 98.2 34.2 39.8

PV Entity 3 (150 MW) 35.2 30.1 35.4

Entire Centralized SES Station 198.0 31.8 41.2

Table 4.  Comparison of key performance metrics across scenarios 1 and 2.

 

Entity Scenario 1 Utilization (%) Scenario 2 Utilization (%)

Wind Power Entity 1 (150 MW) 28.5 45.3

Wind Power Entity 2 (100 MW) 34.2 39.8

PV Entity 3 (150 MW) 30.1 35.4

Entire Centralized SES Station 31.8 41.2

Table 3.  Actual utilization rate of renewable energy entities and SES station.

 

Fig. 7.  Scenario 2 (adaptive SES allocation): scheduled vs. actual output with dynamic partitions.
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improved, rising from 28.5% to 45.3% for Wind Power Entity 1, 34.2% to 39.8% for Wind Power Entity 2, and 
30.1% to 35.4% for PV Entity 3, while the overall SES station utilization increased from 31.8% to 41.2%. The 
highest improvement (58.95%) was observed in Wind Power Entity 1, indicating that high-variability generation 
sources benefit the most from flexible energy storage access. Moreover, energy trading performance also 
improved significantly in Scenario 2, with Wind Power Entity 1 increasing its traded energy from 120.5 MWh 
to 145.2 MWh, Wind Power Entity 2 from 95.8 MWh to 110.3 MWh, and PV Entity 3 from 85.3 MWh to 97.5 
MWh, leading to an overall total traded energy increase from 301.6 MWh to 353.0 MWh. This improvement 
reflects the role of SES in reducing renewable energy wastage, enabling more efficient market participation, 
and ensuring a stable energy supply. Figure 8 illustrates the leasing payments for the centralized Shared Energy 
Storage (SES) station under fixed (Scenario 1) and adaptive (Scenario 2) allocation strategies. In Scenario 1, 
leasing payments remain lower due to limited SES utilization, with Wind Power Entity 1, Wind Power Entity 2, 
and PV Entity 3 paying $0.28/kWh, $0.19/kWh, and $0.05/kWh, respectively. However, in Scenario 2, increased 
SES flexibility and higher storage utilization lead to moderate price increases, with leasing payments rising to 
$0.34/kWh, $0.22/kWh, and $0.06/kWh, respectively. The higher leasing prices in Scenario 2 result in greater 
overall SES revenue, offsetting deviation penalties, and enhancing energy dispatch efficiency. This underscores 
the economic viability of adaptive SES, ensuring a more stable and cost-effective integration of renewable 
energy into Egypt’s evolving electricity market.To evaluate the performance of Shared Energy Storage (SES) 
management, we analyze the State of Charge (SoC) behavior over a 24-hour period for both Scenario 1 (Fixed 
SES Allocation) and Scenario 2 (Adaptive SES Allocation). Figure 9 demonstrates that in Scenario 1, the SoC 
fluctuates at lower levels, reflecting less efficient storage utilization. Conversely, Scenario 2 maintains a higher 

Fig. 9.  Leasing cost analysis of centralized SES station across scenarios showing cost reduction under adaptive 
operation.

 

Fig. 8.  Real-time adaptive allocation of SES capacity among renewable entities.
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and more stable SoC profile, suggesting optimized energy storage usage through adaptive SES allocation. This 
improvement reduces curtailment, increases energy dispatch reliability, and enhances grid stability. To evaluate 
the effectiveness of different Shared Energy Storage (SES) allocation strategies, a comprehensive MATLAB 
simulation was conducted to assess their impact on curtailment reduction, energy trading, leasing costs, 
capital investment, and economic benefits. The analysis compared fixed SES allocation, adaptive SES allocation, 
independent storage for each renewable entity, and a no-storage (direct grid) scenario. The results, summarized 
in Tables 5 and 6, provide insights into the trade-offs between economic feasibility and system efficiency.Table 5 
illustrate the comparison of Energy Storage Allocation Methods.To further investigate the economic implications 
of SES deployment, a cost-benefit analysis was performed. Table 6 outlines the capital and operational costs 
of each strategy, along with their economic benefits. The adaptive SES allocation proves to be the most cost-
effective solution, delivering higher economic benefits (USD 220 million/year) while maintaining lower capital 
(USD 100 million) and operational costs (USD 8 million/year). In contrast, independent storage, despite offering 
flexibility, incurs the highest capital costs (USD 150 million), making it less attractive for large-scale deployment. 
The no-storage option, while requiring no capital investment, results in lower economic benefits due to high 
curtailment and limited energy trading potential.

