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Transforming free-text coronary
angiography reports into
structured, analyzable data using
large language models
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Coronary angiography (CAG) reports contain many details about coronary anatomy, lesion
characteristics, and interventional procedures. However, their free-text format limits their research
utility. Therefore, we sought to develop and validate a framework leveraging large language models
(LLMs) to convert CAG reports automatically into a standardized structured format. Using 50 CAG
reports from a tertiary hospital, we developed a multi-step framework to standardize and extract key
information from CAG reports. First, a standard annotation schema was developed by cardiologists.
Thereafter, an LLM (GPT-40) converted the free-text CAG reports into the hierarchical annotation
schema in a standardized format. Finally, clinically relevant information was extracted from the
standardized schema. One hundred CAG reports from each of two hospitals were used for internal
and external test, respectively. The 12 key information points included four CAG-related (previous
stent information, lesion characteristics, and anatomical diagnosis) and eight percutaneous coronary
intervention (PCl)-related key points (complex PCI criteria and current stent information). For internal
test, two interventional cardiologists independently extracted information, with discrepancies
resolved through consensus, as reference standard. Based on the reference standard, the proposed
framework demonstrated superior accuracy for CAG-related (99.5% vs. 91.8%; p<0.001) and
comparable accuracy for PCl-related key points (98.3% vs. 97.4%; p=0.512) in the internal test.
External test confirmed high accuracy for both CAG- (96.2%) and PCl-related key points (99.4%).

This framework demonstrated excellent accuracy in standardizing free-text CAG reports, potentially
enabling more efficient utilization of detailed clinical data for cardiovascular research.

Keywords Artificial intelligence, Coronary angiography, Database, Percutaneous coronary intervention,
Standardization

Coronary angiography (CAG) reports contain information about coronary artery disease and percutaneous
coronary intervention (PCI), providing invaluable data for clinical research. However, CAG reports are limited
by their unstructured, free-text format, which makes it difficult to search, analyze, and process data consistentlyl.
With continued growth in the secondary use of clinical data, observational studies on coronary artery diseases
using electronic health records (EHR) continue to increase; however, many of these studies are conducted
without the use of detailed information on complex coronary anatomy or procedures®™%. Moreover, the lack of
structured data also hampers the identification of eligible patients for clinical trials based on specific anatomical
or procedural criteria®, and the quality assessment or performance monitoring of interventional procedures®.
To standardize complex medical information in free-text medical records, Park et al. have previously proposed
Staged Optimization of Curation, Regularization, and Annotation of clinical text (SOCRATex). This framework
initially requires domain experts to define a standardized schema that specifies how clinical information should
be organized. Thereafter, experts manually review clinical notes and annotate relevant information according
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to this predefined schema to create standardized, machine-readable data’. Although this systematic approach
effectively converts unstructured clinical notes into analyzable data, it involves a time-consuming manual
annotation process and requires significant expert involvement, hampering its large-scale implementation®.

Recent advancements in large language models (LLMs), such as ChatGPT, a type of artificial intelligence
(AI) used for understanding and processing free-text, can structure vast amounts of free-text within EHRs with
minimal programming effort®. Recent reviews have demonstrated that LLMs consistently outperform rule-
based and earlier machine learning-based approaches, such as BERT, for structuring unstructured medical
narratives owing to their superior generalization to diverse phrasing’. In fact, various studies have reported
using LLMs to convert free-text radiology and pathology reports into structured formats, highly accurately'%-12.
Within cardiovascular imaging, however, LLM applications have predominantly focused on either non-invasive
coronary CT angiography (e.g., CAD-RADS standardization)'>!* or right heart catheterization'>!6, while the
application of LLMs to transform CAG reports—with their complex procedural details—into machine-readable
formats remains unexplored.

Therefore, building upon the previous work on hierarchical annotation, this study sought to develop a two-
step framework that converts free-text CAG reports into a hierarchical, machine-readable schema using an LLM,
then applies rule-based logic to extract 12 predefined key points. We then validated the framework internally
against cardiologist extraction and externally on an independent hospital set, and we test generalizability using
alternative LLMs with identical prompts.

