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Phytoplankton blooms emerge from the interplay between nutrient availability, biomass growth, 
and inhibitory by-products such as toxins or exudates. Here, we develop a mechanistic nutrient–
phytoplankton–by-product model that couples Beddington–DeAngelis nutrient uptake, by-product-
mediated inhibition, and nutrient-dependent detoxification. Analytical results demonstrate that the 
system remains biologically feasible and bounded, and that a threshold condition governs bloom 
initiation. Linear stability and bifurcation analyses reveal how detoxification delays can trigger 
oscillatory bloom behaviour. Across ecologically realistic parameter regimes, the system tends to 
a stable coexistence state—either directly or through damped oscillations—rather than exhibiting 
repeated bloom–crash cycles. Global sensitivity analysis (PRCC and Sobol indices) highlights by-
product production, inhibition strength, detoxification rate, toxin-linked mortality, and saturation 
effects as dominant regulators of stability and damping time. Introducing an explicit ecological delay 
exposes a critical threshold at which a Hopf bifurcation arises, converting the stable equilibrium 
into sustained oscillations. Numerical simulations confirm the transversality condition and indicate 
a supercritical onset. Collectively, these results provide a quantitative diagnostic for distinguishing 
transient from sustained bloom oscillations and identify measurable ecological processes—particularly 
detoxification and delayed feedback—that govern transitions between stable and oscillatory regimes.

Keywords  Phytoplankton-nutrient dynamics, Beddington-DeAngelis uptake, By-product interference 
(allelopathy), Stability and Hopf bifurcation, Global sensitivity analysis (Sobol, PRCC), Delay

Phytoplankton blooms arise from complex feedbacks among nutrient enrichment, biomass growth, and the 
production of extracellular by-products such as toxins, exudates, and polymers. These coupled processes 
determine whether aquatic systems maintain stable coexistence or experience recurrent bloom–crash 
cycles1–5. Despite decades of observation, the transition between stability and oscillation remains incompletely 
understood, as similar nutrient loads may yield either persistent equilibria or cyclic outbreaks across comparable 
ecosystems6–8.

Empirical and experimental studies have established that allelopathic interactions and by-product exudation 
play pivotal roles in bloom regulation. Phytoplankton species often release extracellular compounds that 
suppress competitors or alter microbial communities, while these same compounds may accumulate to self-
inhibitory levels depending on environmental conditions9–15. Such allelochemical feedbacks are intertwined with 
eutrophication, dissolved organic matter turnover, and microbial degradation processes that influence bloom 
persistence and decay16–20. In particular, bacterial degradation and enzymatic detoxification of cyanotoxins 
such as microcystin-LR can significantly shorten bloom duration and modify system resilience21–23. Additional 
regulation arises from viral lysis, aggregation, and particle formation, which modulate bloom termination and 
nutrient recycling24–26. At broader scales, climate-driven warming, shifts in salinity, and nutrient stoichiometry 
further alter bloom timing and competitive hierarchies27–30.
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Mathematical models have long served as indispensable tools for disentangling these intertwined processes. 
Classical consumer–resource and chemostat frameworks31–37 provided foundational insights into coexistence 
and resource limitation but typically treated allelopathy as an additive mortality term. More recent dynamical-
systems approaches employ eigenvalue and bifurcation analysis to identify thresholds for oscillations and bloom 
collapse38–40. These have been extended to capture nonlinear feedbacks and environmental forcing41–47, revealing 
that chemical inhibition or delayed responses can produce complex transient or sustained oscillations25,48,49. Yet, 
many reported oscillations represent long-lived transients rather than true limit cycles, highlighting the need for 
systematic stability and continuation analyses50,51.

Despite these advances, two critical gaps persist. First, the mechanistic role of by-products in feedback 
inhibition is rarely embedded within Beddington–DeAngelis (BD) type uptake, where crowding and inhibition 
jointly modulate effective resource assimilation. Second, detoxification is seldom linked explicitly to nutrient 
concentration, even though empirical evidence supports nutrient-dependent degradation pathways in microbial 
consortia21–23. Moreover, few studies integrate these feedbacks into a delay-dependent, mass-balanced framework 
or quantify the global sensitivity of bloom dynamics across multiple parameter regimes49,51,52.

Here, we develop a process-based nutrient–phytoplankton–by-product model that explicitly couples 
Beddington–DeAngelis uptake, by-product–mediated inhibition, nutrient-linked detoxification (γ + ωx)z, 
and an ecological time delay representing feedback latency. The framework unifies mechanistic realism with 
analytical tractability, enabling both stability and bifurcation analysis under delayed dynamics. Using a 
combination of Routh–Hurwitz criteria, numerical continuation, and global sensitivity analysis (PRCC and Sobol 
indices), we identify the dominant ecological processes governing bloom damping, oscillatory onset, and delay-
induced Hopf bifurcations. This integrated approach provides a reproducible diagnostic tool for distinguishing 
transient relaxation from genuinely self-sustained bloom oscillations and offers quantitative insight into how 
detoxification and delayed feedback jointly regulate aquatic ecosystem stability53–60.

Motivation and objectives: Despite extensive modelling of bloom dynamics, most nutrient–phytoplankton 
formulations represent allelopathic by-products and their clearance in highly simplified or purely 
phenomenological ways. In many existing frameworks, the inhibitory effects of toxins or extracellular exudates 
are incorporated as additive mortality or growth-reduction terms, while detoxification and degradation 
processes are often omitted or treated as fixed decay constants. Such simplifications limit our understanding of 
how mechanistic feedbacks between nutrient supply, biomass growth, and inhibitory by-products shape bloom 
stability and the transition between stable and oscillatory regimes.

The present study seeks to address these gaps by developing and analysing a process-based, mass-balanced 
model that explicitly couples three key mechanisms: (i) Beddington–DeAngelis (BD) nutrient uptake, which 
captures interference among phytoplankton at high biomass; (ii) by-product–mediated inhibition, in which 
extracellular compounds reduce effective nutrient assimilation or growth; and (iii) nutrient-linked detoxification, 
modelled as (γ + ωx)z, where detoxification rates scale with nutrient availability, introducing a dynamic 
feedback between nutrient concentration and toxin clearance.

Furthermore, the model incorporates an explicit ecological time delay, representing the finite response time 
between by-product accumulation and its inhibitory effect on phytoplankton. This delay allows the system to 
reproduce realistic ecological lags arising from physiological acclimation, microbial degradation, or diffusion-
driven transport processes.

By integrating these mechanisms within a unified delay-dependent, mass-conserving framework, the model 
provides both conceptual and practical contributions. Conceptually, it elucidates how detoxification kinetics 
and feedback timing govern the stability landscape of bloom dynamics. Practically, it offers a diagnostic tool for 
distinguishing long transient oscillations from genuine, self-sustained cycles-thereby helping to identify which 
observable ecological parameters (such as detoxification rates, inhibition strength, or nutrient enrichment 
levels) are most critical in determining bloom persistence and stability.

Key contributions:

•	 Novel model structure: A nutrient–phytoplankton–by-product model incorporating Beddington–DeAnge-
lis uptake, by-product–enhanced interference, nutrient-dependent detoxification (γ + ωx)z, and a biologi-
cally motivated time delay.

•	 Rigorous analysis: Proofs of positivity and boundedness; derivation of an invasion threshold R0 with tran-
scritical bifurcation; explicit Jacobian and Routh–Hurwitz conditions; and demonstration of a Hopf bifurca-
tion with verified transversality.

•	 Regime-level sensitivity: Global sensitivity analysis (PRCC and Sobol S1/ST  indices) applied to dynamical 
regimes (probability of sustained oscillations pcycle, damping time Td), identifying dominant mechanisms 
rather than isolated parameters.

•	 Ecological control levers: Stabilising factors (fast detoxification γ, ω, stronger toxin-linked mortality θ, high-
er uptake saturation b, d, e) versus destabilising factors (enhanced by-product production α, stronger inhibi-
tion η), with delay as the critical driver of sustained cycles.

•	 Mass-balance clarity: Two complementary formulations a logistic-plus-forcing form and a chemostat variant 
ensuring transparency and comparability with earlier studies

•	 Relevance: The inclusion of an environmental forcing term cx allows direct comparison with field conditions 
and provides a framework for interpreting delay-induced oscillatory dynamics.

