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This article considers a Lyapunov delta-type inequality with Green’s functions including fractional 
falling functions. We define a fractional difference problem of Riemann-Liouville type with a fractional 
boundary condition and, using the Green’s function, obtain the ordering property in a discrete domain. 
Moreover, we apply the properties of this function to find the existence of a delta Lyapunov inequality.
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Recent studies have revealed that there has been a major advance in the theory of discrete fractional calculus 
(DFC) and it has significant applications in many fields of engineering, fractional calculus theory and physics. 
At its heart, it seeks to study the issue of modifying and generalising the sum and difference operators of the 
continuous calculus to more general operators of non-integer order1–4. The most commonly used operators 
of DFC are Riemann–Liouville (RL) and Liouville–Caputo operators5,6 as they can be directly interpreted as 
fractional powers of the simple 1st-order forward differences.

Fractional boundary value problems (FBVPs) including discrete fractional operators have been examined 
and investigated by many scholars from the fields of fractional theory7,8, signal processing9,10, Robust stability 
analysis11,12, and practical physics13,14. The scholars have expanded the theory’s application of FBVPs to 
investigate existence and uniqueness of their solutions and their work have developed several techniques for 
constructing discrete Green’s function (GF) schemes, see, for example15–19.

Many systems of FBVPs, including Caputo and Riemann–Liouville operators, are known to depend heavily 
on fractional Lyapunov inequalities20,21. Although the discrete counterparts of Lyapunov-type inequalities are 
still in a developmental stage, the Lyapunov-type inequalities for continuous fractional differential equations 
have been extensively studied (see, e.g.,22–25). As it is known that within discrete fractional calculus, two primary 
operators exist: the delta and the nabla . The literature shows a growing body of work on nabla-type fractional 
Lyapunov inequalities26–28, the delta sense remains less explored. The delta operator, which models forward 
differences, is particularly relevant for applications in digital signal processing and forward-time control systems. 
Our study specifically targets this gap by developing a Lyapunov inequality for a discrete problem of Riemann-
Liouville type in the delta sense, thereby contributing a novel tool to this specific and important subfield.

It is essential to further establish the theoretical foundation of fractional Lyapunov inequalities to enhance 
their applications in the systems of FBVPs in the delta sense. Our main contributions are as follows:

•	 We consider the delta fractional problem (FP) of Riemann–Liouville type: 

	
(RL

ȷ0+1∆ν y
)

(ȷ) = −h(ȷ + ν), ȷ ∈ N(ȷ0+2,ζ), ν ∈ I2,� (1.1)

 with the delta boundary conditions (DBCs) 

	

y(ȷ0) = 0,

(RL
ȷ0 ∆α y

)
(ζ − ν) = 0, α ∈ J1,

� (1.2)
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 where h : N(ȷ0+2,ζ) → R, and ζ − ȷ0 ∈ N(2) with ȷ0, ζ ∈ R.

•	 We construct the corresponding GF for (1.1) and analyze its essential properties.
•	 Existence and uniqueness of delta FP (1.1) is examined.
•	 Finally, by considering the corresponding GF, the corresponding fractional Lyapunov inequality is established 

on the delta FP: 

	

(RL
ȷ0+1∆ν y

)
(ȷ) = −q(ȷ + ν) y

(
ȷ + ν

)
, ȷ ∈ N(ȷ0+2,ζ), ν ∈ I2,

y(ȷ0) = 0,
(RL

ȷ0 ∆α y
)

(ζ − ν) = 0, α ∈ J1,

� (1.3)

 where q : N(ȷ0+2,ζ) → R.
Our study is outlined as follows: Sect. 2 presents theory of discrete fractional calculus. Section 3 is devoted to 
studying the existence of the delta FP (1.1) in Sect.  3.1 and some maximality results on the GFs in Sect.  3.2. In 
Sect.  4, we analyze the theoretical results of the GF on the Lyapunov delta-type inequality. In Sect.  5, we present 
some special examples which they demonstrate the validity of the main theorems. The final section provides a 
brief discussion and future work.

Preliminaries
Let Jn = [n − 1, n] and In = (n − 1, n) with n ∈ N1. Then, for ȷ ∈ N(ȷ0+ν) = {ȷ0 + ν, ȷ0 + ν + 1, . . .} and 
y defined on Nȷ0 , the delta RL sum is defined as follows:

	

(
ȷ0 ∆−νy

)
(ȷ) =

ȷ−ν∑
x=ȷ0

(ȷ − σ(x))ν−1

Γ(ν) , (see [2, Definition 2.25]), � (2.1)

and for ȷ ∈ N(ȷ0+n−ν), the delta RL difference is defined as follows:

	

(RL
ȷ0 ∆νy

)
(ȷ) =

ȷ+ν∑
x=ȷ0

(ȷ − σ(x))−ν−1

Γ(−ν) , (see [6, Theorem 2.2]), � (2.2)

for ν ∈ In, and we have

	
(ȷ − x)ν = Γ (ȷ + 1 − x)

Γ (ȷ + 1 − x − ν) .� (2.3)

Note that the delta RL operators (2.1) and (2.2) serve as the discrete analogue of the fractional integral and 
differential in the continuous setting. These accumulate the values of the function y from the starting point 
ȷ0 up to ȷ − ν and ȷ + ν, with each terms weighted by the fractional falling function (ȷ − σ(x))ν−1 and 
(ȷ − σ(x))−ν−1, respectively, and normalized by Γ(ν). Here, σ(p) = p + 1 is the forward jump operator in the 
time scale calculus, and this sum is fundamental for defining the corresponding fractional difference operator.

