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The green chemistry approach in synthesizing nanoparticles, particularly using plant extract, has 
gained booming demand for eco-friendly nanotechnology, evaluating their multifunctional properties, 
and exploring potential applications. Hence, addressing the need for sustainable nanomaterials in 
biomedical and environmental fields. This work describes the synthesis of silver nanoparticles (AgNPs) 
using Manilkara zapota (M. zapota) leaf extract as a reducing agent through a simple bio-combustion 
method. The synthesized AgNPs were characterized by various analytical techniques such as UV-visible 
spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission 
electron microscopy (TEM), and so on. The optical studies of the AgNPs reveal a bandgap energy of 
about 3.31 eV. The nanoparticles synthesized in this work were found to crystallize in a cubic phase, 
corresponding to JCPDS #96-9013046, in the Fm-3 m space group. The crystallite size was 22.38 nm 
and was independently confirmed through the W-H plot (24.75 nm). Infrared spectroscopy results 
revealed the characteristics of O-H stretching at 3335 cm⁻¹ and a metal peroxide peak at 849 cm⁻¹, 
respectively. It was seen that the SEM and TEM images depict a clustered agglomeration of the 
nanoparticles, while EDAX confirmed the elemental composition. The as-synthesized AgNPs showed 
high catalytic efficiency towards degradation of MB dye (83.33%) following 0th order kinetics with an 
R² value of 0.98 and rate constant k₀ of 0.007, under acidic conditions at pH-2 being optimal for their 
performance. The antibacterial assays showed that AgNPs were effective against both Staphylococcus 
aureus (gram-positive) and Escherichia coli (gram-negative) bacterial strains. Activity was observed 
at a low concentration of 400 µg/mL. Hence, the obtained AgNPs prepared via bio-combustion route 
resulted in a potential multifunctional nanomaterial with strong catalytic properties coupled with 
antibacterial activity.
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Science has continued to advance at a fast pace, an aspect valid by the observation of nanotechnology, which 
is embarking on a phenomenal growth in the development of new products with multifunctional applications 
inherent in them and, in equal measure, applied in the field of medicine and environmental conservation1–4. 

1School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka 570 026, India. 
2Department of Chemistry, SSK Basaveshwar UG & PG College, Basavakalyana, Affiliated to Bidar University, Bidar, 
Karnataka 585 327, India. 3Department of Chemistry, M. S. Ramaiah College of Arts, Science and Commerce, MSR 
Nagar, MSRIT Post, Bengaluru, Karnataka 560 054, India. 4Department of Biotechnology, GM University, Davangere, 
Karnataka 577 006, India. 5Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, 
Uttarakhand 248 002, India. 6Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 
Riyadh 11451, Saudi Arabia. 7Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary 
Medicine, University of Kirkuk, Kirkuk 36001, Iraq. 8Department of Biotechnology and Bioinformatics, JSS Academy 
of Higher Education and Research, Mysuru, Karnataka 570 015, India. 9Department of Clinical Sciences, College 
of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 − 5606, USA. 10Department of Surgery, 
Pirogov Russian National Research Medical University, 117997 Moscow, Russia. 11Institute of Digital Biodesign and 
Modeling of Living Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 
Moscow, Russia. email: silinaekaterina@mail.ru; shivachemist@gmail.com

OPEN

Scientific Reports |         (2026) 16:2316 1| https://doi.org/10.1038/s41598-025-32173-w

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-32173-w&domain=pdf&date_stamp=2025-12-11


