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Coronary angiography (CAG) reports contain many details about coronary anatomy, lesion 
characteristics, and interventional procedures. However, their free-text format limits their research 
utility. Therefore, we sought to develop and validate a framework leveraging large language models 
(LLMs) to convert CAG reports automatically into a standardized structured format. Using 50 CAG 
reports from a tertiary hospital, we developed a multi-step framework to standardize and extract key 
information from CAG reports. First, a standard annotation schema was developed by cardiologists. 
Thereafter, an LLM (GPT-4o) converted the free-text CAG reports into the hierarchical annotation 
schema in a standardized format. Finally, clinically relevant information was extracted from the 
standardized schema. One hundred CAG reports from each of two hospitals were used for internal 
and external test, respectively. The 12 key information points included four CAG-related (previous 
stent information, lesion characteristics, and anatomical diagnosis) and eight percutaneous coronary 
intervention (PCI)-related key points (complex PCI criteria and current stent information). For internal 
test, two interventional cardiologists independently extracted information, with discrepancies 
resolved through consensus, as reference standard. Based on the reference standard, the proposed 
framework demonstrated superior accuracy for CAG-related (99.5% vs. 91.8%; p < 0.001) and 
comparable accuracy for PCI-related key points (98.3% vs. 97.4%; p = 0.512) in the internal test. 
External test confirmed high accuracy for both CAG- (96.2%) and PCI-related key points (99.4%). 
This framework demonstrated excellent accuracy in standardizing free-text CAG reports, potentially 
enabling more efficient utilization of detailed clinical data for cardiovascular research.
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Coronary angiography (CAG) reports contain information about coronary artery disease and percutaneous 
coronary intervention (PCI), providing invaluable data for clinical research. However, CAG reports are limited 
by their unstructured, free-text format, which makes it difficult to search, analyze, and process data consistently1. 
With continued growth in the secondary use of clinical data, observational studies on coronary artery diseases 
using electronic health records (EHR) continue to increase; however, many of these studies are conducted 
without the use of detailed information on complex coronary anatomy or procedures2–4. Moreover, the lack of 
structured data also hampers the identification of eligible patients for clinical trials based on specific anatomical 
or procedural criteria5, and the quality assessment or performance monitoring of interventional procedures6.

To standardize complex medical information in free-text medical records, Park et al. have previously proposed 
Staged Optimization of Curation, Regularization, and Annotation of clinical text (SOCRATex). This framework 
initially requires domain experts to define a standardized schema that specifies how clinical information should 
be organized. Thereafter, experts manually review clinical notes and annotate relevant information according 
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to this predefined schema to create standardized, machine-readable data7. Although this systematic approach 
effectively converts unstructured clinical notes into analyzable data, it involves a time-consuming manual 
annotation process and requires significant expert involvement, hampering its large-scale implementation5.

Recent advancements in large language models (LLMs), such as ChatGPT, a type of artificial intelligence 
(AI) used for understanding and processing free-text, can structure vast amounts of free-text within EHRs with 
minimal programming effort8. Recent reviews have demonstrated that LLMs consistently outperform rule-
based and earlier machine learning–based approaches, such as BERT, for structuring unstructured medical 
narratives owing to their superior generalization to diverse phrasing9. In fact, various studies have reported 
using LLMs to convert free-text radiology and pathology reports into structured formats, highly accurately10–12. 
Within cardiovascular imaging, however, LLM applications have predominantly focused on either non-invasive 
coronary CT angiography (e.g., CAD-RADS standardization)13,14 or right heart catheterization15,16, while the 
application of LLMs to transform CAG reports—with their complex procedural details—into machine-readable 
formats remains unexplored.

Therefore, building upon the previous work on hierarchical annotation, this study sought to develop a two-
step framework that converts free-text CAG reports into a hierarchical, machine-readable schema using an LLM, 
then applies rule-based logic to extract 12 predefined key points. We then validated the framework internally 
against cardiologist extraction and externally on an independent hospital set, and we test generalizability using 
alternative LLMs with identical prompts.