In summary, this study isolates a realistic nutrient-linked detoxification pathway and shows how it interacts with 
allelopathic inhibition and crowding to shape bloom dynamics. We provide numerical evidence that under these 
feedbacks the coexistence equilibrium remains locally stable, with observed oscillations arising primarily as 
damped transients. We further delineate the minimal modifications needed to generate sustained cycles, thereby 

Scientific Reports |         (2026) 16:2274 2| https://doi.org/10.1038/s41598-025-32146-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


offering a roadmap for connecting mechanistic theory with field observations. Together, these results refine the 
classical “enrichment → oscillations” narrative in bloom ecology and provide a tractable platform for testing 
which feedbacks operate in situ.

Mathematical model
Model assumptions
In this framework, the term by-product refers generically to any extracellular substance produced by 
phytoplankton that modifies the local chemical environment or inhibits growth. It encompasses a broad class 
of compounds, including allelopathic toxins, carbon-rich exudates, and other inhibitory metabolites released 
during bloom development. For brevity, we use the term “by-product” throughout, recognizing that it may 
represent chemically distinct agents such as microcystins, polysaccharide exudates, or other allelochemicals.

The model describes a three-compartment system consisting of a limiting dissolved nutrient x(t), a 
phytoplankton functional group y(t), and an abiotic or extracellular by-product z(t) such as dissolved organic 
carbon, allelopathic toxins, or exudates. The environment is assumed to be well-mixed, implying no spatial 
heterogeneity, and thus all state variables are uniformly distributed. While the present framework does not 
include explicit diffusion, spatial effects could be incorporated later. The system is also closed to higher trophic 
levels; no grazers are represented explicitly, and their effects are incorporated implicitly via a constant mortality 
term.

Nutrient dynamics
Nutrient dynamics are driven by three processes. First, in the absence of consumption, the nutrient pool follows 
logistic replenishment with intrinsic growth rate r and carrying capacity k. Second, environmental forcing is 
modeled through a linear term cx, representing net nutrient gain or loss due to eutrophication or depletion. 
Third, phytoplankton uptake of nutrient follows a Beddington–DeAngelis functional response:

	
xy

a + bx + dy + ez
,

where a is a baseline handling constant, bx reflects resource saturation, dy captures self-crowding (consumer 
interference), and ez represents uptake inhibition by by-products.

Phytoplankton dynamics
Phytoplankton growth is proportional to nutrient uptake, scaled by a maximum assimilation rate µ. Uptake is 
further reduced by reversible inhibition from by-products, represented by the saturating function

	

(
1 − ηz

z + τ

)
.

Phytoplankton losses occur through a baseline mortality rate m and an additional toxin-dependent mortality 
term θz, reflecting physiological stress or damage from accumulated by-products.

By-product dynamics
By-products are released by phytoplankton at rate αy, representing processes such as exudation or allelopathy. 
They are removed through two mechanisms: (i) baseline clearance and natural decay at rate γ, and (ii) nutrient-
dependent clearance at rate ωx, capturing processes such as co-metabolic degradation or sorption to particles.

General biological assumptions
In aquatic ecosystems, many phytoplankton species release extracellular compounds that modify their local 
environment. These by-products—including allelopathic toxins (e.g., microcystins, anatoxins), carbon-rich 
exudates, and extracellular polymeric substances (EPS)—serve multiple ecological functions. They can inhibit 
competitors, deter grazers, or alter nutrient cycling through chelation and organic complexation9,11,15,17,20. 
For cyanobacteria, toxin release has been linked to bloom persistence and competitive dominance under 
nutrient stress2–4, while heterotrophic bacterial communities often degrade these compounds, contributing to 
detoxification and nutrient recycling21–23. From an ecological standpoint, by-products mediate feedback loops 
between nutrient availability, phytoplankton biomass, and microbial degradation pathways. These interactions 
can stabilize or destabilize bloom dynamics depending on the balance between production and clearance. 
Understanding the mechanistic role of such feedbacks is therefore essential for interpreting bloom persistence, 
collapse, and recovery under changing environmental conditions.

The model loosely enforces mass conservation: nutrient taken up from x enters phytoplankton biomass or 
is sequestered into the by-product pool, with clearance providing an indirect recycling pathway. Solutions are 
assumed to maintain positivity and boundedness for all state variables given non-negative initial conditions. All 
parameters are treated as constant over the modeled time frame, and seasonal forcing or stochastic fluctuations 
are not considered.

Model equations
We consider a model describing the interactions among dissolved nutrients x(t), phytoplankton biomass y(t), 
and extracellular by-products z(t) such as allelopathic toxins or exudates. Nutrients grow logistically with 
intrinsic rate r and carrying capacity k, and are consumed by phytoplankton according to a saturating functional 
response influenced by nutrient, phytoplankton, and by-product concentrations. Phytoplankton growth 
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depends on nutrient uptake and is inhibited by extracellular by-products through a Monod-type reduction 
factor, while mortality occurs due to natural death and toxin-induced effects, as shown in Fig.  1. Here, we 
consider a well-mixed surface layer representative of a chemostat or the upper photic zone, where turbulent 
mixing homogenizes nutrient and biomass distributions over ecological timescales. Extracellular by-products 
are produced proportionally to phytoplankton biomass and decay through natural degradation and nutrient-
mediated removal. Descriptions of all parameters are provided in Table 1. All state variables are non-negative, 
environmental factors beyond the modeled components are assumed constant, and all system parameters are 
positive.

The model system is given by:

Symbol/Parameter Units Biological interpretation

x nutrient conc. nutrient concentration (e.g., mg L−1)

y biomass phytoplankton biomass (e.g., mg C L−1)

z by-prod. conc. concentration of inhibitory by-product or toxin

r time−1 intrinsic nutrient replenishment or renewal rate

k nutrient conc. nutrient carrying capacity or inflow saturation level

µ time−1 maximum nutrient assimilation rate by phytoplankton

a nutrient conc. baseline half-saturation constant in BD uptake

b — nutrient handling saturation coefficient in uptake

d biomass−1 classical consumer interference strength (crowding)

e by-prod.−1 by-product interference coefficient (allelopathic inhibition)

c time−1 external nutrient forcing rate (de-/eutrophication intensity)

m time−1 baseline phytoplankton mortality rate

θ by-prod.−1  time−1 toxin-induced mortality or physiological damage rate

η — strength of by-product-mediated uptake inhibition

τ time ecological delay in inhibition or detoxification feedback

α by-prod. (biomass−1  time−1) rate of by-product (toxin/exudate) production per biomass

γ time−1 baseline by-product decay or detoxification rate

ω nutrient−1  time−1 nutrient-dependent enhancement of detoxification;

appears in (γ + ωx)z

R0 — invasion threshold; ratio determining bloom initiation

pcycle — probability of sustained oscillations under uncertainty

Td time damping time of transient oscillations

Table 1.  Model variables and biological parameter descriptions.

 

Fig. 1.  Conceptual flow diagram showing nutrient uptake, phytoplankton dynamics, and by-product 
formation with associated flux terms.
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dx

dt
= rx

(
1 − x

k

)
− µ

xy

a + bx + dy + ez
+ cx,

dy

dt
= µ

xy

a + bx + dy + ez

(
1 − ηz

z + τ

)
− (m + θz) y,

dz

dt
= αy − (γ + ωx)z.

� (1)

Initial conditions:

	 x(0) > 0, y(0) > 0, z(0) > 0.

Non-dimensionalization
We nondimensionalize system (1) using the scalings

	
t̃ = r t ( ′ ≡ d/dt̃), x = k X, y = a

d
Y, z = a

e
Z.

With these choices, the Beddington–DeAngelis denominator becomes

	
a
(
1 + BX + Y + Z

)
, B := bk

a
.

Dimensionless parameters

	

B = bk

a
, C = c

r
, m = m

r
, Γ = γ

r
, Ω = ωk

r
,

Q = µk

d r
, Λ = µk

a r
= ad Q

/
a2 (algebraically Λ = µk

ar
),

Θ = θa

e r
, A = αed

r
, T = e τ

a
.

Dimensionless model
Let

	
D := 1 + BX + Y + Z, h(Z) := 1 − ηZ

Z + T
.

Then the nondimensional system is

	

X ′ = X(1 − X) − Q
XY

D
+ C X,

Y ′ = Λ XY

D
h(Z) −

(
m + ΘZ

)
Y,

Z′ = A Y −
(
Γ + ΩX

)
Z.

� (2)

Dimensionless initial conditions
Given dimensional initial data x0, y0, z0 > 0,

	
X(0) = x0

k
, Y (0) = d y0

a
, Z(0) = e z0

a
.

Existence of equilibria
In this subsection, the nondimensional system (2) provides the analytical framework to demonstrate the 
existence of equilibrium states.