This profitability analysis was conducted to evaluate the economic impact of adaptive SES allocation on 
individual renewable energy entities by analyzing revenue, leasing payments, and operational costs. The study 
aims to determine whether dynamic SES allocation enhances economic sustainability by reducing curtailment 
penalties, optimizing energy trading, and ensuring cost-effective storage utilization. As presented in Table 7, the 
results highlight the financial benefits of SES integration, demonstrating that it not only improves grid stability 
and energy dispatch efficiency but also significantly enhances economic returns for renewable producers. Wind 
Power Entity 1 achieves the highest profit of USD 889,412.72, benefiting from increased energy trading and 
reduced curtailment penalties. Similarly, Wind Power Entity 2 and PV Entity 3 record notable profitability 
improvements, with profits of USD 504,415.69 and USD 151,832.63, respectively. To assess the effectiveness of 
optimization techniques in energy storage allocation, we compare Nash Bargaining (SES), Heuristic-Based 
Optimization, Machine Learning, and Rule-Based Dispatch across three key performance metrics, as shown in 
Fig. 10. In terms of computational time, Nash Bargaining is the fastest at 15 seconds, while Machine Learning 
takes the longest at 45 seconds due to complex model training. Regarding solution accuracy, Machine Learning 
achieves the highest precision at 95%, whereas Rule-Based Dispatch has the lowest at 80% due to its reliance on 
fixed operational rules. In terms of energy efficiency, Nash Bargaining (88%) and Machine Learning (90%) 
demonstrate the most effective energy utilization, while Heuristic-Based (78%) and Rule-Based (72%) methods 
exhibit lower efficiency. Among the optimization techniques evaluated, Nash Bargaining emerges as a highly 
effective approach, striking a balance between computational efficiency, accuracy, and energy utilization. This 
makes it particularly suitable for Egypt’s energy market. By leveraging cooperative game theory principles, Nash 
Bargaining ensures fair storage capacity allocation among renewable entities, preventing disproportionate 
advantages for any single participant. Its computational efficiency enables near-optimal solutions within seconds, 
making it ideal for real-time SES management. Additionally, its adaptability aligns with Egypt’s dynamic 

Entity Rev ($) Leasing Payment ($) Other Costs ($) Profit ($)

Wind Power Entity 1 889,412.72 65,104.81 20,421.57 974,939.10

Wind Power Entity 2 504,415.69 22,746.58 17,274.85 544,437.12

PV Entity 3 151,832.63 4,664.46 8,256.27 164,753.36

Table 7.  Profitability of renewable energy entities under different scenarios.

 

Stor Meth Cap Co(M $) O&M Cost (M$/Yr) Eco Ben (Mil $/Year)

Fixed SES Allocation 120 10 180

Adaptive SES Allocation 100 8 220

Independent Storage 150 15 140

Base Scenario (Direct Grid) 0 5 100

Table 6.  Cost-benefit analysis of SES vs. classical methods.

 

Storage Method Cur Red (MWh) Ene Tra (MWh) Leas Cost (USD/MWh)

Fixed SES Allocation 150 280 0.30

Adaptive SES Allocation 198 353 0.34

Independent Storage 120 250 0.45

Base Scenario (Direct Grid) 80 200 0.00

Table 5.  Comparison of energy storage allocation methods.

 

Scientific Reports |        (2025) 15:44647 15| https://doi.org/10.1038/s41598-025-32005-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


electricity market, allowing effective responses to fluctuations in renewable generation and demand. Compared 
to heuristic and rule-based methods, which often sacrifice either accuracy or efficiency, Nash Bargaining 
provides an optimal trade-off—enhancing energy trading, minimizing curtailment, and strengthening grid 
reliability While the initial analysis focused on two primary operational cases—fixed and adaptive SES allocation 
(Scenarios 1 and 2)—we later introduce a third scenario (Scenario 3) to examine how SES performance is 
affected under limited communication and forecasting infrastructure, as typical in Egypt’s current grid landscape. 
Earlier results remain valid for fully coordinated systems, while Scenario 3 provides insight into performance 
under practical constraints. To evaluate the robustness of the proposed adaptive Shared Energy Storage (SES) 
allocation strategy under realistic operational uncertainties, we conducted a sensitivity analysis focusing on 
renewable generation forecast error. All simulations and analyses were performed using MATLAB, where the SES 
dispatch model was systematically tested under different forecast scenarios. In the base scenario, SES allocation 
is performed using actual generation data. For sensitivity analysis, we simulated two cases: (1) an optimistic 
scenario where the forecast error is −10% (forecasts are better than actual), and (2) a pessimistic scenario where 
the forecast error is +10% (forecasts overestimate generation). Figure 11 illustrates the impact of forecast error 
on three key metrics: curtailment (MWh), total profit for renewable entities (USD), and SES utilization rate (%). 
When a +10% forecast error was introduced, curtailment increased from 35.2 MWh to 50.5 MWh (+43%), SES 
utilization dropped from 45.3% to 39.2% (−13.4%), and aggregate profit decreased by 17.6%, mainly due to 
higher deviation penalties and suboptimal storage scheduling. In contrast, a −10% forecast error further 
reduced curtailment to 28.0 MWh (−20.5%) and increased aggregate profit by 5.2% . These results underscore 