Results
Dataset characteristics
Table 1 summarizes the composition of the training, internal test, and external test datasets according to the 
year of procedure and the type of included coronary intervention. The training dataset consisted of 50 reports, 
including 26 combined CAG + PCI, 21 CAG-only, 1 PCI-only, and 2 other reports (angiography of coronary 
artery bypass grafts). The internal test dataset included 100 reports composed of 41 CAG + PCI, 55 CAG-only, 3 
PCI-only, and 1 other report. The external test dataset comprised 100 reports, with 57 CAG + PCI, 41 CAG-only, 
1 PCI-only, and 1 other report (angiography of inferior vena cava filter placement). Across all datasets, both 
CAG- and PCI-related information were often intermingled within the same report.

Internal test
Table  2 and Fig. 1 show the accuracy of the framework using GPT-4o and the mean accuracy of the two 
cardiologists in extracting clinical key points from CAG reports in the internal test dataset.

The framework demonstrated a significantly higher mean accuracy than that of the cardiologists in extracting 
the four CAG-related key points (99.5% vs. 91.8%, p < 0.001). For individual CAG key points, the framework 
showed superior accuracy in location of previous stents (100.0% vs. 91.1%, p = 0.001), previous stent information 
(100.0% vs. 95.3%, p = 0.032), and location and type of lesion (97.9% vs. 80.7%, p < 0.001). Both the framework 
and cardiologists achieved 100% accuracy for anatomical diagnosis.

For the eight PCI-related key points, the framework showed comparable accuracy to the cardiologists across 
all items, with mean accuracy scores of 98.3% versus 97.4% (p = 0.512). The framework and the cardiologists 
performed similarly for each specific point: multivessel PCI (100.0% vs. 100.0%), ≥ 3 lesions treated (97.7% vs. 
97.7%), bifurcation PCI with ≥ 2 stents (100.0% vs. 97.7%), ≥ 3 stents implanted (97.7% vs. 97.7%), CTO PCI 
(100.0% vs. 100.0%), total stent length > 60 mm (97.7% vs. 97.7%), complex PCI (97.7% vs. 98.9%), and current 
stent information (95.5% vs. 89.8%). All p values were above 0.05, indicating no significant differences between 
the framework and the cardiologists. More detailed results are shown in Supplementary Table 1.

A qualitative analysis was done to understand the significant discrepancies in accuracy between the framework 
using GPT-4o and the cardiologists. As shown in Supplementary Table 2, cardiologists often generated errors 

Characteristics of the training, internal test and external test set

Training set Internal test set External test set

Total number of reports 50 100 100

Year of procedure

  2009–2013 10 25 0

  2014–2018 22 44 0

  2019–2023 18 31 0

  2024 0 0 100

Included procedure

  CAG and PCI 26 41 57

  CAG only 21 55 41

  PCI only 1 3 1

  Others 2* 1* 1†

Table 1.  Characteristics of the training, internal test, and external test datasets. CAG coronary angiography, 
PCI  percutaneous coronary intervention.*Reports about angiography of coronary artery bypass graft; †Report 
about inferior vena cava filter placement.
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by mislabeling the location of previous stents, current stents, and lesions. They also frequently misclassified 
the type of lesions due to missed key descriptors, such as “eccentric” and “ostium”. In contrast, the framework 
consistently performed precise extraction of information from very complex cases, as shown in Supplementary 
Fig. 3A and 3B.

Multi-model results
When the same framework was applied using Gemini-2.5-Flash and Claude-4.5-Sonnet, both models achieved 
comparable or superior performance to the cardiologists in analyzing 12 key information points of CAG and 
PCI. Specifically, for the 4 CAG-related key information points, both models showed significantly higher 
accuracy than cardiologists (p < 0.001), whereas for the 8 PCI-related key information points, the performances 
were non-inferior (p > 0.05). The detailed accuracy percentages and confidence intervals are summarized in 
Supplementary Table 3.