(a) Boundary equilibria (axial)
Set Y = 0. Then from Z′ = 0,

	 −(Γ + ΩX) Z = 0 ⇒ Z = 0

since Γ + ΩX > 0. With Y = Z = 0, we have

	 X ′ = X(1 − X) + CX.

Thus,

	 E0 = (0, 0, 0) (always exists), EN = (1 + C, 0, 0) (exists iff 1 + C ≥ 0).
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No other Y = 0 equilibria exist because Γ + ΩX > 0 forbids Z > 0 when Y = 0.

(b) Invasion threshold at the nutrient-only state
Linearize the Y-equation at EN = (X∗, 0, 0) with X∗ = 1 + C . Using

	
Y ′ = Λ XY

D
h(Z) − (m + ΘZ)Y, D = 1 + BX + Y + Z, h(Z) = 1 − ηZ

Z + T
,

we obtain (since Z = 0 at EN  so h(0) = 1 and D|EN = 1 + BX∗)

	

Y ′

Y

∣∣∣∣
EN

= Λ X∗

1 + BX∗ − m̂ = Λ 1 + C

1 + B(1 + C) − m̂,

where m̂ := m (the mortality evaluated at Z = 0). Define the basic invasion number

	
R0 = Λ

m̂

1 + C

1 + B(1 + C) .

If R0 < 1, then Y cannot invade EN  and no interior equilibrium exists near EN . If R0 > 1, then Y invades; by 
the Implicit Function Theorem, a positive equilibrium branch bifurcates from EN  (transcritical). This gives a 
necessary and locally sufficient condition for the existence of a positive equilibrium.

(c) Interior equilibria (X > 0, Y > 0, Z > 0)
At any interior equilibrium, Z′ = 0 implies

	
Z = A

Γ + ΩX
Y with g(X) := Γ + ΩX > 0.

Let

	
D(X, Y ) := 1 + BX + Y + Z = 1 + BX +

(
1 + A

g(X)

)
Y = 1 + BX + α(X) Y,

	
g(X) := Γ + ΩX, α(X) := 1 + A

g(X) .

From X ′ = 0 with X > 0,

	
(1 − X) + C = Q Y

D(X, Y ) .� (3)

From Y ′ = 0 with Y > 0,

	
Λ X

D(X, Y )

(
1 − ηZ

Z + T

)
= m̂ + ΘZ, h(Z) := 1 − ηZ

Z + T
.� (4)

Explicit Y-formula from (3).
Multiply (3) by D and group terms in Y:

	 Q Y = (1 + BX) (1 − X + C) + α(X) Y (1 − X + C).

Hence, with S(X) := 1 + C − X ,

	
Y (X) = (1 + BX) S(X)

Q − α(X) S(X) � (3)

and feasibility demands Y (X) > 0. Since 1 + BX > 0, sign conditions reduce to the numerator/denominator 
signs. Two practical regimes:

•	 Usual interior regime: 0 < X < 1 + C ⇒ S(X) > 0. Then we must have 

	 Q − α(X) S(X) > 0 (denominator positive).

•	 Alternative branch: X > 1 + C ⇒ S(X) < 0. Then the denominator must be < 0.

Given Y(X), the third state follows from Z′ = 0:
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Z(X) = A

Γ + ΩX
Y (X) .

Local stability
In this section, we study the local stability of the nondimensional system (2). We derive the Jacobian matrix and 
analyze stability at each equilibrium.

Let

	
DX = B, DY = 1, DZ = 1, h′(Z) = − ηT

(Z + T )2 .

The Jacobian matrix is

	
J =

(
J11 J12 J13
J21 J22 J23
J31 J32 J33

)
,

where

	

J11 = (1 − 2X) + C − Q
Y (D − BX)

D2 ,

J12 = −Q
X(D − Y )

D2 ,

J13 = Q
XY

D2 ,

J21 = Λ Y (D − BX)
D2 h(Z),

J22 = Λ X(D − Y )
D2 h(Z) − (m + ΘZ),

J23 = Λ XY

D
h′(Z)

︸ ︷︷ ︸
<0

− Λ XY

D2 h(Z)
︸ ︷︷ ︸

<0

−ΘY (< 0),

J31 = −ΩZ,

J32 = A (> 0),
J33 = −(Γ + ΩX) (< 0).

For any equilibrium (X∗, Y ∗, Z∗), the characteristic polynomial is

	 χ(λ) = λ3 − τ λ2 + σ λ − ∆,� (5)

where

	 τ = tr(J) = J11 + J22 + J33,

	 σ = J11J22 + J11J33 + J22J33 − (J12J21 + J13J31 + J23J32),

	 ∆ = det(J).

The Routh–Hurwitz conditions for a 3 × 3 system state that all eigenvalues have negative real part iff

	 τ < 0, σ > 0, ∆ < 0, τσ < ∆.� (6)

(Quick check: for diag(−1, −2, −3) one finds τ = −6 < 0, σ = 11 > 0, ∆ = −6 < 0, τσ = −66 < ∆ = −6.)

Boundary equilibria
(i) Trivial equilibrium E0 = (0, 0, 0)
Here D = 1 and h(0) = 1. The Jacobian is block triangular, giving eigenvalues

	 λ1 = 1 + C, λ2 = −m, λ3 = −Γ.

Stability:

	 E0 is LAS iff 1 + C < 0 (C < −1).

Otherwise, it is unstable along the X-direction.
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(ii) Nutrient-only equilibrium EN = (X∗, 0, 0) with X∗ = 1 + C
This equilibrium exists for 1 + C ≥ 0. Let

	 D∗ = 1 + B(1 + C).

Eigenvalues:

	
λ1 = −1 − C, λ2 = Λ 1 + C

D∗ − m = m(R0 − 1),

	 λ3 = −(Γ + Ω(1 + C)) < 0,

where

	
R0 = Λ

m̂

1 + C

1 + B(1 + C) � (7)

Stability:

	 EN is LAS iff R0 < 1 and 1 + C ≥ 0.

At R0 = 1 a transcritical bifurcation exchanges stability with the interior equilibrium branch.

Local stability and bifurcations of the interior equilibrium
Theorem 1  Let (X∗, Y ∗, Z∗) ≫ 0 be an interior equilibrium of the nutrient–phytoplankton–by-product system. 
Let J be the Jacobian evaluated at this equilibrium, and let the characteristic polynomial be

	 λ3 + τλ2 + σλ + ∆ = 0,� (8)

where

	τ = J11 + J22 + J33, σ = J11J22 + J22J33 + J11J33 − (J12J21 + J23J32 + J13J31), ∆ = det(J).

•	 (Stability) The equilibrium (X∗, Y ∗, Z∗) is locally asymptotically stable if 

	 τ < 0, σ > 0, ∆ < 0, τσ > ∆.

•	 (Hopf bifurcation) A Hopf bifurcation occurs when 

	 τ = 0, σ > 0, ∆ < 0,

 with the transversality condition satisfied. Such bifurcations commonly appear in parameter scans of (A, Θ) or 
(η, α), where the loop 

	 Y −→ Z −→ inhibition

 provides the required phase lag for oscillations.

•	 (Saddle–node bifurcation) A saddle–node (fold) bifurcation of interior equilibria occurs when 

	 ∆ = 0, τ < 0, σ > 0.� (9)

 Two positive equilibria then coalesce and annihilate.

Proof  At a positive equilibrium,

	 J23 < 0, J32 > 0, J33 < 0, J13 > 0, J31 = −ΩZ∗ < 0.

The pairs (J23, J32) and (J13, J31) form negative-feedback loops, producing positive contributions to σ via

	 −(J23J32) > 0, −(J13J31) > 0.

From Z′ = 0,

	
Z∗ = A

Γ + ΩX∗ Y ∗,
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which can be substituted into J for simplification. From Y ′ = 0,

	
ΛX∗

D∗ h(Z∗) = m̂ + ΘZ∗

replaces the uptake bracket in J22, aiding evaluation of τ .
Since J33 < 0 and J22 ≤ −(m̂ + ΘZ∗) plus a positive uptake term, moderate Λ, Q typically ensure τ < 0. 

The Routh–Hurwitz conditions then guarantee local asymptotic stability.
A Hopf bifurcation arises when τ = 0 with σ > 0, ∆ < 0 preserved. Transversality holds because τ  varies 

smoothly with parameters. When ∆ = 0 while τ < 0, σ > 0, a simple zero eigenvalue appears, producing a 
saddle–node of positive equilibria. □

Corollary 1  (Behavior near the transcritical bifurcation) At the transcritical threshold R0 = 1, the interior equi-
librium emerges from the boundary equilibrium. For R0 > 1 but close to 1, the interior equilibrium satisfies τ < 0
, σ > 0, and ∆ < 0 and is therefore locally asymptotically stable. As parameters vary further, stability is typically 
lost through a Hopf bifurcation when τ  crosses zero with σ > 0 and ∆ < 0 still valid.