Results

Dataset characteristics

Table 1 summarizes the composition of the training, internal test, and external test datasets according to the
year of procedure and the type of included coronary intervention. The training dataset consisted of 50 reports,
including 26 combined CAG +PCI, 21 CAG-only, 1 PCI-only, and 2 other reports (angiography of coronary
artery bypass grafts). The internal test dataset included 100 reports composed of 41 CAG +PCI, 55 CAG-only, 3
PCI-only, and 1 other report. The external test dataset comprised 100 reports, with 57 CAG + PCI, 41 CAG-only,
1 PCI-only, and 1 other report (angiography of inferior vena cava filter placement). Across all datasets, both
CAG- and PClI-related information were often intermingled within the same report.

Internal test
Table 2 and Fig. 1 show the accuracy of the framework using GPT-40 and the mean accuracy of the two
cardiologists in extracting clinical key points from CAG reports in the internal test dataset.

The framework demonstrated a significantly higher mean accuracy than that of the cardiologists in extracting
the four CAG-related key points (99.5% vs. 91.8%, p<0.001). For individual CAG key points, the framework
showed superior accuracy in location of previous stents (100.0% vs. 91.1%, p=0.001), previous stent information
(100.0% vs. 95.3%, p=0.032), and location and type of lesion (97.9% vs. 80.7%, p <0.001). Both the framework
and cardiologists achieved 100% accuracy for anatomical diagnosis.

For the eight PCI-related key points, the framework showed comparable accuracy to the cardiologists across
all items, with mean accuracy scores of 98.3% versus 97.4% (p=0.512). The framework and the cardiologists
performed similarly for each specific point: multivessel PCI (100.0% vs. 100.0%), 2 3 lesions treated (97.7% vs.
97.7%), bifurcation PCI with > 2 stents (100.0% vs. 97.7%), = 3 stents implanted (97.7% vs. 97.7%), CTO PCI
(100.0% vs. 100.0%), total stent length >60 mm (97.7% vs. 97.7%), complex PCI (97.7% vs. 98.9%), and current
stent information (95.5% vs. 89.8%). All p values were above 0.05, indicating no significant differences between
the framework and the cardiologists. More detailed results are shown in Supplementary Table 1.

A qualitative analysis was done to understand the significant discrepancies in accuracy between the framework
using GPT-40 and the cardiologists. As shown in Supplementary Table 2, cardiologists often generated errors

Characteristics of the training, internal test and external test set
Training set | Internal test set | External test set
Total number of reports | 50 100 100
Year of procedure
2009-2013 10 25 0
2014-2018 22 44 0
2019-2023 18 31 0
2024 0 0 100
Included procedure
CAG and PCI 26 41 57
CAG only 21 55 41
PCI only 1 3 1
Others 2* 1* 1t

Table 1. Characteristics of the training, internal test, and external test datasets. CAG coronary angiography,
PCI percutaneous coronary intervention.*Reports about angiography of coronary artery bypass graft; "Report
about inferior vena cava filter placement.
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Key information points Framework Cardiologists* p value
Total 4 CAG-related key information points | 99.5% (98.1 to 99.9) 91.8% (89.6 to 93.6) <0.001
Location of previous stents 100.0% (96.2 to 100.0) | 91.1% (86.2 to 94.8) 0.001
Previous stents information 100.0% (96.2 to 100.0) | 95.3% (91.3 to 97.8) 0.032
Location and type of lesion 97.9% (92.7 t0 99.7) 80.7% (74.4 to 86.1) <0.001
Anatomical diagnosis 100.0% (96.2 to 100.0) | 100.0% (98.1 to 100.0) |1

Total 8 PCI-related key information points | 98.3% (96.3 to 99.4) 97.4% (96.0 to 98.5) 0.512
Multivessel PCI 100.0% (92.0 to 100.0) | 100.0% (95.9 to 100.0) |1

>3 lesions treated 97.7% (88.0 to 99.9) 97.7% (92.0 to 99.7) 1
Bifurcation with >2 stents 100.0% (92.0 to 100.0) | 97.7% (92.0 to 99.7) 0.552
>3 stents implanted 97.7% (88.0 to 99.9) 97.7% (92.0 to 99.7) 1