Metal nanoparticles, with their intriguing physicochemical properties, have played a significant role in the 
technological advancement of nanotechnology. Nonetheless, finding eco-friendly and cost-effective materials 
and synthesis procedures is a significant problem, which has driven increased interest in green technologies5,6. 
Among all these materials, the silver nanoparticles (AgNPs) have such great interest owing to their enhanced 
bactericidal, antifungal, and catalytic properties as well as other physicochemical properties7–10. Earlier, AgNPs 
synthesis has been carried out by chemical and physical methods, which are expensive, time-consuming, 
energy consuming and involve toxic reducing agents, raising certain environmental and safety concerns. To 
these challenges, the green synthesis approach using bio-sources, including plants, fungi, and bacteria, has 
therefore emerged as the best and safest way of preparing nanoparticles11,12. Considering the biogenic sources 
for the synthesis of nano silver, the Manilkara zapota (M. zapota) could be more effective for green synthesis of 
AgNPs13–15. This tree-borne fruit is native to Mexico and Central America and is widely grown globally for the 
edible nuts as well as medicinal values due to the existence of phytochemicals like tannins, flavonoids, saponins, 
and other bioactive compounds16. Such phytochemicals have antioxidant, antimicrobial, and anti-inflammatory 
properties; therefore, M. zapota can be considered a renewable bio-template for synthesizing functional 
nanomaterials17,18. M. zapota is considered bioactive, so it enhances this property to synthesize AgNPs and 
follow the green chemistry strategy to minimize the negative impact of nanoparticles on the environment.

The biosynthesis of AgNPs using the plant extract of M. zapota belongs to the biogenic category, whereby 
there is a reduction of Ag+ to AgO. The process is generally carried out under slightly acidic pH, and the process 
does not involve the use of toxic solvents or other such chemicals. This results in the synthesis of AgNPs, which 
are entrapped by capping agents; these are other phytochemicals that are present in the plant extract that assist 
in preventing the coagulation of the nanoparticles19,20. This is a fast method when it comes to nanoparticle 
synthesis since it is cheaper and yields nanoparticles with properties pegged to the phytochemicals present in 
the plant extract. The bio-assisted combustion with calcination approach of synthesizing nanomaterials has a 
significant advantage over standard, environmentally friendly synthesis in that it allows for the rapid, energy-
efficient synthesis of highly crystalline nanoparticles with regulated shape. Optimized calcination at 750  °C 
eliminates residual organics and promotes crystallinity without particle aggregation, enhancing the functional 
qualities of the nanomaterial21–23.

The biomedical applicability of AgNPs is widely recognized and documented in various studies, which 
emphasize their effectiveness against many pathogens such as bacteria, fungi, and viruses. The activity of AgNPs 
as antimicrobials has been ascribed to the ability to generate reactive oxygen species (ROS), destroy microbial 
cell membranes, and interfere with essential metabolic processes in these cells. Nevertheless, depending on the 
size, shape, surface charge, and capping agents on nanoparticles that depend on the synthesis method and the 
reducing agent being used, their action mechanisms differ24–26.

There has been an increasing interest in the recent past on using plant-mediated AgNPs for environmental 
applications, particularly in degrading organic pollutants. Among the most stubborn and harmful chemicals 
that are in use in the textile, paper, and leather industries are organic dyes that persist in wastewater27–29. In 
developing effective and sustainable wastewater treatment tools, a lot of research has been directed towards the 
catalytic degradation of these dyes with AgNPs. The capacity of AgNPs to initiate the disintegration of organic 
dyes is largely reliant upon their surface area, electronic configuration, and presence of active sites, which can be 
tailored by controlling the synthesis method and capping agents used30,31. Herein lies a double advantage of using 
M. zapota L. extract for the biosynthesis of AgNPs. First, new antibacterial agents could be made by exploiting 
the antimicrobial properties of M. zapota-mediated AgNPs, especially at such times when there happens to 
be a rise in antibiotic resistance levels. Second, these nanoparticles can work as catalysts for breaking down 
dangerous organic dyes, hence providing an eco-friendly technique for removing environmental pollutants.

The present work novels on evaluating the multifunctional potency of synthesized AgNPs through a green 
approach. The prepared AgNPs were characterized using various physicochemical techniques for structure, 
optical, and morphological properties. Further, the bio-combusted sample is employed in degrading the cationic 
dye, Methylene Blue (MB). The results were utilized in studying the kinetics and mechanism involved in 
degrading the same. Furthermore, the same has been utilized in anti-bacterial evaluation against Gram-positive 
and Gram-negative bacterial strains.