Biological interpretation.
The local stability conditions correspond to ecological outcomes. When (X∗, Y ∗, Z∗) is stable (τ < 0, 

σ > 0, ∆ < 0), nutrients, phytoplankton, and by-products persist at positive densities and return to equilibrium 
after small disturbances. This represents balanced coexistence, where nutrient uptake, phytoplankton growth, 
and by-product production/clearance are regulated by feedback mechanisms.

Bifurcation analysis
We analyze saddle–node and Hopf bifurcations of the nondimensional system (2). We first obtain the scalar 
equilibrium equation F (X) = 0 for interior equilibria, then derive the saddle–node conditions, followed by the 
Hopf bifurcation and computation of the first Lyapunov coefficient.

Reduction to a scalar equation for interior equilibria
At an interior equilibrium (X, Y, Z) ≫ 0, the third equation yields

	
Z = A

Γ + ΩX
Y =: β(X) Y, β(X) = A

g(X) , g(X) = Γ + ΩX > 0.

Thus

	
D = 1 + BX + Y + Z = 1 + BX +

(
1 + β(X)

)
Y = 1 + BX + α(X) Y, α(X) = 1 + A

g(X) .

From X ′ = 0 with X > 0,

	
(1 − X) + C = Q Y

D
,

which yields

	
Y (X) = (1 + BX) S(X)

Q − α(X) S(X) , S(X) := 1 + C − X.� (10)

Then

	
Z(X) = β(X) Y (X) = A

Γ + ΩX
Y (X), D(X) = 1 + BX + Y (X) + Z(X).� (11)

Using Y ′ = 0, define the scalar fixed-point equation

	 F (X) := ΛX D(X) h(Z(X)) −
(
m + ΘZ(X)

)
= 0,� (12)

with feasibility constraints

	 X > 0, Y (X) > 0, Z(X) > 0.

Every interior equilibrium corresponds uniquely to a root X∗ of F (X) = 0, with Y ∗, Z∗ obtained from (10)-
(11).

Derivative F ′(X)
We require YX , ZX , DX , and h′(Z). Define
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S′ = −1, α(X) = 1 + A

g(X) , α′(X) = − AΩ
g(X)2 ,

	
β(X) = A

g(X) , β′(X) = − AΩ
g(X)2 .

Let

	 N(X) = (1 + BX) S(X), DenY (X) = Q − α(X) S(X).

Then

	 N ′ = BS − (1 + BX), Den′
Y = −α′S + α.

Thus

	
YX = N ′ DenY − N Den′

Y

Den 2
Y

.� (13)

Next,

	
ZX = β YX + β′Y = A

g
YX − AΩ

g2 Y.� (14)

Hence

	
DX = B + YX + ZX = B + α YX − AΩ

g2 Y.� (15)

For h(Z) = 1 − ηZ/(Z + T ),

	
h′(Z) = − ηT

(Z + T )2 < 0.� (16)

Differentiating F from (12) gives

	
FX = Λ

[
D h(Z) + X D h′(Z) ZX − X

DX

D
D h(Z)

]
− Θ ZX . � (17)

All quantities in (17) are known elementary functions of X.

Saddle–node (Fold) bifurcations
A generic saddle–node occurs at (X∗, Y ∗, Z∗) iff

	 F (X∗) = 0, FX(X∗) = 0,� (18)

together with the nondegeneracy conditions

	
∂F

∂p
(X∗, p∗) ̸= 0, FXX(X∗, p∗) ̸= 0,

for some control parameter p (e.g., A, C, η, Θ, Γ, Ω).
In the full three-dimensional system, this corresponds to

	 ∆ = 0, σ > 0, τ < 0,

with ∆ = det J , σ the sum of principal 2 × 2 minors, and τ = tr(J).

Hopf bifurcation
Let p be a bifurcation parameter. A Hopf bifurcation occurs at (x∗, pH) when the Jacobian

	 A = Df(x∗, pH)

has eigenvalues

	 λ1,2 = ±iω0, ω0 > 0, λ3 < 0.

Equivalently, by Routh–Hurwitz:

	 τ < 0, σ > 0, ∆ < 0, τσ = ∆.� (19)
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Shift variables: u = x − x∗, so u′ = f(u, p) with f(0, pH) = 0. Let

	 Aq = iω0q, A⊤p∗ = −iω0p∗, ⟨p∗, q⟩ = 1,

using the standard complex inner product ⟨u, v⟩ = ū⊤v.

Multilinear forms
Expand the vector field:

	 f(u) = Au + 1
2 B(u, u) + 1

6 C(u, u, u) + O(∥u∥4).

Components:

	
[B(u, v)]i =

∑
j,k

fi,jk ujvk, [C(u, v, w)]i =
∑
j,k,l

fi,jkl ujvkwl.

Derivatives arise from

	 f1 = X(1 − X) + CX − QR, f2 = ΛR h(Z) − (m + ΘZ)Y, f3 = AY − (Γ + ΩX)Z,

with

	
R = XY

D
, D = 1 + BX + Y + Z.

Quotient rule gives

	
RX = Y D − XY DX

D2 , RY = XD − XY

D2 , RZ = −XY

D2 .� (20)

Higher derivatives follow similarly.

First lyapunov coefficient
We use the standard center–manifold formulas. Solve

	 (2iω0I − A) h20 = B(q, q), (−A) h11 = B(q, q).

Then

	
c1(0) = ⟨p∗, C(q, q, q) − 2B(q, h11) + B(q, h20)⟩, l1 = 1

2ω0
ℜ

(
c1(0)

)
.

A supercritical Hopf (stable small cycle) occurs if l1 < 0; subcritical (unstable small cycle) if l1 > 0.

Transversality
Let µ = p − pH . The real part of the critical eigenvalue satisfies

	
αH = d

dp
ℜλ(p)

∣∣∣∣
pH

= ℜ⟨p∗, fp(0, pH)⟩ ≠ 0.� (21)

Normal form and cycle amplitude
On the center manifold, the reduced system in complex amplitude z is

	 z′ = (αHµ + iω0)z + l1z|z|2 + O(|z|4, µ|z|2, µ2).

In polar form z = reiϕ,

	 r′ = αHµ r + ℜ(l1) r3 + O(r5, µr3, µ2r).

Thus the bifurcating cycle amplitude satisfies

	
r(µ) ≈

√
− αHµ

ℜ(l1), sign(αHµ) = −sign
(
ℜ(l1)

)
.� (22)

If l1 < 0, the Hopf is supercritical (stable cycle). If l1 > 0, the Hopf is subcritical (unstable cycle).
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Global sensitivity
We conducted variance–based and rank–based global sensitivity analyses on the dimensionless 
parameter set {β, ρ, λ, κ, M, Θ, τ̂ , χ, Γ, Ω, η} obtained from the dimensional system  (2) as described 
in §Nondimensionalization. For each sampled parameter vector, the system was integrated to Tmax = 5000, 
with the initial transient discarded over T0 = min(2000, 0.6 Tmax). The late–time dynamics were classified into 
equilibrium, damped oscillations, or sustained limit cycles using amplitude, coefficient–of–variation, and 
period criteria. For each parameter set, nIC Latin-hypercube initial conditions were simulated, and we defined 
pcycle ∈ [0, 1] as the fraction of these initial conditions that produced a limit cycle; the mean damping time Td 
was also recorded.

To characterise how model parameters influence dynamical outcomes, we employ two complementary 
global sensitivity techniques: partial rank correlation coefficients (PRCC) and Sobol variance-based indices. 
PRCC is well suited for identifying monotonic, direction-preserving parameter effects and provides an efficient 
screening tool in moderately high-dimensional spaces. Sobol indices, on the other hand, quantify the full 
variance contribution of each parameter, capturing nonlinear and non-monotonic effects as well as parameter 
interactions. Using both measures yields a more complete sensitivity assessment: PRCC illuminates mechanistic 
trends in the sign and relative magnitude of parameter influence, while Sobol indices decompose how much 
each parameter (and its interactions) contributes to variability in dynamical regime outcomes.