External test
Table 3 shows the accuracy of the framework in extracting clinical key points from CAG reports in the external 
test dataset. For the four CAG-related key points, the framework achieved a mean accuracy of 96.2%, showing 
consistently high performance across each item. For the eight PCI-related key points, the framework achieved a 
mean accuracy of 99.4%, also showing consistently high performance across each item. These results indicated 
the framework’s robust accuracy in extracting key details from both CAG and PCI data. Supplementary Table 4 
shows more detailed results.

A qualitative analysis was conducted to understand the reasons for errors made by the framework. As shown 
in Supplementary Table 5, some inevitable errors arose from the inherent ambiguity and inconsistencies within 
the CAG section of the reports themselves. However, the PCI sections of the reports were structured using seven 
key items for each treated lesion—“Location,” “Guiding catheter,” “Guidewire,” “Preballoon,” “Adjuvant balloon,” 
“DEB,” and “Stent”—which provided a well-organized foundation for data extraction. This pre-existing structure 
in the free-text report significantly facilitated the conversion into a machine-readable format by the LLM, 
resulting in high accuracy for extracting PCI-related key points. Supplementary Fig. 4 depicts two representative 
cases from the external test set, showcasing the excellent capability of the framework in converting all the details 
of a highly complex CAG and PCI case into a machine-readable format.

Discussion
This study shows that a two-step approach—LLM standardization followed by rule-based extraction—can 
transform free-text CAG reports into analyzable data with accuracy comparable to or exceeding cardiologists 
on CAG key points and non-inferior performance on PCI key points, with consistent results in an external 
cohort and across alternative LLMs. These results suggest that automated standardization of complex medical 
documents is not only feasible, but can be implemented with high reliability, potentially transforming how we 
utilize clinical information embedded in unstructured medical reports.

To our knowledge, no previous study has attempted to convert detailed information about coronary anatomy 
and catheterization procedures from free-text reports into a machine-readable format. A recent systematic 
review indicated that natural language processing research in the field of cardiology remains underexplored as 
compared to that in the field of oncology17. Although the availability of coded information in EHRs and claims 
data has increased substantially, most large-scale observational studies have not utilized detailed information 
about coronary anatomy or procedural characteristics18. While studies leveraging data from dedicated registries 

Key information points Framework Cardiologists* p value

Total 4 CAG-related key information points 99.5% (98.1 to 99.9) 91.8% (89.6 to 93.6) < 0.001

Location of previous stents 100.0% (96.2 to 100.0) 91.1% (86.2 to 94.8) 0.001

Previous stents information 100.0% (96.2 to 100.0) 95.3% (91.3 to 97.8) 0.032

Location and type of lesion 97.9% (92.7 to 99.7) 80.7% (74.4 to 86.1) < 0.001

Anatomical diagnosis 100.0% (96.2 to 100.0) 100.0% (98.1 to 100.0) 1

Total 8 PCI-related key information points 98.3% (96.3 to 99.4) 97.4% (96.0 to 98.5) 0.512