Next, the unique solution for the delta FP (1.1) can be expressed using the corresponding Green’s function, 
which we construct and denote by Dα(ζ; ȷ, x).

Lemma 2.1  (see29) A unique solution for the delta FP (1.1) can be given by

	
y(ȷ) =

ζ∑
x=ȷ0+2

Dα(ζ; ȷ, x)h(x), ȷ ∈ N(ȷ0,ζ),� (2.4)

where the function Dα(ζ; ȷ, x) represents the Green’s function associated with the fractional boundary value 
problem (1.1)–(1.2). It is defined as:

	

Dα(ζ; ȷ, x) =




Dα
1 (ζ; ȷ, x) := (ζ−x+µ−α−1)µ−α−1

(ζ−ȷ0+µ−α−2)µ−α−1
(ȷ−ȷ0+µ−2)µ−1

Γ(µ) , ȷ ∈ N(ȷ0,x−1);

Dα
2 (ζ; ȷ, x) := Dα

1 (ζ; ȷ, x) − (ȷ−x+µ−1)µ−1

Γ(µ) , ȷ ∈ N(x,ζ).

Remark 2.1  One can note that

	

(i) Dα(ζ; ȷ, ȷ0 + 1) = 0, ȷ ∈ N(ȷ0,ζ);
(ii) Dα(ζ; ȷ0, x) = 0, x ∈ N(ȷ0+2,ζ).

GF and its properties
Some necessary properties of the GFs will be stated in the first subsection. Next subsection will be dedicated to 
the maximality results on the GFs.
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GFs results
For (ȷ, x) ∈ N(ȷ0,ζ) × N(ȷ0+2,ζ), we have the following major lemmas.

Lemma 3.1  (see29–32) Dα(ζ; ȷ, x) is nonnegative when

•	 α = µ − 1;
•	 α = 0;
•	 α = 1.

Lemma 3.2  If 0 ≤ α1 < α2 ≤ 1, then, we have

	 Dα1 (ζ; ȷ, x) < Dα2 (ζ; ȷ, x).

Proof  By considering the fact that ȷθ = (ȷ + θ − 1)θ , the inequality (2) of Lemma 2.1 in33 can be recast as 
follows:

	
(ȷ + ν − 1)ν = (ȷ + ν + δ − 1)ν+δ

(ȷ + ν + δ − 1)δ
.� (3.1)

So, we can rewrite D(ζ, α1; ȷ, x), with ν = µ − α1 − 1 and δ = α1 − α2, as follows:

	

Dα1 (ζ; ȷ, x) =




(ζ−x+ν)ν

(ζ−ȷ0+ν−1)ν
(ȷ−ȷ0+µ−2)µ−1

Γ(µ) , ȷ ∈ N(ȷ0,x−1);

(ζ−x+ν)ν

(ζ−ȷ0+ν−1)ν
(ȷ−ȷ0+µ−2)µ−1

Γ(µ) − (ȷ−x+µ−1)µ−1

Γ(µ) , ȷ ∈ N(x,ζ).

=




(ζ−ȷ0+ν+δ−1)δ

(ζ−x+ν+δ)δ
(ζ−x+ν+δ)ν+δ

(ζ−ȷ0+ν+δ−1)ν+δ
(ȷ−ȷ0+µ−2)µ−1

Γ(µ) , ȷ ∈ N(ȷ0,x−1);

(ζ−ȷ0+ν+δ−1)δ

(ζ−x+ν+δ)δ
(ζ−x+ν+δ)ν+δ

(ζ−ȷ0+ν+δ−1)ν+δ
(ȷ−ȷ0+µ−2)µ−1

Γ(µ)

− (ȷ−x+µ−1)µ−1

Γ(µ) , ȷ ∈ N(x,ζ).

=




(ζ−ȷ0+µ−α2−2)α1−α2

(ζ−x+µ−α2−1)α1−α2
(ζ−x+µ−α2−1)µ−α2−1

(ζ−ȷ0+µ−α2−2)µ−α2−1
(ȷ−ȷ0+µ−2)µ−1

Γ(µ) , ȷ ∈ N(ȷ0,x−1);

(ζ−ȷ0+µ−α2−2)α1−α2

(ζ−x+µ−α2−1)α1−α2
(ζ−x+µ−α2−1)µ−α2−1

(ζ−ȷ0+µ−α2−2)µ−α2−1
(ȷ−ȷ0+µ−2)µ−1

Γ(µ)

− (ȷ−x+µ−1)µ−1

Γ(µ) , ȷ ∈ N(x,ζ).