Experimental
Chemicals and analytical techniques
The pristine analytical grade silver nitrate (AgNO3) (≥ 99.0%), purchased from Sigma-Aldrich (USA), was used 
as a precursor. The Bruker D8 Advance Powder X-ray diffractometer (Microstar Proteum 8) was used as an 
experimental method of examining the structure of the as-synthesized sample (). Moreover, the FESEM JEOL 
JSM-7100 F device was utilized to determine the surface morphology and elemental composition of the samples. 
The precisely resolved JOEL JEM-2100 plus TEM Japanese Transmission Electron Microscope was employed to 
give a more accurate average particle size assessment utilizing ImageJ, a free software available at ​h​t​t​p​s​:​/​/​i​m​a​g​e​j​.​
n​e​t​/​i​j​/​i​n​d​e​x​.​h​t​m​l​​​​​. The spectrophotometer employed in probing the band gap and conducting photocatalysis was 
Lab India UV-3200. FTIR analysis was performed using SHIMADZU IR, XRoss. Horiba nanoparticle analyzer 
SZ-100 was employed for Dynamic Light Scattering (DLS) analysis.

Preparation of M. zapota L. extract
The preparation of M. zapota L. extract follows the method reported in our previous work40. The M. zapota leaves 
were identified with the help of a taxonomist (Dr. Murali, University of Mysore), and fresh leaves were plucked 
from the plant in the botanical garden located at Manasagangotri campus, University of Mysore (deposited in 
the Herbarium lab at University of Mysore having voucher number 12/1941). The leaves were properly cleansed 
with double-distilled water and placed in a beaker measuring 250 milliliters along with 100 mL of water. The 
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mixture was heated for an extended period until 100 mL was reduced to 25 mL of the leaf extract (L. extract). The 
combination was then filtered, and the filtrate was stored at 4 °C for further characterization.

Synthesis of M. zapota L. extract mediated silver nanoparticles (AgNPs)
A bio-assisted combustion synthesis was used in synthesizing the sample of AgNPs40. First, 1.69 g of AgNO3 was 
calculated for the stoichiometric amount and put into a combustion crucible. Then, 5 mL of freshly extracted 
M. zapota L. extract was added as a fuel along with the double-distilled water, and the combination was allowed 
to agitate for 30 min to get a highly neutral solution. The same was introduced into a preheated muffle furnace 
maintained at a temperature of 500 °C, resulting in a typical combustion product that was taken to obtain the 
black amorphous product. Additionally, the obtained sample was calcined for 2 h at 750 °C to obtain AgNPs 
of the desired phase. A brief synopsis of the synthesis process is depicted in Fig. 1. The same was conducted in 
triplicate to achieve the appropriate yield 1.086 g, 64.3%) sufficient for sample characterization.

Catalyst activity against MB dye
The bio-combusted AgNPs were utilized as a photocatalyst in removing 10 ppm (10 mg/L) MB dye solution in 
acidic medium, conducted in a 3 mL cuvette cell at an ambient temperature of 27 ± 5 °C. A dosage of 60 mg of the 
previously mentioned photocatalyst was used in these solutions. These solutions were further stirred in the dark 
for 60 min inside a UV chamber equipped with an amiciVision UV flashlight, attaining adsorption-desorption 
equilibrium. Furthermore, every 3 mL solution at a time interval (10 min) starting from the blank solution was 
picked and analyzed for absorption spectrum between 525 and 725 nm wavelength using Lab India’s UV-3200 
spectrophotometer. The degradation rate was evaluated using Eq. (1)32,

	
%D = A0 − At

A0
× 100� (1)

Where A0 and At resemble absorption at the 0th minute and particular time illumination, respectively.