Multivessel PCI 100.0% (92.0 to 100.0) 100.0% (95.9 to 100.0) 1

≥ 3 lesions treated 97.7% (88.0 to 99.9) 97.7% (92.0 to 99.7) 1

Bifurcation with ≥ 2 stents 100.0% (92.0 to 100.0) 97.7% (92.0 to 99.7) 0.552

≥ 3 stents implanted 97.7% (88.0 to 99.9) 97.7% (92.0 to 99.7) 1

CTO PCI 100.0% (92.0 to 100.0) 100.0% (95.9 to 100.0) 1

Total Stent Length > 60 mm 97.7% (88.0 to 99.9) 97.7% (92.0 to 99.7) 1

Complex PCI 97.7% (88.0 to 99.9) 98.9% (93.8 to 100.0) 1

Current stents information 95.5% (84.5 to 99.4) 89.8% (81.5 to 95.2) 0.335

Table 2.  Accuracy percentages with 95% confidence intervals for the analysis of 12 key information points by 
the framework and by two cardiologists in the internal test. *The independent extractions performed by the 
two cardiologists have been combined into a single group and the mean accuracy was calculated. CTO chronic 
total occlusion.
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have incorporated such information, this approach requires marked manual effort. Our framework addresses 
this limitation by automatically converting detailed procedural and anatomical information into a structured, 
machine-readable format, which promotes several critical capabilities: (1) systematic analysis of large-scale 
coronary intervention outcomes across different patient populations and institutions, (2) efficient quality 
assessment and performance monitoring of interventional procedures, (3) facilitation of clinical research by 
enabling rapid identification of eligible patients for trials based on specific anatomical or procedural criteria19, 
and (4) providing support for clinical decision-making by making historical procedural data more accessible 
and analyzable.

The framework developed in this study uses a two-step approach to ensure accuracy and interpretability. 
In a previous study, while a one-step approach using LLMs was able to capture basic information accurately, 
it demonstrated difficulty with complex medical reasoning11. For example, in pathology reports, LLMs could 
accurately identify tumor measurements but had difficulty determining accurate cancer staging. To overcome this 
limitation, we separated our process into two distinct steps: first, using LLMs to organize the basic information 
from CAG reports into an expert-defined standardized format, and second, applying specific rules developed by 
cardiologists to build clinically relevant data. This approach, similar to methods successfully used in pathology 
research12, combines the LLM’s strength in understanding medical text with cardiologist-designed rules for 
interpreting nuance and complexity in coronary anatomy and catheterization. Furthermore, an instruction 
prompt was given to LLM to encode domain-specific knowledge and detailed rules, as guided by cardiologists, 
to ensure accurate and consistent mapping of the intricate information contained in CAG reports.

Fig. 1.  Bar plot showing the accuracy percentages with 95% confidence intervals for the analysis of 12 key 
information points by the framework and by two cardiologists in the internal validation process. This figure 
compares the accuracy of the framework and of the two cardiologists in analyzing 12 key information points 
during the internal validation process. (A) shows the overall accuracy for four coronary angiography (CAG)-
related and eight percutaneous coronary intervention (PCI)-related key points. (B) presents individual 
accuracy for the four CAG-related key points. (C) displays the accuracy for the eight individual PCI-related 
key points. Statistical significance is indicated as follows: *for p < 0.05, **for p < 0.01, and ***for p < 0.001.
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The significance of our work extends beyond its immediate performance metrics. By developing and publicly 
releasing a comprehensive hierarchical annotation schema for CAG reports, we have provided a standardized 
framework that other institutions can readily adopt or modify for their specific needs. In addition, the 
framework proved to be model-agnostic when tested with alternative large language models. Using the same 
internal test dataset and identical prompts, we re-evaluated the framework with Gemini-2.5-Flash and Claude-
4.5-Sonnet. Both models achieved results comparable to those obtained with GPT-4o, showing significantly 
higher accuracy than cardiologists for CAG-related key information points (p < 0.001 for both) and non-inferior 
performance for PCI-related key points (p > 0.05). These findings (Supplementary Table 2) underscore that the 
proposed hierarchical annotation framework can maintain high reliability across different LLMs, demonstrating 
its generalizability beyond a single model implementation. This flexibility and generalizability are particularly 
important as healthcare institutions increasingly seek to process sensitive clinical data by using internal systems 
rather than external services. With the rapid advance in the capabilities of open-source LLMs, our framework 
offers a practical blueprint for standardization of automated medical documents that could be implemented 
using various LLM options, while maintaining high accuracy and reliability. The primary advantage is that it 
saves time and human effort.

