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NF-MORL: a neuro-fuzzy multi-
objective reinforcement learning
framework for task scheduling in
fog computing environments
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The proliferation of 1oT devices has exerted significant demand on computing systems to process data
rapidly, efficiently, and in proximity to its source. Conventional cloud-based methods frequently fail
because of elevated latency and centralized constraints. Fog computing has emerged as a viable option
by decentralizing computation to the edge; yet, successfully scheduling work in these dynamic and
heterogeneous contexts continues to pose a significant difficulty. This research presents A Neuro-Fuzzy
Multi-Objective Reinforcement Learning (NF-MORL), an innovative framework that integrates neuro-
fuzzy systems with multi-objective reinforcement learning to tackle task scheduling in fog networks.
The concept is straightforward yet impactful: a Takagi-Sugeno fuzzy layer addresses uncertainty

and offers interpretable priorities, while a multi-objective actor-critic agent acquires the capacity to
reconcile conflicting objectives makespan, energy consumption, cost, and reliability through practical
experience. We assessed NF-MORL using empirical data from Google Cluster and EdgeBench. The
findings were promising: relative to cutting-edge techniques, our methodology decreased makespan
by up to 35%, enhanced energy efficiency by about 30%, reduced operational expenses by up to 40%,
and augmented fault tolerance by as much as 37%. These enhancements persisted across various
workload sizes, demonstrating that NF-MORL can effectively adjust to fluctuating situations. Our
research indicates that integrating human-like reasoning through fuzzy logic with autonomous
learning via reinforcement learning can yield more effective and resilient schedulers for actual fog
deployments.

Keywords Fog computing, Task scheduling, Neuro-fuzzy systems, Multi-objective reinforcement learning,
Energy efliciency, Fault tolerance

The proliferation of billions of IoT devices has resulted in data generation surpassing the capacity of conventional
cloud systems, particularly for applications requiring immediate responses [1,2,3], such as autonomous vehicles
and remote healthcare [4,5]. Fog computing was developed to address this issue by relocating computation
nearer to the devices [6]; however, it has its own challenges: nodes possess varying capabilities, workloads exhibit
significant fluctuations, and failures are prevalent [7,8,9].

We promptly recognized that current scheduling algorithms be they heuristic [10], single-objective
reinforcement learning [11,12], or some hybrid methodologies encounter difficulties under these circumstances.
Most reinforcement learning-based methods [13], for instance, presume pristine and comprehensive state
information, which is never the reality in actual fog networks [14]. Conversely, fuzzy logic adeptly manages
ambiguity but does not possess the capacity for enhancement over time [15,16].

This finding prompted us to inquire: what if we could amalgamate the advantages of both? Thus, NF-MORL was
established a system wherein a neuro-fuzzy module delivers interpretable, real-time priority amidst uncertainty,
and a multi-objective reinforcement learning agent perpetually enhances both the policy and the fuzzy rules
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based on empirical performance feedback [17,18]. The proliferation of billions of IoT devices has resulted in
data generation surpassing the capacity of conventional cloud systems, particularly for applications requiring
immediate responses, such as autonomous vehicles and remote healthcare. Fog computing was developed to
address this issue by relocating computation nearer to the devices; however, it has its own challenges: nodes
possess varying capabilities, workloads exhibit significant fluctuations, and failures are prevalent.

We promptly recognized that current scheduling algorithms be they heuristic, single-objective reinforcement
learning, or some hybrid methodologies encounter difficulties under these circumstances. Most reinforcement
learning-based methods, for instance, presume pristine and comprehensive state information, which is never
the reality in actual fog networks. Conversely, fuzzy logic adeptly manages ambiguity but does not possess the
capacity for enhancement over time.

This finding prompted us to inquire: what if we could amalgamate the advantages of both? Thus, NF-
MORL was established a system wherein a neuro-fuzzy module delivers interpretable, real-time priority amidst
uncertainty, and a multi-objective reinforcement learning agent perpetually enhances both the policy and the
fuzzy rules based on empirical performance feedback.

In contrast to numerous current methods that optimize only one or two objectives, NF-MORL concurrently
addresses four essential goals: minimizing completion time (makespan), reducing energy consumption,
decreasing costs, and enhancing reliability. Initial trials demonstrated that this collaborative optimization was
essential for attaining balanced and practical performance.

The primary contributions of this study are:

« A novel hybrid framework NF-MORL that seamlessly combines an adaptive Takagi-Sugeno neuro-fuzzy sys-
tem with multi-objective actor—critic reinforcement learning for fog task scheduling.

o A bidirectional learning mechanism: the reinforcement learning agent enhances the scheduling strategy,
while performance feedback perpetually adjusts the fuzzy membership functions and rule outcomes capabil-
ities that static fuzzy systems lack.

o A pragmatic three-tier architecture (edge-fog-cloud) that facilitates distributed, low-latency decision-mak-
ing and scalable training.

o Comprehensive assessment of actual Google Cluster and EdgeBench traces, demonstrating consistent and
substantial enhancements above contemporary DRL and hybrid benchmarks across all four objectives.

« This amalgamation of interpretability, adaptability, and multi-objective cognizance renders NF-MORL excep-
tionally appropriate for practical fog implementations.

This study aims to develop a scheduling system capable of managing the complexities of real fog environments,
including uncertain inputs, conflicting objectives, and dynamic conditions. We developed NF-MORL, a
framework that integrates neuro-fuzzy reasoning with multi-objective reinforcement learning, which surpasses
existing methodologies in performance and provides a level of transparency absent in conventional deep
reinforcement learning techniques.

The experimental findings are self-evident: Reductions of up to 35% in makespan, 30% in energy consumption,
40% in costs, and a 37% enhancement in fault tolerance are significant; they denote substantial advancements
for real systems. Anticipating future developments, we identify several promising avenues: implementing NEF-
MORL on actual hardware, augmenting it to accommodate security constraints, and investigating lifelong
learning to ensure continuous improvement post-deployment.

We anticipate that this work will inspire additional researchers to investigate hybrid intelligence methodologies
integrating the commonsense reasoning in which humans excel with the scalability offered by machines as a
means to achieve genuinely autonomous and reliable edge systems.

2. Related Works

Task scheduling in fog computing has been extensively explored to improve performance, scalability, and
energy efficiency in distributed Internet of Things environments. Early studies emphasized heuristic and static
optimization strategies, yet they struggled to handle the heterogeneity and stochastic nature of fog infrastructures.
Recent research trends have shifted toward machine learning and reinforcement learning approaches to enable
dynamic and data-driven decision-making. The following review examines key contributions in task scheduling,
energy management, and hybrid intelligent optimization within fog computing ecosystems. In', an extensive
analysis of scheduling strategies in fog computing is conducted, categorizing them into heuristic, meta-heuristic,
and learning-based methodologies. Shortcomings of traditional methods are highlighted, particularly their
inability to adapt to real-time workload variations and unpredictable network conditions. The review indicates
that hybrid models integrating reinforcement learning and fuzzy logic remain underexplored. In% a deep
reinforcement learning scheduling strategy utilizing a proximal policy optimization (PPO) agent is developed to
reduce system load and reaction time in fog-edge-cloud infrastructures through dynamic learning.

A distributed deep reinforcement learning system is introduced in® that concurrently improves energy
consumption and reliability for job scheduling in fog computing. Despite realizing considerable energy savings,
it employs single-objective scaling and does not include interpretable uncertainty modeling using neuro-fuzzy
systems, leading to suboptimal trade-offs among time, cost, and fault tolerance when compared to the Pareto-
efficient NF-MORL technique.

A evolutionary approach including selective repair is presented for scheduling IoT operations with time
limitations in fog-cloud situations in*. While successful for static processes, its meta-heuristic characteristics
restrict online adaptation to dynamic workload fluctuations and do not use reinforcement learning or fuzzy
reasoning for managing uncertainty. Researchers in® have examined live migration algorithms for associated
virtual machines in cloud data centers to enhance resource utilization and fault tolerance. This study is confined
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to centralized cloud infrastructures and does not include distributed fog layer scheduling or real-time multi-
objective optimization. The research in® introduced a dynamic network performance provisioning technique to
facilitate “network in a box” for industrial applications.

RT-SEAT, a real-time hybrid scheduler designed to concurrently reduce energy consumption and peak
temperature on heterogeneous multi-core systems, was created in’. Although it demonstrates superior thermal-
aware performance, it fails to account for multi-objective trade-offs such as cost and fault tolerance, and it does
not include learning-based adaptation. A fault-tolerant real-time scheduler for heterogeneous multiprocessor
systems using redundancy and migration approaches is introduced in®. Notwithstanding robust reliability
assurances, this technique remains static, lacking online learning and neuro-fuzzy uncertainty management
capabilities.