For the PRCC analysis, we generated N Latin-hypercube parameter sets, using uniform priors for 
β, ρ, λ, κ, Θ, Ω, η and log-uniform priors for M, Γ, τ̂ , χ. Parameters sampled from log-uniform priors were 
log-transformed before rank transformation. We computed partial rank correlations between the transformed 
inputs and the responses logit(pcycle + ϵ) (with ϵ = 10−3) and log Td; 95% confidence intervals were obtained 
by nonparametric bootstrap. For the Sobol analysis, we employed the Saltelli extension (Jansen estimator) with 
base size N0, resulting in (2D + 2)N0 model evaluations for D = 11 parameters, each averaged over nIC initial 
conditions. We estimated first–order (S1) and total–order (ST ) indices for pcycle and obtained confidence 
intervals using a block bootstrap. All simulations used a fixed random seed, fourth-order Runge–Kutta time 
stepping with dt = 10−3, and non-negativity clamping.

As shown in (Figs. 2, 3, 4), the global sensitivity analysis using both PRCC and Sobol frameworks. The PRCC 
results identify parameters with strong monotonic control on system stability-particularly the detoxification 
rates (γ, ω) and inhibition strength (η)-indicating that increases in detoxification consistently dampen 
oscillations, whereas stronger inhibition promotes them. In contrast, the Sobol indices highlight nonlinear 
interactions among α, η, and θ, showing that combined effects of by-product production, inhibition, and toxin-
linked mortality account for a substantial portion of total output variance. Together, these analyses confirm 
that while damping strength is largely governed by monotone processes (captured by PRCC), the probability 
of entering an oscillatory regime depends on multi-parameter interactions revealed only through variance 
decomposition. Using both methods therefore provides a complementary picture: PRCC identifies what matters 
most in a directional sense, and Sobol indices explain how parameters interact to shape bloom stability.

Delayed dimensionless model
In this section, four delay terms were introduced to represent distinct ecological processes: τh (nutrient recycling 
delay), τXY  (phytoplankton-nutrient interaction delay), τa (by-product assimilation delay), and a general 
ecological delay τ  summarizing the net feedback lag between by-product accumulation and its inhibitory 
influence. Preliminary linear stability analyses indicated that these delays enter the Jacobian through analogous 

Fig. 2.  Global sensitivity analysis (PRCC) for regime outcomes. Partial rank correlation coefficients (95% 
CIs) showing the direction and strength of each parameters influence on (a) the probability of sustained 
oscillations (pcycle) and (b) the damping time (Td). Positive bars denote destabilizing effects; negative bars 
indicate stabilizing influences. Detoxification and clearance parameters (γ, ω) strongly promote stability, while 
by-product production (α) and inhibition strength (η) enhance oscillatory tendency.
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exponential terms and exert qualitatively similar destabilizing effects when varied independently. To prevent 
overparameterization and retain analytical tractability, we therefore focused the numerical exploration on a 
single representative delay, τ , acting on the inhibitory feedback term. This simplification isolates the dominant 
mechanism responsible for oscillatory onset-delayed negative feedback-while preserving the essential dynamical 
structure of the model. The remaining delays (τh, τXY , τa) were fixed at zero, as their individual contributions 
were found to be secondary or directionally equivalent within the examined parameter space.

Here, we consider the following delay-differential system that extends the nutrient-phytoplankton-by-
product framework by incorporating a finite ecological delay. This formulation captures the time lag between 
by-product accumulation and its inhibitory feedback on phytoplankton growth, reflecting physiological or 
microbial response times observed in aquatic ecosystems. The model is expressed as

	 U(t) = (X(t), Y (t), Z(t))⊤ ∈ R3
≥0,� (23)

governed by

Fig. 4.  Interaction effects in global sensitivity analysis. (a) Difference between total and first-order Sobol 
indices (ST − S1) quantifying pairwise interaction strength. (b) LOESS surface showing two-way interaction 
between the nutrient-saturation parameter κ and the inhibition coefficient η, illustrating how combined 
crowding and inhibition drive oscillatory probability.

 

Fig. 3.  Sobol first-order and total-order sensitivity indices. (a) First-order (S1) and (b) total-order (ST ) 
indices quantify the relative contribution of each parameter to variance in the oscillatory regime probability 
(pcycle). Higher ST  values for α, η, and ω highlight the dominant nonlinear and interactive controls of by-
product production, inhibition, and nutrient-linked detoxification on bloom stability.
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X ′(t) = X(t)
[
1 − X(t)

]
− Q

X(t) Y (t − τXY )
D(t) + C X(t − τC),

Y ′(t) = Λ X(t) Y (t − τXY )
D(t) h(Z(t − τh)) −

(
m̂ + Θ Z(t)

)
Y (t),

Z′(t) = A Y (t − τA) −
(
Γ + ΩX(t)

)
Z(t),

� (24)

where

	
D(t) = 1 + BX(t) + Y (t) + Z(t), h(Z) = 1 − η

Z

Z + T
.

All parameters satisfy

	 Q, Λ, C, A, m̂, Θ, Γ, Ω ≥ 0, B > 0, 0 ≤ η < 1, T > 0,

and the discrete delays

	 τXY , τh, τA, τC ≥ 0, τmax = max{τXY , τh, τA, τC}.

Biologically, τXY  models encounter latency, τh a delayed sensing or inhibition response, τA a production/
secretion lag, and τC  a delayed feedback term in X. Delays apply only to inputs; the saturation factor D(t) is 
evaluated at the current time.

Preliminaries for DDEs
(1) Phase space and initial data.

A DDE with maximum delay τmax requires a continuous history:

	 X(t) = ϕX(t), Y (t) = ϕY (t), Z(t) = ϕZ(t), t ∈ [−τmax, 0],

with ϕX , ϕY , ϕZ ∈ C([−τmax, 0],R≥0). Constant histories ϕi(t) ≡ ϕi(0) are standard.
(2) Well–posedness.
Define the Banach space C = C([−τmax, 0],R3) with the sup norm. The right-hand side of (24) defines a 

map

	 F : R3
≥0 × R3

≥0 → R3,

depending on the present state and delayed arguments.

Lemma 2  (smoothness and Lipschitz continuity) F is locally Lipschitz. Moreover:

•	 D(t) ≥ 1 for all t, so no denominator vanishes;
•	 h(Z) is C1, strictly decreasing, with h′(Z) = − ηT

(Z+T )2 < 0.

Corollary 2  (existence and uniqueness) For any nonnegative history U0 ∈ C there exists a unique classical solu-
tion U(t) defined for all t ≥ 0.

(3) Positivity.
The system preserves the nonnegative cone.

Lemma 3  (boundary behavior) If U(t) ≥ 0 for t ≤ t∗ and a component satisfies X(t∗) = 0, Y (t∗) = 0, or 
Z(t∗) = 0, then

	

X(t∗) = 0 ⇒ X ′(t∗) = C X(t∗ − τC) ≥ 0,

Y (t∗) = 0 ⇒ Y ′(t∗) = Λ X(t∗) Y (t∗ − τXY )
D(t∗) h(Z(t∗ − τh)) ≥ 0,

Z(t∗) = 0 ⇒ Z′(t∗) = A Y (t∗ − τA) ≥ 0.

Proposition 4  (forward invariance) If the history is nonnegative, then X(t), Y (t), Z(t) ≥ 0 for all t ≥ 0.

(4) Simple bounds.
Using D ≥ 1 and h ≤ 1:

	
Y ′(t) ≤

(
Λ
B

− m̂

)
Y (t).

Thus, if m̂ > Λ/B then Y decays exponentially up to the inhibitory term −ΘZY .

Scientific Reports |         (2026) 16:2274 14| https://doi.org/10.1038/s41598-025-32146-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


For X,

	 X ′(t) ≤ X(t)
[
1 − X(t)

]
+ C X(t − τC),

which implies X is bounded by a logistic–type envelope with carrying capacity 1 + C .
For Z,

	 Z′(t) ≤ A Y (t − τA) − ΓZ(t).

Remark 1  A comparison argument shows 
lim sup

t→∞
X(t) ≤ 1 + C

.

Corollary 3  (absorbing set) If m̂ > Λ/B, then there exists M > 0 such that all solutions eventually enter

	 B =
{

0 ≤ X ≤ 1 + C + ε, 0 ≤ Y ≤ M, 0 ≤ Z ≤ AM/Γ
}

,

for any ε > 0.

Equilibria and delay-independent steady states
Delays do not affect equilibrium coordinates. Any equilibrium (X∗, Y ∗, Z∗) satisfies the algebraic system

	

0 = X∗(
1 − X∗)

− Q
X∗Y ∗

D∗ + CX∗,

0 = ΛX∗Y ∗

D∗ h(Z∗) − (m̂ + ΘZ∗)Y ∗,

0 = AY ∗ − (Γ + ΩX∗)Z∗,

� (25)

where D∗ = 1 + BX∗ + Y ∗ + Z∗ and h∗ = h(Z∗).