The study had some limitations. First, only CAG reports from hospitals in South Korea were used to validate 
the robustness of the framework. To ensure thorough validation, the framework should be implemented on 
CAG reports from more diverse countries. Second, this study utilized only proprietary LLMs as the LLM for 
standardization. Therefore, further testing is needed to determine whether its high accuracy and reliability will 
be maintained even with less-competent open-source models, such as Llama-320. Third, unlike the internal 
validation, the external validation process only evaluated the framework’s accuracy as judged by cardiologists, 
without direct comparison to cardiologists’ manual reviews. Although the framework achieved excellent 
accuracy in the external test, a direct comparison with manual reviews would have more clearly demonstrated 
its capabilities. Fourth, in both the internal and external validation processes, accuracy was evaluated based 
on only a single output from the LLM. Although we set the LLM’s “temperature”—a parameter that controls 
the randomness and variability of the model’s responses—to zero, in order to maximize predictability, slight 
variability remained due to the model’s inherent characteristics. Fifth, this study did not directly evaluate 
the downstream clinical utility of the proposed framework. Although it demonstrated high accuracy in 
transforming CAG reports into structured data, we did not conduct follow-up analyses to assess its impact on 
real-world research tasks—such as enabling large-scale observational studies or facilitating the identification 
of eligible patients for clinical trials. Future work should therefore focus on applying this framework to actual 
cardiovascular datasets to evaluate its practical contribution to clinical research and decision support.

In conclusion, we developed a novel framework for standardizing free-text CAG reports and extracting 
complex clinical data. This framework demonstrated excellent accuracy in standardizing CAG reports, 
indicating its potential for more efficient utilization of detailed clinical data in these reports for cardiovascular 
research. Future research should focus on applying this framework to real-world cardiovascular datasets to 
assess its effectiveness in accelerating large-scale observational studies and improving the efficiency of clinical 
trial eligibility identification based on free-text CAG reports.

Methods
Study design and datasets
CAG studies of adults (> 18-years-old), performed from January 1, 2009, to December 31, 2023 (15 years), at 
Severance Hospital, a tertiary hospital, were retrieved. From these, 50 and 100 CAG reports were randomly 
selected for the training and internal test sets, respectively. Following the Society for Cardiovascular Angiography 
and Interventions’ expert consensus,6 these CAG reports included the coronary anatomy and described lesions 

Key information points Accuracy of framework

Total 4 CAG-related key information points 96.2%

Location of previous stents 95.9%

Previous stents information 98.0%

Location and type of lesion 94.9%

Anatomical diagnosis 95.9%

Total 8 PCI-related key information points 99.4%

Multivessel PCI 100.0%

≥ 3 lesions treated 100.0%

Bifurcation with ≥ 2 stents 98.3%

≥ 3 stents implanted 100.0%

CTO PCI 100.0%

Total stent length > 60 mm 100.0%

Complex PCI 100.0%

Current stents information 96.6%

Table 3.  Accuracy percentages for the analysis of 12 key information points by the framework in the external 
validation test. CTO chronic total occlusion.
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with their location, severity, and morphological characteristics. PCI-related information, including the types 
and sizes of catheters, balloons, stents, and adjuvant devices, was thoroughly detailed in the CAG report. All 
reports were written in English, with rare exceptions of Korean texts describing emergency situations during 
procedures.

Furthermore, 100 random CAG reports from the National Health Insurance Service Ilsan Hospital, a 
secondary hospital, obtained between January 1, 2023, and December 31, 2023, were retrieved as an external 
test set.

This study was approved by the Institutional Review Board (IRB) of Severance Hospital (IRB No. 2024-1928-
002), Seoul, Korea, and the IRB of the National Health Insurance Service Ilsan Hospital (IRB No. 2024-09-006). 
The requirement for informed patient consent was waived by the IRBs due to the retrospective nature of the 
study.

