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Investigation of a Lyapunov delta-
type inequality with respect to a
discrete fractional Green’s function

Pshtiwan Othman Mohammed2*? & Meraa Arab3*®

This article considers a Lyapunov delta-type inequality with Green'’s functions including fractional
falling functions. We define a fractional difference problem of Riemann-Liouville type with a fractional
boundary condition and, using the Green'’s function, obtain the ordering property in a discrete domain.
Moreover, we apply the properties of this function to find the existence of a delta Lyapunov inequality.
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Recent studies have revealed that there has been a major advance in the theory of discrete fractional calculus
(DEC) and it has significant applications in many fields of engineering, fractional calculus theory and physics.
At its heart, it seeks to study the issue of modifying and generalising the sum and difference operators of the
continuous calculus to more general operators of non-integer order'™*. The most commonly used operators
of DFC are Riemann-Liouville (RL) and Liouville-Caputo operators>® as they can be directly interpreted as
fractional powers of the simple 1st-order forward differences.

Fractional boundary value problems (FBVPs) including discrete fractional operators have been examined
and investigated by many scholars from the fields of fractional theory”?®, signal processing®!?, Robust stability
analysis'"!?, and practical physics'>!4. The scholars have expanded the theory’s application of FBVPs to
investigate existence and uniqueness of their solutions and their work have developed several techniques for
constructing discrete Green’s function (GF) schemes, see, for example!>~1°.

Many systems of FBVPs, including Caputo and Riemann-Liouville operators, are known to depend heavily
on fractional Lyapunov inequalities®?!. Although the discrete counterparts of Lyapunov-type inequalities are
still in a developmental stage, the Lyapunov-type inequalities for continuous fractional differential equations
have been extensively studied (see, e.g.,”*~%°). As it is known that within discrete fractional calculus, two primary
operators exist: the delta and the nabla . The literature shows a growing body of work on nabla-type fractional
Lyapunov inequalities®®~2%, the delta sense remains less explored. The delta operator, which models forward
differences, is particularly relevant for applications in digital signal processing and forward-time control systems.
Our study specifically targets this gap by developing a Lyapunov inequality for a discrete problem of Riemann-
Liouville type in the delta sense, thereby contributing a novel tool to this specific and important subfield.

It is essential to further establish the theoretical foundation of fractional Lyapunov inequalities to enhance
their applications in the systems of FBVPs in the delta sense. Our main contributions are as follows:

o We consider the delta fractional problem (FP) of Riemann-Liouville type:

(5513-1AV y) (5) = —h(3+v), 1€ Nypt20), v € I, (1.1)
with the delta boundary conditions (DBCs)

y(g0) =0,
(12)
(A y) (C—v) =0, ae .,
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where b : Ny 42 ¢) — R,and ¢ — jo € Noy with j0,¢ € R.

o We construct the corresponding GF for (1.1) and analyze its essential properties.

« Existence and uniqueness of delta FP (1.1) is examined.

« Finally, by considering the corresponding GF, the corresponding fractional Lyapunov inequality is established
on the delta FP:

GoriA"y) () = —q0+v)y(1+v), 7€ Nyot20), v E I,
(1.3)

Y(20) =0, (0A%Y) (C—v)=0, a€,

where ¢ : N¢jg12,6) = R,

Our study is outlined as follows: Sect. 2 presents theory of discrete fractional calculus. Section 3 is devoted to
studying the existence of the delta FP (1.1) in Sect. 3.1 and some maximality results on the GFs in Sect. 3.2. In
Sect. 4, we analyze the theoretical results of the GF on the Lyapunov delta-type inequality. In Sect. 5, we present
some special examples which they demonstrate the validity of the main theorems. The final section provides a
brief discussion and future work.