Fig. 1.  Schematic representation of bio-combustion of AgNPs and its reaction mechanism involved.
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Results and discussion
Absorption studies
Estimation of the band gap is important in understanding the electronic characteristics of a material, which 
in turn defines the appropriateness of the material for semiconductor, photocatalyst, and optical applications. 
Hence, a reflectance spectrum (Fig. 2a) between 200 and 600 nm was recorded for the synthesized AgNPs, which 
was further involved in calculating the energy band-gap using the Kubelka-Munk (K-M) relation (2)33,

	 [F (R)] = K/
S � (2)

	 K = (1 − R)2 S = 2R

Where R indicates the reflectance coefficient. The evaluated band-gap energy was found to be 3.31 eV as depicted 
in Fig. 2b.

Structural phase analysis
Powder X-ray diffraction (PXRD) analysis is of great importance in defining the phases and structural details of 
nanomaterials, which act as a key factor in a wide range of applied fields. The prepared AgNPs were characterized 
by a powder X-ray diffraction (PXRD) technique to provide structural information. Figure  3 depicts the 
diffracted peaks of AgNPs in accordance with JCPDS card #96-901-3046, thus confirming that the observed 
phase is cubic (Fm-3 m). The obtained parameters were (α = β = γ = 90° and a = b = c = 4.0860 Å). Planes (111), 
(200), (220), (311), and (222) were allocated to 2θ = 38.14°, 44.32°, 64.46°, 77.43°, and 81.56°, respectively. For 
the same peak values, Scherrer’s relation (3) was applied in evaluating the average crystallite size34.

	
Dhkl = 0.9 ∗ λ

βhklcos θ
� (3)

Where, Dhkl is referred to as crystallite size, βhkl as Half Maximum of Full Width (FWHM) of the observed peaks. 
Also, θ resembles the diffracting angle, and λ is the wavelength of the X-rays used. The average crystallite size 
was evaluated to be 22.38 nm. The same was affirmed by applying the Williamson-Hall (W-H) relation (4) for 
the obtained results, as shown in Fig. 435. The obtained value was well aligned with the crystallite size from the 
PXRD analysis (24.75 nm) with a strain component (ε) value of 3.2 × 10− 3 and R2 value of 0.987.

	
βhklcos θ = 4ϵ sin θ + 0.9λ

Dhkl
� (4)

The same was verified by the Stress-Strain Plot (SSP) (Text S1), which was found to be Dhkl = 25.02 nm and 
ε = 5.4 × 10− 3 (Figure S1).

IR studies
The vital part of molecular analysis using vibrational transitions is in determining molecular structures and 
the chemical composition of a particular object. Figure 5 demonstrates the IR spectra recorded between 500 
and 4000 cm− 1 of both M. zapota L. extract and AgNPs. Prominent bands at 849 cm− 1, 882 cm− 1, 1105 cm− 1, 
1444 cm− 1, 1554 cm− 1, 1656 cm− 1, and 3335 cm− 1 were observed. Upon referring to the available literature, 
the band at 3335  cm− 1 is assigned to O-H stretching. Bands at 1105, 1444/1554, and 1656  cm− 1 can be 
attributed to C-N stretching, N-H stretching, and C = C/C = O moieties, respectively. The band ranging between 

Fig. 2.  (a) Recorded reflectance spectrum and (b) K-M plot of synthesized AgNPs.
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2458 –1897 cm− 1 is attributed to C-H stretching from methylene groups. At last, the bands at 849 cm− 1 and 
882 cm− 1 were observed due to the presence of metal peroxides (Ag-O) (< 1000 cm− 1)36–39.

Morphology
Morphology evaluation is one of the key aspects in predicting the functional properties of nanostructures since 
it is associated with material shape and size distribution. Hence, the as-synthesized AgNPs were subjected to 
study the shape and size distribution using SEM and TEM microscopy. Figure 6 depicts the SEM images at 3 μm 
(Fig. 6A), 2 μm (Fig. 6B), 1 μm (Fig. 6C), and a magnified version of Fig. 6B (Fig. 6D), showing an agglomerated 
assembly morphology for synthesized AgNPs. This agglomeration may be due to the usage of green fuel and 
calcinating temperature after combustion synthesis40. Figure  7 presents the EDX spectrum, which confirms 
the elemental composition of the synthesized AgNPs. The peaks indicating the major components are silver 
(Ag), exhibiting a notably high weight% of approximately 76.5%. The presence of oxygen (~ 17.5%) suggests the 
potential existence of surface oxide or phytochemical capping derived from the extract of M. zapota L. A minor 
carbon signal (~ 5.9%) is apparent, likely resulting from residual plant metabolites or adsorbed atmospheric CO₂ 
during the sample preparation process. The results validate the effective green synthesis of AgNPs with high 
purity, and the elemental composition aligns with the PXRD and FTIR analyses, further substantiating both the 
structure and composition of the nanomaterial.