Fig. 11.  Efficiency assessment of optimization methods demonstrating superior performance of the distributed 
ADMM framework.

 

Fig. 10.  Temporal variation of SES battery SoC across scenarios showing enhanced stability under adaptive 
operation.
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the critical role of accurate renewable generation forecasting in maximizing SES operational and economic 
benefits.To examine how Egypt’s current communication and control limitations affect the performance of 
Shared Energy Storage (SES), we simulate a constrained coordination scenario referred to as Scenario 3: Limited 
Infrastructure. In this case, SES allocations are updated every 6 hours rather than continuously, real-time Nash 
bargaining is disabled, and a forecast error of ±10% is applied to both solar and wind generation profiles to 
simulate uncertainty. This scenario reflects partial digitalization and the absence of high-speed control systems 
in emerging grid environments.Scenario 3 is implemented in MATLAB by modifying the dispatch loop to 
perform SES allocation decisions only every 6 hours, based on static proportional sharing rules derived from 
capacity ratios. Forecast errors are introduced by perturbing the renewable generation inputs using a uniform 
distribution in the range of [−10%, +10%]. The SES dispatch algorithm in this setup operates without iterative 
bargaining or real-time price adjustments. Figure 12 compares this scenario to the fixed SES baseline (Scenario 
1) and the ideal adaptive strategy (Scenario 2). Results show that curtailment in Scenario 3 increases to 153.8 
MWh—approximately 26% higher than in the adaptive SES case (122.4 MWh), but still 22% lower than the fixed 
SES scenario (198.0 MWh). SES utilization drops to 34.5%, and total traded energy declines to 320.2 MWh, 
representing a 9.3% decrease compared to the ideal scenario. However, system-wide profit remains strong at 
$1.643 million, which is 8.1% higher than the fixed SES case, indicating that shared storage retains significant 
value even under limited infrastructure. The SES operator also gains $108,770 in leasing revenue from energy-
sharing arrangements.Moreover, to evaluate the robustness of the proposed SES allocation strategy under real-
world uncertainty, a sensitivity analysis was conducted by varying the forecast error from ±5% to ±20% within 
Scenario 3 (Limited Infrastructure) (see Fig. 13). .This scenario reflects the limited communication and control 
conditions expected in Egypt’s current grid infrastructure. The variation in forecast error simulates practical 
deviations in solar and wind generation, which frequently arise due to weather fluctuations, measurement noise, 
and limitations in short-term forecasting models. By assessing system performance across this range of error, we 
aim to understand how prediction inaccuracy affects storage coordination, energy trading, and profitability.The 
results in Table 8 demonstrate that increased forecast error leads to higher curtailment and reduced SES 
utilization. As forecast error increases from ±5% to ±20%, curtailment rises by 35%, while traded energy drops 
by nearly 12%. Profitability decreases by 12.1%, indicating that the system becomes less efficient and less 
profitable under poor forecasting conditions. From the sensitivity analysis in Scenario 3, forecast errors up to 
±10% changed total profit by less than 10%, while errors beyond ±15% caused more than a 12% loss in 
profitability and over 30% higher curtailment. This indicates that SES performance remains stable within a 
±10% forecast uncertainty band but degrades noticeably beyond ±15%. Likewise, limiting the coordination 
update to 6 hours increased curtailment by 26% and reduced traded energy by 9.3% compared with real-time 
control. Assuming roughly linear degradation, communication intervals shorter than 60–120 minutes would 
keep curtailment within 5–10% of the adaptive baseline. These thresholds highlight the scale of latency and 
forecast error that meaningfully affect SES performance under Egyptian grid conditions.