CTO PCI 100.0% (92.0 to 100.0) | 100.0% (95.9 to 100.0) |1

Total Stent Length > 60 mm 97.7% (88.0 to 99.9) 97.7% (92.0 to 99.7) 1
Complex PCI 97.7% (88.0 to 99.9) 98.9% (93.8 to 100.0) 1
Current stents information 95.5% (84.5 t0 99.4) 89.8% (81.5 t0 95.2) 0.335

Table 2. Accuracy percentages with 95% confidence intervals for the analysis of 12 key information points by
the framework and by two cardiologists in the internal test. *The independent extractions performed by the
two cardiologists have been combined into a single group and the mean accuracy was calculated. CTO chronic
total occlusion.

by mislabeling the location of previous stents, current stents, and lesions. They also frequently misclassified
the type of lesions due to missed key descriptors, such as “eccentric” and “ostium”. In contrast, the framework
consistently performed precise extraction of information from very complex cases, as shown in Supplementary
Fig. 3A and 3B.

Multi-model results

When the same framework was applied using Gemini-2.5-Flash and Claude-4.5-Sonnet, both models achieved
comparable or superior performance to the cardiologists in analyzing 12 key information points of CAG and
PCI. Specifically, for the 4 CAG-related key information points, both models showed significantly higher
accuracy than cardiologists (p < 0.001), whereas for the 8 PCI-related key information points, the performances
were non-inferior (p>0.05). The detailed accuracy percentages and confidence intervals are summarized in
Supplementary Table 3.

External test

Table 3 shows the accuracy of the framework in extracting clinical key points from CAG reports in the external
test dataset. For the four CAG-related key points, the framework achieved a mean accuracy of 96.2%, showing
consistently high performance across each item. For the eight PCI-related key points, the framework achieved a
mean accuracy of 99.4%, also showing consistently high performance across each item. These results indicated
the framework’s robust accuracy in extracting key details from both CAG and PCI data. Supplementary Table 4
shows more detailed results.

A qualitative analysis was conducted to understand the reasons for errors made by the framework. As shown
in Supplementary Table 5, some inevitable errors arose from the inherent ambiguity and inconsistencies within
the CAG section of the reports themselves. However, the PCI sections of the reports were structured using seven
key items for each treated lesion—“Location,” “Guiding catheter;,” “Guidewire,” “Preballoon,” “Adjuvant balloon,”
“DEB;” and “Stent”—which provided a well-organized foundation for data extraction. This pre-existing structure
in the free-text report significantly facilitated the conversion into a machine-readable format by the LLM,
resulting in high accuracy for extracting PCI-related key points. Supplementary Fig. 4 depicts two representative
cases from the external test set, showcasing the excellent capability of the framework in converting all the details
of a highly complex CAG and PCI case into a machine-readable format.

Discussion

This study shows that a two-step approach—LLM standardization followed by rule-based extraction—can
transform free-text CAG reports into analyzable data with accuracy comparable to or exceeding cardiologists
on CAG key points and non-inferior performance on PCI key points, with consistent results in an external
cohort and across alternative LLMs. These results suggest that automated standardization of complex medical
documents is not only feasible, but can be implemented with high reliability, potentially transforming how we
utilize clinical information embedded in unstructured medical reports.

To our knowledge, no previous study has attempted to convert detailed information about coronary anatomy
and catheterization procedures from free-text reports into a machine-readable format. A recent systematic
review indicated that natural language processing research in the field of cardiology remains underexplored as
compared to that in the field of oncology!”. Although the availability of coded information in EHRs and claims
data has increased substantially, most large-scale observational studies have not utilized detailed information
about coronary anatomy or procedural characteristics'®. While studies leveraging data from dedicated registries
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Fig. 1. Bar plot showing the accuracy percentages with 95% confidence intervals for the analysis of 12 key
information points by the framework and by two cardiologists in the internal validation process. This figure
compares the accuracy of the framework and of the two cardiologists in analyzing 12 key information points
during the internal validation process. (A) shows the overall accuracy for four coronary angiography (CAG)-
related and eight percutaneous coronary intervention (PCI)-related key points. (B) presents individual
accuracy for the four CAG-related key points. (C) displays the accuracy for the eight individual PCI-related
key points. Statistical significance is indicated as follows: *for p < 0.05, **for p < 0.01, and ***for p < 0.001.