Linearization and the characteristic equation
Linearizing (24) about U∗ yields

	 u′(t) = A0 u(t) + AXY u(t − τXY ) + Ah u(t − τh) + AA u(t − τA) + AC u(t − τC),

with matrices A0, AXY , Ah, AA, AC  computed from partial derivatives. The characteristic equation is

	 det
(
λI − A0 − AXY e−λτXY − Ahe−λτh − AAe−λτA − ACe−λτC

)
= 0.� (26)

For brevity, define the characteristic matrix

	 A(λ) = A0 + AXY e−λτXY + Ahe−λτh + AAe−λτA + ACe−λτC .

Hopf bifurcation with delay
We first analyze the single-delay reduction

	 M(λ, τ) = λI − A0 − AXY e−λτ , ∆(λ, τ) = det M(λ, τ).

A Hopf bifurcation occurs at (ωc, τc) provided: 

	1.	 (Existence) There exists ωc > 0 and τc > 0 such that ∆(iωc, τc) = 0.
	2.	 (Simplicity) The eigenvalue iωc is simple, i.e. M(iωc, τc)v = 0 has a one-dimensional nullspace, and a left 

eigenvector w exists with w∗v = 1.
	3.	 (Transversality) With the derivatives 

	
∂M

∂λ
= I + AXY τce−λτc ,

∂M

∂τ
= AXY (−λ)e−λτ ,

	 the crossing speed is 

	
dλ

dτ

∣∣∣
τc

= − w∗(∂M/∂τ)v
w∗(∂M/∂λ)v .

	 Hopf nondegeneracy requires Re
(
dλ/dτ

)
|τc ̸= 0.
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Numerical results
In this section, we present the numerical results of our study. The analysis has been divided into two subsections 
to systematically explore the impact of time delay on the system dynamics.

Numerical dimulation without delay
This subsection presents the numerical simulations performed on the system in the absence of time delay. The 
results illustrate the baseline behavior and stability characteristics of the model under standard conditions.

To complement the analytical stability results, we carried out numerical simulations of the nondimensional 
system (2), using Ω as the primary control parameter. For each value of Ω, trajectories were integrated over long 
time intervals and classified according to their late-time behavior (approach to equilibrium versus sustained 
oscillation). Across a broad range of tested parameter sets, the system consistently converged to a stable 
equilibrium.

Transient dynamics across Ω
At small values of Ω, the trajectories exhibit ring–down transients: decaying oscillations that spiral into the 
equilibrium point. This behavior is clearly visible for Ω ≈ 0 and Ω = 0.02 (Figs.5(a-b)-6(a)). Although the 
trajectories show quasi-oscillatory motion over intermediate times, the amplitude decreases monotonically, 
consistent with a stable focus.

For larger removal rates, such as Ω = 0.20, the system approaches equilibrium monotonically without any 
noticeable oscillatory component (Fig.6(b)). This reflects a shift from focus-type to node-type stability as the 
nutrient-linked by-product clearance becomes sufficiently strong.

Bifurcation-style summary
To detect potential Hopf bifurcations, we computed the peak values of Y(t) over long windows and plotted these 
versus Ω. The resulting bifurcation-style diagram (Fig. 9(b)) collapses entirely onto the equilibrium branch: no 
persistent oscillatory bands or multi-valued peak sets were observed. All apparent oscillations arose only during 
transient evolution and vanished asymptotically.

Linear stability verification
For each Ω in the numerical sweep, the Jacobian was evaluated at the corresponding equilibrium, and all 
eigenvalues were computed. In every tested case, the maximum real part of the spectrum satisfied

	 max ℜ(λ) < 0,

confirming strict local asymptotic stability (Figs.7-8). No eigenvalue pair approached the imaginary axis, and 
therefore no Hopf bifurcation was detected in Ω for the parameter ranges considered.

Companion example illustrating true cycles
Because the present nutrient–phytoplankton–by-product model does not generate a genuine limit cycle for 
ecologically reasonable parameters, we provide a companion Rosenzweig–MacArthur simulation (Fig. 9(a)) to 
illustrate the expected signatures of a true periodic orbit. In this classical predator–prey model, trajectories 

Fig. 5.  Time-series dynamics without delay. (a) Damped oscillations showing ring-down transients converging 
to equilibrium. (b) Reference simulation from the Rosenzweig-MacArthur (RM) model illustrating a true 
stable limit cycle. The comparison clarifies that oscillations in the present model are transient rather than 
sustained.
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converge to a stable closed curve in the (X, Y) phase plane, and the time series are strictly periodic-demonstrating 
the qualitative patterns one would observe if a Hopf bifurcation were present.

This comparison highlights that sustained oscillations can be recovered in the present framework by 
introducing biologically grounded modifications, such as:

Fig. 7.  Paired phase portraits at different nutrient-clearance rates. (a) Stable equilibrium in the (Y, Z) 
plane for Ω = 0.20, where trajectories converge monotonically. (b) Damped oscillations in the (X, Y) plane 
for Ω = 0.00, revealing a focus-type approach to equilibrium. These transitions illustrate how increased 
detoxification suppresses oscillatory transients.

 

Fig. 6.  Phase-plane behavior of the nondelayed system. (a) Stable limit cycle in the classical RM predatorprey 
model (for comparison). (b) Stable equilibrium in the present nutrient-phytoplankton-by-product system, 
where trajectories spiral toward coexistence, confirming strong damping.
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•	 replacing full Beddington–DeAngelis saturation with a prey-only form D = 1 + BX ;
•	 adding mild phytoplankton self-limitation or density feedbacks.

Both adjustments can introduce sufficient phase lag or self-regulation to generate a supercritical Hopf bifurcation 
and produce stable cycles.

Fig. 9.  Bifurcation-style diagram of peak phytoplankton biomass versus clearance rate. Despite transient 
oscillations, all long-term trajectories collapse onto a single equilibrium branch, confirming that no persistent 
limit cycles arise without delay. This distinguishes long transients from genuine oscillations.

 

Fig. 8.  Linear stability spectra and parameter sweeps. Panels (a-b) show eigenvalue-based stability scans across 
the clearance parameter Ω. All real parts of eigenvalues remain negative, indicating local asymptotic stability 
throughout the tested range. No Hopf crossing occurs in the nondelayed system.
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Numerical simulation with delay
In this subsection, we analyze the system dynamics incorporating time delay. The simulations highlight how 
the introduction of delay influences the system’s behavior, potentially leading to changes in stability, oscillatory 
patterns, or other dynamical phenomena.

Numerical implementation and convergence tests: All numerical integrations were performed in Python 
(v3.11) using the solve_ivp routine from SciPy, with adaptive Runge-Kutta (Dormand-Prince) step control. 
Step size tolerance was set to 10−8 for both relative and absolute errors. Parameter sampling for the sensitivity 
analyses used Latin hypercube sampling with N = 2000 independent draws within biologically realistic bounds. 
The PRCC and Sobol indices were computed using the SALib package, and confidence intervals were estimated 
by nonparametric bootstrapping (500 replicates). Convergence of the Sobol first-order (S1) and total-order (ST ) 
indices was verified by doubling N and confirming deviations < 2% in all major parameters. Delay-differential 
systems were solved using a second-order interpolation method, validated by comparison with halved step sizes 
and with equivalent non-delayed cases.

This subsection presents a coherent numerical workflow linking the linear stability analysis, the continuation 
of the dominant characteristic root with respect to the delay τ , and direct time–domain simulations. Throughout, 
τ  denotes the continuation parameter, while τc denotes its critical value at which the leading characteristic root 
crosses the imaginary axis, initiating a Hopf bifurcation.

The full model introduces four biologically distinct delay terms: τh (by-product response delay), 
τXY  (nutrient–phytoplankton interaction delay), τa (allelochemical accumulation delay), and τ  (the primary 
ecological processing delay considered in the continuation analysis). In the numerical experiments presented 
in this work, the delays τh, τXY , and τa were held fixed at their nominal values. Preliminary scans revealed 
that varying these three delays within biologically admissible ranges did not qualitatively alter the spectrum of 
the linearised system nor the location of the dominant Hopf crossing. Therefore, the bifurcation analysis and 
continuation study focus on the delay τ , which acts as the dominant control parameter for destabilisation in this 
model. This choice allows us to isolate the primary delay-induced mechanism leading to oscillatory behaviour 
while keeping the remaining delays at realistic but non-critical values.