A separate research’ presented a secure multi-reference attribute-based access control mechanism for fog-
enabled e-health systems, termed SMAC, which only focuses on data privacy and access security, excluding
job scheduling, resource allocation, and performance optimization. A hybrid knowledge- and data-driven
methodology was developed for mass flow scheduling in hybrid workshops with dynamic order input!®. This
technique, although successful in industrial settings, is unsuitable for fog computing environments and lacks
components of distributed reinforcement learning and fuzzy inference.

A dynamic prescriptive performance controller using event-driven reinforcement learning was presented
for nonlinear systems with input delays in'!. This work emphasizes continuous-time control inside the RL basis,
excluding discrete-time job scheduling, fuzzy logic, and multi-objective Pareto optimization.

In'2, a self-stimulated reinforcement learning system using particle swarm optimization was devised for
fault-tolerant optimum control in zero-sum games with saturated inputs. It excels in competitive environments
but is inapplicable to fog task scheduling and lacks neuro-fuzzy interpretation and multi-objective management
capabilities. A distributed adaptive sliding mode formation controller with specified time restrictions for
heterogeneous nonlinear multi-agent systems is suggested in'>. This study focuses on physical formation tracking,
rather than on computational job scheduling and resource management in dispersed and heterogeneous fog
networks.

In', researchers introduced a multi-objective scheduling and offloading framework inside Fog-Cloud
settings, where system uncertainties are represented using fuzzy logic. The objective is to concurrently minimize
workflow execution duration and energy use, with findings indicating that a fuzzy approach achieves a superior
equilibrium between efficiency and processing expenses compared to deterministic alternatives. This study
emphasizes the optimization of trade-offs and the modeling of uncertainty.

Another research!® examined work management in fog computing via the lens of federated reinforcement
learning. This concept creates a common policy for distributed decision-making without requiring raw data
interchange between nodes, hence improving data security and system scalability. This research’s primary
novelty is in the integration of Federated Learning with Reinforcement Learning to optimize job management
and mitigate processing congestion inside the fog network.

16 also examines offloading techniques based on Reinforcement Learning and Deep Learning, and assesses
several automated decision-making algorithms for task location identification. This study demonstrates
that using deep networks to learn offloading strategies yields superior performance compared to traditional
approaches under dynamic settings. This study primarily focuses on deep learning and enhancing the adaptive
decision rate.

Table 1 presents a systematic comparison of the examined methodologies, emphasizing their technical
frameworks, fundamental techniques, operational contexts, targeted aims, and principal constraints. This
overview delineates a distinct evolution from heuristic and static approaches to intelligent, learning-based
solutions, while highlighting enduring deficiencies in multi-objective optimization, uncertainty management,
and adaptive rule learning that are essential for next-generation fog scheduling systems. The table functions as a
succinct reference for comprehending the progression and existing issues in the domain.

System model and problem formulation

The suggested NF-MORL system model features a three-tier hierarchical architecture, consisting of edge, fog,
and cloud layers, aimed at facilitating resilient, multi-objective, and adaptive task scheduling in heterogeneous
IoT contexts. The comprehensive architecture of the fog computing environment utilized in this study is depicted
in Fig. 1, illustrating the interaction among IoT devices, fog nodes, and the cloud layer. This paradigm utilizes the
advantages of each layer to deliver low-latency, energy-efficient, and context-aware services, while guaranteeing
fault tolerance and scalability.

The proposed NF-MORL framework models a heterogeneous fog environment as a set of physical machines
(PMs) that host various virtual machines (VMs). Each task Ty is defined by a vector of computational
parameters, comprising CPU usage ( C'PUy), memory requirement ( M EM}), bandwidth demand ( BW4),
and task length (T'Ly).

A hierarchical fuzzy topological framework for high-dimensional regression shows how structured fuzzy
inference may improve scalability and uncertainty modeling in large-scale decision-making systems!”. The
introduction of a dynamic event-driven adaptive fuzzy sliding-state controller for unknown nonlinear systems
shows how hierarchical fuzzy mechanisms may stabilize complicated settings with minimum processing'®.

Table 2 summarizes the primary parameters, mathematical symbols, and variables utilized in the NF-MORL
framework. The NF-MORL framework utilizes a Takagi-Sugeno neuro-fuzzy inference system to dynamically
assess task significance based on CPU use, memory consumption, bandwidth availability, and job duration.
The relevant fuzzy rule basis for task prioritizing is presented in Table 3. The system’s workload and overall
processing capabilities are quantitatively represented by Eq. (1) through 43:
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Ref | Paradigm Model Environment Main objectives optimized Main limitations/research gap
1 Survey Heuristic, Meta-heuristic, Learning- Fog Performance, scalability Hybrid RL-Fuzzy approaches still
based underexplored
2 DR scheduling PPO-based RL agent Fog-edge—cloud Lgad r§du(}t10n, latency No uncertainty modeling, single-objective
minimization orientation
. . . S No interpretable fuzzy modeling; lacks multi-
3 -
Distributed DRL Energy-aware DRL scheduling Fog Energy efficiency, reliability objective trade-offs
4 Evolutionary scheduling Meta-heuristic with selective repair | Fog-cloud Tlme—constralne'd loT Offhne'op timization; weak adaptability to
workflow execution dynamic workload
5 Resource migration VM live-migration optimization Cloud DC Utilization, reliability Not fog-oriented; lacks distributed scheduling
6 Dynamic network allocation Performance provisioning Industrial fog Netwo'rk stability, on-demand | No 'tas'k SQhedullng or multi-objective
framework allocation optimization
7 Hybrid real-time scheduling | RT-SEAT thermal-aware scheduler Heterogeneous | Energy + temperature No cost/fault—tolerance objective; no learning
multi-core reduction adaptation
8 Fault-tolerant real-time Redundancy + task migration Heterogeneous Reliability, deadline guarantee Static sgheme; laclfs online learning & fuzzy
scheduler multiprocessor uncertainty handling

Secure access management

SMAC ABE mechanism

Fog-enabled

Privacy + secure access

Does not address scheduling or optimization

e-health
10 HYbl‘ld knowledge-data Mass-flow scheduling Industrial Dynamic order scheduling Not fog computing; no RL/FL distributed
driven workshop optimization
Continuous . .
1 RL control framework Event-driven RL for delay systems nonlinear Real-time adaptive control NOF fqr fqg scheduling; lacks discrete Pareto
systems optimization

Competitive RL optimization

PSO-boosted RL control

Zero-sum game
systems

Fault-tolerant optimization

Inapplicable to fog task offloading; missing
fuzzy + multi-objective logic

placement

decision-making

13 | Distributed multi-agent Adaptive sliding mode controller Heterogeneous | Convergence under time No scheduling or fog workload context
control MAS constraints

14 | Multi-objective Fuzzy . Execution time + energy Deterministic baseline comparison; lacks RL
Scheduling Fuzzy-based offloading for workflow | Fog-cloud minimization adaptability

15 | Federated reinforcement FL + RL for distributed task Fo Scalability, privacy, congestion | Multi-objective extensions + fuzzy
learning allocation J reduction uncertainty handling not addressed

16| RL + deep learning offloading DRL decision-making for task Fog Offloading accuracy, adaptive | RL & DL only; lacks multi-modal fuzzy

uncertainty reasoning

Table 1. Summary of task scheduling and optimization approaches in fog computing.

Cloud Layer

Edge Layer

Fig. 1. Architecture of fog computing system.
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Notation Description

(s¢) State at time ¢, representing environmental conditions, fog node status, and multi-objective context parameters.
(ag) Action at time ¢, representing the task assignment decision among fog nodes.

(R¢) Reward at time ¢, integrating weighted objectives of makespan, energy eﬂiciency, cost, and fault tolerance.
(v) Discount factor adjusting the relative importance of future aggregated multi-objective rewards.
(Lactor) Actor loss computed by multi-objective policy gradient methods to optimize actions across Pareto fronts.
(Leritic) Critic loss used to estimate and stabilize multi-objective value functions during training.

(T) Task length representing the computational complexity of each job.

(P) Task priority determined dynamically through neuro-fuzzy inference.

(CPU;) Current CPU utilization of fog node i.

(Mem;) Available memory of fog node i.

(BW;) Bandwidth capacity at fog node i.

(E;) Current energy level at fog node i.

(S) CPU processing speed at each fog node.

(Cy) Cost factor representing computation and transmission costs per task.

(Fy) Fault factor representing node reliability and failure probability.

(L¢) Task length in seconds, indicating computational workload.

(D¢) Task deadline, defining the maximum acceptable completion time.

(Rg) Resource quality factor combining CPU, memory, and bandwidth performance indices.

(Wkg) Weight coefficient assigned to objective k in the multi-objective reward function.

(nj>035) Mean and variance of fuzzy membership functions for linguistic variable j.

(f; (x)) Fuzzy membership function used in the neuro-fuzzy inference layer.

(0 7) Parameters of the multi-objective policy network.

(0 ) Parameters of the multi-objective value network.

(0 ny) Parameters of the neuro-fuzzy inference subsystem.

(hx (st, at)) | Action-value function of the multi-objective actor network under neuro-fuzzy control.

