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IgA nephropathy (IgAN), the most common primary glomerular disease worldwide, poses challenges
in predicting progression at diagnosis—particularly in primary care. This study developed and validated
a model to estimate 5-year renal survival and support early risk stratification for personalized
management. A total of 1135 patients with biopsy-confirmed IgAN from Hangzhou Hospital of
Traditional Chinese Medicine (2014-2017) were retrospectively enrolled and randomly assigned to
training and internal validation cohorts in a 7:3 ratio. An external validation cohort comprising 352
patients was obtained from three independent centers (2015-2020). To identify robust prognostic
variables, 1000 bootstrap samples were generated from the training set, each subjected to tenfold
cross-validation to determine the optimal regularization parameter () for the LASSO-Cox model.
Variables with non-zero coefficients were recorded across iterations, and the five most frequently
selected were used to construct both the XGBoost survival model and a corresponding nomogram.
Model performance was evaluated through discrimination, calibration, and clinical utility using ROC
curves, Brier scores, calibration curve and decision curve analysis. The area under the curve (AUC) of
the nomogram was 0.951 (95% Cl, 0.914-0.988) in the training cohort and 0.927 (95% Cl, 0.877-0.978)
in the internal validation cohort. In the external validation cohort, the AUC was 0.913 (95% Cl,
0.870-0.955). The Brier scores were 0.029 and 0.045 for the internal and external validation cohorts,
respectively. DCA further demonstrated the favorable clinical utility of the nomogram. A clinically
practical prognostic model incorporating routine clinical and pathological features was developed to
estimate 5-year renal survival in patients with IgAN. Specifically designed for primary care settings,
the model leverages easily accessible data to enable early identification of high-risk individuals and
support personalized long-term management. Its simplicity and applicability in resource-limited
environments make it a valuable tool for improving outcomes beyond specialist centers.

Keywords IgA nephropathy, Machine learning, Initial diagnosis, Follow-up care

IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis (GN) globally. According to a global
risk map derived from genome-wide association studies, the eastern region of China is identified as a high-
prevalence area for IgAN". The clinical progression of IgAN is highly variable: while some patients maintain
stable renal function for years, others progress rapidly to end-stage renal disease (ESRD). Reported 10-year
renal survival rates range from 57 to 91%2. Due to the recurrent nature of renal inflammation and the risk of
progressive kidney function deterioration, early identification of high-risk patients and the implementation of
personalized management strategies are crucial for improving long-term outcomes.
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Currently, prognostic risk assessment in IgAN primarily relies on traditional models such as the Oxford
classification and the International IgAN Prognostic Score. Previous studies have often utilized conventional
logistic regression models, which typically suffer from limited sample sizes and fail to adequately address
issues like missing or imbalanced clinical data, thus restricting the development of effective predictive tools.
In recent years, machine learning (ML) has emerged as a powerful tool in data mining and has rapidly gained
traction in the medical field due to its strong computational capabilities, allowing for the exploration of complex
relationships between multiple variables and disease outcomes. For instance, Ryunosuke Noda et al. developed
a noninvasive diagnostic prediction model for [gAN using ML techniques®, and Ying Zhang et al. constructed
a short-term risk prediction model for chronic kidney disease (CKD) progression in patients with IgAN based
on clinical data from 443 individuals. While these studies highlight the potential of ML in IgAN diagnosis and
short-term risk prediction, an integrated long-term prognostic model incorporating clinical data, laboratory
parameters, and renal histopathologic features has yet to be developed. This gap limits the clinical applicability
of ML approaches in the long-term management and personalized treatment of patients with IgAN.

This study aims to develop and validate a 5-year survival prediction model for IgAN using ML approaches,
integrating clinical characteristics, laboratory findings, and renal histopathologic features. The objective is to
provide accurate long-term outcome predictions for patients with IgAN, thereby improving risk stratification,
optimizing individualized treatment strategies, and enhancing the clinical translation of these models into
practice.

Methods

Study participants

This retrospective study utilized a follow-up dataset of 1,135 patients diagnosed with IgAN who underwent
long-term follow-up at Hangzhou Hospital of Traditional Chinese Medicine from January 2014 to December
2017. An additional dataset of 352 patients diagnosed with IgAN, who underwent long-term follow-up at
Hangzhou Hospital of Traditional Chinese Medicine,Zhejiang Provincial People’s Hospital and Wenzhou
Hospital of Integrated Traditional Chinese and Western Medicine between February 2015 and December 2020,
was also included. This study received approval from the ethics committee (approval number: 2021KY045).
All IgAN diagnoses were confirmed based on histological and immunofluorescence studies of renal biopsies.
The inclusion criteria were as follows: 1) age > 18 years; 2) eGFR > 15 mL/min/1.73 m? at baseline; 3) follow-up
duration > 6 months; and 4) at least 8 glomeruli. Exclusion criteria were as follows: 1) patients with comorbid
chronic kidney diseases; 2) patients with secondary causes of mesangial IgA deposits; 3) patients with acute renal
failure; and 4) patients with incomplete or ambiguous data. Ultimately, 723 patients were included in the study.
The study flowchart is presented in Fig. 1.