Preliminaries
Let J, = [n — 1,n]and I, = (n — 1,n) withn € Ny. Then, for 3 € N,o 1y = {0 + v, 50 + v+ 1,...} and
y defined on N, the delta RL sum is defined as follows:

(JOA7Vy> (9 = Z %, (see [2, Definition 2.25]), (2.1)

and for 3 € N, +n—_.), the delta RL difference is defined as follows:

Jt+v

—v—1
(;’ELAVy) () = Z %, (see [6, Theorem 2.2]), (2.2)
T=Jo
for v € I,, and we have
PR RN L Rt ) (2.3)

rg+1—=z-v)

Note that the delta RL operators (2.1) and (2.2) serve as the discrete analogue of the fractional integral and
differential in the continuous setting. These accumulate the values of the function y from the starting point
Jo up to 3 — v and j+ v, with each terms weighted by the fractional falling function (7 — o(z))“— and
(3 — o(x))=~=L, respectively, and normalized by T'(v). Here, o(p) = p + 1 is the forward jump operator in the
time scale calculus, and this sum is fundamental for defining the corresponding fractional difference operator.

Next, the unique solution for the delta FP (1.1) can be expressed using the corresponding Green’s function,
which we construct and denote by 2 (¢; 7, x).

Lemma 2.1 (see®) A unique solution for the delta FP (1.1) can be given by

¢
vo) = D 7°Gana)h), 7€ Ny, (24)

r=70+2

where the function 2%(; j, x) represents the Green’s function associated with the fractional boundary value
problem (1.1)-(1.2). It is defined as:

D ( (- o Cmtpa )P (g 2)i Tt .
91 (4-7.77 ZC) = ((7]04»}1,7&72)“70‘71 (1) 5 7€ N(]O,zfl)v

2°(¢; 5, %) = )

PD5(C5 9, @) = DR (G g, ) — U= — 7€ Nz o).

Remark 2.1 One can note that

(i) 2°(Gap0+1)=0, 7€ Ny 0
(i) 2% g0,2) =0, = €Nygia,0:

GF and its properties
Some necessary properties of the GFs will be stated in the first subsection. Next subsection will be dedicated to
the maximality results on the GFs.
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GFs results
For (3, %) € N(y9,¢) X N(y942,¢), we have the following major lemmas.

Lemma 3.1 (see®32) 2°((; 3, x) is nonnegative when

=1
0;
1.

e eQ
Il

Lemma 3.2 If0 < a1 < ae < 1, then, we have
7% 9,2) < 2°2(G; 9, ).
Proof By considering the fact that ]g = (34 6 — 1)%, the inequality (2) of Lemma 2.1 in®* can be recast as

follows:

s (+rv+o—1)2

+v—-1 . (3.1
G e IRy g 1
So, we can rewrite 2((, a1; 3, z), withv = p — a1 — 1and § = a1 — aw, as follows:
(ot (g=gotu—2)E2 .
a (GRS LA S ’ 7 € Neo,a—1);
2 (C;9,m) = s -
(C—z4v)2  (=gotp—2)—  (Q—ztp-—1)—0
C—g0tv—1Z D) ) 1€ NGo-
(C—gotvs—1E  (C—atv+0)FL  (gotu—2t=t )
(C—atv+6)L  ((—jotvis—1)LES T(w) ) JE N(Jowal)’
= (C—gotv+6-1E  (Catv 4 (Gjotu-2EL
(C—z4v+06)% (c_]0+y+§_1)ﬂ T'(p)
— — r—
— e —, 1€ NG
(C—gotp—02-2)2172 ¢y ap,-1ETO2TL (g4 o)L .
(C—atn—as—1)1=22 ((—jotp—az—2)t-22"1 L) ’ € NOO@?U’
= (C—gotn—ap=2)21"%2 (—aip—ay—1)H2"1 Gy 4pu—2)=L
(¢—atu—0z—1)H=2 ((—jo+u—az—2~—"2— )
—xtu—1)E—=
—bmep—, 7€ Ne.g)-
In addition, by using 5= (7 + 0 — 1)% into the inequality (3) of Lemma 2.1 in®, we get
0<)<r = (r—-1-0=2<(@-1-0==L (3.2)
In addition, we use (3.2) with
0= —a1<(—z+p—a1=3<(—go+p—ar—1=m,
to obtain
C—gpo4+p—a—2)2"22 < ((—z+p—a—1)2=22 (3.3)