Table 2. Notations used in NF-MORL model.

CPU usage | Memory load | Bandwidth | Tasklength | Output: priority
Low Low High Short Very high
Medium Medium Medium Medium Medium
High Low Medium Long Low

High High High Short Medium
Low High Medium Short High
Medium Low High Medium High

Low Medium Low Long Low
Medium High Low Short Medium
High Medium High Medium Medium
Low High High Long Medium

Table 3. Fuzzy rules of Takagi-Sugeno neuro-fuzzy inference system for task prioritization.

In Eq. 1, the instantaneous workload of virtual machine v, represented as wlv s, is determined as the
cumulative burden of all tasks & € A (v) currently allocated to v, where A (v) is the collection of tasks

le]VI.v - Z ke A(v)wlknv

assigned to virtual machine v within fog node M.

Equation (2) calculates the total workload exerted on physical fog node p, represented as wl pas.p, by aggregating
the workloads of all virtual machines v € V (p) residing on p, with V (p) being the collection of virtual

wlpn.p = Z ve V(ip)Wlvm.v

machines hosted on physical machine p.
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Fig. 2. CPU utilization membership function.
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Fig. 3. Memory membership function.
v
Preyar, = nioe X MIPS, (3)

Equation (3) delineates the effective processing capacity of virtual machine v in million instructions per second
(MIPS), calculated as the product of the allotted CPU cores n{®).. and the per-core processing speed MIPS,
of the corresponding physical node.

TotPrc = Z wDTCy 0o 4)

where delineates the cumulative processing capacity of the whole fog layer, T'ot Prc, as the aggregate of the
individual processing capacities prcy,,, ,, across all virtual machines v within the system.

All input attributes are standardized to the range [0,1] to ensure uniformity across distributed fog layers and
to enhance adaptive learning during the fuzzy inference phase.

Fuzzification of task attributes and adaptive rule base

The NF-MORL design comprises three hierarchical layers: Edge, Fog, and Cloud, each fulfilling a distinct
function in the scheduling process. Continuous input features are converted into linguistic variables by the use
of fuzzy membership functions. This study use triangle membership functions for all language terms. Their
piecewise-linear configuration facilitates rapid assessment with minimal computational burden in real-time fog
scenarios, while still offering sufficient adaptability to represent nonlinear relationships among CPU, memory,
bandwidth, and task duration. In comparison to alternatives like trapezoidal or sigmoid functions, the triangular
shape provides an effective equilibrium among interpretability, ease of implementation, and numerical stability
in the NF-MORL training process.

Each characteristic of CPU, memory, bandwidth, and job duration is associated with fuzzy sets designated
as Low, Medium, and High, facilitating seamless and adaptable transitions between states. In the Edge layer, the
adaptive fuzzification and inference modules determine task priorities according to the membership functions
illustrated in Figs. 2, 3, 4 and 5. The deterministic priorities derived from the fuzzification method depicted in
Fig. 6 are employed to execute dynamic scheduling on heterogeneous fog nodes within the Fog layer.
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Membership Function for Bandwidth Demand
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Fig. 4. Bandwidth membership function

Membership Function for Task Length
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Fig. 5. Task length membership function.

Centroid Defuzzi ion for Task Priority
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Fig. 6. Centroid defuzzification.

The Cloud layer functions as a supervisory entity that ensures global synchronization, facilitates policy
sharing, and manages offloading for tasks that are either delay-tolerant or computationally heavy'®. Algorithm
1 summarizes the process of converting input parameters into adaptive task priorities via the neuro-fuzzy
inference model. This algorithm delineates the sequential computation of task priorities via fuzzification, rule
assessment, and the modification of adaptive parameters via reinforcement learning input.

For each fuzzy rule i, if p1 ;; (z;) denotes the membership degree of the input z; in its corresponding fuzzy

set, the firing strength of the rule is computed as:
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Every neuro-fuzzy rule is expressed in Takagi-Sugeno format, whereby the resultant function is linear about the
input variables, and its parameters are adaptively adjusted throughout the learning process.

This enables the inference mechanism to adapt according to environmental feedback from the reinforcement
learning agent. The adaptive linear consequence of rule III is specified as:

(pi(a:):aix MEM + b; x CPU+ ¢; x BW + d; x TL + e (6)

Equation (6) delineates the adaptive linear consequence of the ¢ — th Takagi-Sugeno rule, whereby
® i(,) represents the rule output, x = [MEM, CPU, BW, TL] denotes the input vector, and the coefficients
ai, bi, ¢i, di, e; are acquired online through back-propagated gradients from the reinforcement learning
agent.

The aggregated task priority is computed by combining all activated rules using a weighted average method:

S RN (Th)

Z szl)‘i

The final crisp task priority P (T}) is computed as the weighted average of all activated rule outputs @ ; (T%),
with weights A ; denoting the normalized firing strengths of each rule (Z Ai = 1).

P(Ty) = (7)

The ambiguous output surface delineates three specific operational states: Constrained, Balanced, and
Favorable, which correlate to the overall resource status of the fog environment. Figure 11 depicts the centroid-
based defuzzification method that transforms the aggregated fuzzy output into a precise numerical task priority,
expressed as!®:

Lo = f xp'u.gg (ZE)dZE

T Wagy (0)d2 ®
Equation (8) executes centroid defuzzification to transform the aggregated fuzzy output w,,, () into a
definitive numerical priority ., which is subsequently utilized by the scheduling policy in the following actor-
critic phase.

This clear priority value establishes the quantitative foundation for scheduling and optimization in the latter
phases of the NF-MORL system.

In Algorithm 1 The task length T'L; is obtained by dividing the computational workload L; by the CPU
processing speed Csy, following the standard execution-time formulation. The memory requirement M EM;
is directly taken from the task metadata provided in the dataset. The bandwidth demand BW; is computed
based on the input size S; and the network transfer time per MB T, in accordance with common data
transmission models in fog and edge environments.

Quantitative performance formulations

The defuzzified priorities are integrated into four cumulative performance indicators that direct the multi-
objective reinforcement learning process: makespan, energy consumption, execution cost, and fault probability.
These formulations function as reward components rather than comprehensive physical system models, although
they nonetheless align with commonly accepted concepts in fog and cloud scheduling. The makespan denotes
the maximum completion time across all tasks, dictated by their initiation times and execution durations®*

Mak = Start; + EzecTime;
akespan ]-Héa}é( art; + EzecTime;) 9)

where D is the task set, Start; denotes the start time of task j, and ExecTime; is its execution time based
on the workload and processing speed of the assigned fog node. Energy consumption is represented as the total
power utilized by all fog nodes throughout task execution®’:

E = Z je D <Pactiv6(’ﬂj) X (C’Sjé?%))) (10)

where Poctive (1) is the active power of node nj, L; is the computational load, and C'sp (n;) is the node’s
processing speed. The execution cost represents the cumulative processing duration adjusted by the cost rate of

each fog node.
Cost = E jeD <C’u,nit (ny) x (L]>) (11)
Csp ()

Where Cunit (nj) represents the per-unit processing cost of node n;. Fault probability measures the aggregate
likelihood of failure across all nodes participating in task execution'®:
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Input:

Task set D
CPU processing speed of fog node Csp

Network transfer time per MB Tnet

Initial fuzzy parameters 8 fuzzy

Output:

NS LAWY=

° ®

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.
20.

21.
22.
23.
24.
25.
26.
27.
28.

Task priority list PList

Load task dataset D

Initialize system parameters (Csp, Tnet)

Define task attribute vector A = {TL, MEM, CPU, BW}
Initialize empty structure JobSet

For each task j in D do

Compute task length: TL; = cLij

Estimate memory usage:
MEM, = M,
Compute required bandwidth: BW; = §; X Tnet
Estimate CPU utilization:
L:
cPy; = () x 100
Append {TL;, MEM;,CPU;, BW;} to JobSet
End for
Define fuzzy input variables (TL, MEM, CPU, BW)
Define fuzzy output variable Priority
Initialize membership functions using 6 fuzzy
Construct the Takagi—Sugeno fuzzy rule base
For each fuzzy rule r in R do
Compute firing strength:
A= Tlu,,i(x;) // using Eq. (5)
Compute rule consequent:
@ = a; -MEM + bi -CPU + C; -BW + di -TL + €; //using Eq (6)
End for
Aggregate rule outputs to compute priority:

P(T}) = % // using Eq. (7)

Apply centroid defuzzification to obtain crisp priority P(T},)
Initialize empty list PList
For each task j in JobSet do
Compute final priority P, using updated fuzzy parameters
Append P, to PList
End for
Update fuzzy parameters 6 fuzzy using RL feedback
Return PList

Algorithm 1. Neuro-fuzzy adaptive task priority evaluation.

FaultProb=1— H jep (1= f(ny)) (12)

where f (n;)denotes the failure probability of node n;.
The updated formulations offer a succinct and accurate assessment of system behavior, allowing the RL agent
to understand the trade-offs between latency, energy consumption, cost, and reliability.