Figure 8 (a–c) shows the TEM images of as-synthesized AgNPs at 500, 100, and 50  nm magnification, 
confirming the agglomeration of AgNPs in the clusters. The same has been utilized in evaluating the average 
particle size of ~ 24 nm using the line tool in ImageJ software (ImageJ 1.53t, https://imagej.net/ij/). This result 
is aligned with the calculated crystallite size in PXRD analysis. Also, Fig. 8d indicates the two prominent peaks 
(111) and (200) and confirms the crystallinity of the sample. At last, Fig. 8e and f show the HRTEM resolution of 

Fig. 3.  PXRD profile of as-prepared AgNPs is in good agreement with the card #96-901-3046.
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the sample, which is used further to evaluate the d-spacing value, which is to be found at 0.351 nm. Further, the 
same TEM images have been utilized to obtain the particle size distribution histogram as shown in Fig. 8g, which 
is well aligned with the evaluated average particle size of ~ 24 nm, which was further authenticated by particle 
size analysis of the recorded DLS data as depicted in Figure S2 of the supporting information.

Catalytic activity of as-synthesized AgNPs against MB dye
The removal of cationic MB dye was observed through absorption studies conducted using a UV-visible 
spectrophotometer between 525 and 725 nm wavelengths, as seen in Fig. 9(a). Initially, a UV chamber equipped 
with an AmiciVision UV flashlight was utilized to conduct the absorbance studies. 60 mg of AgNPs catalyst 
was added to 100 mL MB dye solution with a 10 ppm concentration and stirred in the dark for 60 min to attain 
the adsorption-desorption equilibrium. Later, once the illumination was made, 3 mL solution was taken out 
every 10 min for recording the absorption spectrum. The dye observed a noticeable 83.33% degradation after 
110 min of UV illumination inside a UV chamber (Fig. 9b). Further, the same absorbance results were utilized 
in studying the degradation using the zeroth-order kinetic relation (5)41,

	 At = A0 − kt� (5)

This shows that the degradation results were best aligned with R2 = 0.98 and k0 = 0.007 as depicted in Fig. 9c.
Investigating the pH influence on dye degradation is vital as the pH affects both the efficacy and mechanism 

of degradation, thus affecting the general effectiveness of existing treatment procedures in removing dyes from 
water. Hence, the solution containing 10 ppm of MB dye and 60 mg of prepared catalyst, AgNPs, was maintained 
at pH levels 2, 4, 6, and 8 using a suitable buffer. The same was kept under UV illumination to examine the 
degradation of MB dye, and found that the maximum dye removal occurred in acidic medium (pH 2) (Fig. 9d).

Furthermore, the degradation rates were also studied in the presence of different scavengers. The selected 
scavengers: (i) Ascorbic Acid (AA), (ii) Ethylenediamine tetraacetic acid (EDTA), and (iii) 2 Propanol (IPA) 
serve as the trappers of superoxide radicals (·O2

−), holes (h+), and hydroxyl radicals (·OH), which are responsible 
for dye removal. Results depicted in Fig. 10 reveal that the MB degradation was minimally affected by the selected 
scavengers. AA affects the degradation rate from 83.3% to 79.5%, EDTA, to 79.8%, and IPA, to 80.8%.