Therefore, we see that

(C—z4p—ap—DH2"L (g4 p—o)=t .
<§*JO+M*&2272)7“706271 - (k) ’ J€ N(Jo’xil)’

72 0,2) < )
(C—atp—as—DE22"0 (hp—go—2)2=L  (pu—o—1)E=L
Y ettt S N ) w0 1€Neo:

This implies that
2% (G 9,8) < D°2(C5 9, 2),

for (3,x) € Nyg+1,¢) X Nyg+2,¢). This ends the proof. O
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Corollary 3.1 The following nonnegativity can be hold
7°(¢;9,2) 2 0.

Proof This proof can be obtained from Remark 2.1 and Lemmas 3.1-3.2. [

Lemma 3.3 Assume that (1 < (a.

(i) If 0<a<wpu—1, then 2%((i;7,2) < 2%((2;7, ).
(ii) If pw—1<a<1, then 2%((i;7,2) > 2%((2;7,2).
(i) f a=p—1, then 2%((;y, ) is independent of b.

Proof Let p =y — a — 1. Then, by taking V to 2°((; 3, ) w.r.t. ¢, we get

a(p _ =gt p-2 (—z+p?*
Vel 7 (Gon] =T CLC—m+p—lV]
et p -1 (ot p—2)tt

Y=t

I
Itis clear that I'(i) > 0, (z — 30 — 1) > 0, and
ot _LTO—gp+p-1)
(3+um—73 —2) R CET >0,
B et _ T —z+p)
and
_ et €= +p)
C—p+p—1) re oo

Therefore, V¢ [.@"‘(C;], x)] > 0 when 0 < & < gt — 1 and which proves (i). And V¢ [.@"(C;], x)] < 0 when
i —1 < a <1, which gives (ii). Also, V¢ [90‘ (¢, m)] = 0if @« = p — 1 and this means that 2%((; 7, ) is

independent of b. Thus, the proof is completed. [
Next, we define

(C—z+p—1— )=t

Al B s

>0,

for x € N;o42,¢0).
Remark 3.1 It follows from the above definition that:

(a) Inview of the identity 35 =(34+60—1)%inthe inequality (2) of Lemma 2.1 in*, we get

1<t = (140 <(r—1+0)% (34)

So, for { —x < ¢ — g0 — 1, by using (3.4), we get

(C—z— 1+ pE2 < (C— g0 — 2+ p)=,

which implies that H (¢, 0; z) < 1.

(b) Since —(p—2) < ¢ —x+1 < {— jo, from (3.2) with 6 = p — 2, we get
C=p0-3+w=< -z -2+ k=2,

which implies that H (¢, 1;z) > 1.

Lemma 3.4 For x € N(,,42,¢), we have

H®'(¢z) < H*? (G ),
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suchthat0 < a3 < as < 1.

Proof Reconsidering the identity (3.1), we can rewrite H ({, a1; ) in terms of H (¢, ce2; ) as follows:

al (-, _ (C —rz+p—aor — 1)u—a1_1
H (C?x)_ (C_JO+M_Q1_ )H_al_l
(C*]O*l)w. (C7x+ﬂfa271)w

(C—2)2=22 (=0 +p—ay—2)L=222

_ (=g —1)== ,
- (C_m)alfoé2 H(Ca OZQ,IE)

< H** (¢ 2),
where, according to (3.3), we have used

(=g —D2=22

1.
C-mm= =

Thus, the proof is done. [

Lemma 3.5 Letx € N;42¢).

(i) It 0<a<p-1, then H*((z) <1
(i)If p—1<a<l1l, then H((;z)> 1
(iii) If a=p—1, then H%((z)=1.