Clinical and laboratory data

Clinical characteristics were collected at the time of renal biopsy (baseline). Data were retrieved from the
medical record system of Hangzhou Hospital of Traditional Chinese Medicine and included variables such as
renal biopsy time, gender, age, body mass index (BMI), hemoglobin (Hb), serum albumin (SA), total cholesterol
(TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), blood uric acid (BUA), 24-h urinary total
protein (24 h UTP), microscopic hematuria, estimated glomerular filtration rate (eGFR), serum complement
C3 (C3), serum complement C4 (C4), and serum immunoglobulins IgA, IgG, and IgM. The baseline clinical
characteristics are summarized in Table 1. Anemia was defined according to standard clinical criteria as
Hb <120 g/L in males and <110 g/L in females®. The eGFR was calculated using the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) formula, and eGFR stages were classified as follows: G5 (<15 mL/
min/1.73 m?), G4 (15-29 mL/min/1.73 m?), G3 (30-59 mL/min/1.73 m?), G2 (60-89 mL/min/1.73 m?), and G1
(290 mL/min/1.73 m?). All indicators were defined according to traditional cutoff values, following the Kidney
Disease Improving Global Outcomes (KDIGO) guidelines®. Additional details of each variable’s definition are
presented in Table 1.

Tissue pathology data

Histopathological data were collected by the Nephrology Department of Hangzhou TCM Hospital, Zhejiang
Chinese Medical University. Routine staining of renal biopsy tissue included hematoxylin and eosin, periodic
acid-Schiff, hexamine silver, and Masson staining. Direct immunofluorescence was performed to assess the
expression intensities and renal deposition sites of IgA, IgG, IgM, C3, C4, and Clq (Fig. 2).

For each patient, pathological indicators were scored using the MEST-C classification. Electron microscopy
images were used to evaluate foot process effacement (FPE). The MEST-C score characterizes tissue lesions as
follows: M for mesangial, E for endocapillary, S for glomerular sclerosis, T for tubulointerstitial damage, and C
for crescents. Mesangial lesions were classified as MO (absence) or M1 (presence) based on the proportion of
mesangial cells. Endocapillary and glomerular sclerosis lesions were categorized as EO/E1 and S0/S1, respectively,
depending on their presence or absence. Crescents were defined as extravascular proliferation of capillaries of
any size exceeding two cell layers. Renal tubular atrophy/interstitial fibrosis and crescent lesions were graded
as TO (0-25%), T1 (26-50%), or T2 (>50%) and CO (none), C1 (0-25%), or C2 (>25%), respectively’. FPE was
defined by the disappearance of the normal fissure diaphragm between adjacent foot processes or complete
effacement. The extent of FPE was expressed as the percentage of the length of the FPE relative to the total length
of each capillary loop; FPE >50% was classified as widespread FPE, while FPE <50% was considered segmental
FPE®’. Renal pathology inflammatory cell infiltration (RPICI) primarily consisted of lymphocytes, monocytes,
and plasma cells, with neutrophils and eosinophils being less frequent. The degree of inflammatory cell
infiltration was classified into four categories: no infiltration, < 25%, >25% but <50%, and >50% inflammatory
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Fig. 1. The flowchart of our study.

cell infiltration’. All biopsy specimens were reviewed by two renal pathologists who were blinded to the clinical
data.

Endpoint and and follow-up

A composite endpoint was defined as the development of ESRD (eGFR< 15 mL/min/1.73 m?, dialysis, or kidney
transplantation), a doubling of serum creatinine (Scr) levels, or a 40% decline in eGFR within five years after the
diagnostic renal biopsy. Information on Scr, eGFR, total follow-up duration, and whether the patient reached
the renal composite endpoint within five years was recorded during each follow-up.In cases where information
was unavailable, follow-up data were obtained via phone inquiry. To account for the potential competing risk
of death occurring prior to renal endpoints, the single patient who died of an unknown cause was excluded
from the analysis. This approach was undertaken to minimize bias arising from competing events during model
development and evaluation, thereby preserving the integrity of the study cohort and ensuring the robustness
of the predictive model.

Statistical analysis

The overall proportion of missing values per variable ranged from 0.2 to 10.6%, with BMI missing in 3.1% of
cases, Hb, LDL, and renal Clq in 0.2%, SA in 0.4%, TC in 0.6%, 24 h UTP in 0.8%, MH and renal C4 in 1.2%,
serum IgG, IgA, and IgM in 2.3%, serum C3 and C4 in 2.9%, and FPE in 10.6%; overall, no variable exceeded 15%
missingness. Missing data were imputed using multiple imputation by chained equations (MICE) implemented
via the mi package in R (version 4.4.1), ensuring sample representativeness and improving result accuracy. Each
variable was imputed using a method appropriate to its type: 1) continuous variables: predictive mean matching
(PMM); 2) categorical variables: multinomial logistic regression;3) ordinal variables: proportional odds model.
We generated five imputed datasets, each subjected to model fitting, and pooled estimates were obtained
according to Rubin’s rules to ensure robust inference.Given the single-center origin of the dataset, stringent
internal validation protocols were implemented to reduce overfitting and enhance model generalizability. The
cohort was randomly split into training (70%) and independent internal validation (30%) sets.