Degradation mechanism
When UV-Vis light is exposed to a photocatalyst, an electron (e) is excited from the valence band into the 
conduction band, generating a positive hole (h+). The cleavage of water molecules by h+ or e− reduces surface 
absorbed oxygen species to produce superoxide ions (02−)42–44. Nevertheless, in either case, highly reactive 
hydroxyl radicals attack certain organic compounds, thus permitting their decomposition into smaller 
intermediates and finally carbon dioxide (CO2) and water (H2O) without any danger45–49. All the observed 
results and the scavenger effect suggest a possible degradation mechanism proposed in Fig. 11.

Fig. 4.  W-H plot of AgNPs using the respective diffraction peaks.
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Antibacterial activity
The as-synthesized AgNPs were evaluated for antimicrobial activity by agar well diffusion method, as described 
by previous reports50, with slight modifications. The prepared AgNPs were labeled as AgS for convenience 
purposes and tested against the bacterial strains, gram-positive Staphylococcus aureus MTCC-7443 and gram-
negative Escherichia coli MTCC-7410. The inoculum was adjusted to approximately 5 × 105 CFU/mL with sterile 
saline solution. The sample was dissolved at 10 mg/mL in DMSO as a stock solution and loaded into different 
concentration ranges, 200 µg to 600 µg, for different wells. The medium used was Muller Hinton agar (Hi-media) 
and incubation at 37 °C for 12 h After incubation, the diameter of the inhibition zone (mm) was measured. The 
results tabulated in Table 1 show that the prepared sample was active for both gram-positive and gram-negative 
beyond 400 µg/mL, which is shown in Fig. 12 in comparison with standard drugs, Penicillin G for gram-positive 
and Ciprofloxacin for gram-negative bacterial species at 60 µg/mL.

The synthesized AgNPs have shown strong antibacterial action against both Gram-positive Staphylococcus 
aureus and Gram-negative Escherichia coli pathogens, with greater inhibition at doses over 400  µg/mL. 
Greater inhibition zone widths with higher nanoparticle concentrations indicate a dose-dependent impact of 
antibacterial activity. The somewhat increased sensitivity shown in E. coli compared to S. aureus may be explained 
by structural changes in the cell wall. Gram-negative bacteria have an outer membrane containing negatively 
charged lipopolysaccharides, which may interact electrostatically with positively charged AgNPs surfaces, 
increasing nanoparticle uptake. Gram-positive bacteria, on the other hand, have a thicker peptidoglycan coating 
that may inhibit nanoparticle penetration and hence provide a reduced sensitivity.

The mechanism for AgNPs’ antibacterial effect is considered to be complex. First, AgNPs attach to the 
bacterial cell’s surface, disrupting membrane permeability and integrity. This causes the leaking of critical 
intracellular components, which leads to cell lysis. AgNPs produce reactive oxygen species (ROS) such as 
hydroxyl radicals (•OH), superoxide anions (O2

−), and hydrogen peroxide (H2O2), causing oxidative stress and 
damage to bacterial proteins, lipids, and nucleic acids. AgNPs produce Ag+ ions, which attach to thiol (-SH) 
groups in bacterial enzymes and proteins. This inhibits respiratory enzymes and ATP synthesis. Furthermore, 

Fig. 5.  Recorded FT-IR spectrum of as-synthesized AgNPs.
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Ag+ ions may bind to bacterial DNA and hinder replication and transcription activities. These combinatorial 
actions lead to the effective destruction of bacterial cells. Thus, AgNPs’ antibacterial effect is the result of a 
combination of physical membrane rupture, chemical interaction via ion release, and oxidative stress induction. 
The variety of these pathways not only increases the efficacy of AgNPs but also reduces the likelihood of bacterial 
resistance development, making them ideal candidates for use in antimicrobial coatings, wound care products, 
and disinfectant applications51,52. Further, the comparative analysis of reported AgNPs and its photocatalytic 
and antibacterial activities are tabulated in Table 2.

Fig. 7.  EDAX spectrum of AgNPs affirming the precursor elements.