Proof The proof of (iii) is direct. To prove (i): Let p = yt — o — 1. Then, by knowingthat (( — z) < ({ — 0 — 1)
and by using (3.4), we have
C=—z+pP<(C—p0+p—1)7

which implies that 727 ((; ) < 1.
Next, we prove (ii) by using the fact that

—p<((—z+p)<((—gp+p—1), where p=p—a-1,
and (3.2), we get
C—20+p—1DE<((—z+p),
which gives that H*({; ) > 1. Hence, the proof is completed. (]
Lemma 3.6 Letx € N, 42 ¢)and (1 < 2.
(a) If 0<a<wpu—1, then H((1;7) < H((2; 7).

b)If p—1<a<l, then H*((1;2) > H((2;x).

Proof Let p = 1t — a — 1. Then, taking V to H*((; ) w.r.t. ¢, we get

Ve[H((2)] = Ve [M]

—x — 1)t
e

It is clear that I'(p) > 0, (z — go — 1) > 0, and

-1 _T(C—x+p)

C—z4+p-1) m>07
and
_ et L€ =30+ p)
C=n+p-1) =T oD "
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Hence, V¢ [HO‘(C;J:)] >0 when 0 < o< p—1 and we get (i). In addition, V¢ [HQ(C;x)] < 0 when
1 —1 < a < 1,so (ii) is obtained. Consequently, the proof is done. [J

Maximality results
Theorem 3.1 The maximality of 2°((; 7, x) is given by

@a(ﬁl’l—l,l‘l), 0<a<pu-—1
max ,@a(g;]’ :E) =
(3:2)€N(+1,¢) XNgp+2,0) max{ (C z—1 xl) a(c; $27x2) _ 1}7 p—l<a<l,
where
_ | (o +{+3)+ ¢
xr1 = s
2p—1

and

b {(p)(Jo+C+3)+Ca+1J
2p—1 ’

Proof Let x be a fixed point in N, 2 ¢y and set p = 1t — a — 1. Then, by considering the fact that (it is easy
to be proved):

V= (- 1) (3.5)

we have, for 30 + 1 < 7 < z — 1 that

2°(¢;0,2) =V, [W(J*’H —J0 —2)k—

I(p)
= %(J —J0+p—3)L2 3.6)
H((x)T (g4 p— g0 — 2)

Moreover, V, 2°((;3,z) > 0 as H > 0 and #m > 0. Consequently, 2°((; 7, x) is an increasing

function of 7in Ny 41,0—1).
Besides, for x < 7 < (, we see that

7°(G ) = v, | TG )(H'“_JO—?(M) G—ztp-—1)" ]
_HY G2V, 0+ =30 =2 = -V, -zt p-1F— -1
IN(Y) (37)
_ HQ(C;ﬁ”)(J—JO-l—/L—S)ﬁ—(j—&—,u—ac—Z)d
P(p—1)
_ H%(G2) u—2 H'(3;2)
_M(J_JO+M_3)|:1_W:|

We know from (3.6) and I'(ps — 1) > O that

The, there are two cases that arise:

o Leta € [0, u — 1]. Then, by using Lemma 3.5 and Remark 3.1, we have

HY(Go) <1 and H'(z)>1, (5,2) € Ny x Nygiz.0),

which gives that V, 2°((; 3, z) < 0.
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o Leta € (u — 1,1]. Then, by considering Lemmas 3.4 and 3.6, we have
H*(Gz) < H(32) < H'(532),  (3,2) € Nawoy) X Ngpa2,0)5

which implies that V, 2°(¢; 3, z) < 0.
Consequently, 2%(¢; ,x) is a decreasing function of 7 in NS. As a result, we see that 2 increases from
290 + 1,z) to 2%(C; ¢ — 1, ), however, it decreases from 2%((; x, ) to 2°(¢; ¢, ).

Next, we will try to find the maximality of 2 for a fixed 7, which appears in (x — 1, ) or (x, x). We know that

H(Gw)(w — g0+ p—3)E=L

7°(Gz—1,2) = 7

and

H*(Ga)(x + p— go — 2)2=2

T'() -t

2°(Cx,x) =

Then, the following cases can be established:

(a) Leta € [0, 1 — 1]. Then, according to Lemma 3.5, we have

H(Ga) (& — g0+ p—3)= — (z — g0 + p — 2)L=

7°(CGr—1,2) = 7%(CG o) =1+

L'(p)
_ 1 MG D) A — g0+ i — 3)—
IND) (3.8)
o HGo) @t p— 32
L(p—1)
T — g0+ p — 3)E=2
21—

Since x — 0 + 1 — 3 < p — 2, according to (3.4), we have

(@ —go+p =32 < (p—-2=2=T(p—1).