In addition, by using ȷθ = (ȷ + θ − 1)θ  into the inequality (3) of Lemma 2.1 in33, we get

	 θ < ȷ ≤ r =⇒ (r − 1 − θ)−θ ≤ (ȷ − 1 − θ)−θ.� (3.2)

In addition, we use (3.2) with

	 θ = α2 − α1 < ζ − x + µ − α1 = ȷ < ζ − ȷ0 + µ − α1 − 1 = r,

to obtain

	 (ζ − ȷ0 + µ − α2 − 2)α1−α2 < (ζ − x + µ − α2 − 1)α1−α2 .� (3.3)

Therefore, we see that

	

Dα1 (ζ; ȷ, x) <




(ζ−x+µ−α2−1)µ−α2−1

(ζ−ȷ0+µ−α2−2)µ−α2−1
(ȷ−ȷ0+µ−2)µ−1

Γ(µ) , ȷ ∈ N(ȷ0,x−1);

(ζ−x+µ−α2−1)µ−α2−1

(ζ−ȷ0+µ−α2−2)µ−α2−1
(ȷ+µ−ȷ0−2)µ−1

Γ(µ) − (ȷ+µ−x−1)µ−1

Γ(µ) , ȷ ∈ N(x,ζ).

This implies that

	 Dα1 (ζ; ȷ, x) ≤ Dα2 (ζ; ȷ, x),

for (ȷ, x) ∈ N(ȷ0+1,ζ) × N(ȷ0+2,ζ). This ends the proof. □
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Corollary 3.1  The following nonnegativity can be hold

	 Dα(ζ; ȷ, x) ≥ 0.

Proof  This proof can be obtained from Remark 2.1 and Lemmas 3.1–3.2. □

Lemma 3.3  Assume that ζ1 < ζ2.

	

(i) If 0 ≤ α < µ − 1, then Dα(ζ1; ȷ, x) < Dα(ζ2; ȷ, x).
(ii) If µ − 1 < α ≤ 1, then Dα(ζ1; ȷ, x) > Dα(ζ2; ȷ, x).
(iii) If α = µ − 1, then Dα(ζ; ȷ, x) is independent of b.

Proof  Let ρ = µ − α − 1. Then, by taking ∇ to Dα(ζ; ȷ, x) w.r.t. ζ , we get

	

∇ζ

[
Dα(ζ; ȷ, x)

]
= (ȷ − ȷ0 + µ − 2)µ−1

Γ(µ) ∇ζ

[
(ζ − x + ρ)ρ

(ζ − ȷ0 + ρ − 1)ρ

]

= (ζ − x + ρ − 1)ρ−1 (ȷ − ȷ0 + µ − 2)µ−1

Γ(µ)(ζ − ȷ0 + ρ − 1)ρ+1 (x − ȷ0 − 1)(ρ).

It is clear that Γ(µ) > 0, (x − ȷ0 − 1) > 0, and

	

(ȷ + µ − ȷ0 − 2)µ−1 = Γ(ȷ − ȷ0 + µ − 1)
Γ(ȷ − ȷ0) > 0,

(ζ − x + ρ − 1)ρ−1 = Γ(ζ − x + ρ)
Γ(ζ − x + 1) > 0,

and

	
(ζ − ȷ0 + ρ − 1)ρ+1 = Γ(ζ − ȷ0 + ρ)

Γ(ζ − ȷ0 − 1) > 0.

Therefore, ∇ζ

[
Dα(ζ; ȷ, x)

]
> 0 when 0 ≤ α < µ − 1 and which proves (i). And ∇ζ

[
Dα(ζ; ȷ, x)

]
< 0 when 

µ − 1 < α ≤ 1, which gives (ii). Also, ∇ζ

[
Dα(ζ; ȷ, x)

]
= 0 if α = µ − 1 and this means that Dα(ζ; ȷ, x) is 

independent of b. Thus, the proof is completed. □
Next, we define

	
Hα(ζ; x) = (ζ − x + µ − 1 − α)µ−α−1

(ζ − ȷ0 + µ − 2 − α)µ−α−1 > 0,

for x ∈ N(ȷ0+2,ζ).

Remark 3.1  It follows from the above definition that: 

	(a)	 In view of the identity ȷθ = (ȷ + θ − 1)θ  in the inequality (2) of Lemma 2.1 in33, we get 

	 ȷ ≤ r =⇒ (ȷ − 1 + θ)θ ≤ (r − 1 + θ)θ.� (3.4)

	 So, for ζ − x < ζ − ȷ0 − 1, by using (3.4), we get 

	 (ζ − x − 1 + µ)µ−1 < (ζ − ȷ0 − 2 + µ)µ−1,

	 which implies that H(ζ, 0; x) < 1.

	(b)	 Since −(µ − 2) < ζ − x + 1 < ζ − ȷ0, from (3.2) with θ = µ − 2, we get 

	 (ζ − ȷ0 − 3 + µ)µ−2 < (ζ − x − 2 + µ)µ−2,

	 which implies that H(ζ, 1; x) > 1.

Lemma 3.4  For x ∈ N(ȷ0+2,ζ), we have

	 Hα1 (ζ; x) ≤ Hα2 (ζ; x),
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such that 0 ≤ α1 < α2 ≤ 1.