 

Fig. 6.  SEM images at different magnifications (A) 3 μm, (B) 2 μm, (C) 1 μm, and (D) magnified region of (B) 
2 μm.
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Conclusion
To sum up, AgNPs were successfully synthesized using M. zapota leaf extract as a reducing agent through a 
simple bio-combustion method. The synthesized AgNPs were characterized for optical, phase, and morphology 
using various analytical techniques such as UV-Visible spectroscopy, PXRD, SEM, and TEM. The optical studies 
reveal that the band-gap energy of the as-synthesized AgNPs is 3.31 eV. The structural evaluation of as-prepared 
AgNPs aligns the observed peaks with JCPDS #96-901-3046 with a cubic phase and Fm-3 m space group. The 
calculated crystallite size was found to be 22.38 nm, and the same was affirmed by the W-H plot (24.75 nm). 
Further, the IR spectral analysis reveals the characteristic O-H stretching peak at 3335 cm− 1 and metal-peroxide 
peak at 849 cm− 1 (< 1000 cm− 1). The clustered agglomeration was characterized with SEM and TEM images. 

Fig. 8.  (a–c) TEM images of synthesized AgNPs at 500, 100, and 50 nm, respectively. (d) SAED image 
affirming two prominent peaks (111) and (200), (e, f) HRTEM images with d-spacing evaluation, and (g) 
obtained particle size distribution histogram.
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Initial precursors were also affirmed through EDAX analysis. Furthermore, the prepared sample was utilized in 
degrading the cationic dye, MB, through absorption studies. The results show a noticeable 83.33% degradation, 
which aligns with 0th order kinetics (R2 = 0.98, k0 = 0.007). pH effect reveals that the maximum degradation 
rate was observed in the acidic medium (pH 2). Also, a minute decrement was observed in the degradation rate 
after the incorporation of selected scavengers into the degradation solutions. The as-prepared AgNPs were used 
to evaluate the antibacterial potency against Staphylococcus aureus (gram-positive) and Escherichia coli (gram-
negative) bacterial strains. The results affirm a responsive activeness from 400 µg/mL against both the bacterial 
strains. All the observed results suggest that the as-prepared AgNPs as a potent catalytic and antibacterial agent.

Fig. 9.  (a) Time-sensitive absorption spectrum depicting the degradation of cationic MB dye, (b) time-
sensitive degradation rate curve, (c) zeroth-order kinetics plot, and (d) pH effect on degradation rate of MB 
dye.
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Fig. 11.  Suggested photo-degradation of MB dye using AgNPs.

 

Fig. 10.  Scavenger effect of as-synthesized AgNPs on the degradation rate of MB dye.
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Data availability
All the data generated or analyzed during this study are included within the article and supporting information 
file.
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2 Centaurea behen leaf extract 98% (Safranin O) S. aureus (11 mm for 240 µg/mL), S. epidermidis (10 mm for 240 µg/mL), M. 
luteus (15 mm for 240 µg/mL) and E. coli (10 mm for 240 µg/mL)

54

3 Pandanus tectorius root extract 82.6% (Methylene Blue) P. aeruginosa (13 mm for 100 µg/mL) 55

4 Cassia fistula flower extract 83.82% (Methylene Blue) and 65.14% 
(Crystal Voilet) S. aureus (16.2 mm for 250 µg/mL) and E. coli (11.8 mm for 50 µg/mL) 56

5 Santalum album L. extract 71.3% (Malachite Green) and 92.14% 
(Methylene Blue)

S. aureus (17.2 mm for 500 µg/mL) and P. aeruginosa (12.3 mm for 500 µg/
mL)

57

Table 2.  Comparison analysis of various AgNPs as potential catalytic and antibacterial agents.

 

Fig. 12.  Images depicting the antibacterial activity of as-synthesized AgNPs against (A) S. aureus and (B) E. 
coli.

 

Sample Code Conc. (µg/mL) Inhibition Zone against Staphylococcus aureus (mm)

Inhibition Zone against
Escherichia coli
(mm)

AgS
Standard drug

DMSO – –

200 – –

400 14.66 ± 0.57 13.33 ± 1.15

600 17.33 ± 0.57 15.33 ± 0.57

60 19.33 ± 0.57 17.66 ± 0.57

Table 1.  Antibacterial test results against two bacterial strains.
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