By using this into (3.8), we obtain

2%z —1Lx) = P2*(CGr,x) >0 = P, x) < P°(CGr—1,z).

After that, we try to maximize 2°((;x — 1, ) forz € Ngo +2- By considering,

Va [(C—w+p)5(w—30+u—3)5}
N[

ot p) oot p— 42

(B)(C—g0+p—1)E

I'(w)
x [(u—l)(é—m+p+1)—p(ﬂv—Jo+u—3)}~

Ve 2%((x—1,2) =

Due to this, we note that I'(u) > 0,

p-1 _ r¢c—z+p+1)

2 T(x—90+p—3)
and
. e LC=p+p)
C—2+p—1)~2= T = 70) > 0.
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In addition, the solution of

=D —z+p+1)—(p)(xr—g0+p—3)=0,

(p) (o +C+3)+C04_

= 21

We consider

L {(p)(ao+<+3)+<aJ.
2p—1

If

- {(P)(10+C+3)+CQJ
— 21071 )

then (p—1(C—z+ pt 1) — (p)(x — g0 +p—3) is positive and therefore
(¢ —x + p)2(z — go + p — 3)“=Lis increasing. However, if

. {(p)(ao+4+3)+CaJ
- 2p_1 )

then (w—1D(C—z+ P D —(p)(x—g0+p—3) is negative and therefore
(C =z 4 p)2(x — g0 + p — 3)2=L is decreasing. Hence, (¢ — z 4 p)2(z — g0 + p — 3)“=L has a maxi-
mum at

L {(P)(J0+C+3)+CO¢J
2p—1 ’

and therefore,

max 29¢;5,2) = max 2%z —1,2)
0:2)EN (g +1,0) XN +2,0) €N +2,0) (3.9)

= ,@Q(C;xl - 1,351).

(b) Leta € (p — 1, 1]. By the same technique as done before, we can maximize 2°((; z, x) forx € NJCO+2 as

follows:

Va [(C —z+p)(x—g0+p— 2)“—’1}
D(p)(C—go+p—1)2

_ G-z +p)P e —go+p—3)=2
D)€ —g0+p—1)2
(

x (=Dt p+ 1) = pla— o+ n-2).

Ve 2°(G2,m) =

It is clear that I'(p) > 0,

p*l_F(<_$+p+1)
(Ciijp)i*F((——w—i—Q)

_ I(z+p—jg0 —2)
Ve B ke o Lk )
( Jo 12 ) F(l'—jo)

>0,

>0,

and
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_ e L= +p)
C—go+p—-1t= T = 7o) > 0.

Additionally, the solution of

=D —z+p+1)—(p)(xr—g0+p—2)=0,

(p)(go+¢+3)+Ca+1
2p—1 ’

Tr =

Next, we consider

L {(p)(yo+é+3)+Ca+1J.
2p—1

If

- {(P)(J0+C+3)+CO‘+1J7
2p—1

then (=1 —z+p+1)—(p)(x—g0+p—2) is positive and therefore
(¢ —x+ p)2(z — g0 + p — 2)“—Lis increasing. Besides, if

. {(p)(JOHHHCaHJ’
2p—1

then p—1D(C—z+p+1)—(p)(x—g0+p—1) is negative and consequently,
(€ —z 4 p)2(z — g0 + p — 2)2=L is decreasing. So, (¢ — = + p)2(x — 70 + 1 — 2)“=L has a maximum at

v {(P)(Jo+§+3)+ca+1J
2p—1 '

Thus, in view of (3.9), we get that
@a(C;j,x):maX{ max 2%((x—1,z), max Qa((;m,x)}

2€N(42,¢) €N(;42,¢) (3.10)

= max{@“ (C;Jm — 1,x1),9”(§;x2,x2) — 1}.

max
(3:@) €Ny +1,0) XNy +2,¢)

Combining (3.9) and (3.10) proves the theorem. [
The following inequality can be done for 2°((; , ).