Proof  Reconsidering the identity (3.1), we can rewrite H(ζ, α1; x) in terms of H(ζ, α2; x) as follows:

	

Hα1 (ζ; x) = (ζ − x + µ − α1 − 1)µ−α1−1

(ζ − ȷ0 + µ − α1 − 2)µ−α1−1

= (ζ − ȷ0 − 1)α1−α2

(ζ − x)α1−α2
· (ζ − x + µ − α2 − 1)µ−α2−1

(ζ − ȷ0 + µ − α2 − 2)µ−α2−1

= (ζ − ȷ0 − 1)α1−α2

(ζ − x)α1−α2
H(ζ, α2; x)

< Hα2 (ζ; x),

where, according to (3.3), we have used

	

(ζ − ȷ0 − 1)α1−α2

(ζ − x)α1−α2
< 1.

Thus, the proof is done. □

Lemma 3.5  Let x ∈ N(ȷ0+2,ζ).

	

(i) If 0 ≤ α < µ − 1, then Hα(ζ; x) < 1.

(ii) If µ − 1 < α ≤ 1, then Hα(ζ; x) > 1.

(iii) If α = µ − 1, then Hα(ζ; x) = 1.

Proof  The proof of (iii) is direct. To prove (i): Let ρ = µ − α − 1. Then, by knowing that (ζ − x) < (ζ − ȷ0 − 1) 
and by using (3.4), we have

	 (ζ − x + ρ)ρ < (ζ − ȷ0 + ρ − 1)ρ,

which implies that H α(ζ; x) < 1.
Next, we prove (ii) by using the fact that

	 −ρ < (ζ − x + ρ) < (ζ − ȷ0 + ρ − 1), where ρ = µ − α − 1,

and (3.2), we get

	 (ζ − ȷ0 + ρ − 1)ρ < (ζ − x + ρ)ρ,

which gives that Hα(ζ; x) > 1. Hence, the proof is completed. □

Lemma 3.6  Let x ∈ N(ȷ0+2,ζ) and ζ1 < ζ2.

	

(a) If 0 ≤ α < µ − 1, then Hα(ζ1; x) < Hα(ζ2; x).
(b) If µ − 1 < α ≤ 1, then Hα(ζ1; x) > Hα(ζ2; x).

Proof  Let ρ = µ − α − 1. Then, taking ∇ to Hα(ζ; x) w.r.t. ζ , we get

	

∇ζ

[
Hα(ζ; x)

]
= ∇ζ

[
(ζ − x + ρ)ρ

(ζ − ȷ0 + ρ − 1)ρ

]

= (ζ − x + ρ − 1)ρ−1

(ζ − ȷ0 + ρ − 1)ρ+1 (x − ȷ0 − 1)(ρ).

It is clear that Γ(µ) > 0, (x − ȷ0 − 1) > 0, and

	
(ζ − x + ρ − 1)ρ−1 = Γ(ζ − x + ρ)

Γ(ζ − x + 1) > 0,

and

	
(ζ − ȷ0 + ρ − 1)ρ+1 = Γ(ζ − ȷ0 + ρ)

Γ(ζ − ȷ0 − 1) > 0.
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Hence, ∇ζ

[
Hα(ζ; x)

]
> 0 when 0 ≤ α < µ − 1 and we get (i). In addition, ∇ζ

[
Hα(ζ; x)

]
< 0 when 

µ − 1 < α ≤ 1, so (ii) is obtained. Consequently, the proof is done. □

Maximality results
Theorem 3.1  The maximality of Dα(ζ; ȷ, x) is given by

	

max
(ȷ,x)∈N(ȷ0+1,ζ)×N(ȷ0+2,ζ)

Dα(ζ; ȷ, x) =




Dα
(
ζ; x1 − 1, x1

)
, 0 ≤ α ≤ µ − 1

max
{

Dα
(
ζ; x1 − 1, x1

)
, Dα

(
ζ; x2, x2

)
− 1

}
, µ − 1 < α ≤ 1,

where

	
x1 =

⌊
(ρ)(ȷ0 + ζ + 3) + ζα

2ρ − 1

⌋
,

and

	
x2 =

⌊
(ρ)(ȷ0 + ζ + 3) + ζα + 1

2ρ − 1

⌋
.

Proof  Let x be a fixed point in N(ȷ0+2,ζ) and set ρ = µ − α − 1. Then, by considering the fact that (it is easy 
to be proved):

	 ∇ȷ ȷµ = µ (ȷ − 1)µ−1,� (3.5)

we have, for ȷ0 + 1 ≤ ȷ ≤ x − 1 that

	

∇ȷ Dα(ζ; ȷ, x) = ∇ȷ

[
Hα(ζ; x)

Γ(µ) (ȷ + µ − ȷ0 − 2)µ−1
]

= Hα(ζ; x)
Γ(µ − 1) (ȷ − ȷ0 + µ − 3)µ−2

= Hα(ζ; x)Γ(ȷ + µ − ȷ0 − 2)
Γ(µ − 1)Γ(ȷ − ȷ0) .