In the training set, bootstrap resampling generated 1000 replicates, each undergoing tenfold cross-validation
to identify the optimal regularization parameter (\) that minimized cross-validation error. LASSO Cox
proportional hazards models were then applied to each bootstrap sample at the selected A threshold, recording
variables with non-zero coefficients. Variables were ranked based on their selection frequency across iterations.
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HZSZZY
Outcome
Endpoint
Non-endpoint event | event External External
Characteristics Overall group group P Validation1 Validation2
Patients (n) 723 679 44 352 352
Age (meanxSD) 35 [29,44] | 35 [29,44] 42.5 [30,49] 0.024* 37 [30,47] 37 [30,47]
Gender=Male (%) 304 (42) 284 (41.8) 20 (45.5) 0.637 156 (44.3) 156 (44.3)
R 2266 2153 2345 2345
BMI (mean +SD) Kg/m [20.40,24.81] | 22:681204524.81] [18.92,25.45] 0.086 [212325.62] | [21.23.25.62]
110 . 124
Hb (meanSD) g/L 120 [109,133] | 121 [110,133] 002275 | <0001 124 [11L13675] | (7)) 136.75]
37.9 3445 . 37.6
SA (mean+SD) g/L Bandes) | 38135:5407) Modsasss) | <0001 37.6(3473406] | 7€ 0
TC (mean+SD) mmol/L ‘[*3'4719 s | 441377507 463 [401,571] | 0.053 444[3.97,5.18] | 4.44 [3.97,5.18]
LDL (mean+SD) mmol/L [2;37 sy |257(2063.10) 2921[239,3.60] | 0.006* 2.68[2.29,3.22] | 2.68[2.29,3.22]
HDL (mean +SD) mmol/L [1(')0981 L29) | 10810:9L130] 1.09[0.93,125] | 0.815 0.96 [0.85,1.14] | 0.96 [0.85,1.14]
BUA (mean +SD) pmol/L 306 [250,367] | 304 [248,364] 365 [308.5,410] | <0.001* 305 [244,365] | 305 [244,365]
HIN=1 (%) 272(37.6) | 234 (345) 38 (86.4) <0.001* 147 (41.8) 147 (41.8)
24h UTP (mean+SD) g/24 h ([)(‘)946 L7g) | 0850045.157) 240 [1.25,3.77] | <0.001* 0.88[0.46,1.8] | 0.88 [0.46,1.8]
Microscopic Hematuria (%) 0.141
0 180 24.9) | 165 (24.3) 15 (34.1) 83 (23.6) 83 (23.6)
1 106 (147) | 99 (14.6) 7(15.9) 46 (13.1) 46 (13.1)
2 134(185) | 129(19) 5(11.4) 68 (19.3) 68 (19.3)
3 248 (343) | 231(34) 17 (38.6) 117 (33.2) 117 (332)
4 55 (7.6) 55 (8.1) 0(0) 38 (10.8) 38 (10.8)
eGFR Stage <0.001*
Gl 363 (502) | 359 (52.9) 109.1) 196 (55.7) 196 (55.7)
G2 214(29.6) | 208 (30.6) 6(13.6) 83 (23.6) 83 (23.6)
G3 121(167) | 100 (14.7) 21 (47.7) 59 (16.8) 59 (16.8)
G4 25 (3.5) 12 (1.8) 13 (29.5) 14 (4) 14 (4)
1060 1033.5 1110 1110
Serum IgG (mean+5D) mg/dl [905,1250] | 1060 [905,1250] [864.25,1215] 0.372 [950.25,1250] | [950.25,1250]
289 208
Serum IgA (mean:SD) mg/dl 295 [235,358] | 295 [235,359] Dissas07s] | 0866 2981227.25.375) | (33 35 375
Serum IgM (mean+SD) mg/dl 108 [80,144] | 107 [79,144] Eslfzs las7s) | 0501 101 [72,140.75] | 101 [72,140.75]
Serum C3 (mean +SD) mg/dl 97 (86,110] | 97 [86,111] 90 [78,107.5] 0.052 97 (85,110] 97 85,110]
Serum C4 (mean +SD) mg/dl 23019,27] | 2319, 27] 24 [19,26.75] 0.854 23 [18, 28] 2318, 28]
Renal IgA deposition (%) 0.722
0 0(0) 0(0) 0(0) 0(0) 0(0)
1 12(1.7) 11 (16) 123) 3(0.9) 3(0.9)