Theorem 3.2 For J € N(,41,¢), we have

¢
max E 2°(¢; g, ) = 00—
NG+, (p+ DI (p)

Proof One can rewrite
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¢ J ¢
Y Gy =Y, P Gre)+ Y, PG o)
z=30+2 z=70+2 z=3+1
_ z]: [ C—z+p)? (G+p—gp-2"= (@t+p—z-1)"=
L= == 12 () ()
- C—z+p)* (]"’#—30—2)“1}
+x§;Q[K]0+plr T

_ ¢
Do+ 1)+ p—go— 2L

(C—z+p)*

P =p+p-1 o= Tlp+1)

_ z]: (G+p—a—1)=2t

omgodd I'(p)
— G+p—g—22 - o
_(P+1)F(u)(<—yo+p—1)ﬁ(< Jo+p— 1)
Gtpn—3—2)"

P(p+1)
_ €= =Dt p—g0 =2 = Gtp—jg—2*
(p+ 1)L (1) D(u+1)

Now, since

Otp—g -2  T@—go+p—1)

= >0,
T(u+1) ES TS
for y € N(;41,¢)- Then, we get that
¢ -1
a1 — g — 2)hL
max > 9°(¢pe) = max €=30-D)0+r—3—-2)
IENG+1,0) £ IEN(G+1,0) (p+ 1)I'(p)
z=70+2
_ CH+p—g =2~
(p+DT(k)

which completes the proof. (]

Lyapunov inequality
In view of the maximality result in Theorem 3.1, we will finish our Lyapunov inequality result in this section.

Theorem 4.1 Let there be no nontrivial solution for the delta FP (1.3) on N(;,,¢). Then,

¢ i 0<a<p-1
> (@) > 1
z=30+2 max{Ay1,A2—1}" B 1< S 17
where
A1 = .@a(C;LLj - 1,:81),
and

A2 =9“ (C;:L'Q,ZL'Q).

Proof Lety : N(,, ) — Rbeadiscrete function defined on the Banach space B having the norm

lyll = max |y(s)l-
I€NG,0)

Then, according to Lemma 2.1, we have a solution (1.3) as follows:
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z=730+2
Therefore,
S
Iyl = max | Y 2%(¢;g,2)a(x) y(=)
IE€N(0,0) reg0 42

= max
IENGG+1,0)

<
> 7Ga)e(@) y(@)

z=70+2

S
{ Z 7°(Gi2,2) (x)y(w)l}

<

<yl max 7*(Gaa) Y la@)l,

(7,2)EN XN, .
(0+1,6) *F(30+2,¢) r=30+2

I A

6N(J0+1 3)

it follows from this

<

1< max 7°(Gor) Y la@).

(3,2)EN( 0 11,¢) XN 42,
(0o+1,¢) *H(0+2,¢) 2=704+2

Consequently, the result is obtained from Theorem 3.1. O

lllustrative applications
In this section, two systems of FPs are carried out to outline the benefits of the Lyapunove inequality on the delta
FP (1.3).

Example 5.1 Consider the FP (1.3) with the following specific parameters: Let 3o = 0, { = 8, and . = 1.6. We
will analyze the following cases for two different values of cv.

Firstcase: Leta = 0.4 (so0 < a < pu —1).
Here, p = 1 — o — 1 = 0.2. According to Theorem 3.1, we calculate x1:

p(o+C+3)+la| B
il—\‘ 0 2 — 1 J—I_—QJ——Q.

Since 1 must be in N3 g, the maximum of the GF occurs at the boundary of the domain. For this example,
a direct calculation shows the maximum occurs at (5, z) = (7,8). We find A, = 2°4(8;7,8) ~ 0.105. If
the function q(x) satisfies Zi:z lg(z)] < 1/A1 ~ 9.52, then the FP has no nontrivial solution according to
Theorem 4.1.