� (3.6)

Moreover, ∇ȷ Dα(ζ; ȷ, x) > 0 as H > 0 and Γ(ȷ−ȷ0+µ−2)
Γ(µ−1)Γ(ȷ−ȷ0) > 0. Consequently, Dα(ζ; ȷ, x) is an increasing 

function of ȷ in N(ȷ0+1,x−1).
Besides, for x ≤ ȷ ≤ ζ , we see that

	

∇ȷ Dα(ζ; ȷ, x) = ∇ȷ

[
Hα(ζ; x)(ȷ + µ − ȷ0 − 2)µ−1 − (ȷ − x + µ − 1)µ−1

Γ(µ)

]

= Hα(ζ; x)∇ȷ (ȷ + µ − ȷ0 − 2)µ−1 − ∇ȷ (ȷ − x + µ − 1)µ−1

Γ(µ)

= Hα(ζ; x)(ȷ − ȷ0 + µ − 3)µ−2 − (ȷ + µ − x − 2)µ−2

Γ(µ − 1)

= Hα(ζ; x)
Γ(µ − 1) (ȷ − ȷ0 + µ − 3)µ−2

[
1 − H1(ȷ; x)

Hα(ζ; x)

]
.

� (3.7)

We know from (3.6) and Γ(µ − 1) > 0 that

	
Hα(ζ; x)
Γ(µ − 1) (ȷ − ȷ0 + µ − 3)µ−2 > 0.

The, there are two cases that arise:

•	 Let α ∈ [0, µ − 1]. Then, by using Lemma 3.5 and Remark 3.1, we have 

	 Hα(ζ; x) < 1 and H1(ȷ; x) > 1, (ȷ, x) ∈ N(x,ζ) × N(ȷ0+2,ζ),

 which gives that ∇ȷ Dα(ζ; ȷ, x) < 0.
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•	 Let α ∈ (µ − 1, 1]. Then, by considering Lemmas 3.4 and 3.6, we have 

	 Hα(ζ; x) < Hα(ȷ; x) < H1(ȷ; x), (ȷ, x) ∈ N(x,ζ) × N(ȷ0+2,ζ),

 which implies that ∇ȷ Dα(ζ; ȷ, x) < 0.
Consequently, Dα(ζ; ȷ, x) is a decreasing function of ȷ in Nζ

x. As a result, we see that D  increases from 
Dα(ζ; ȷ0 + 1, x) to Dα(ζ; x − 1, x), however, it decreases from Dα(ζ; x, x) to Dα(ζ; ζ, x).

Next, we will try to find the maximality of D  for a fixed ȷ, which appears in (x − 1, x) or (x, x). We know that

	
Dα(ζ; x − 1, x) = Hα(ζ; x)(x − ȷ0 + µ − 3)µ−1

Γ(µ) ,

and

	
Dα(ζ; x, x) = Hα(ζ; x)(x + µ − ȷ0 − 2)µ−1

Γ(µ) − 1.

Then, the following cases can be established: 

	(a)	 Let α ∈ [0, µ − 1]. Then, according to Lemma 3.5, we have 

	

Dα(ζ; x − 1, x) − Dα(ζ; x, x) = 1 +
Hα(ζ; x)

[
(x − ȷ0 + µ − 3)µ−1 − (x − ȷ0 + µ − 2)µ−1

]

Γ(µ)

= 1 − Hα(ζ; x)∆x(x − ȷ0 + µ − 3)µ−1

Γ(µ)

= 1 − Hα(ζ; x)(x − ȷ0 + µ − 3)µ−2

Γ(µ − 1)

≥ 1 − (x − ȷ0 + µ − 3)µ−2

Γ(µ − 1) .

� (3.8)

	 Since x − ȷ0 + µ − 3 < µ − 2, according to (3.4), we have 

	 (x − ȷ0 + µ − 3)µ−2 < (µ − 2)µ−2 = Γ(µ − 1).

	 By using this into (3.8), we obtain 

	 Dα(ζ; x − 1, x) − Dα(ζ; x, x) ≥ 0 =⇒ Dα(ζ; x, x) ≤ Dα(ζ; x − 1, x).

	 After that, we try to maximize Dα(ζ; x − 1, x) for x ∈ Nζ
ȷ0+2. By considering, 

	

∇x Dα(ζ; x − 1, x) =
∇x

[
(ζ − x + ρ)ρ(x − ȷ0 + µ − 3)µ−1

]

Γ(µ)(ζ − ȷ0 + ρ − 1)ρ

= (ζ − x + ρ)ρ−1(x − ȷ0 + µ − 4)µ−2

Γ(µ)(ζ − ȷ0 + ρ − 1)ρ

×
[
(µ − 1)(ζ − x + ρ + 1) − ρ (x − ȷ0 + µ − 3)

]
.

	 Due to this, we note that Γ(µ) > 0, 

	

(ζ − x + ρ)ρ−1 = Γ(ζ − x + ρ + 1)
Γ(ζ − x + 2) > 0,

(x − ȷ0 + µ − 4)µ−2 = Γ(x − ȷ0 + µ − 3)
Γ(x − ȷ0 − 1) > 0,

	 and 

	
(ζ − ȷ0 + ρ − 1)ρ = Γ(ζ − ȷ0 + ρ)

Γ(ζ − ȷ0) > 0.
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	 In addition, the solution of 

	 (µ − 1)(ζ − x + ρ + 1) − (ρ)(x − ȷ0 + µ − 3) = 0,

	 is 

	
x = (ρ)(ȷ0 + ζ + 3) + ζα

2ρ − 1 .