2 135(187) | 130 (19.1) 5(11.4) 54 (15.3) 54(15.3)
3 497 (68.7) | 462 (68) 35 (79.5) 266 (75.6) 266 (75.6)
4 79 (10.9) 76 (11.2) 3(6.8) 29 (8.2) 29 (8.2)
Renal IgG deposition (%) 0.094
0 500 (81.6) | 558 (82.2) 32(72.7) 246 (69.9) 246 (69.9)
1 105 (145) | 97 (14.3) 8(18.2) 91 (25.9) 91 (25.9)
2 23(32) 20 (2.9) 3(6.8) 14 (4) 14 (4)
3 5(0.7) 4(0.6) 1(23) 1(03) 1(0.3)
Renal IgM deposition (%) 0.459
0 96 (13.3) 89 (13.1) 7(15.9) 15 (4.3) 15 (4.3)
1 444 (614) | 422(62.2) 22 (50) 217 (61.6) 217 (61.6)
2 166 (23) 152 (22.4) 14 (31.8) 117 (332) 117 (332)
3 17 (24) 16 (2.4) 123) 3(0.9) 3(0.9)
Renal C3 deposition (%) 0.392
0 30 (4.1) 29 (43) 1(23) 16 (45) 16 (45)
Continued
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HZSZZY
Outcome
Endpoint
Non-endpoint event | event External External
Characteristics Overall group group P Validation1 Validation2
1 83 (11.5) 75 (11) 8(18.2) 40 (11.4) 40 (11.4)
2 294 (40.7) 276 (40.6) 18 (40.9) 130 (36.9) 130 (36.9)
3 313 (43.3) 296 (43.6) 17 (38.6) 165 (46.9) 165 (46.9)
4 3(0.4) 3(0.4) 0(0) 1(0.3) 1(0.3)
Renal C4 deposition (%) 0.699
0 665 (92) 625 (92) 40 (90.9) 330 (93.8) 330 (93.8)
1 48 (6.6) 47 (6.9) 1(2.3) 19 (5.4) 19 (5.4)
2 8(1.1) 7 (1) 1(2.3) 3(0.9) 3(0.9)
3 2(0.3) 0(0) 2 (4.5) 0(0) 0(0)
Renal Clq deposition (%) 0.003*
0 549 (75.9) 523 (77) 26 (59.1) 317 (90.1) 317 (90.1)
1 159 (22) 146 (21.5) 13 (29.5) 32(9.1) 32(9.1)
2 14 (1.9) 9(1.3) 5(11.4) 3(0.9) 3(0.9)
3 1(0.1) 1(0.1) 0(0) 0(0) 0(0)
RPICI (%) <0.001*
0 1(0.1) 1(0.1) 0(0) 2(0.6) 2(0.6)
1 444 (61.4) 438 (64.5) 6(13.6) 217 (61.6) 217 (61.6)
2 216 (29.9) 202 (29.7) 14 (31.8) 93 (26.4) 93 (26.4)
3 62 (8.6) 38 (5.6) 24 (54.5) 40 (11.4) 40 (11.4)
FPE (%) <0.001*
0 109 (15.1) 108 (15.9) 1(2.3) 35(9.9) 35(9.9)
1 369 (51) 354 (52.1) 15 (34.1) 195 (55.4) 195 (55.4)
2 170 (23.5) 154 (22.7) 16 (36.4) 72 (20.5) 72 (20.5)
3 67 (9.3) 56 (8.2) 11 (25) 45 (12.8) 45 (12.8)
4 8 (L.1) 7(1) 1(2.3) 5(1.4) 5(1.4)
M=1 (%) 1.000
0 3(0.4) 3(0.4) 0(0) 23 (6.5) 23 (6.5)
1 720 (99.6) 676 (99.6) 44 (100) 329 (93.5) 329 (93.5)
E=1 (%) 0.081
0 545 (75.4) 507 (74.7) 38 (86.4) 217 (61.6) 217 (61.6)
1 178 (24.6) 172 (25.3) 6 (13.6) 135 (38.4) 135 (38.4)
S=1 (%) 0.185
0 97 (13.4) 94 (13.8) 3(6.8) 56 (15.9) 56 (15.9)
1 626 (86.6) 585 (86.2) 41(93.2) 296 (84.1) 296 (84.1)
T (%) <0.001*
0 510 (70.5) 503 (74.1) 7 (15.9) 249 (70.7) 249 (70.7)
1 173 (23.9) 159 (23.4) 14 (31.8) 79 (22.4) 79 (22.4)
2 40 (5.5) 17 (2.5) 23 (52.3) 24 (6.8) 24 (6.8)
Continued
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HZSZZY
Outcome
Endpoint
Non-endpoint event | event External External
Characteristics Overall group group P Validation1 Validation2
C (%) 0.077
0 258 (35.7) 235 (34.6) 23 (52.3) 114 (32.4) 114 (32.4)
1 406 (56.2) 390 (57.4) 16 (36.4) 209 (59.4) 209 (59.4)
2 59 (8.2) 54 (8) 5(11.4) 29(8.2) 29(8.2)
EndEvent=1 (%) 44 (6.1) 0(0) 44 (100) 20 (5.7) 18 (5.1)