have incorporated such information, this approach requires marked manual effort. Our framework addresses
this limitation by automatically converting detailed procedural and anatomical information into a structured,
machine-readable format, which promotes several critical capabilities: (1) systematic analysis of large-scale
coronary intervention outcomes across different patient populations and institutions, (2) efficient quality
assessment and performance monitoring of interventional procedures, (3) facilitation of clinical research by
enabling rapid identification of eligible patients for trials based on specific anatomical or procedural criteria'®,
and (4) providing support for clinical decision-making by making historical procedural data more accessible
and analyzable.

The framework developed in this study uses a two-step approach to ensure accuracy and interpretability.
In a previous study, while a one-step approach using LLMs was able to capture basic information accurately,
it demonstrated difficulty with complex medical reasoning!!. For example, in pathology reports, LLMs could
accurately identify tumor measurements but had difficulty determining accurate cancer staging. To overcome this
limitation, we separated our process into two distinct steps: first, using LLMs to organize the basic information
from CAG reports into an expert-defined standardized format, and second, applying specific rules developed by
cardiologists to build clinically relevant data. This approach, similar to methods successfully used in pathology
research!?, combines the LLM’s strength in understanding medical text with cardiologist-designed rules for
interpreting nuance and complexity in coronary anatomy and catheterization. Furthermore, an instruction
prompt was given to LLM to encode domain-specific knowledge and detailed rules, as guided by cardiologists,
to ensure accurate and consistent mapping of the intricate information contained in CAG reports.
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Key information points Accuracy of framework

Total 4 CAG-related key information points | 96.2%

Location of previous stents 95.9%
Previous stents information 98.0%
Location and type of lesion 94.9%
Anatomical diagnosis 95.9%

Total 8 PCI-related key information points | 99.4%

Multivessel PCI 100.0%
>3 lesions treated 100.0%
Bifurcation with >2 stents 98.3%

>3 stents implanted 100.0%
CTO PCI 100.0%
Total stent length > 60 mm 100.0%
Complex PCI 100.0%
Current stents information 96.6%

Table 3. Accuracy percentages for the analysis of 12 key information points by the framework in the external
validation test. CTO chronic total occlusion.

The significance of our work extends beyond its immediate performance metrics. By developing and publicly
releasing a comprehensive hierarchical annotation schema for CAG reports, we have provided a standardized
framework that other institutions can readily adopt or modify for their specific needs. In addition, the
framework proved to be model-agnostic when tested with alternative large language models. Using the same
internal test dataset and identical prompts, we re-evaluated the framework with Gemini-2.5-Flash and Claude-
4.5-Sonnet. Both models achieved results comparable to those obtained with GPT-40, showing significantly
higher accuracy than cardiologists for CAG-related key information points (p <0.001 for both) and non-inferior
performance for PCI-related key points (p>0.05). These findings (Supplementary Table 2) underscore that the
proposed hierarchical annotation framework can maintain high reliability across different LLMs, demonstrating
its generalizability beyond a single model implementation. This flexibility and generalizability are particularly
important as healthcare institutions increasingly seek to process sensitive clinical data by using internal systems
rather than external services. With the rapid advance in the capabilities of open-source LLMs, our framework
offers a practical blueprint for standardization of automated medical documents that could be implemented
using various LLM options, while maintaining high accuracy and reliability. The primary advantage is that it
saves time and human effort.