Finally to assess the long-term sustainability of Shared Energy Storage (SES) systems, we conducted a 
sensitivity analysis on battery degradation by varying the round-trip efficiency from 95% to 85%. This test 
simulates real-world aging effects that gradually reduce the energy throughput of storage systems over time. The 
simulation was implemented in MATLAB by adjusting the round-trip efficiency parameter in the SES dispatch 
model and re-evaluating key performance metrics—curtailment, utilization, profit, and leasing revenue—
at each degradation level. As shown in Fig.  14, SES performance declines steadily with reduced efficiency: 
curtailment rises from 144 MWh at 95% efficiency to 172 MWh at 85%, SES utilization drops from 38.2% to 
32.9%, total system profit decreases from $1.74 million to $1.51 million (a 13% reduction), and SES operator 
revenue falls from $122,300 to $99,500. These findings emphasize the importance of incorporating degradation-
aware planning and scheduling strategies to preserve the economic and operational value of SES systems 

Fig. 12.  Effect of forecast error on SES performance and efficiency.
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Fig. 14.  Sensitivity analysis of SES performance under battery degradation (round-trip efficiency from 95% to 
85%).

 

Error Curt. (MWh) Util. (%) Trade (MWh) Profit (M)

±5% 135.0 36.0 335.0 1.70

±10% 153.8 34.5 320.2 1.64

±15% 168.0 32.8 308.1 1.58

±20% 182.0 30.5 295.4 1.50

Table 8.  Forecast error sensitivity – scenario 3.

 

Fig. 13.  Comparison of SES performance under fixed, adaptive, and limited-infrastructure scenarios 
demonstrating the superiority of adaptive allocation in curtailment reduction and utilization efficiency.
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over time. Overall, these findings highlight the effectiveness of adaptive SES allocation in improving Egypt’s 
renewable energy integration, reducing curtailment, and optimizing economic performance. By dynamically 
adjusting storage allocation based on real-time generation and demand, the proposed strategy enhances grid 
stability, facilitates efficient energy trading, and ensures long-term financial sustainability for renewable energy 
producers. While this study demonstrates the economic and operational advantages of adaptive SES, several 
areas require further research to ensure successful large-scale implementation. Future studies should focus on 
developing comprehensive regulatory frameworks for energy storage, addressing gaps in SES participation in 
energy markets, and refining grid interconnection policies to facilitate smoother integration and investment. 
Additionally, research on enhancing Egypt’s grid infrastructure is necessary to assess the technical upgrades 
required for real-time adaptive storage allocation and to ensure seamless coordination between renewable 
generation and SES operation. By addressing these research gaps, future studies can contribute to optimizing 
SES deployment in Egypt, ensuring both economic viability and long-term energy resilience.

Limitations and future directions
This study demonstrates the benefits of adaptive Shared Energy Storage (SES) allocation in Egypt’s renewable 
energy sector using idealized assumptions to highlight the strategy’s maximum potential. However, several 
important limitations should be acknowledged.

First, the simulation framework assumes the presence of seamless, real-time communication and control 
infrastructure among SES stations, renewable plants, and grid operators. In practice, Egypt’s grid is still evolving, 
and such digitalization is not yet fully realized. To address this, the study includes a third simulation scenario 
reflecting limited infrastructure by disabling real-time coordination and introducing forecast uncertainty. 
While this provides a preliminary view of SES performance under constrained conditions, further modeling of 
communication latency, control delays, and automation gaps is necessary.

Second, the proposed allocation mechanism relies on Nash bargaining, which presumes rational, transparent 
behavior and full information among stakeholders. However, real-world participants may act strategically, 
operate with incomplete data, or face institutional and regulatory constraints. Future work should explore more 
robust cooperative strategies that accommodate bounded rationality and asymmetric information.

Third, although the study introduces a ±10% forecast error in Scenario 3, this represents symmetric uncertainty 
only. More realistic forecasting challenges—such as time-varying, asymmetric, or stochastic errors—were not 
considered. In addition, while the impact of battery degradation was examined through a sensitivity analysis on 
round-trip efficiency, other uncertainties—such as extreme weather events or fluctuating storage tariffs—were 
not explicitly modeled. These factors may significantly affect SES reliability and profitability. Future work should 
extend the scenario analysis to include broader uncertainty sources and operational stressors.