Framework overview
Figure 2 illustrates our CAG report standardization framework. After development of a hierarchical annotation 
schema by experience cardiologists (detailed below), the framework consisted of standardization and extraction 
steps. In the standardization step, an LLM converted free-text CAG reports into a standardized format based 
on the expert-defined schema. Thereafter, an automated extraction algorithm extracted the required clinical 
information. We intentionally adopted the two-step design—LLM-based standardization followed by rule-based 
extraction—to leverage the LLM’s strength in text normalization while ensuring interpretability and consistency 
through deterministic, cardiologist-defined rules. This hybrid design mitigates errors observed in prior one-
step LLM extraction approaches for complex medical reasoning tasks, providing both scalability and clinical 
transparency11. Figure 3 details the development and validation of the framework, including iterative refinement 
with interventional cardiologists to ensure clinical accuracy and reliability.

Development of the hierarchical annotation schema
A domain-specific hierarchical annotation schema was collaboratively developed by interventional cardiologists 
(JYJ) and clinical informatics experts (JWS and SCY). This schema defined how to organize key clinical information 
from CAG reports systematically, including coronary anatomy, lesion characteristics, and procedural details. 
Through iterative testing using the training dataset, we refined the schema to ensure comprehensive and accurate 
capture of complex clinical information. The schema was implemented in JavaScript Object Notation (JSON) 

Fig. 2.  Overview of the two-step framework for free-text CAG report standardization and data extraction. The 
framework consists of two primary steps: (1) standardization and (2) extraction. In the standardization step, 
free-text coronary angiography (CAG) reports are converted into a machine-readable hierarchical annotation 
schema using large language models (LLMs), guided by instruction prompts and optional few-shot prompts. 
This schema defines the structure and content of the machine-readable format generated in this manner. In the 
extraction step, 12 key data points are extracted from these machine-readable reports to enable automated and 
precise data analysis, providing insights into clinical variables, such as lesion characteristics, stent details, and 
complex percutaneous coronary intervention information.
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format, which enabled efficient organization of multiple clinical events (e.g., multiple lesions or procedures) and 
flexible representation of clinical details at various levels of granularity10–12. The full annotation schema is shown 
in Supplementary Fig. 1.

Development of instruction and few-shot prompts
Utilizing the schema, we developed an instruction prompt21 that consist of designation of a role to LLM as a 
data scientist, assignment of a task to convert free-text CAG note into JSON format, exhaustive rules to follow, 
domain-specific knowledge, and the schema to adhere. The domain-specific knowledge included a Synergy 
Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) score segmentation 
system22 for precise documentation of coronary anatomy; lesion morphology and characteristics based on 
American College of Cardiology/American Heart Association (ACC/AHA) classification23–25; and details of the 
intervention, procedural complications, and outcomes.

Furthermore, we developed a few-shot prompt using eight representative cases from the training dataset that 
encompassed various clinical scenarios, from simple single-vessel disease to complex multivessel interventions, 

Fig. 3.  Overview of the training, internal test, and external test processes of the framework. Fifty CAG reports 
from Center 1 were used during the training phase to iteratively refine the schema-embedded prompts and 
extraction logic until stable performance was achieved. For the internal validation, 100 reports from Center 1 
were processed by both the developed framework and two cardiologists. A consensus meeting, reviewing both 
the framework outputs and cardiologists’ extractions, produced a gold-standard answer sheet against which 
accuracy was evaluated. For the external validation, 100 reports from Center 2 were analyzed to assess the 
framework’s generalizability, with cardiologists independently inspecting and confirming each extracted result. 
Center 1, Severance Hospital; Center 2, Ilsan Hospital. LLM, large language model.
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ensuring consistency in the interpretation of complex anatomical and procedural details. While these reference 
cases were utilized for an internal test, they were not applied in the external test, to avoid institutional bias in 
reporting styles. The full instruction prompt and few-shot prompts are shown in Supplementary Fig.  1 and 
Supplementary Fig. 2, respectively.