The study had some limitations. First, only CAG reports from hospitals in South Korea were used to validate
the robustness of the framework. To ensure thorough validation, the framework should be implemented on
CAG reports from more diverse countries. Second, this study utilized only proprietary LLMs as the LLM for
standardization. Therefore, further testing is needed to determine whether its high accuracy and reliability will
be maintained even with less-competent open-source models, such as Llama-32°, Third, unlike the internal
validation, the external validation process only evaluated the framework’s accuracy as judged by cardiologists,
without direct comparison to cardiologists’ manual reviews. Although the framework achieved excellent
accuracy in the external test, a direct comparison with manual reviews would have more clearly demonstrated
its capabilities. Fourth, in both the internal and external validation processes, accuracy was evaluated based
on only a single output from the LLM. Although we set the LLM’s “temperature”—a parameter that controls
the randomness and variability of the model’s responses—to zero, in order to maximize predictability, slight
variability remained due to the model’s inherent characteristics. Fifth, this study did not directly evaluate
the downstream clinical utility of the proposed framework. Although it demonstrated high accuracy in
transforming CAG reports into structured data, we did not conduct follow-up analyses to assess its impact on
real-world research tasks—such as enabling large-scale observational studies or facilitating the identification
of eligible patients for clinical trials. Future work should therefore focus on applying this framework to actual
cardiovascular datasets to evaluate its practical contribution to clinical research and decision support.

In conclusion, we developed a novel framework for standardizing free-text CAG reports and extracting
complex clinical data. This framework demonstrated excellent accuracy in standardizing CAG reports,
indicating its potential for more efficient utilization of detailed clinical data in these reports for cardiovascular
research. Future research should focus on applying this framework to real-world cardiovascular datasets to
assess its effectiveness in accelerating large-scale observational studies and improving the efficiency of clinical
trial eligibility identification based on free-text CAG reports.

Methods

Study design and datasets

CAG studies of adults (> 18-years-old), performed from January 1, 2009, to December 31, 2023 (15 years), at
Severance Hospital, a tertiary hospital, were retrieved. From these, 50 and 100 CAG reports were randomly
selected for the training and internal test sets, respectively. Following the Society for Cardiovascular Angiography
and Interventions’ expert consensus,® these CAG reports included the coronary anatomy and described lesions
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with their location, severity, and morphological characteristics. PCI-related information, including the types
and sizes of catheters, balloons, stents, and adjuvant devices, was thoroughly detailed in the CAG report. All
reports were written in English, with rare exceptions of Korean texts describing emergency situations during
procedures.

Furthermore, 100 random CAG reports from the National Health Insurance Service Ilsan Hospital, a
secondary hospital, obtained between January 1, 2023, and December 31, 2023, were retrieved as an external
test set.

This study was approved by the Institutional Review Board (IRB) of Severance Hospital (IRB No. 2024-1928-
002), Seoul, Korea, and the IRB of the National Health Insurance Service Ilsan Hospital (IRB No. 2024-09-006).
The requirement for informed patient consent was waived by the IRBs due to the retrospective nature of the
study.

Framework overview

Figure 2 illustrates our CAG report standardization framework. After development of a hierarchical annotation
schema by experience cardiologists (detailed below), the framework consisted of standardization and extraction
steps. In the standardization step, an LLM converted free-text CAG reports into a standardized format based
on the expert-defined schema. Thereafter, an automated extraction algorithm extracted the required clinical
information. We intentionally adopted the two-step design—LLM-based standardization followed by rule-based
extraction—to leverage the LLM’s strength in text normalization while ensuring interpretability and consistency
through deterministic, cardiologist-defined rules. This hybrid design mitigates errors observed in prior one-
step LLM extraction approaches for complex medical reasoning tasks, providing both scalability and clinical
transparency'!. Figure 3 details the development and validation of the framework, including iterative refinement
with interventional cardiologists to ensure clinical accuracy and reliability.