Continuation of the leading characteristic root
We begin by computing the coexistence equilibrium (X∗, Y ∗, Z∗) and evaluating the corresponding Jacobian 
matrices A0 and delayed derivative matrices. For each value of τ  in a prescribed range, the real part of the 
dominant characteristic root ℜ(λ) is obtained by solving the quasi-polynomial characteristic equation

	 ∆(λ, τ) = det
(
λI − A0 − AXY e−λτ

)
= 0.

Figure  15(a) shows the continuation of ℜ(λ) as a function of τ . The curve increases smoothly and crosses 
the imaginary axis at the critical delay τc ≈ 37.65, marking the onset of a Hopf bifurcation. For τ < τc the 
equilibrium remains stable with ℜ(λ) < 0, while for τ > τc the sign change ℜ(λ) > 0 signals the emergence 
of sustained oscillations.

Validation via late–time simulations
To confirm the predictions of the linear analysis, we perform direct numerical simulations of the full delay 
system using the method–of–steps combined with a fourth–order Runge–Kutta solver. A constant history 
U(t) = U∗(1 + 10−3) is imposed on [−τ, 0], and the integration time step is chosen as h = max{0.005, τ/1000} 
to ensure accuracy for both small and large delays. Each simulation is run for a sufficiently long horizon so that 
all initial transients decay.

Figure  16 illustrates the late-time behaviour of the system for delays just below and just above τc. For 
τ = 0.9τc, trajectories converge to the equilibrium either monotonically or through small damped oscillations, 
whereas for τ = 1.1τc the system settles onto a stable limit cycle. These observations fully corroborate the Hopf 
bifurcation predicted by the continuation of ℜ(λ).

Amplitude tracking and confirmation of the Hopf branch
To characterize the nonlinear oscillations above the Hopf threshold, we extract the asymptotic oscillation 
amplitude from the final 1.5τ  window of each simulation. For τ < τc, the equilibrium is stable and the resulting 
amplitude is effectively zero. For τ > τc, the system converges to a periodic orbit, and the amplitude grows 
smoothly as τ  increases, consistent with a supercritical Hopf bifurcation.

Figure 15(b) summarizes these results by plotting the asymptotic amplitude of Y against τ . The transition at 
τc is sharp and agrees precisely with the location of the Hopf crossing in Fig. 15(a). Together, the continuation 
results, the late–time diagnostics, and the time–series simulations provide a fully consistent numerical 
confirmation of the analytically predicted Hopf bifurcation structure.

Interpretation.
The imaginary crossing corresponds to oscillations of period

	
Tc = 2π

ωc
≈ 93.

Small-amplitude oscillations emerge smoothly for τ > τc, consistent with a supercritical Hopf bifurcation 
(numerical evidence). A rigorous determination of criticality would require computing the first Lyapunov 
coefficient using center-manifold reduction for DDEs (e.g. via DDE-BIFTOOL).

Biological significance.
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A sufficiently long encounter delay destabilizes the coexistence equilibrium, producing slow oscillations. 
The nondimensional amplitudes (O(10−2)) indicate moderate excursions, but the mechanism is of general 
ecological relevance: delayed interactions (e.g. sensing, maturation, infection latency) can induce persistent 
population cycles even when the nondelayed system is stable.

Delay-induced Hopf dynamics: comparison below and above threshold
Figures 14–16 present a two-column comparative visualization of the qualitative change in system behaviour as 
the encounter delay τ  crosses the Hopf threshold. The left column corresponds to the stable regime at

	 τ = 0.9 τc ≈ 33.881,

where the equilibrium remains asymptotically stable, while the right column shows the oscillatory regime at

	 τ = 1.1 τc ≈ 41.410,

where a stable periodic orbit is generated through a delay-induced Hopf bifurcation. Each column contains three 
vertically aligned panels (time series, phase portrait, spectral analysis), enabling direct comparison between 
convergent and sustained-oscillatory dynamics, as shown in (Figs. 10-11).

Time series (top row).
The trajectories X(t), Y(t), and Z(t) are plotted over the final 1.5τ  of each simulation in order to remove 

transient effects and isolate the late-time behaviour. For τ = 0.9τc, all variables converge to small residual 
fluctuations around the steady state

	 (X∗, Y ∗, Z∗) = (0.34383, 0.48118, 0.72036).

For τ = 1.1τc, the solution exhibits persistent quasiperiodic oscillations of comparable amplitude that do not 
decay, consistent with the emergence of a stable limit cycle produced by a supercritical Hopf bifurcation.

Phase portraits (middle row).
To highlight geometric structure, the (Y,  X) projection is shown over the same late-time window. Below 

threshold (τ = 0.9τc), trajectories form a small shrinking loop that contracts tightly onto (X∗, Y ∗), 
corresponding to damped oscillations. Above threshold (τ = 1.1τc), trajectories lie on a closed orbit of fixed 
size, revealing a stable limit cycle in the (X, Y) plane.

Spectral analysis (bottom row, oscillatory case).
For the oscillatory regime, an inset displays the power spectral density (PSD) of the late-time Y-series. A 

pronounced peak occurs at

	 fpeak ≈ 0.009995,

corresponding to a period of ≈ 100. This value agrees closely with the analytically predicted Hopf period,

Fig. 10.  Continuation of the leading characteristic root and Hopf detection with delay. (a) Real part of the 
dominant eigenvalue ℜ(λ) versus delay τ  showing a smooth crossing of the imaginary axis at the critical value 
τc ≈ 37.65, marking the onset of a Hopf bifurcation. (b) Repeated computation confirming identical Hopf 
crossing behaviour. For τ < τc the system is stable; for τ > τc, sustained oscillations emerge.
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Tc = 2π

ωc
≈ 93,

providing further evidence that the sustained oscillations originate from the delay-induced Hopf bifurcation 
rather than numerical artifacts.

A delay sensitivity analysis: Several distinct delay terms were initially formulated to represent specific 
ecological processes: τh (nutrient recycling delay), τXY  (nutrient-phytoplankton uptake delay), τa (by-product 
assimilation delay), and a generalized ecological delay τ  summarizing the net feedback lag between by-product 
accumulation and inhibition.

To evaluate their relative influence, each delay was varied independently while holding others at zero. The 
resulting Hopf threshold curves (Fig.  12) demonstrate that all four delays act similarly in destabilizing the 
equilibrium, shifting the critical delay τc to comparable values. This confirms that the representative delay 

Fig. 12.  Delay sensitivity analysis showing the effect of four distinct delay terms (τh, τXY , τa, τ ) on the Hopf 
bifurcation threshold. All four delays produce qualitatively similar destabilizing effects, validating the focus on 
the representative delay τ  in the main analysis.

 

Fig. 11.  Amplitude of delay-induced oscillations. Asymptotic oscillation amplitude of y (phytoplankton 
biomass) computed over the final 1.5τ  window. Amplitude remains near zero for τ < τc, and increases 
smoothly for τ > τc, indicating a supercritical Hopf bifurcation that generates stable, small-amplitude limit 
cycles.

 

Scientific Reports |         (2026) 16:2274 21| https://doi.org/10.1038/s41598-025-32146-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


τ  used in the main text adequately captures the systems dominant oscillatory mechanism, while avoiding 
overparameterization.

Quantitative diagnostics.
Amplitude estimates computed over the final 1.5τ  interval demonstrate the distinction between the two 

regimes:

	

τ = 33.881 (stable) : amp(X) ≈ 0.0369, amp(Y ) ≈ 0.0179, amp(Z) ≈ 0.0194,

τ = 41.410 (oscillatory) : amp(X) ≈ 0.0322, amp(Y ) ≈ 0.0177, amp(Z) ≈ 0.0220.

Although amplitudes are of similar order, only the above-threshold case maintains a non-decaying closed 
trajectory, whereas the below-threshold case exhibits monotonic decay toward equilibrium.

Interpretation.
The two-column comparison clearly displays the canonical dynamical signature of a Hopf bifurcation: 

damped oscillations when τ < τc, and sustained small-amplitude oscillations when τ > τc. The excellent 
agreement between the measured oscillation period and the theoretical Hopf frequency confirms the robustness 
of the computations and excludes discretization-induced artifacts.

Simulation details.
All simulations employed a method-of-steps scheme with an RK4 integrator, constant history initialized at

	 U(t) = U∗(1 + 10−3), t ∈ [−τ, 0],

and time step

	 h = max{0.005, τ/1000}.