Table 1. Baseline characteristics of clinical variables for patients with IgAN enrolled in our study at the time
of renal biopsy. 1. Outcome was defined as: combined event of ESRD (eGFR < 15 mL/min/1.73m2, dialysis,

or kidney transplantation) or Scr level doubled or a 40% decline in eGFR within 5 years after diagnostic renal
biopsy. 2. p-value refers to the p-values from statistical tests comparing patients with and without outcome
(Chi-square test for categorical variables, and t-test for continuous variables).* Abbreviations:BMI, Body

Mass Index; Hb, Hemoglobin; SA, Serum Albumin; TC, Total Cholesterol; LDL, Low-Density Lipoprotein;
HDL, High-Density Lipoprotein; BUA, Blood Uric Acid; 5y Scr, 5-year Serum creatinine; 24-h UTP, 24-h
Urinary Total Protein; IgA, Immunoglobulin A; IgG, Immunoglobulin G; IgM, Immunoglobulin M; Serum
C3:, Serum complement C3; Serum C4, Serum complement C4; MH, Microscopic Hematuria, MHO(without
MH), MH1(+), MH2(++), MH3(+++), MH4(+ + + +); Renal IgA deposition, O(without deposition),
1(+deposition), 2(+ + deposition), 3(++ + deposition), 4(+ + + + deposition); Renal IgG deposition,

0(without deposition), 1(+ deposition), 2(+ + deposition), 3(+ + + deposition); Renal IgM deposition,
O(without deposition), 1(+ deposition), 2(+ + deposition), 3(++ + deposition); Renal C3 deposition, 0(without
deposition), 1(+ deposition), 2(+ + deposition), 3(+ + + deposition), 4(+ + + + deposition); Renal C4 deposition,
0(without deposition), 1(+ deposition), 2(+ + deposition), 3(+ + + deposition); Renal C1q deposition, 0(without
deposition), 1(+ deposition), 2(+ + deposition), 3(+ + + deposition); eGFR, estimated Glomerular Filtration
Rate (caculated by EPI formula), G4(< 30 mL/min/1.73 m?), G3 (30-59 mL/min/1.73 m?), G2 (60-89 mL/
min/1.73 m?), G1 (=90 mL/min/1.73m?); HTN, Hypertension; RPICI, Renal Pathology Inflammatory Cell
Infiltration, RPICIO(no inflammatory cell infiltration), RPICI1(< 25%), RPICI2(25-50%), RPICI3(> 50%);

FPE, Foot Process Effacement, FPEO(< 15%), FPE1(15-50%), FPE2(50-75%), FPE3(75-90%),FPE4(> 90%); M,
Mesangial, MO(< 50% of glomeruli have mesangial cell proliferation) M1(>50% of glomeruli have mesangial
cell proliferation); E, Endocapillary, EO(No capillary endothelial cell proliferation), E1(Capillary endothelial
cell proliferation is present); S, Glomerular sclerosis, SO(No segmental glomerulosclerosis), S1(Presence of
segmental glomerulosclerosis); T, Tubulointerstitialfibrosis, TO (Tubular atrophy and interstitial fibrosis <25%),
T1 (Tubular atrophy and interstitial fibrosis26-50%), T2 (Tubular atrophy and interstitial fibrosis >50%); C,
Crescents, CO (none), C1 (0-25% of glomeruli with crescent formation), C2 (=25% of glomeruli with crescent
formation).

The top five features were analyzed for correlation and collinearity, with results visualized in Fig. 3 using SHAP
plots. These features informed the XGBoost model for predicting 5-year IgAN survival. Model performance was
evaluated based on discrimination (AUC), calibration (Brier scores and calibration curve), and clinical utility
(decision curve analysis [DCA]).External validation was performed using datasets from Zhejiang Provincial
People’s Hospital and Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine to assess
clinical applicability, with AUC values confirming model promising predictive ability.Two validation analyses
were performed: the first used an endpoint defined as the development of ESRD (eGFR< 15 mL/min/1.73 m?,
initiation of dialysis, or kidney transplantation), a doubling of serum creatinine (Scr) levels, or a 40% decline in
eGFR within five years after the diagnostic renal biopsy; the second used an endpoint defined as the development
of ESRD (eGFR < 15 mL/min/1.73 m?, initiation of dialysis, or kidney transplantation), a doubling of Scr levels,
or a 50% decline in eGFR within five years after the diagnostic renal biopsy to allow comparison with the
International IgA Nephropathy Prediction Tool (IIgANPT). Model discrimination was assessed using the AUC.

Continuous variables are presented as mean + SD and compared using t-tests (for normally distributed data)
or Kruskal-Wallis tests (for non-normally distributed data). Categorical variables are expressed as frequencies
and compared using chi-square tests. Statistical significance was set at P<0.05. Analyses were performed using
SPSS (v29.0, Mac) and R (v4.4.1).

Methods statements
All methods were performed in accordance with the relevant guidelines and regulations.