	 We consider 

	
x =

⌊
(ρ)(ȷ0 + ζ + 3) + ζα

2ρ − 1

⌋
.

	 If 

	
x ≤

⌊
(ρ)(ȷ0 + ζ + 3) + ζα

2ρ − 1

⌋
,

	 then (µ − 1)(ζ − x + ρ + 1) − (ρ)(x − ȷ0 + µ − 3) is positive and therefore 
(ζ − x + ρ)ρ(x − ȷ0 + µ − 3)µ−1 is increasing. However, if 

	
x ≥

⌊
(ρ)(ȷ0 + ζ + 3) + ζα

2ρ − 1

⌋
,

	 then (µ − 1)(ζ − x + ρ + 1) − (ρ)(x − ȷ0 + µ − 3) is negative and therefore 
(ζ − x + ρ)ρ(x − ȷ0 + µ − 3)µ−1 is decreasing. Hence, (ζ − x + ρ)ρ(x − ȷ0 + µ − 3)µ−1 has a maxi-
mum at 

	
x =

⌊
(ρ)(ȷ0 + ζ + 3) + ζα

2ρ − 1

⌋
,

	 and therefore, 

	

max
(ȷ,x)∈N(ȷ0+1,ζ)×N(ȷ0+2,ζ)

Dα(ζ; ȷ, x) = max
x∈N(ȷ0+2,ζ)

Dα(ζ; x − 1, x)

= Dα
(
ζ; x1 − 1, x1

)
.

� (3.9)

	(b)	 Let α ∈ (µ − 1, 1]. By the same technique as done before, we can maximize Dα(ζ; x, x) for x ∈ Nζ
ȷ0+2 as 

follows: 

	

∇x Dα(ζ; x, x) =
∇x

[
(ζ − x + ρ)ρ(x − ȷ0 + µ − 2)µ−1

]

Γ(µ)(ζ − ȷ0 + ρ − 1)ρ

= (ζ − x + ρ)ρ−1(x − ȷ0 + µ − 3)µ−2

Γ(µ)(ζ − ȷ0 + ρ − 1)ρ

×
[
(µ − 1)(ζ − x + ρ + 1) − ρ (x − ȷ0 + µ − 2)

]
.

	 It is clear that Γ(µ) > 0, 

	

(ζ − x + ρ)ρ−1 = Γ(ζ − x + ρ + 1)
Γ(ζ − x + 2) > 0,

(x − ȷ0 + µ − 3)µ−2 = Γ(x + µ − ȷ0 − 2)
Γ(x − ȷ0) > 0,

	 and 
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(ζ − ȷ0 + ρ − 1)ρ = Γ(ζ − ȷ0 + ρ)

Γ(ζ − ȷ0) > 0.

	 Additionally, the solution of 

	 (µ − 1)(ζ − x + ρ + 1) − (ρ)(x − ȷ0 + µ − 2) = 0,

	 is 

	
x = (ρ)(ȷ0 + ζ + 3) + ζα + 1

2ρ − 1 .

	 Next, we consider 

	
x =

⌊
(ρ)(ȷ0 + ζ + 3) + ζα + 1

2ρ − 1

⌋
.

	 If 

	
x ≤

⌊
(ρ)(ȷ0 + ζ + 3) + ζα + 1

2ρ − 1

⌋
,

	 then (µ − 1)(ζ − x + ρ + 1) − (ρ)(x − ȷ0 + µ − 2) is positive and therefore 
(ζ − x + ρ)ρ(x − ȷ0 + µ − 2)µ−1 is increasing. Besides, if 

	
x ≥

⌊
(ρ)(ȷ0 + ζ + 3) + ζα + 1

2ρ − 1

⌋
,

	 then (µ − 1)(ζ − x + ρ + 1) − (ρ)(x − ȷ0 + µ − 1) is negative and consequently, 
(ζ − x + ρ)ρ(x − ȷ0 + µ − 2)µ−1 is decreasing. So, (ζ − x + ρ)ρ(x − ȷ0 + µ − 2)µ−1 has a maximum at 

	
x =

⌊
(ρ)(ȷ0 + ζ + 3) + ζα + 1

2ρ − 1

⌋
.

	 Thus, in view of (3.9), we get that 

	

max
(ȷ,x)∈N(ȷ0+1,ζ)×N(ȷ0+2,ζ)

Dα(ζ; ȷ, x) = max
{

max
x∈N(ȷ0+2,ζ)

Dα(ζ; x − 1, x), max
x∈N(ȷ0+2,ζ)

Dα(ζ; x, x)
}

= max
{

Dα
(
ζ; x1 − 1, x1

)
, Dα

(
ζ; x2, x2

)
− 1

}
.

� (3.10)

Combining (3.9) and (3.10) proves the theorem. □
The following inequality can be done for Dα(ζ; ȷ, x).