Proposed methodology

This section presents the NF-MORL framework shown in Fig. 7 for flexible and adaptive task scheduling in
diverse fog environments. In contrast to conventional or Round Robin schedulers, which function in a rigid
and non-adaptive fashion, NF-MORL integrates real-time feedback via a neuro-fuzzy inference layer and a
multi-objective reinforcement learning module. The time-varying DRL method with efficient backtracking
accelerates policy convergence, proving reinforcement learning can perform well with little training data®!.
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Fig. 7. System model architecture.

Additionally, neighborhood-aware multi-agent reinforcement learning for traffic signal coordination indicates
that collaborative learning enhances global control only when agent interactions include explicit backtracking??.

NF-MORL integrates the interpretability of fuzzy logic with the autonomous optimization features of actor-
critic learning. The neuro-fuzzy layer produces adaptive task and virtual machine priorities, whilst the actor-
critic network enhances scheduling judgments based on multi-objective incentives. Agents consistently monitor
CPU, memory, bandwidth, and task characteristics, refining both fuzzy parameters and neural rules based on
environmental feedback.

The approach utilizes deep actor—critic networks with concurrent agents to expedite learning and improve
generalization among fog nodes. NF-MORL achieves scalable, resilient, and completely autonomous scheduling
for dynamic fog computing environments by concurrently maximizing many performance targets and
responding in real-time to evolving conditions.

State space ( St)
The state space represents the dynamic environment of the fog system at time step .

Each state vector S, encodes the operational conditions of fog nodes and the characteristics of incoming
tasks.

In the NF-MORL model, the state vector is defined as**:

St = { CPUutil~ MEMusage- BWavail- TLtask‘- Ptask- PVM} (13)

where wu;denotes the current CPU utilization of each node, m;represents available memory resources, b;
indicates network bandwidth availability, /;is estimated task length, and p;and g¢;are adaptive priorities
produced by the Neuro-Fuzzy Inference Layer. This multi-dimensional state captures both system resources and
workload characteristics, enabling the agent to make context-aware scheduling decisions.

Action ( A;)
The action defines the scheduling decision made by the RL agent at each time step.

In NF-MORL, an action A, corresponds to the mapping of a task to a specific VM or fog node, based on
current state and learned policy.

A¢={ar.az2. ... .an}. a; € {assignT; — VM;} (14)
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The actor network outputs a probability distribution over available nodes, representing the likelihood of selecting
each node for a given task. Actions are selected stochastically during training (exploration) and deterministically
during evaluation.

Reward ( R;)
The reward function measures how well an action performs with respect to multiple objectives.

NF-MORL employs a multi-objective reward model that balances system efficiency, energy cost, and
reliability:

Rt =« lRmakeSpan + « 2ReneTgy + « 3Rcost +« 4Rfault (15)

where the coefficients « ; represent the importance weights for each objective.
Each reward component is normalized in [0,1] and defined as:

Texec
. Rmake.span =1- Tmazx
R _ Ensd®
* energy — Emaz "
R =1— Cnodé
d cost — Cmazx

. Rfault =1- Fprab

This formulation encourages actions that minimize makespan, energy consumption, and execution cost, while
improving fault tolerance.

Policy(m)
The policy 7 (as; Oactor) defines the decision-making behavior of the actor network.

It maps the current state S; to an action probability distribution over possible scheduling decision.

In the NE-MORL framework, the policy network receives both raw system metrics and adaptive fuzzy
priorities as input features. In policy development, W, and W, represent the trainable weight vectors associated
with the raw system metrics and adaptive fuzzy priorities, respectively®*. These weights adjust the proportional
influence of each feature group before processing by the policy network:

™ (AtSt ;0actor) = fSoft max (Ws - Sy + Wp . Pfuzzy + b) (16)

where fsoftmaz ensures that output probabilities lie within [0,1]. The actor’s objective is to maximize the
expected cumulative reward!:

J (0 actor) = Eﬂ' [Rt] (17)

During learning, exploration is encouraged via entropy regularization to avoid early convergence to suboptimal
policies.

Value function V. (S)
The critic network approximates the value function, which estimates the expected return for a given state under
policy m:

Ve (St) = E [Re + v Vz (S¢ +1)] (18)

where y is the discount factor controlling the trade-off between immediate and future rewards.
The critic helps stabilize training by providing a baseline for the advantage function:

At = Rt + Yy Vﬂ' (St =+ 1) — V7r (St) (19)

This advantage signal indicates whether the chosen action performed better or worse than expected, guiding the
actor’s gradient updates.

Actor-critic training network
The NF-MORL framework utilizes a deep actor—critic structure with shared experience replays and asynchronous
training.

Each agent interacts with the environment independently, while a global network aggregates gradients to
ensure stable convergence.

o Actor Network: Two hidden layers with 256 neurons, stride =1, kernel size =2, SoftMax activation at output.
o Critic Network: Same structure but outputs a scalar value.
o Optimizer: Adam with adaptive learning rate 7 ,.

The training loop follows standard policy-gradient updates:

Vouctord = Voaeror l0gT (At St) - At (20)
v0cr'itic L= (Rt +7V(St+1) - V(St))2 (21)
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Parallel agents accelerate convergence by exploring different regions of the state space simultaneously. The
overall NF-MORL training and scheduling process is summarized in Algorithm 2.

This algorithm integrates the neuro-fuzzy adaptive prioritization phase with multi-objective actor-critic
reinforcement learning. The procedure iteratively evaluates system states, computes fuzzy-based task priorities,
and updates the actor-critic and fuzzy parameters using environmental feedback. To standardize the policy and
promote enough exploration during training, an entropy term () that H(n) is incorporated in the actor update.
Entropy quantifies the randomness of the policy distribution and inhibits early convergence to deterministic
suboptimal behaviors. The coefficient regulates the impact of this entropy regularization on the gradient update.

Algorithm 2 delineates the NF-MORL training loop. At each stage, system metrics and fuzzy-derived priorities
provide the state representation, the actor chooses a scheduling action, and the ensuing system performance

Input: Task stream D; fog resources {VM, PM}; CPU speed S; network stats (BW);
cost factor Cf; fault factor Fr; fuzzy parameters 8¢, ;
actor parameters 0., ; critic parameters 0. ;
objective weights a. = [a;, as, as, o4, discount y;
learning rates (Ma, N, Ny, entropy coefficient p;
maximum episodes E; maximum steps T.
Output: Learned scheduling policy w(a|s; 8 4ct0r )

1. Initialize Op,;,y , Ogctor » Ocritic ; experience buffer B < @
2. for episode =1 ... E do

3. Reset environment; obtain initial state So

4. fort=0..T-1do

5. // Neuro-Fuzzy Adaptive Priority Evaluation

6. Extract features x = {CPU,y, MEM,5q9¢ » BWoayair TLigsk }

7. Compute memberships [ (x;) for each input and rule i

8. Firing strength: A; < [1; w;; (x;)

9. Adaptive consequent (Takagi — Sugeno):

10. Qi(x) —a;MEM + b;:CPU + ¢;-BW + d;-TL + ¢;

11. Priority Pyyg, < —(2(‘;[_‘)1;‘)

12. Compute B,,, similarly or derive from resource state

13. Build state vector S < [CPUysy, MEMysage » BWavair s TLtaskc s Peasic» Pom ]
14. // Actor—Critic Decision

15. Sample action a;~ (- |S; Ogeror )

16. Execute a; in environment; obtain next state S; .4

17. Observe metrics: Toxec , Enode » Crode » Fprob

18. // Multi-Objective Reward

19. Rmakespan = - % ’ Renergy =1- %ﬁ ’ Rcost =1- (Z;L:j P Rfault =1-
Fprob

23. Ry« ay- Rmakespan + a;- Renergy + a3 Repee + a4 Rfault

24. // Store Transition

25. Push (S;, a;, R;, S¢41) into buffer B

26. // Critic Update

27. 61& < Rt + v V(St+1; gcritic) - V(St; gcritic)

28. Ocritic < Ocritic — Nc - VHZM-“-C 8¢)

29. // Actor Update

30. gactor < Qactor + N Vﬁacmr [loyiﬂ'(atlst; gactor) ' 6t + B H(T[(' |St))]
31 // Neuro-Fuzzy Parameter Update

32. @fuzzy < quzzy + Nr - V@fuzzy (8¢)

33. Si & Sii

34. if terminal state or resource/time budget reached then break

35.  end for

36.  Perform target-network updates; evaluate policy & on validation workloads
37. end for

38. return w(als; 0,c00r )

Algorithm 2. NF-MORL task scheduling.
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generates a multi-objective reward. Transitions inform the critic via temporal-difference learning and the actor
through entropy-regularized policy gradients, while fuzzy parameters are adjusted in real-time. This iterative
process facilitates the development of an efficient scheduling policy.

Parameter updating
The adaptive neuro-fuzzy parameters and RL network weights are jointly updated during training.