Second case: We chooseaa = 0.9 (sop—1 < a < 1).
Here, p = 1 — o — 1 = —0.3. Calculating 1 and x2, we get that:

—~0.3(11) +8 x 0.9
o { —16—1 J [-15)=-2,

{ 0.3(11) +8 x 0.9+ 1
T2 =

oY J |—1.88] = —2.

Again, a direct calculation shows that

max{_@o'g(& 7,8), 2°9(8;8,8) — 1} = max{0.098,0.105 — 1} = 0.098.

Therefore, A1 = 0.098. If Zi:Q lg(z)| < 10.2, the FP has no nontrivial solution according to Theorem 4.1.

Note that this example demonstrates how to concretely apply our theoretical results to obtain a specific
numerical bound for a given system.

Example 5.2 Consider the the eigenvalue FP:
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A

Example Case o | P x1 | @2 * Ag Z la(@)| < 1/Aq (Al >

— 04102 |7 - 0.105 | - 9.52 -
Example 5.1 a=04

@=0909[-03[7 |8 |0.0980.105 |10.2 -

— 04102 |7 0.105 | - - 1.36
Example 5.2 a=04

a=09 09037 |8 ]0098|0.105 - 1.46

Table 1. Summary of numerical results for Examples 5.1 and 5.2

(oA y) () ==Xy +m), 1€Ngpt2.0),
y(0) =0, (5 A%y) (C(—v) =0,

with the same specific parameters: jo =0, ( =8, and p = 1.6. In this example, ¢(z) = A is a constant.
Moreover, we see that

> la@) =l =2+1) =7\,

Suppose that this eigenvalue FP admits a nontrivial solution y(j). Therefore, a necessary condition for such
a solution to exist is that 7|A| must be greater than or equal to the bound derived from the GF according to
Theorem 4.1. By the help of the calculations from Example 5.1, we see that

o For o = 0.4: The necessary condition is 7|\| > 1/A; = 9.52. This implies that for a nontrivial solution to
exist, the eigenvalue must satisfy |A| > 1.36.

o For a = 0.9: The necessary condition is 7|\| > 1/A; = 10.2. This implies that for a nontrivial solution to
exist, the eigenvalue must satisfy |A| > 1.46.

One can observe that this example provides a concrete numerical lower bound for the eigenvalues of the
specified fractional system.

Table 1 is introduced to distill the complex numerical information presented in the text into a clear,
comparative format. It is structured to guide the reader from the initial parameters to the final theoretical
bounds, highlighting the practical implications of our main theorems, which serves as a concise and organized
summary of the key computational outcomes from our illustrative Examples (5.1 and 5.2).

Discussion and future work

In Sect. 3, we have constructed the GF and proved that the delta FP (1.1) has the unique solution including a
kernel with the GE. Additionally, some properties of the kernel have been provided. In Sect. 4, the maximality
of the kernel has been examined and based on this we have studied the Lyapunov delta-type inequalities. The
experimental examples in Sect. 5 indicate that the solution of the corresponding delta-eigenvalue problem to
(1.1) is nontrivial under certain conditions (1.2).

Within the studied framework of Riemann-Liouville delta-type problems, the primary advantage of our
Lyapunov inequality lies in its specificity and the potential sharpness of the resulting bound, enabled by the
detailed maximality analysis of the GF. This tailored approach yields a potentially sharper bound than what
could be derived from existing nabla-based or continuous-analogue results for similar problems. In addition, the
delta framework is naturally suited for modeling forward-time systems in digital control and signal processing,
suggesting direct applicability of our results to these specific engineering domains where nabla or continuous
models may be less intuitive.

We acknowledge that the current analysis in this study is specifically tailored to Riemann-Liouville type
delta operators and linear fractional boundary value problems. Future research can explore extending and
generalizing these results to other fractional operators, such as Caputo or Atangana-Baleanu types (see’), as well
as to nonlinear systems, which would broaden the applicability of the Lyapunov-type inequalities.
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