Results

Characteristics of the clinical variables of studied participants

Each patient’s baseline was defined as the time of renal biopsy, which ranged from January 2014 to December
2017 in the dataset. The total follow-up period was 5 years following the renal biopsy. Within this cohort, 44
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Fig. 2. Correlation heat map of continuous variables, color depth represents correlation coefficient (r value),
*<0.05; ***<0.001.

patients (6.1%) reached the endpoint event within 5 years after biopsy. Based on the occurrence of endpoint
events, the 723 patients were divided into two groups: the endpoint events group and the non-endpoint events
group. Thirty-one candidate predictors were considered, including demographics, clinical characteristics, and
pathological features. Overall, patients undergoing renal biopsy were middle-aged, with a median age of 35 years,
and predominantly female (58.0%). The median BMI was 22.66 kg/m?. Specifically, patients in the endpoint
events group had higher values for age (mean 42.5 vs. 35 years), LDL (mean 2.92 mmol/L vs. 2.57 mmol/L),
BUA (mean 365 pmol/L vs. 304 umol/L), 24 h UTP (mean 2.40 g/24 h vs. 0.85 g/24 h), and HTN (86.4% vs.
34.5%) and lower Hb (mean 110 g/L vs. 121 g/L) and SA (mean 34.45 g/L vs. 38 g/L) compared to those without
endpoint events. These differences were statistically significant (P <0.05). Notably, patients with lower baseline
eGEFR stages were more likely to progress to end-stage kidney disease (ESKD). Specifically, 1.8% of patients in
Group 1 (eGFR stage G4) progressed to ESKD, compared to 29.5% in Group 2. Similar trends were observed
for renal C1q deposition, RPICI, FPE, and T. In addition, several predictors, including gender, BMI, TC, HDL,
MH, serum immunoglobulins (IgA, IgG, IgM), serum C3, serum C4, and renal IgA, IgG, IgM, C3, and C4
deposition, as well as the M, E, S, and C scores, showed no statistically significant differences between the two
groups at baseline. The clinical characteristics of the endpoint event group and non-endpoint event group from
the Hangzhou TCM Hospital of Zhejiang Chinese Medical University are summarized in Table 1.

The external validation cohort, comprising patients from Hangzhou Hospital of Traditional Chinese
Medicine,Zhejiang Provincial People’s Hospital and Wenzhou Hospital of Integrated Traditional Chinese and
Western Medicine, had follow-up durations and variables consistent with the training and internal validation
cohorts. The external cohort was predominantly composed of middle-aged individuals, with a median age of
37 years, and a majority of females (55.7%). The median BMI was 23.45 kg/m?, and 20 patients (5.7%) reached
the endpoint event. The characteristics of the external validation cohort are presented in Table 1.

Model performance

A correlation analysis was performed on the included variables, revealing strong correlations between TC and
LDL, SA and 24 h UTP, as well as RPICI and T. Based on prior research findings, TC, SA, and RPICI were
excluded from further analysis. A correlation heat map of continuous variables (Fig. 2) showed significant
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correlations among several variables, with color depth representing the correlation coeflicient. To address the
potential impact of multicollinearity on the model, a LASSO Cox proportional hazards model was employed for
variable selection. The top five selected variables were further analyzed for correlation and collinearity, and the
results indicated no significant multicollinearity among them. These selected variables—Hb, 24 h UTP, HTN,
eGFR, and Oxford classification T—were used to construct the XGBoost model for predicting the 5-year survival
rate of patients with IgAN. Figure 4 illustrates the Kaplan-Meier curve showing the association of these variables
with endpoint events. In the training set, the AUC of the XGBoost model was 0.951 (95% CI: 0.914-0.988),
and in the internal validation set, it was 0.927 (95% CI: 0.877-0.978), indicating that the model did not exhibit
overfitting. The Brier scores for the internal and external validation cohorts were 0.029 and 0.045, respectively.
Both the Brier score and DCA confirmed the model’s good calibration and clinical applicability. External
validation using data from patients with IgAN at Hangzhou Hospital of Traditional Chinese Medicine,Zhejiang
Provincial People’s Hospital and Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine
showed an AUC of 0.913 (95% CI: 0.870-0.955), suggesting that the model demonstrates promising predictive
performance and potential clinical utility. A more detailed presentation of the model’s performance is provided
in Table 2, with the ROC curve and DCA displayed in Fig. 5.

Using the second endpoint definition—which included the development of ESRD, a doubling of serum
creatinine levels, or a>50% decline in eGFR within five years—the external validation demonstrated that our
XGBoost model achieved an AUC 0 0.915 (95% CI: 0.870-0.961), whereas the IIgANPT showed an AUC 0f 0.715
(95% CI: 0.559-0.872). These findings indicate that our model exhibited superior discriminative performance
compared with the IIgANPT in the external cohort.

Constructing a nomogram

Based on the variables selected by LASSO—Hb, 24 h UTP, HTN, eGFR, and Oxford classification T—a
nomogram was developed to predict the 5-year renal survival probability for patients with IgAN. The nomogram
calculates the total score by projecting the values of each variable onto the points axis and summing the scores.
The total score is then mapped to the risk axis to estimate the patient’s 5-year survival probability (Fig. 6). For
example, for a patient with IgAN exhibiting 24 h UTP of 4.51 g/24 h, Oxford classification T=2, HIN=1,
eGFR =G4, and no anemia, the respective scores are approximately 43.5, 100, 52.6, 47.5, and 0. The total score is
243.6, which corresponds to a 5-year survival rate of about 13%, indicating a high risk of progression to ESRD.
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Fig.4. KM survival curve of clinical variables selected by LASSO. (A) KM suvival curve of anemia status. (B)
KM suvival curve of hypertension. (C) KM suvival curve of T. (D) KM suvival curve of 24 h UTP. (E) KM
suvival curve of eGFR stage. Abbreviations: KM, Kaplan-Meier Curve; LASSO, Least Absolute Shrinkage and
Selection Operator; T, T in Oxford classification;eGER stage, estimated Glomerular Filtration Rate,according to
the KDIGO CKD staging,1-G1, 2-G2, 3-G3, 4-G4; Urine protein,1-urine protein<1 g/24 h, 2-1 g/24 h< = urine
protein <3 g/24 h, 3-urine protein> =3 g/24 h