Theorem 3.2  For ȷ ∈ N(ȷ0+1,ζ), we have

	
max

ȷ∈N(ȷ0+1,ζ)

ζ∑
x=ȷ0+2

Dα(ζ; ȷ, x) = (ζ + µ − ȷ0 − 2)µ

(ρ + 1)Γ(µ) .

Proof  One can rewrite
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ζ∑
x=ȷ0+2

Dα(ζ; ȷ, x) =
ȷ∑

x=ȷ0+2

Dα(ζ; ȷ, x) +
ζ∑

x=ȷ+1

Dα(ζ; ȷ, x)

=
ȷ∑

x=ȷ0+2

[
(ζ − x + ρ)ρ

(ζ − ȷ0 + ρ − 1)ρ

(ȷ + µ − ȷ0 − 2)µ−1

Γ(µ) − (ȷ + µ − x − 1)µ−1

Γ(µ)

]

+
ȷ∑

x=ȷ0+2

[
(ζ − x + ρ)ρ

(ζ − ȷ0 + ρ − 1)ρ

(ȷ + µ − ȷ0 − 2)µ−1

Γ(µ)

]

	

= Γ(ρ + 1)(ȷ + µ − ȷ0 − 2)µ−1

Γ(µ)(ζ − ȷ0 + ρ − 1)ρ

ζ∑
x=ȷ0+2

(ζ − x + ρ)ρ

Γ(ρ + 1)

−
ȷ∑

x=ȷ0+2

(ȷ + µ − x − 1)µ−1

Γ(µ)

= (ȷ + µ − ȷ0 − 2)µ−1

(ρ + 1)Γ(µ)(ζ − ȷ0 + ρ − 1)ρ (ζ − ȷ0 + ρ − 1)ρ+1

− (ȷ + µ − ȷ0 − 2)µ

Γ(µ + 1)

= (ζ − ȷ0 − 1)(ȷ + µ − ȷ0 − 2)µ−1

(ρ + 1)Γ(µ) − (ȷ + µ − ȷ0 − 2)µ

Γ(µ + 1) .

Now, since

	
(ȷ + µ − ȷ0 − 2)µ

Γ(µ + 1) = Γ(ȷ − ȷ0 + µ − 1)
Γ(µ + 1)Γ(ȷ − ȷ0 − 1) ≥ 0,

for ȷ ∈ N(ȷ0+1,ζ). Then, we get that

	

max
ȷ∈N(ȷ0+1,ζ)

ζ∑
x=ȷ0+2

Dα(ζ; ȷ, x) = max
ȷ∈N(ȷ0+1,ζ)

(ζ − ȷ0 − 1)(ȷ + µ − ȷ0 − 2)µ−1

(ρ + 1)Γ(µ)

= (ζ + µ − ȷ0 − 2)µ

(ρ + 1)Γ(µ) ,

which completes the proof. □

Lyapunov inequality
In view of the maximality result in Theorem 3.1, we will finish our Lyapunov inequality result in this section.

Theorem 4.1  Let there be no nontrivial solution for the delta FP (1.3) on N(ȷ0,ζ). Then,

	

ζ∑
x=ȷ0+2

|q(x)| ≥

{ 1
Λ1

, 0 ≤ α ≤ µ − 1

1
max{Λ1,Λ2−1} , µ − 1 < α ≤ 1,

where

	 Λ1 = Dα
(
ζ; x1 − 1, x1

)
,

and

	 Λ2 = Dα
(
ζ; x2, x2

)
.

Proof  Let y : N(ȷ0,ζ) → R be a discrete function defined on the Banach space B having the norm

	
∥y∥ = max

ȷ∈N(ȷ0,ζ)
|y(ȷ)|.

Then, according to Lemma 2.1, we have a solution (1.3) as follows:

Scientific Reports |         (2026) 16:2480 10| https://doi.org/10.1038/s41598-025-32192-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
y(ȷ) =

ζ∑
x=ȷ0+2

Dα(ζ; ȷ, x)q(x) y(x).

Therefore,

	

∥y∥ = max
ȷ∈N(ȷ0,ζ)

∣∣∣∣∣
ζ∑

x=ȷ0+2

Dα(ζ; ȷ, x)q(x) y(x)

∣∣∣∣∣

= max
ȷ∈N(ȷ0+1,ζ)

∣∣∣∣∣
ζ∑

x=ȷ0+2

Dα(ζ; ȷ, x)q(x) y(x)

∣∣∣∣∣

≤ max
ȷ∈N(ȷ0+1,ζ)

{
ζ∑

x=ȷ0+2

Dα(ζ; ȷ, x)|q(x)| |y(x)|

}

≤ ∥y∥ max
(ȷ,x)∈N(ȷ0+1,ζ)×N(ȷ0+2,ζ)

Dα(ζ; ȷ, x)
ζ∑

x=ȷ0+2

|q(x)|,

it follows from this

	
1 ≤ max

(ȷ,x)∈N(ȷ0+1,ζ)×N(ȷ0+2,ζ)
Dα(ζ; ȷ, x)

ζ∑
x=ȷ0+2

|q(x)|.