Fourth, the model simplifies Egypt’s grid by assuming spatially uniform conditions and does not simulate 
regional transmission bottlenecks or losses. These spatial effects could significantly influence SES dispatch, 
particularly in large-scale national deployments. While MATPOWER is used to model overall power flow 
constraints, it does not capture these regional grid characteristics. As a result, future work should incorporate 
locational factors such as congestion, voltage drops, and line losses to improve spatial resolution and deployment 
realism.

Finally, the study does not fully account for evolving regulatory environments or the feasibility of real-time 
market participation. Future SES models should integrate dynamic policy constraints and explore sandbox-
based validation approaches to improve deployment realism.

To move beyond current assumptions, future research should explore decentralized SES allocation models 
capable of operating under communication delays, cyber-physical disruptions, and partial observability. 
Incorporating predictive analytics, adaptive scheduling, and agent-based simulations may improve resilience. 
Ultimately, field validation through pilot demonstrations and hardware-in-the-loop testing will be essential 
to establish real-world feasibility and scalability. Beyond the Egyptian context, the proposed adaptive Shared 
Energy Storage (SES) framework offers strong potential for regional adaptation across the Middle East and North 
Africa (MENA). Countries such as Morocco, Jordan, and Saudi Arabia share similar renewable resource profiles, 
infrastructure constraints, and ongoing grid modernization efforts under national energy transition strategies. 
The modular SES design, cooperative leasing structure, and distributed optimization approach can be adapted 
to these contexts by adjusting tariff structures, market participation rules, and communication protocols to align 
with local regulations. Furthermore, regional initiatives such as the Pan-Arab Electricity Market and North 
Africa’s interconnection projects provide opportunities for transnational SES coordination and cross-border 
energy trading. As such, the framework developed in this study can serve as a scalable reference model for 
enhancing renewable integration and operational flexibility across the wider MENA region.

Conclusion
This study presents an adaptive Shared Energy Storage (SES) allocation framework tailored to Egypt’s renewable 
electricity landscape. By integrating Nash bargaining–based cooperation, dynamic storage partitioning, and 
distributed ADMM optimization, the model enables renewable energy producers to lease SES capacity in 
real time, improving operational flexibility and economic outcomes. Simulation results indicate substantial 
performance gains: SES utilization increased by 41.2%, curtailment decreased by up to 39.5%, and traded energy 
rose by 17% compared with fixed strategies. Wind Power Entity 1 achieved a 58.95% revenue increase, and SES 
operator income also improved, demonstrating the economic potential of coordinated storage. Among all tested 
optimization strategies—including machine learning, heuristic, and rule-based methods—Nash Bargaining 
offered a favorable balance of computational speed (15 s), solution accuracy (88–95%), and energy efficiency 
under Egypt’s SES market conditions. Under ±10% forecast errors, curtailment rose by 43% and profits declined 
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by 17.6%, highlighting the importance of forecasting accuracy. Scenario 3, representing limited communication 
and forecasting infrastructure, still yielded an 8.1% profit increase over fixed SES strategies, while degradation 
tests showed a 13% reduction in profit as round-trip efficiency declined from 95% to 85%. While Scenarios 1 and 2 
formed the basis of the primary operational analysis, Scenario 3 was introduced to evaluate SES performance 
under practical infrastructure constraints typical of Egypt’s current grid landscape. Overall, this study contributes 
a flexible and cooperative SES coordination model that reflects real-world variability, economic incentives, 
and system limitations. Unlike SES models based on static allocations or idealized cooperation, the proposed 
framework captures realistic market conditions and operational constraints. By integrating game theory, market 
participation, and modular storage design, it provides a scalable approach suitable for emerging renewable 
markets. The findings also offer one of the first practical evaluations of SES viability under Egypt’s current grid 
conditions, enhancing the relevance of SES research for regions undergoing energy transitions. The framework’s 
modularity and adaptability position it for broader application in developing power systems with increasing 
renewable penetration. From a policy perspective, this work aligns with Egypt’s Vision  2035 priorities by 
supporting national objectives for clean energy integration, grid modernization, and regional interconnectivity. 
It provides insights for grid operators, regulators, and energy investors seeking to reduce curtailment, improve 
trading efficiency, and enhance economic sustainability. Successful deployment, however, will require continued 
progress in smart metering, real-time market access, and regulatory alignment. In summary, this work bridges 
the gap between theoretical SES optimization and practical implementation. It offers a reference framework for 
dynamic, cooperative storage coordination strategies that support reliable, efficient, and economically resilient 
renewable integration—advancing both academic understanding and national energy transition objectives in 
Egypt and comparable emerging markets45–48.

Data Availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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