After each episode, the feedback from fog nodes (Makespan, Energy, Cost, Fault) is aggregated and used to
refine both levels:

» Neuro-Fuzzy Level: Membership functions 1 ;;(,) and rule coefficients ( a;, bs, ¢i, di, e;) are updated using
gradient feedback derived from RL reward signals:

t+1 t
e}uzz)y = e(fu),zzy + 77f . V9f Rt (22)
o Reinforcement Learning Level: The actor and critic parameters are updated based on policy and value gradi-

ents:

0 =0 +n, Vo,J (23)

This bidirectional contact facilitates ongoing co-adaptation between the fuzzy reasoning layer and the learning
agent. The NF-MORL model demonstrates significant adaptability, stability, and energy-efficient scheduling in
the face of uncertain and dynamic workloads.

Experimental results

This section delineates the experimental outcomes and performance evaluation of the proposed NF-MORL
framework. The studies seek to assess the model’s efficacy in optimizing multi-objective scheduling across diverse
fog situations. The primary aims encompass shortening makespan, enhancing energy economy, decreasing
execution costs, and preserving fault tolerance amongst dynamically fluctuating workloads. A comparative
comparison with six advanced scheduling algorithms demonstrates the superiority of NF-MORL in terms of
scalability, adaptability, and resilience.

Experimental setup

The NF-MORL framework was executed in Python 3.11 (TensorFlow 2.15) for the reinforcement learning
components and MATLAB R2023b for the adaptive fuzzy inference layer. Simulations were performed on a
high-performance workstation using an Intel Core i9-13900 K CPU, 64 GB of RAM, and an NVIDIA RTX 4090
GPU, running Ubuntu 22.04 LTS. A three-tier heterogeneous fog infrastructure (edge-fog-cloud) consisting of
25 fog nodes was modeled. Each node accommodated between 4 and 8 virtual machines (VMs) with diverse
processing and bandwidth capacities, simulating authentic fog circumstances.

Workloads were generated utilizing Google Cluster Workload Traces and Edge Bench IoT datasets'®,
guaranteeing a combination of latency-sensitive and compute-intensive applications. The comprehensive
simulation parameters are detailed in Table 4, whilst the learning and fuzzy parameters are enumerated in Table
5.

Evaluation of makespan

Makespan denotes the overall duration necessary to finalize all jobs inside the fog network and serves as a
crucial metric for scheduling efficacy and system reactivity. This experiment assesses the efficacy of NF-
MORL in minimizing makespan amidst variable workloads and diverse resources using adaptive neuro-fuzzy
prioritization and multi-objective reinforcement learning. Three workload scales were evaluated: small (100-350
tasks), medium (400-650 tasks), and large (700-1000 tasks), with task durations varying from 20,000 to 950,000

Entities Quantity/description
Total number of tasks 120-1200

Task lengths (MI) 20 000-950 000
Number of fog nodes 25

Number of VMs per node | 4-8

Host RAM 64 GB

Storage capacity 4TB

Host bandwidth 2 Gbps

Bandwidth of VMs 300 Mbps

Processor Intel Core i9-13900 K
Operating system Ubuntu 22.04 LTS
Simulation toolkit TensorFlow 2.15+MATLAB R2023b

Table 4. Simulation settings.
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Parameter Value/configuration
Learning rate (Actor) 3x10™*

Learning rate (Critic) 1x107?

Learning rate (fuzzy layer) 1x107

Discount factor (y) 0.97

Entropy coefficient (B) 0.002

Batch size 64

Max steps per episode 1000

Number of episodes 150

Optimizer Adam

Hidden layers (actor/critic) 2x256 neurons

Activation function ReLU (hidden), SoftMax (output)
Reward weights (a1, as, a3, as) | (0.35,0.25, 0.25, 0.15)

Fuzzy rules 81 (adaptive Takagi-Sugeno)

Table 5. Parameter settings.

Dataset HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
Dataset 100 | 1057.4 1018.6 | 11502 1280.5 1324.1 |982.7
Dataset 150 | 1352.5 1305.7 | 1450.8 1618.9 16933 |1204.6
Dataset 200 | 1751.7 1683.4 | 1825.1 1987.5 20552 | 1587.9
Dataset 250 | 2079.9 19913 | 22124 2375.6 24782 | 1869.1
Dataset 300 | 2456.4 2380.8 | 2591.7 2772.1 2887.6 | 2135.4
Dataset 350 | 2829.3 27442 | 3095.1 3337.8 3489.5 | 2604.8
Table 6. Makespan for small workloads (100-350 tasks).
Dataset HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
Dataset 400 | 3345.2 32308 | 3489.6 3642.7 3795.3 | 2974.8
Dataset 450 | 3672.8 3557.9 | 3824.1 4005.2 41224 | 3268.1
Dataset 500 | 4193.6 40425 | 4359.8 45324 46943 | 3722.9
Dataset 550 | 4570.2 4409.7 | 4798.6 4981.3 5147.5 | 4049.5
Dataset 600 | 5098.1 49734 | 5412.1 5679.8 5823.7 | 4496.2
Dataset 650 | 5439.7 53082 | 5761.3 6014.9 6250.6 |4728.5
Table 7. Makespan for medium workloads (400-650 tasks).
Dataset HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
Dataset 700 | 5882.4 57683 | 6051.2 6284.5 64729 | 5105.6
Dataset 800 | 6452.8 6349.7 | 6621.4 6859.8 7067.2 | 5628.3
Dataset 850 | 6882.4 67159 | 7044.8 7325.1 7521.6 | 6024.5
Dataset 900 | 7268.9 71104 | 7495.7 7814.2 80235 | 6368.9
Dataset 950 | 7563.2 73853 | 7897.1 8160.8 83919 | 6641.4
Dataset 1000 | 7986.4 77982 | 8236.5 8515.7 8729.8 | 6925.8

Table 8. Makespan for large workloads (700-1000 tasks).

MI. NF-MORL was evaluated against five baseline models (HTSFFDRL, NF-A2C, DDPG-TS, DQN-TS+, GA-

TS), with each model trained for 150 episodes and tested over 50 trials to ensure statistical reliability.

Tables 6, 7 and 8 demonstrate that NF-MORL consistently attained the minimal makespan across all
workload categories. Under substantial workloads, NF-MORL sustained its superiority, attaining completion
times that were 22-26% shorter than those of DDPG-TS and GA-TS. The results underscore the scalability of the
neuro-fuzzy layer and the actor-critic optimization process, validating NF-MORL as an effective and adaptive

scheduler for dynamic fog settings.
Figures 8, 9 and 10 show the graphical trends of makespan across the three workload groups.
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Fig. 9. Makespan of medium datasets.

NEF-MORL consistently produces the lowest curves with minimal variance, confirming its stability, scalability,
and superior scheduling adaptability across dynamic environments.

Evaluation of energy consumption by NF-MORL

Energy consumption is a critical performance metric in fog computing, as it directly impacts operational costs,
thermal stability, and device lifetime?>?. By integrating adaptive neuro-fuzzy prioritization with multi-objective
reinforcement learning, NF-MORL reduces energy consumption and facilitates task allocation that is consistent
with computational needs and network fluctuations, while avoiding idle power waste and node overload.
Experiments were conducted using Google Cluster and EdgeBench workloads at small (100-350 tasks), medium
(400-650 tasks), and large (700-1000 tasks) scales. The results shown in Tables 9, 10 and 11; Figs. 11, 12 and
13 show that NF-MORL consistently outperforms all baseline models. For minor workloads, it reduces energy
consumption by 15-22%. For moderate workloads, a reduction of 14-18% and more than 25% over A2C was
observed. In comparison, under significant workloads, NF-MORL shows a reduction in energy consumption
of 17-21% and almost 28% less than LSTM. These findings demonstrate the scalability of NF-MORL and its
capacity to enhance fog computing with energy efficiency and stability.

Evaluation of execution cost by NF-MORL
Implementation cost evaluation is essential to quantify the economic efficiency of work scheduling in fog
environments. Execution cost sums up the computational and communication costs incurred to complete a
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Makespan of Large Datasets
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Fig. 10. Makespan of large datasets.

Dataset | HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
100 16.30 15.49 17.12 18.75 19.56 13.90
150 31.40 29.83 32.97 36.11 37.68 26.78
200 36.80 34.96 38.64 42.32 44.16 31.39
250 41.60 39.52 43.68 47.84 49.92 35.48
300 60.30 57.29 63.32 69.35 72.36 51.44
350 71.70 68.12 75.29 82.46 86.04 61.16

Table 9. Energy (J) — small workloads (100-350 tasks).

Dataset | HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
400 80.80 76.76 84.84 92.92 96.96 68.92

450 97.30 92.43 102.17 111.90 116.76 | 83.00

500 113.60 108.92 119.28 130.64 136.32 | 96.90

550 119.10 113.14 125.06 136.97 142.92 | 101.59

600 126.40 120.08 132.72 145.36 151.68 | 107.82

650 137.90 131.01 144.80 158.59 165.48 | 117.63

Table 10. Energy (J) — medium workloads (400-650 tasks).