Consequently, the result is obtained from Theorem 3.1. □

Illustrative applications
In this section, two systems of FPs are carried out to outline the benefits of the Lyapunove inequality on the delta 
FP (1.3).

Example 5.1  Consider the FP (1.3) with the following specific parameters: Let ȷ0 = 0, ζ = 8, and µ = 1.6. We 
will analyze the following cases for two different values of α.

First case: Let α = 0.4 (so 0 ≤ α ≤ µ − 1).
Here, ρ = µ − α − 1 = 0.2. According to Theorem 3.1, we calculate x1:

	
x1 =

⌊
ρ(ȷ0 + ζ + 3) + ζα

2ρ − 1

⌋
= ⌊−9⌋ = −9.

Since x1 must be in N(2,8), the maximum of the GF occurs at the boundary of the domain. For this example, 
a direct calculation shows the maximum occurs at (ȷ, x) = (7, 8). We find Λ1 = D0.4(8; 7, 8) ≈ 0.105. If 
the function q(x) satisfies 

∑8
x=2 |q(x)| < 1/Λ1 ≈ 9.52, then the FP has no nontrivial solution according to 

Theorem 4.1.
Second case: We choose α = 0.9 (so µ − 1 < α ≤ 1).
Here, ρ = µ − α − 1 = −0.3. Calculating x1 and x2, we get that:

	

x1 =
⌊

−0.3(11) + 8 × 0.9
−1.6 − 1

⌋
= ⌊−1.5⌋ = −2,

x2 =
⌊

−0.3(11) + 8 × 0.9 + 1
−2.6

⌋
= ⌊−1.88⌋ = −2.

Again, a direct calculation shows that

	
max

{
D0.9(8; 7, 8), D0.9(8; 8, 8) − 1

}
= max{0.098, 0.105 − 1} = 0.098.

Therefore, Λ1 = 0.098. If 
∑8

x=2 |q(x)| < 10.2, the FP has no nontrivial solution according to Theorem 4.1.
Note that this example demonstrates how to concretely apply our theoretical results to obtain a specific 

numerical bound for a given system.

Example 5.2  Consider the the eigenvalue FP:
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(RL
ȷ0+1∆µy

)
(ȷ) = −λ y (ȷ + µ) , ȷ ∈ N(ȷ0+2,ζ),

y(ȷ0) = 0,
(RL

ȷ0 ∆α y
)

(ζ − ν) = 0,

with the same specific parameters: ȷ0 = 0, ζ = 8, and µ = 1.6. In this example, q(x) = λ is a constant. 
Moreover, we see that

	

8∑
x=2

|q(x)| = |λ| · (8 − 2 + 1) = 7|λ|.

Suppose that this eigenvalue FP admits a nontrivial solution y(ȷ). Therefore, a necessary condition for such 
a solution to exist is that 7|λ| must be greater than or equal to the bound derived from the GF according to 
Theorem 4.1. By the help of the calculations from Example 5.1, we see that

•	 For  α = 0.4: The necessary condition is 7|λ| ≥ 1/Λ1 = 9.52. This implies that for a nontrivial solution to 
exist, the eigenvalue must satisfy |λ| ≥ 1.36.

•	 For  α = 0.9: The necessary condition is 7|λ| ≥ 1/Λ1 = 10.2. This implies that for a nontrivial solution to 
exist, the eigenvalue must satisfy |λ| ≥ 1.46.

One can observe that this example provides a concrete numerical lower bound for the eigenvalues of the 
specified fractional system.

Table 1 is introduced to distill the complex numerical information presented in the text into a clear, 
comparative format. It is structured to guide the reader from the initial parameters to the final theoretical 
bounds, highlighting the practical implications of our main theorems, which serves as a concise and organized 
summary of the key computational outcomes from our illustrative Examples (5.1 and 5.2).

Discussion and future work
In Sect.  3, we have constructed the GF and proved that the delta FP (1.1) has the unique solution including a 
kernel with the GF. Additionally, some properties of the kernel have been provided. In Sect.  4, the maximality 
of the kernel has been examined and based on this we have studied the Lyapunov delta-type inequalities. The 
experimental examples in Sect.  5 indicate that the solution of the corresponding delta-eigenvalue problem to 
(1.1) is nontrivial under certain conditions (1.2).

Within the studied framework of Riemann-Liouville delta-type problems, the primary advantage of our 
Lyapunov inequality lies in its specificity and the potential sharpness of the resulting bound, enabled by the 
detailed maximality analysis of the GF. This tailored approach yields a potentially sharper bound than what 
could be derived from existing nabla-based or continuous-analogue results for similar problems. In addition, the 
delta framework is naturally suited for modeling forward-time systems in digital control and signal processing, 
suggesting direct applicability of our results to these specific engineering domains where nabla or continuous 
models may be less intuitive.

We acknowledge that the current analysis in this study is specifically tailored to Riemann-Liouville type 
delta operators and linear fractional boundary value problems. Future research can explore extending and 
generalizing these results to other fractional operators, such as Caputo or Atangana-Baleanu types (see7), as well 
as to nonlinear systems, which would broaden the applicability of the Lyapunov-type inequalities.
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