95%CI
Dataset AUC | Lower | Upper | Brier score | p value
Train set 0.951 | 0.914 | 0.988 |0.029 0.729
Internal validation | 0.927 | 0.877 |0.978 |0.039 0.753
External validation | 0.913 | 0.870 |0.955 | 0.045 0.295

Table 2. Nomogram performance in training, internal and external validation cohorts.
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analysis; XGBoost, Extreme Gradient Boosting.

This suggests that the patient warrants close clinical monitoring. Clinicians should comprehensively assess the
patient’s condition, develop an individualized treatment plan, and regularly monitor renal function and 24 h
UTP.

Discussion

This study developed an XGBoost model and a corresponding nomogram to predict the 5-year renal survival
probability in patients with IgAN. The nomogram incorporated five readily available variables (anemia status,
eGEFR stage, HTN status, Oxford classification T score, and 24 h UTP) and demonstrated strong discriminatory
performance and calibration in both internal and external validation cohorts. As a user-friendly tool, the
nomogram enables primary care physicians to easily interpret the contribution and weight of each risk factor,
thus facilitating more accurate and personalized risk assessment for patients with IgAN.

The IIgANPT is a widely used model that integrates clinical parameters and the Oxford MEST score to
estimate the risk of a 50% decline in eGFR or progression to ESRD within 60 months. It includes two versions:
one with and one without a race parameter'’. In our study, we conducted two external validation analyses to
compare the performance of our XGBoost model with the IIgANPT. Using the endpoint consistent with model
development (ESRD, doubling of serum creatinine, or a>40% decline in eGFR), our model demonstrated
robust predictive performance. To enable direct comparison with the IIgANPT, we redefined the external cohort
endpoint as a>50% decline in eGFR, under which our XGBoost model achieved a substantially higher AUC
of 0.915, indicating superior discriminative ability. Moreover, adopting a>40% eGFR decline as the primary
endpoint allows our model to identify high-risk patients earlier than the IIgANPT, providing a longer window
for clinical intervention and increasing sensitivity to early disease progression.Several other models have
also been proposed. For instance, Zhang-Yu Tian et al. developed a prediction model based on five variables
(n=519)-LDL, Oxford S and T scores, cardiovascular disease, and 24 h UTP-to estimate the risk of initiating
renal replacement therapy or reaching an eGFR< 15 mL-min~!-(1.73 m?)~! at 5, 8, and 10 years'!. Notably, this
model includes only the M, E, S, and T scores of the Oxford classification, excluding the C score—a pathological
feature that is closely associated with poor prognosis in Asian patients with [IgJAN—thereby potentially limiting
the comprehensiveness and accuracy of the model’s prognostic assessment for this population.
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Extreme Gradient Boosting; T, T in Oxford classification; eGFR stage, estimated Glomerular Filtration Rate,
according to the KDIGO CKD staging, 1-G1, 2-G2, 3-G3, 4-G4; Urine protein, 1-urine protein<1 g/24 h,

2-1 g/24 h< =urine protein <3 g/24 h, 3-urine protein > =3 g/24 h; anemia, 0-without anemia, 1-with anemia;
hypertension, 0-without hypertension, 1-with hypertension.

With the advancement of ML, Yngvar Lunde Haaskjold et al. applied a random forest approach to data from
Norwegian patients (n=232) to identify predictive features and develop a risk prediction model. The selected
predictors included T%, segmental glomerular sclerosis, normal glomeruli, global sclerotic glomeruli, segmental
adherence, and perihilar glomerular sclerosis. While the model showed potential, it has not undergone rigorous
external validation, and its clinical utility remains uncertain'?.