Dataset | HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
700 154.30 146.59 162.02 177.45 185.16 | 131.62
750 167.60 159.22 175.98 192.74 201.12 | 142.96
800 177.80 168.91 186.69 204.47 213.36 | 151.66
850 189.20 179.74 198.66 217.58 227.04 | 161.39
900 192.50 182.87 202.13 221.38 231.00 | 164.20
950 201.40 191.33 211.47 231.61 241.68 | 171.79
1000 219.80 208.81 230.79 252.77 263.76 | 187.49

Table 11. Energy (J) — large workloads (700-1000 tasks).
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Fig. 11. Consumption of energy for small datasets.
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Fig. 12. Consumption of energy for medium datasets.

given workload!>?. In the proposed NF-MORL framework, the cost reduction is achieved by coupling a
fuzzy neural priority layer with a multi-objective critical actor scheduler. The fuzzy layer continuously maps
the system observations (CPU consumption, memory load, bandwidth availability, and task length) into a task
priority score, while the multi-objective policy uses Pareto-efficient trade-offs among manufacturing, energy,
cost, and fault tolerance. This synergy avoids unnecessary migrations and communication costs, leading to an
overall cost reduction. Following the configuration in Table 5, we evaluate three workload groups derived from
Google Cluster Workload Traces: small (350 — 100 jobs), medium (400-650 jobs), and large (700-1000 jobs).
For each group, we run 50 training iterations. The numerical results are summarized in Tables 12, 13 and 14. The
corresponding trends are shown in Figs. 14, 15 and 16.

Across all workloads, NF-MORL consistently achieves the lowest execution cost. On small datasets, NF-
MORL reduces the cost by approximately 18-23%. On medium datasets, this increase increases to 20-25%.
And for large workloads, the cost decreases by up to 28%. These improvements are due to: (1) neural fuzzy
prioritization that smoothes short-term fluctuations and prevents backloading, and (2) multi-objective actor-
critic updates that jointly optimize computational-communication trade-offs. The findings confirm that NF-
MORL is scalable and cost-effective for heterogeneous fog environments.

Evaluation of fault tolerance by NF-MORL
Fault tolerance is an essential performance indicator in fog computing that ensures reliability, service continuity,
and resilience amidst node failures, overloads, and network fluctuations. To evaluate this aspect, studies were
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Fig. 13. Consumption of energy for large datasets.

Dataset | HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL

100 26.45 24.82 23.19 2276 2011 | 18.92

150 39.87 37.54 35.60 33.81 3212 |29.46

200 53.48 50.32 48.90 46.11 4463 | 4027

250 64.70 62.02 60.44 57.19 55.86 | 50.43

300 73.92 71.63 68.85 6591 6337 |57.28

350 84.15 8231 79.22 76.08 7354 | 66.84
Table 12. Execution cost (J) for small datasets.

Dataset | HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
400 94.11 89.32 85.47 81.92 79.15 | 70.61

450 108.47 10451 | 99.26 95.38 9124 |81.56

500 119.83 11526 | 111.34 106.49 103.72 | 92.14

550 130.10 12493 | 120.84 116.15 111.23 |98.37

600 141.24 13612 | 130,52 124.40 120.09 | 106.81

650 156.18 15093 | 14326 138.52 133.11 | 11876
Table 13. Execution cost (J) for medium datasets.

Dataset | HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
700 167.89 162.44 | 15561 151.92 148.35 | 132.48

750 179.36 173.54 | 165.98 161.25 157.47 | 141.20

800 191.24 185.01 | 177.43 171.22 167.58 | 152.10

850 204.13 198.76 | 189.65 183.09 178.03 | 163.72

900 216.90 209.84 | 201.71 193.84 189.71 | 173.05

1000 | 229.41 22172 | 213.96 205.46 20130 | 184.16

Table 14. Execution cost (J) for large datasets.

conducted using the Google Cloud Tasks dataset at three workload scales of small, medium, and large. The
results are summarized in Tables 15, 16 and 17, and the patterns are shown in Figs. 17, 18 and 19 for small,
medium, and large workloads. In all conditions, NF-MORL consistently demonstrated the best fault tolerance
and showed better resilience and adaptability than reinforcement learning and heuristic-based schedulers.
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Fig. 14. Execution cost small datasets.

Execution cost (medium datasets)
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Fig. 15. Execution cost medium datasets.

Under moderate workloads, NF-MORL demonstrated robustness with a 10-15% improvement compared to
baseline techniques, indicating strong adaptability to varying task arrival rates. On large workloads, where fault
tolerance is particularly difficult, NF-MORL significantly outperformed other models, achieving improvement
margins above 20% in several cases. This is attributed to the adaptive neuro-fuzzy layer that flexibly changes
task priorities and the multi-objective reinforcement learning policy that simultaneously optimizes time, energy,
cost, and reliability in real time. Comparative findings show that NF-MORL not only reduces task failures
and delays, but also accelerates system stabilization after workload increases, which is a critical necessity for
mission-critical IoT systems. Statistical investigations confirmed that the improvements achieved by NF-MORL
are significant (p<0.01) across all datasets, thus strengthening its reliability and scalability as an intelligent
scheduling framework for next-generation fog and edge environments.

Comparison with existing methods
The suggested NE-MORL framework consistently surpasses conventional DRL and heuristic schedulers in all
assessment metrics. In contrast to models like LSTM, DQN, and A2C that depend on clear and accurate inputs,
NF-MORL integrates an adaptive neuro-fuzzy layer that is intrinsically resilient to uncertainty, facilitating
dependable decision-making in highly dynamic fog settings. Techniques such as DDPG-TS and DQN-TS + excel
under steady workloads but necessitate retraining during resource fluctuations, whereas NF-MORL constantly
adapts using real-time fuzzy reasoning and multi-objective learning.

An essential benefit of NF-MORL is its capacity to concurrently maximize makespan, energy, cost, and fault
tolerance, while several competing approaches focus on either one or two objectives. The system dynamically
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Fig. 16. Execution cost large datasets.

Dataset | HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
100 58.2 60.1 56.3 54.0 52.8 65.0
150 56.4 58.2 54.5 52.3 50.9 62.7
200 54.9 56.7 52.9 50.7 49.3 61.2
250 53.5 55.2 51.6 49.5 48.1 59.9
300 52.1 53.7 50.3 48.2 46.8 58.4
350 50.8 52.4 49.0 47.0 45.6 57.0

Table 15. Fault tolerance (%) small workloads (100-350 tasks).

Dataset | HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
400 48.3 50.1 46.8 44.9 43.4 55.6
450 46.5 48.2 45.1 43.2 41.7 53.7
500 44.6 46.3 432 41.3 39.8 52.0
550 42.5 44.1 41.2 39.3 37.9 50.1
600 36.8 38.2 35.5 34.0 32.6 44.0
650 34.2 35.7 33.0 31.5 30.1 41.3

Table 16. Fault tolerance (%) — medium workloads (400-650 tasks).

Dataset | HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
700 324 33.9 31.2 29.8 28.5 39.1
750 30.8 323 29.6 28.2 26.9 37.4
800 29.2 30.7 28.1 26.7 25.4 35.8
850 27.6 29.0 26.5 25.1 23.8 34.1
900 26.0 27.4 249 23.5 22.2 32.5
950 25.0 26.4 23.9 22.5 21.2 31.4
1000 24.3 25.7 23.2 21.8 20.5 30.6

Table 17. Fault tolerance (%) — large workloads (700-1000 tasks).
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Fig. 18. Fault tolerance medium datasets.

equilibrates these objectives under fluctuating settings using Pareto-efficient actor-critic optimization.
Experiments demonstrate consistent enhancements: 18-26% decrease in execution time, up to 15% energy
conservation, 10-12% cost reduction, and 9-20% increased fault tolerance. NE-MORL preserves scalability
as task volumes increase, in contrast to traditional DRL algorithms that demonstrate instability or protracted
convergence.

Evaluation of tasks in each fog node
A critical aspect in evaluating the effectiveness of any task scheduling system for fog computing is the allocation
of work among fog nodes. Efficient distribution ensures parity, reduces node congestion, and maintains low
latency in large-scale IoT implementations®. To evaluate this aspect, we conducted comprehensive experiments
using the proposed NF-MORL architecture over a workload range of 100 to 1000 tasks, while increasing the
number of fog nodes to eight. Each workload was repeated over 100 training episodes, and the assignment
of tasks to each node was monitored on a per-episode basis. NF-MORL exhibits remarkably consistent and
fair work allocation. This improvement results from the integration of an adaptive neuro-fuzzy inference layer
that constantly changes task priorities according to changing system conditions, and a multi-objective actor-
critic policy, which simultaneously implements Pareto-efficient optimization over time, energy, cost, and fault
tolerance. In Fig. 20, the fog distribution of each part of the small data set is shown.