LLM implementation
Building on to the rigorous refinement of the instruction and few-shot prompts, Generative Pretrained 
Transformer 4 Omni (GPT-4o) from OpenAI26, one of the commercially-available LLMs, was used as the 
representative LLM for internal and external test dataset. To test the model-agnostic nature of the proposed 
framework, we additionally evaluated the same internal test dataset using two alternative large language models, 
Gemini-2.5-Flash (Google DeepMind)27 and Claude-4.5-Sonnet (Anthropic)28. Each model was implemented 
in an identical pipeline and prompt structure without further optimization. For practical prompt engineering 
and validation of the large dataset, a low-code workflow using ‘GPT for Excel Word’, an extension that is easy 
to use in Microsoft Excel, was used to directly invoke the API of LLMs inside Excel. Solely with the prompts 
we developed, anyone who does not know how to code can convert CAG reports into structured format within 
Excel. A simple implementation example using ‘GPT for Excel Word’ is provided in Supplementary Method 1 
to help readers reproduce the workflow in their own institutions. In accordance with the Minimum Reporting 
Items for Clear Evaluation of Accuracy Reports of Large Language Models in Healthcare (MINI-CLEAR-LLM) 
checklist, we disclose the details of this study to ensure transparency in utilizing LLMs for healthcare applications 
in Supplementary Method 129.

Rule-based extraction of 12 key information
Only after the first step of standardization of free-text CAG reports into machine-readable format is completed 
can the second step of extracting clinically relevant key information be performed through rule-based algorithm.

Two cardiologists (JYJ and HK) pre-defined the following 12 key information points: four CAG-related key 
points and eight PCI-related key points. The four CAG-related key points included the location of previous 
stents, previous stent information, the location and type of lesion, and anatomical diagnosis (e.g., two-vessel 
disease). Previous stent information included the device name, diameter, and length of previous stents. Type of 
lesion (A, B1, B2, and C) was determined for each lesion according to the ACC/AHA classification. The eight 
PCI-related key points focused on the six criteria of complex PCI30: Multivessel PCI, implantation of ≥ 3 stents; 
treatment of ≥ 3 lesions; bifurcation PCI using ≥ 2 stents; total stent length > 60 mm; chronic total occlusion 
(CTO) as the target lesion31–35; complex PCI; and current stent information. Complex PCI was defined when any 
one or more criteria were met in the index PCI. Current stent information included the device name, diameter, 
and length of current stents. The complete extraction algorithm is explained in Supplementary Method 2 and is 
available at our public repository: https://github.com/jiuisdisciple/CAGtoJSON.

Validation and statistics
After development of the two-step pipeline, the framework’s accuracy was assessed through both internal 
and external tests. In the absence of a task-matched benchmark or public dataset, we selected independent 
cardiologists’ manual extraction as the most clinically meaningful comparator that reflects real-world practice. 
The primary endpoint was exact-match accuracy at the item level, which is appropriate for this task because each 
key point has a single, unambiguous target value (e.g., lesion location/type; device name/diameter/length). For 
the internal test, two experienced cardiologists (JYJ and HSK) independently extracted the 12 key information 
points manually. We then held a consensus adjudication in which the cardiologists reviewed both their manual 
extractions and the framework’s outputs to produce an item-level gold-standard answer sheet. The framework’s 
performance was compared against the cardiologists’ pre-consensus extractions using Fisher’s exact test (p 
value threshold of 0.05). For the external test, cardiologists directly evaluated the framework’s extraction results 
through thorough inspection.

Data availability
The study’s underlying data include deidentified free‐text CAG notes that contain sensitive clinical information 
with a risk of re-identification. Therefore they will not be made publicly available. Inquiries should be directed 
to the designated corresponding author (SCY).
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