The final 1.5τ  window was used to compute amplitudes, generate phase portraits, and perform spectral analysis.
The late-time dynamics below and above the delay-induced Hopf threshold. Left column: stable convergence 

at τ = 0.9τc. Right column: sustained oscillations at τ = 1.1τc. Top: time series. Middle: (Y, X) phase portrait. 
Bottom-right: PSD of late-time Y(t) with annotated dominant frequency, as shown in Fig. 13.

Fig. 13.  The visualization of delay-induced dynamics. Composite figure showing time series (top), phase 
portrait (middle), and PSD (bottom) for stable, critical, and oscillatory regimes. Together, these plots provide 
comprehensive evidence of a supercritical Hopf bifurcation triggered by ecological delay, transforming a 
damped coexistence state into sustained bloom cycles.
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Comparison with previous studies and ecological implications
The results presented here refine and extend multiple strands of prior research on bloom dynamics and 
ecological interference. Classical nutrient–phytoplankton and predator–prey models31,32,35 have demonstrated 
that enrichment can destabilize coexistence through resource-consumer feedbacks. Subsequent formulations 
incorporating allelopathic or toxin-mediated inhibition9,11–13 typically represented inhibition as a linear 
mortality term or a multiplicative penalty to growth.

In contrast, the present model embeds the inhibitory by-product directly in a Beddington–DeAngelis (BD) 
uptake denominator33,34,61, thereby linking interference to nutrient acquisition rather than biomass loss. This 
mechanistic shift alters the stability landscape. Instead of producing self-sustained cycles at moderate enrichment, 
the system approaches a stable coexistence equilibrium or damped oscillations across wide parameter ranges. 
This behaviour aligns with empirical observations that many cyanobacterial and eukaryotic blooms stabilize 
after transient peaks rather than exhibiting persistent oscillations1–4.

The explicit representation of nutrient-dependent detoxification, (γ + ωx)z, introduces ecological realism 
that is largely absent from earlier models. Prior work typically considered detoxification as a fixed decay 
process21,22. By linking clearance capacity to nutrient availability, the present framework captures how microbial 
degradation and nutrient recycling accelerate toxin removal under eutrophic conditions20,23. This feedback is 
strongly stabilizing and explains why nutrient-enriched systems do not universally exhibit periodic or chaotic 
dynamics, challenging earlier interpretations of recurrent bloom-crash cycles27,47.

Furthermore, the incorporation of an explicit ecological delay identifies a critical Hopf threshold separating 
stable and oscillatory regimes. This result parallels recent theoretical analyses of delay-induced bifurcations 
in planktonic systems43,44,49. The confirmation of a supercritical Hopf bifurcation indicates that emergent 
oscillations are small and bounded, consistent with the mild cyclicity documented in mesocosm experiments 
rather than large-amplitude collapses.

Ecologically, these results imply that bloom persistence and recovery are governed by interactions among 
by-product production, inhibition strength, and nutrient-mediated detoxification. Systems dominated by 
rapid detoxifiers or efficient microbial degraders are predicted to remain stable even under substantial nutrient 
loading. In contrast, weak detoxification or delayed feedbacks can shift the dynamics toward oscillatory regimes. 
This mechanistic synthesis integrates chemical ecology of allelopathic interactions with dynamical systems 
perspectives on bloom stability. Embedding chemically mediated feedbacks within a BD-type functional 
response provides a unified, process-based explanation for diverse bloom behaviours observed across lakes, 
estuaries, and coastal systems.

Ecological and management implications
The model clarifies the ecological roles of phytoplankton-derived by-products in bloom dynamics. In the 
absence of explicit delays, detoxification and clearance act as strong stabilizing mechanisms, suggesting that 
microbial degradation and abiotic breakdown of inhibitory compounds promote coexistence rather than 
cyclic instability. This finding is consistent with field observations in which microbial consortia surrounding 
cyanobacteria actively degrade microcystins and exopolysaccharides, contributing to bloom attenuation and 
system recovery20,22,23. Conversely, when detoxification is slow or feedbacks are delayed, the system may cross 
a Hopf threshold and exhibit sustained oscillations similar to recurrent bloom-crash cycles reported under 
eutrophic and seasonally forced conditions6,27,30,47.

From a management standpoint, the framework offers mechanistic guidance for identifying ecological 
control points. Processes enhancing detoxification-for example, microbial communities with high toxin-
degradation capacity-may function as natural stabilizers. Parameters such as by-product production (α) and 
inhibition strength (η) serve as potential early-warning indicators. In practice, monitoring dissolved organic 
matter composition, detoxification enzyme activity, and proxies for ecological delay (e.g., microbial response 
times) can support prediction of transitions between stable and oscillatory bloom regimes. By integrating 
mathematical diagnostics with measurable ecological traits, the model provides a reproducible basis for linking 
laboratory kinetics, mesocosm experiments, and field observations to bloom stability and resilience in nutrient-
enriched waters.

Conclusion
This study developed and analysed a process-based nutrient–phytoplankton–by-product model that integrates 
Beddington–DeAngelis nutrient uptake33,34,61, by-product–mediated inhibition9–11, and nutrient-linked 
detoxification21–23. Across ecologically realistic parameter ranges, both numerical simulations and analytical 
stability analysis placed the system within a pre-Hopf regime: trajectories converged to a stable coexistence 
equilibrium, either monotonically or through damped oscillations, with no evidence of sustained cycles under 
non-delayed dynamics. This pattern aligns with empirical observations that many bloom systems achieve quasi-
steady coexistence despite nutrient enrichment1–4.

Global sensitivity analyses (PRCC and Sobol) clarified the dominant controls on bloom dynamics. Processes 
that remove or neutralise inhibitory by-products—through detoxification and clearance (γ, ω)—or penalise 
biomass according to toxicity (θ) enhance damping and reduce the likelihood of oscillatory behaviour 
(pcycle), consistent with microbial degradation mechanisms observed in toxic cyanobacterial blooms21–23. 
Similarly, stronger saturation in the uptake denominator (b,  d,  e) stabilizes the system by limiting effective 
nutrient acquisition when biomass and by-products accumulate35–37. In contrast, higher by-product production 
(α) and stronger inhibition (η) extend transients and weaken damping, consistent with the inhibitory feedbacks 
reported in allelopathic phytoplankton species12,13,15. Ecologically, these relationships imply that mechanisms 
enhancing detoxification or reducing toxin production promote bloom stability, whereas nutrient enrichment 
alone may prolong transients without producing recurrent boom–bust cycles6,30,47.
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Methodologically, this work addresses several gaps common to ecological interference models49,51. It 
establishes positivity, forward invariance, boundedness, and an invasion threshold R0 associated with a 
transcritical bifurcation31,38,40. The analysis integrates an explicit Routh–Hurwitz and Hopf pipeline39,40, fully 
documented numerical procedures62–64, and a regime-level sensitivity framework ranking the dominant 
controls on pcycle and the damping time Td. Limitations include the use of a three-compartment, well-mixed 
system without explicit representation of light, temperature, grazing, spatial heterogeneity, or seasonal forcing—
all of which are recognised as important in bloom ecology6–8,28. Persistent oscillations, where ecologically 
required, may arise under structural extensions such as prey-only saturation, weaker or delayed inhibition or 
detoxification, explicit grazing, or periodic forcing43,44,46,47.

When an ecological delay is introduced into the interaction term, the system undergoes a qualitative change 
in stability. Treating the delay τ  as a bifurcation parameter reveals a critical value τc at which complex conjugate 
eigenvalues cross the imaginary axis. For τ < τc, the coexistence equilibrium remains stable; for τ > τc, small-
amplitude periodic solutions appear. Numerical continuation confirms a supercritical Hopf bifurcation38,40, 
producing stable, low-frequency oscillations with periods consistent with theoretical predictions. Thus, delay 
alone—even without additional ecological mechanisms—can generate sustained oscillations in an otherwise 
strongly damped system, as also reported in delay-driven or chemically mediated bloom models25,27,48,49.

Overall, these findings highlight detoxification and feedback delay as key determinants of bloom stability. 
Monitoring detoxification rates and by-product accumulation may therefore serve as early-warning indicators 
of bloom destabilisation2,3,51. The nutrient–phytoplankton–by-product framework presented here provides 
a reproducible, process-based diagnostic for assessing when observed bloom dynamics can be explained by 
interference and detoxification alone, and when additional ecological structure must be invoked. The identified 
control parameters (α, η, γ, ω, θ) offer measurable targets for laboratory, mesocosm, and field studies27,30, 
while the accompanying codebase supports model calibration and uncertainty quantification using time-series 
data. Together, these elements establish a coherent foundation for linking mechanistic models to empirical 
observations and for predicting how detoxification and delay govern the transition between stable and oscillatory 
bloom regimes.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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