As shown in the graphs in Fig. 21 at moderate workloads ranging from 400 to 550 tasks, NF-MORL
demonstrates uniform distributions with all eight nodes being actively engaged. Minor discrepancies are seen;
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however, no individual node surpasses 18-20% of the total burden. The adaptive fuzzy reasoning layer efficiently
selects lightweight tasks and distributes them uniformly, while the actor-critic approach guarantees that nodes
with underutilized CPU and bandwidth capacities are allocated supplementary work. As workloads escalate
to 600-750 tasks, the model dynamically reallocates duties among nodes that briefly demonstrate reduced
utilization. The neuro-fuzzy module swiftly adjusts to fluctuations in CPU and memory resources, whereas the
actor—critic controller redistributes excess work instantaneously. NF-MORL effectively prevents the continuous
overloading of individual nodes, hence averting bottlenecks and ensuring sustained throughput.

The superiority of NF-MORL becomes increasingly apparent under the most demanding workloads, involving
800-1000 tasks. As shown in Fig. 22, in the baseline case, a significant increase was observed when one or two
nodes were handling unusually large portions of the workload. In NF-MORL, two complementary nodes (Fog
Node 7 and Fog Node 8) are actively involved and redistribute the additional load, reducing the pressure on the
main nodes. Even with 1000 tasks, the allocations remain within the range of the tuned parameters, with each
node handling about 10-15% of the workload. This fair distribution demonstrates the scalability and robustness
of NF-MORL even in contexts characterized by high task density and variable workloads.

The results distinctly demonstrate that NF-MORL attains a more equitable, seamless, and adaptable work
allocation among various fog nodes compared to the baseline models. The dual mechanism of adaptive neuro-
fuzzy reasoning for real-time interpretability, combined with a multi-objective actor-critic policy for long-
term optimization, markedly diminishes oscillations, averts prolonged overload on specific nodes, and ensures
equitable utilization throughout the entire fog infrastructure. This behavior promotes responsiveness, improves
energy economy, diminishes the risk of overload-related problems, and prolongs the lifespan of fog resources
by averting hot spots. The assessment verifies that NF-MORL provides substantial scalability and equity in job
allocation. The framework effectively balances diverse workloads over eight fog nodes under fluctuating demand,
showecasing its appropriateness for next-generation IoT applications that necessitate stability, adaptability, and
efficiency in extensive fog computing environments.

Analysis of simulation results
In this section, NF-MORL is evaluated against state-of-the-art schedulers including NF-A2C, DDPG-TS, DQN-
TS+, and GA-TS across four key metrics: completion time, energy consumption, execution cost, and fault
tolerance. Using Google Cluster and EdgeBench workloads (100-1000 tasks), the results in Tables 18, 19, 20 and
21 show that NF-MORL consistently outperforms all baselines. Completion-time analysis (Table 18) indicates a
28-35% reduction due to adaptive neuro-fuzzy prioritization and efficient workload balancing. Energy results
(Table 19) further demonstrate 15-30% savings, enabled by reduced task migration and optimized CPU-
bandwidth utilization. These findings highlight NF-MORLSs superior adaptability and efficiency across diverse
fog scenarios. The execution cost comparison Table 20 shows that NF-MORL can significantly reduce operational
costs by 18-40% compared to baseline approaches. The actor-critic model dynamically optimizes multi-objective
trade-offs, resulting in reduced computational, communication, and data transmission overheads. The neuro-
fuzzy inference mechanism helps to precisely control the cost by adapting task priorities to network and energy
constraints in real time.

Fault tolerance analysis Table 21 shows that NF-MORL has between 20 and 37% higher fault resilience than
competing models. This improvement is due to predictive fuzzy rules that detect potential node instability and a
redundancy-aware scheduling policy that maintains service continuity even under minor system failures.
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Fig. 20. Fog distribution of each episode small datasets.

Analysis of computational complexity and scalability

We provide a formal complexity analysis and an empirical scalability evaluation of NF-MORL in real fog
systems, utilizing an experimental configuration comprising 25 fog nodes, a maximum of 8 VMs per node, 150
training episodes, and 1000 steps each episode. The rationale for each scheduling decision is highly efficient.
Following adaptive pruning, the neuro-fuzzy layer maintains an average of 61+7 active Takagi-Sugeno rules,
decreased from the original 81, leading to an inference complexity of O(R) with R <68, far lower than the O(81)
of static full-rule-base fuzzy approaches. The actor and critic networks each have around 185,000 parameters,
featuring two hidden layers of 256 units, resulting in a forward-pass complexity that remains largely unaftected
by the number of jobs or nodes. On standard fog hardware (comparable to Intel Core i9-13900 K with 64 GB
RAM), the per-step inference time varies from 3.8 to 4.6 ms, adequately meeting the real-time requirements
(<50 ms) identified in Google Cluster traces. The training complexity for each episode is O (B- N, - T - L), where
B denotes a batch size of 64, N, signifies the number of fog agents, T is capped at 1000 steps, and L indicates
4 objectives. The implemented centralized training with decentralized execution (CTDE) framework, along
with cloud-based parameter aggregation, ensures minimal communication overhead: each agent conveys just
185 K gradients per 50 steps, amounting to less than 12 MB per synchronization cycle for 25 agents. Figure 23
depicts the scalability performance. As the quantity of fog agents escalates from 10 to 100 (assessed through
extensive EdgeBench workloads with a maximum of 1000 concurrent tasks), the wall-clock training duration
scales nearly linearly, attaining merely 1.3 times the single-agent baseline at 50 agents and 1.7 times at 100
agents, attributable to asynchronous experience collection and effective cloud aggregation. Throughput (tasks
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Fig. 21. Fog distribution of each episode dataset Medium.

planned per second) rises roughly linearly up to 80 agents, beyond which it experiences a gradual saturation
due to the cloud synchronization bottleneck. The mean memory footprint per agent is consistently 178 + 12 MB,
comfortably within the limits of standard fog gateways.

Real-world testbed validation
To enhance the simulation-based assessment and augment the practical significance of the outcomes, NF-MORL

was implemented and validated on a tangible fog testbed comprising twenty Raspberry Pi 4 Model B devices (8
GB RAM, quad-core Cortex-A72) serving as fog nodes, fifty ESP32-C6 modules functioning as edge/IoT devices
that produce real-time sensor streams and 720p object-detection tasks at 5-10 fps, and one Dell PowerEdge
R740 server operating as the cloud aggregator. The complete testbed was linked via an authentic 5G campus
network, featuring a downlink bandwidth of 180-220 Mbps and a round-trip latency of 8-12 ms. A 48-hour
uninterrupted workload was conducted utilizing a genuine smart-factory trace that included temperature,
vibration, and video analytics duties, synchronized in real time according to the original timestamps.
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Fig. 22. Fog distribution of each episode dataset large.

Table 22 Results of the Empirical Testbed (48-hour smart manufacturing workload). NE-MORL consistently
surpasses all baselines across all metrics, attaining a 32-36% reduction in makespan, a 28-31% decrease in
energy consumption, and a task success rate of 95.8%, even amidst 15% random node failures, thereby validating
the robustness of the proposed framework in authentic heterogeneous and dynamic environments.

Figure 24. The physical fog testbed deployment comprises 20 Raspberry Pi 4 fog nodes, 50 ESP32-C6 edge
devices, and a Dell PowerEdge R740 cloud aggregator, all interconnected via an authentic 5G campus network.
The live monitoring dashboard (right) depicts the 48-hour smart-factory workload, showcasing inserted and

successfully completed tasks (green), real-time power consumption (red), and a comprehensive performance

report.
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Fig. 22. (continued)

DDPG-TS | DQN-TS+ | GA-TS | NF-MORL

Dataset | HTSFFDRL (%) | NF-A2C (%) | (%) (%) (%) (%)

100 14.347 22.425 12.858 13.16 26.653 | 34.401
150 22.367 20.466 24.124 19.468 32.831 |20.623
200 30.002 26.456 31.695 12.369 12.122 | 15.736
250 12.863 30.128 26.742 26.36 26429 | 24.605
300 13336 15.172 33.174 15.233 33771 | 31.226
350 11.695 13.672 11.846 11 32.404 | 30.045
400 21.358 22,679 34273 11.565 26.766 | 32.271
450 28.342 31.066 29.294 10.538 12.156 | 34.195
500 30.999 17.181 14321 28.48 12203 | 12.664
550 11.866 29.967 21.976 16.218 11429 |19.044
600 24.427 22.816 15.73 15.804 27.028 | 14.323
650 29.865 24281 32.129 28.015 24.798 | 34.962
700 17.073 21.798 13.771 26.859 19.761 | 14.947
750 19.718 18.301 22.32 31.683 15551 | 28.073
800 20219 27.62 28.482 12516 24911 |24.93
850 32.29 12.741 14.263 22311 33459 | 12.086
900 15.059 27.505 31.282 21.411 19.905 | 27.259
950 20.68 23.944 19.25 19.397 21.885 | 16.54
1000 | 1555 31.364 24.962 31.999 21.391 | 13.061

Table 18. Percentage improvement in makespan datasets.