Development of the hierarchical annotation schema

A domain-specific hierarchical annotation schema was collaboratively developed by interventional cardiologists
(JYJ) and clinical informatics experts (JWSand SCY). This schema defined how to organize key clinical information
from CAG reports systematically, including coronary anatomy, lesion characteristics, and procedural details.
Through iterative testing using the training dataset, we refined the schema to ensure comprehensive and accurate
capture of complex clinical information. The schema was implemented in JavaScript Object Notation (JSON)

Two-Step Framework

1. Standardization 2. Extraction
I\ )
I M 1
N N &
. Lo
Instruction Prompt Fawrshot P"I’mpt Machine-Readable CAG Report Extracted Result
#### Role: You are a knowledgeable (Optional)
D data scientist. H Location of Previous Stents | N/A
- Com {
#4# Task: Convert the last coronary “coronary_angiography”: { Previous Stents Information | N/A
E CAG R angiography reports into JSON i "catheters": {
ree-text eport format. Follow the rules and “UCA catheter": [“XB 3.5 SH'] Location and Type of Lesion [ [6,C], [7,C]
examples. Use JSON structure. i = : )
A eXB3.5SH ### Rule: .. ' "Ie):'sions"- 0 Anatomical Diagnosis VD
Chronic Total Occlusion of p“mLAD (TIMI 0) \ a Multivessel PCI False
[PCl at LAD CTO lesion] "lesion_ch istics™: [ 1
"location”: “p¥mLAD", o] 23 Lesions Treated False
Stent : Biomime 3.0*40(9atm) at p-mLAD Large Language “segment_code": ['6", "7"], Simple N
Model "luminal_narrowing_percentage”: 100 Extraction | _°/ureation with 22 Stents False
Hierarchical Annotation Schema b >3 Stents Implanted False
"coronary_angiography": { "pei_details": [ cTopc True
‘:'.Ie sions”: [ "CTO": true, Total Stent Length >60 mm False
target_vessel": "LAD", ComplexPCl True
,,:Zzg‘i"g:,,h_a“r:tcrgsgfucs : ["string”], "stents”: [ Current Stents Information | Biomime, 3,40
: , {

"segment_code": [“string”],
"luminal_narrowing_percentage”:
number

"device": "Biomime",
"location": "p-mLAD",
"segment_code": ["6", "7"],
"diameter_m 0,
"stents": [ "length_mm": 40,
"pressure_atm": 9

"segment_code": [“string”],
"diameter_mm": number,
"length_mm": number,
"pressure_atm": number

Fig. 2. Overview of the two-step framework for free-text CAG report standardization and data extraction. The
framework consists of two primary steps: (1) standardization and (2) extraction. In the standardization step,
free-text coronary angiography (CAG) reports are converted into a machine-readable hierarchical annotation
schema using large language models (LLMs), guided by instruction prompts and optional few-shot prompts.
This schema defines the structure and content of the machine-readable format generated in this manner. In the
extraction step, 12 key data points are extracted from these machine-readable reports to enable automated and
precise data analysis, providing insights into clinical variables, such as lesion characteristics, stent details, and
complex percutaneous coronary intervention information.
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Fig. 3. Overview of the training, internal test, and external test processes of the framework. Fifty CAG reports
from Center 1 were used during the training phase to iteratively refine the schema-embedded prompts and
extraction logic until stable performance was achieved. For the internal validation, 100 reports from Center 1
were processed by both the developed framework and two cardiologists. A consensus meeting, reviewing both
the framework outputs and cardiologists’ extractions, produced a gold-standard answer sheet against which
accuracy was evaluated. For the external validation, 100 reports from Center 2 were analyzed to assess the
frameworK’s generalizability, with cardiologists independently inspecting and confirming each extracted result.
Center 1, Severance Hospital; Center 2, Ilsan Hospital. LLM, large language model.

format, which enabled efficient organization of multiple clinical events (e.g., multiple lesions or procedures) and
flexible representation of clinical details at various levels of granularity'°-!2. The full annotation schema is shown
in Supplementary Fig. 1.

Development of instruction and few-shot prompts
Utilizing the schema, we developed an instruction prompt?! that consist of designation of a role to LLM as a
data scientist, assignment of a task to convert free-text CAG note into JSON format, exhaustive rules to follow,
domain-specific knowledge, and the schema to adhere. The domain-specific knowledge included a Synergy
Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score segmentation
system?? for precise documentation of coronary anatomy; lesion morphology and characteristics based on
American College of Cardiology/American Heart Association (ACC/AHA) classification*-?% and details of the
intervention, procedural complications, and outcomes.