To address these limitations, this study contributes novel insights to the existing literature by developing a
prognostic model using multicenter data and conducting independent external validation, which confirmed
the model’s strong discriminatory performance. The final model incorporated anemia status, eGFR stage, HTN
status, the T score from the Oxford classification, and 24 h UTP. Among these variables, the Oxford T score,
eGFR stage, and 24 h UTP align with KDIGO guidelines and are widely recognized as key prognostic indicators
in IgAN. Early identification of CKD stages is clinically significant for risk stratification and the development
of personalized intervention strategies, potentially delaying renal function deterioration and improving long-
term outcomes and quality of life . Proteinuria is the most extensively studied risk factor for IgAN progression
to ESRD, and recent reports have identified proteinuria reduction as a surrogate endpoint in IgAN trials'.
Our study found that proteinuria levels>1 g/24 h are a risk factor for poor prognosis, which is consistent with
KDIGO recommendations that suggest targeting proteinuria<1 g/24 h as a reasonable therapeutic goal'. A
retrospective study by Heather N. Reich et al., which included follow-up data from 542 patients with IgAN,
reported that those with persistent proteinuria > 3 g/day experienced a renal function decline rate 25 times faster
than patients with proteinuria<1 g/day'%. However, after adjusting for time-dependent confounding factors,
Chen Tang et al. observed that patients with proteinuria>0.5 g/24 h were still at an increased risk of kidney
failure, highlighting the importance of controlling proteinuria in I[gAN management, even at lower levels'.
The prognostic significance of tubulointerstitial lesions has also been well established. A retrospective cohort
study and meta-analysis by Bingxin Yu et al. confirmed that the presence of T lesions is a strong predictor of
poor renal outcomes in IgAN, independent of all clinical and laboratory parameters'. Our findings support
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this conclusion. In the Oxford classification, the T score reflects the extent of tubulointerstitial injury. During
the pathogenesis and progression of IgAN, the deposition of immune complexes-particularly IgA-in the
tubulointerstitium activates local immune responses and triggers sustained inflammation, ultimately leading to
interstitial fibrosis!”. Therefore, a higher T score is associated with an increased risk of progression to ESRD and
necessitates close clinical monitoring and targeted interventions.

In addition to the previously discussed indicators, anemia was identified as a strong and independent
predictor of poor renal prognosis in patients with IgAN. Chronic kidney injury can contribute to anemia through
several mechanisms, including reduced red blood cell survival, erythropoietin (EPO) deficiency, suppressed
erythropoiesis, and iron dysregulation'®-*>. Anemia may further aggravate renal damage by inducing tissue
hypoxia, potentially via activation of the hypoxia-inducible factor (HIF) signaling pathway, which plays a role in
the progression of chronic kidney disease**?*. This mechanistic pathway helps explain the observed association
between anemia and adverse renal outcomes in our cohort. A retrospective study by Tae Ryom Oh et al., involving
4,326 patients with biopsy-confirmed IgAN, found that for each 1.0 g/dL increase in Hb, the risk of disease
progression decreased by 13%, aligning with our findings?. Renal anemia is driven by various mechanisms,
including reduced red blood cell survival, EPO deficiency, suppressed erythropoiesis, and iron imbalance!®-%.
Among these, EPO deficiency and functional iron deficiency—both related to the HIF pathway—have attracted
increasing attention for their roles in renal anemia and disease progression?’. Furthermore, prior studies
have documented a correlation between anemia and tubulointerstitial injury in IgAN, further underscoring
its prognostic significance?®??. Our study further validates anemia as a risk factor for poor renal prognosis.
Additionally, the importance of HTN in IgAN is reinforced. HTN at the time of renal biopsy has been linked
to increased urinary protein excretion during follow-up, suggesting its ongoing impact on glomerular injury.
Histopathological findings indicate that hypertensive patients typically exhibit more severe vascular lesions,
which, compared to mesangial cell proliferation, play a more dominant role in glomerulosclerosis®. Therefore,
in IgAN individuals with comorbid HTN, regular blood pressure monitoring and the use of antihypertensive
medications during treatment are crucial for improving patient outcomes.

This study has several limitations. Firstly, event-per-variable (EPV) ratio of our study is relatively low, with
31 candidate predictors and 44 outcome events (EPV =1.19), which may introduce some risk of overfitting
and affect the stability of parameter estimates. In future studies, larger cohorts with more outcome events are
needed to increase the EPV and improve the robustness and generalizability of the predictive model.Secondly,
as a retrospective study, while multiple imputation using the “mi” package was applied to address missing
data, residual bias cannot be entirely ruled out. Prospective studies with standardized and comprehensive
data collection are necessary to validate these findings and minimize potential bias. Finally, this study focused
solely on clinical and histopathological data, excluding genetic information. With the increasing accessibility
of genomic sequencing technologies, integrating clinical and genetic data may provide additional value in
improving risk prediction, diagnosis, and prognostication in IgAN, and should be explored in future research.

Conclusion

Using real-world data and a data-driven approach, this study developed a 5-year survival prediction model for
IgAN utilizing the XGBoost ML algorithm. The model incorporates five routinely available clinical variables
at the time of renal biopsy and demonstrated promising predictive performance in both internal and external
validation cohorts. Moreover, when compared with the widely used IIgANPT, our model achieved higher
discriminative efficiency and, by adopting a >40% decline in eGFR as the primary endpoint, was able to identify
high-risk patients at an earlier stage, providing a longer window for clinical intervention and greater sensitivity
to early disease progression. An intuitive nomogram derived from the model enables individualized risk
assessment at diagnosis, helping primary care physicians recognize high-risk individuals, optimize follow-up
strategies, and guide early, personalized management. By facilitating timely risk stratification and supporting
evidence-based decision-making, this model may contribute to more precise, proactive, and resource-efficient
care in IgAN, ultimately improving long-term outcomes. Further multicenter, prospective studies are warranted
to validate its generalizability and support its integration into routine clinical practice.
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