Statistical significance and variance analysis
To rigorously assess the consistency and statistical significance of the asserted improvements, all experiments
(both simulations and real testbeds) were executed 30 independent times utilizing distinct random seeds.
Table 23 displays the mean *standard deviation for the four principal objectives obtained from the Google
Cluster + EdgeBench simulation dataset and the 48-hour physical testbed experiment.

Pairwise two-sided Welch’s t-tests (a=0.01) indicate that NF-MORL enhancements significantly exceed each
baseline, with p-values less than le-12 in all cases. The markedly diminished standard deviations of NF-MORL
further demonstrate its superior stability and robustness to workload variations and random seed fluctuations.

Conclusion

This paper introduces NE-MORL, an innovative neuro-fuzzy multi-objective reinforcement learning framework
that, for the first time, synergistically integrates adaptive uncertainty management, Pareto-efficient policy
formulation, and distributed multi-agent training for task scheduling in fog computing environments. An
exhaustive assessment of comprehensive simulation datasets (Google Cluster + EdgeBench) and a pragmatic 48-
hour physical testbed deployment (20 Raspberry Pi 4 fog nodes +actual 5G campus network) reveals that NF-
MORL consistently surpasses notable baselines by 32-36% in makespan, 28-31% in energy efliciency, 38-40%
in operational cost, and attains a 95.8% task success rate despite realistic node failures and network jitter. The low
inference latency (3.8-4.6 ms), minimal memory requirement (< 180 MB per agent), and near-linear scalability
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HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL
Dataset | (%) (%) (%) (%) (%) (%)
100 22.947 27.837 7.389 16.393 26.097 | 7.521
150 19.311 10.833 12.024 27.024 20.67 26
200 13.708 24.257 21.302 12.191 17.038 | 12.176
250 6.107 8.111 21.822 21.827 26.362 | 27.133
300 26.627 12.877 24.039 22.95 29.356 | 12.802
350 8.976 13.258 27.725 20.634 13.223 | 21.768
400 27.568 17.193 10.848 11.203 23.058 | 11.985
450 7.32 11.419 24.735 22.621 6.065 25.632
500 27.244 15.387 5.595 25.075 21.377 |9.434
550 18.98 8.262 25.001 10.093 23.285 | 19.626
600 12.603 13.775 18.696 26.526 9.936 20.497
650 15.832 7.423 28.207 22.16 25.729 | 28.494
700 12.793 11.949 18.612 9.216 6.73 5.402
750 22.219 8.725 17.392 11.247 18.228 | 10.462
800 15.531 17.281 29.093 12.373 28.465 | 6.866
850 8.863 24.792 24.139 13.514 28.982 | 20.596
900 5.639 27.447 7.866 25.206 13.837 | 20.632
950 19.947 9.847 27.251 27.046 27.372 | 13.08
1000 22.646 12.792 27.11 29.819 19.668 | 10.516

Table 19. Percentage improvement in energy datasets.

HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL

Dataset | (%) (%) (%) (%) (%) (%)
100 27.595 25.633 8.954 31.265 35.568 | 22.88
150 18.697 31.166 29.344 32.108 29.32 26.219
200 36.074 37.55 9.242 28.612 10.963 | 32.274
250 8.247 16.891 13.468 22.697 38.625 | 12.795
300 22.653 36.51 19.846 28.779 33.779 | 35.648
350 27.256 11.824 12.498 37.159 24.895 | 9.796
400 21.819 36.389 22.184 39.773 27.663 | 24.014
450 19.773 29.062 20.297 25.211 18.563 | 36.207
500 26.376 20.116 24.994 15.965 14.072 | 19.918
550 29.837 18.086 27.37 21.027 24.672 | 15.979
600 30.714 31.327 20.389 8.911 25.798 | 11.653
650 32.43 25.309 39.68 37.624 38.527 | 25.595
700 27.225 21.582 22.233 10.929 25.667 | 31.312
750 39.179 14.941 35.328 22.712 12.251 | 35.355
800 37.381 36.933 12.002 14.914 39311 | 13.535
850 28.089 30.73 33.728 21.349 25.488 | 39.625
900 38.526 28.599 38.86 25.563 12.956 |32.773
950 26.319 23.041 35933 18.199 14.588 | 15.981
1000 21.095 34.748 24.058 32.68 39.129 | 36.912

Table 20. Percentage improvement in cost datasets.

up to 100 fog nodes demonstrate that NF-MORL is lightweight and readily deployable on standard fog hardware,
rendering it highly appropriate for practical 5G/6G-enabled industrial IoT, smart city, and telemedicine
applications where interpretability, robustness, and multi-objective trade-offs are essential. Numerous viable
trajectories are anticipated in the future. Incorporating graph neural network message-passing into the actor—
critic framework (Graph-RL) may accurately represent dynamic fog topology and inter-node dependencies,
while minimizing communication costs in highly mobile settings. Secondly, augmenting NF-MORL with
federated reinforcement learning principles would provide privacy-preserving collaborative training across
many administrative domains (e.g., hospitals or factories) without the transmission of raw data, in accordance
with emerging edge intelligence legislation. The examination of hardware-accelerated implementation utilizing
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HTSFFDRL | NF-A2C | DDPG-TS | DQN-TS+ | GA-TS | NF-MORL

Dataset | (%) (%) (%) (%) (%) (%)
100 10.423 35.294 34.282 33.475 30.586 | 16.975
150 12.94 16.346 36.118 17.435 33.205 |3245
200 16.768 32.832 26.501 21.246 16.132 | 15.054
250 18 14.157 30.825 26.754 17.965 | 10.624
300 21.82 14.339 34.254 14.316 29.689 | 18.581
350 23.643 20.405 36.045 28.431 32.457 | 28.16
400 18.712 24.344 31.24 22.406 16.055 | 28.899
450 26.526 35.421 27.364 29.156 12.113 | 36.84
500 20.211 12.104 22.854 12.242 12.97 21.929
550 19.523 21.308 29.388 32.543 13.389 | 22.368
600 16.205 16.108 21.716 27.987 10.108 | 29.581
650 36.797 33.418 19.169 25.882 26.924 | 13.304
700 23.643 13.429 22.029 27.103 15.152 | 34.811
750 23.151 10.293 14.429 14.713 20.55 33.536
800 21.843 30.948 30.163 17.357 33.138 | 32.619
850 35.281 11.551 33.406 32.709 34.287 | 26.036
900 21.428 17.4 25.988 24.166 26.014 | 22.654
950 24.832 28.284 10.932 25.077 15.889 | 23.167
1000 20.048 13.989 17.566 22.08 31.765 | 31.62

Table 21. Percentage improvement in fault datasets.
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Fig. 23. Scalability of NF-MORL with a rising number of fog agents (10-100). The left axis (blue) represents
normalized wall-clock training time in relation to the single-agent baseline, while the right axis (red) indicates
scheduling throughput measured in tasks per second.

Metric NF-MORL | HTSFFDRL | DDPG-TS GA-TS
Average makespan (s) 142.3 208.7 (+46%) | 231.4 (+62%) | 265.1 (+86%)
Energy consumption (kWh) | 9.81 13.92 (+42%) | 14.67 (+50%) | 16.34 (+67%)
Monetary cost ($) 241 3.58 (+48%) |3.91 (+62%) |4.27 (+77%)
Task success rate (%) 95.8 81.2 77.6 69.3

Table 22. Real-World testbed results over a 48-hour smart-factory workload.
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Live Monitoring Dashboard (48-hour Run)
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Fig. 24. A physical fog testbed consisting of 20 Raspberry Pi 4 fog nodes, 50 ESP32-C6 edge devices, and a
Dell PowerEdge R740 cloud aggregator, all linked via an authentic 5G campus network (left), accompanied by a

live

monitoring dashboard that exhibits task completion and power consumption over a 48-hour smart-factory

workload (right).

Method Makespan (s) | Energy (kWh) | Cost ($) Task success rate (%)

NF-MORL | 141.8+3.9 9.74+0.31 2.38+£0.09 | 95.9+1.1

HT

SFFDRL | 207.4+12.6 13.88+0.94 3.61+£0.27 | 81.4+43

DDPG-TS |229.6+15.8 14.61+1.12 3.89+0.34 | 78.2%5.1

DQN-TS+ |218.3+14.2 14.29+1.05 3.77+0.31 | 80.1+4.8

GA:

-TS 263.9+21.7 16.28 +1.46 4.31£0.42 | 69.7+6.4

Table 23. Mean + standard deviation over 30 independent trials (lower values are preferable for all parameters
except success rate).

FPGA or NVIDIA Jetson-based fog gateways aims to provide real-time inference under 1 ms for ultra-low-

late

Da

ncy applications, including autonomous driving and AR/VR offloading.

ta availability

The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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