Furthermore, we developed a few-shot prompt using eight representative cases from the training dataset that
encompassed various clinical scenarios, from simple single-vessel disease to complex multivessel interventions,
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ensuring consistency in the interpretation of complex anatomical and procedural details. While these reference
cases were utilized for an internal test, they were not applied in the external test, to avoid institutional bias in
reporting styles. The full instruction prompt and few-shot prompts are shown in Supplementary Fig. 1 and
Supplementary Fig. 2, respectively.

LLM implementation

Building on to the rigorous refinement of the instruction and few-shot prompts, Generative Pretrained
Transformer 4 Omni (GPT-40) from OpenAI*, one of the commercially-available LLMs, was used as the
representative LLM for internal and external test dataset. To test the model-agnostic nature of the proposed
framework, we additionally evaluated the same internal test dataset using two alternative large language models,
Gemini-2.5-Flash (Google DeepMind)*” and Claude-4.5-Sonnet (Anthropic)®. Each model was implemented
in an identical pipeline and prompt structure without further optimization. For practical prompt engineering
and validation of the large dataset, a low-code workflow using ‘GPT for Excel Word, an extension that is easy
to use in Microsoft Excel, was used to directly invoke the API of LLMs inside Excel. Solely with the prompts
we developed, anyone who does not know how to code can convert CAG reports into structured format within
Excel. A simple implementation example using ‘GPT for Excel Word’ is provided in Supplementary Method 1
to help readers reproduce the workflow in their own institutions. In accordance with the Minimum Reporting
Items for Clear Evaluation of Accuracy Reports of Large Language Models in Healthcare (MINI-CLEAR-LLM)
checklist, we disclose the details of this study to ensure transparency in utilizing LLM:s for healthcare applications
in Supplementary Method 1%.

Rule-based extraction of 12 key information
Only after the first step of standardization of free-text CAG reports into machine-readable format is completed
can the second step of extracting clinically relevant key information be performed through rule-based algorithm.
Two cardiologists (JYJ and HK) pre-defined the following 12 key information points: four CAG-related key
points and eight PCI-related key points. The four CAG-related key points included the location of previous
stents, previous stent information, the location and type of lesion, and anatomical diagnosis (e.g., two-vessel
disease). Previous stent information included the device name, diameter, and length of previous stents. Type of
lesion (A, B1, B2, and C) was determined for each lesion according to the ACC/AHA classification. The eight
PCl-related key points focused on the six criteria of complex PCI*": Multivessel PCI, implantation of > 3 stents;
treatment of > 3 lesions; bifurcation PCI using > 2 stents; total stent length > 60 mm; chronic total occlusion
(CTO) as the target lesion®!~3%; complex PCI; and current stent information. Complex PCI was defined when any
one or more criteria were met in the index PCL. Current stent information included the device name, diameter,
and length of current stents. The complete extraction algorithm is explained in Supplementary Method 2 and is
available at our public repository: https://github.com/jiuisdisciple/ CAGtoJSON.

Validation and statistics

After development of the two-step pipeline, the framework’s accuracy was assessed through both internal
and external tests. In the absence of a task-matched benchmark or public dataset, we selected independent
cardiologists’ manual extraction as the most clinically meaningful comparator that reflects real-world practice.
The primary endpoint was exact-match accuracy at the item level, which is appropriate for this task because each
key point has a single, unambiguous target value (e.g., lesion location/type; device name/diameter/length). For
the internal test, two experienced cardiologists (JYJ and HSK) independently extracted the 12 key information
points manually. We then held a consensus adjudication in which the cardiologists reviewed both their manual
extractions and the framework’s outputs to produce an item-level gold-standard answer sheet. The framework’s
performance was compared against the cardiologists’ pre-consensus extractions using Fisher’s exact test (p
value threshold of 0.05). For the external test, cardiologists directly evaluated the framework’s extraction results
through thorough inspection.

Data availability

The study’s underlying data include deidentified free-text CAG notes that contain sensitive clinical information
with a risk of re-identification. Therefore they will not be made publicly available. Inquiries should be directed
to the designated corresponding author (SCY).
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