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IgA nephropathy (IgAN), the most common primary glomerular disease worldwide, poses challenges 
in predicting progression at diagnosis—particularly in primary care. This study developed and validated 
a model to estimate 5-year renal survival and support early risk stratification for personalized 
management. A total of 1135 patients with biopsy-confirmed IgAN from Hangzhou Hospital of 
Traditional Chinese Medicine (2014–2017) were retrospectively enrolled and randomly assigned to 
training and internal validation cohorts in a 7:3 ratio. An external validation cohort comprising 352 
patients was obtained from three independent centers (2015–2020). To identify robust prognostic 
variables, 1000 bootstrap samples were generated from the training set, each subjected to tenfold 
cross-validation to determine the optimal regularization parameter (λ) for the LASSO-Cox model. 
Variables with non-zero coefficients were recorded across iterations, and the five most frequently 
selected were used to construct both the XGBoost survival model and a corresponding nomogram. 
Model performance was evaluated through discrimination, calibration, and clinical utility using ROC 
curves, Brier scores, calibration curve and decision curve analysis. The area under the curve (AUC) of 
the nomogram was 0.951 (95% CI, 0.914–0.988) in the training cohort and 0.927 (95% CI, 0.877–0.978) 
in the internal validation cohort. In the external validation cohort, the AUC was 0.913 (95% CI, 
0.870–0.955). The Brier scores were 0.029 and 0.045 for the internal and external validation cohorts, 
respectively. DCA further demonstrated the favorable clinical utility of the nomogram. A clinically 
practical prognostic model incorporating routine clinical and pathological features was developed to 
estimate 5-year renal survival in patients with IgAN. Specifically designed for primary care settings, 
the model leverages easily accessible data to enable early identification of high-risk individuals and 
support personalized long-term management. Its simplicity and applicability in resource-limited 
environments make it a valuable tool for improving outcomes beyond specialist centers.
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IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis (GN) globally. According to a global 
risk map derived from genome-wide association studies, the eastern region of China is identified as a high-
prevalence area for IgAN1. The clinical progression of IgAN is highly variable: while some patients maintain 
stable renal function for years, others progress rapidly to end-stage renal disease (ESRD). Reported 10-year 
renal survival rates range from 57 to 91%2. Due to the recurrent nature of renal inflammation and the risk of 
progressive kidney function deterioration, early identification of high-risk patients and the implementation of 
personalized management strategies are crucial for improving long-term outcomes.
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Currently, prognostic risk assessment in IgAN primarily relies on traditional models such as the Oxford 
classification and the International IgAN Prognostic Score. Previous studies have often utilized conventional 
logistic regression models, which typically suffer from limited sample sizes and fail to adequately address 
issues like missing or imbalanced clinical data, thus restricting the development of effective predictive tools. 
In recent years, machine learning (ML) has emerged as a powerful tool in data mining and has rapidly gained 
traction in the medical field due to its strong computational capabilities, allowing for the exploration of complex 
relationships between multiple variables and disease outcomes. For instance, Ryunosuke Noda et al. developed 
a noninvasive diagnostic prediction model for IgAN using ML techniques3, and Ying Zhang et al. constructed 
a short-term risk prediction model for chronic kidney disease (CKD) progression in patients with IgAN based 
on clinical data from 443 individuals4. While these studies highlight the potential of ML in IgAN diagnosis and 
short-term risk prediction, an integrated long-term prognostic model incorporating clinical data, laboratory 
parameters, and renal histopathologic features has yet to be developed. This gap limits the clinical applicability 
of ML approaches in the long-term management and personalized treatment of patients with IgAN.

This study aims to develop and validate a 5-year survival prediction model for IgAN using ML approaches, 
integrating clinical characteristics, laboratory findings, and renal histopathologic features. The objective is to 
provide accurate long-term outcome predictions for patients with IgAN, thereby improving risk stratification, 
optimizing individualized treatment strategies, and enhancing the clinical translation of these models into 
practice.

Methods
Study participants
This retrospective study utilized a follow-up dataset of 1,135 patients diagnosed with IgAN who underwent 
long-term follow-up at Hangzhou Hospital of Traditional Chinese Medicine from January 2014 to December 
2017. An additional dataset of 352 patients diagnosed with IgAN, who underwent long-term follow-up at 
Hangzhou Hospital of Traditional Chinese Medicine,Zhejiang Provincial People’s Hospital and Wenzhou 
Hospital of Integrated Traditional Chinese and Western Medicine between February 2015 and December 2020, 
was also included. This study received approval from the ethics committee (approval number: 2021KY045). 
All IgAN diagnoses were confirmed based on histological and immunofluorescence studies of renal biopsies. 
The inclusion criteria were as follows: 1) age ≥ 18 years; 2) eGFR ≥ 15 mL/min/1.73 m2 at baseline; 3) follow-up 
duration ≥ 6 months; and 4) at least 8 glomeruli. Exclusion criteria were as follows: 1) patients with comorbid 
chronic kidney diseases; 2) patients with secondary causes of mesangial IgA deposits; 3) patients with acute renal 
failure; and 4) patients with incomplete or ambiguous data. Ultimately, 723 patients were included in the study. 
The study flowchart is presented in Fig. 1.

Clinical and laboratory data
Clinical characteristics were collected at the time of renal biopsy (baseline). Data were retrieved from the 
medical record system of Hangzhou Hospital of Traditional Chinese Medicine and included variables such as 
renal biopsy time, gender, age, body mass index (BMI), hemoglobin (Hb), serum albumin (SA), total cholesterol 
(TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), blood uric acid (BUA), 24-h urinary total 
protein (24 h UTP), microscopic hematuria, estimated glomerular filtration rate (eGFR), serum complement 
C3 (C3), serum complement C4 (C4), and serum immunoglobulins IgA, IgG, and IgM. The baseline clinical 
characteristics are summarized in Table 1. Anemia was defined according to standard clinical criteria as 
Hb < 120 g/L in males and < 110 g/L in females5. The eGFR was calculated using the Chronic Kidney Disease 
Epidemiology Collaboration (CKD-EPI) formula, and eGFR stages were classified as follows: G5 (< 15  mL/
min/1.73 m2), G4 (15–29 mL/min/1.73 m2), G3 (30–59 mL/min/1.73 m2), G2 (60–89 mL/min/1.73 m2), and G1 
(≥ 90 mL/min/1.73 m2). All indicators were defined according to traditional cutoff values, following the Kidney 
Disease Improving Global Outcomes (KDIGO) guidelines6. Additional details of each variable’s definition are 
presented in Table 1.

Tissue pathology data
Histopathological data were collected by the Nephrology Department of Hangzhou TCM Hospital, Zhejiang 
Chinese Medical University. Routine staining of renal biopsy tissue included hematoxylin and eosin, periodic 
acid-Schiff, hexamine silver, and Masson staining. Direct immunofluorescence was performed to assess the 
expression intensities and renal deposition sites of IgA, IgG, IgM, C3, C4, and C1q (Fig. 2).

For each patient, pathological indicators were scored using the MEST-C classification. Electron microscopy 
images were used to evaluate foot process effacement (FPE). The MEST-C score characterizes tissue lesions as 
follows: M for mesangial, E for endocapillary, S for glomerular sclerosis, T for tubulointerstitial damage, and C 
for crescents. Mesangial lesions were classified as M0 (absence) or M1 (presence) based on the proportion of 
mesangial cells. Endocapillary and glomerular sclerosis lesions were categorized as E0/E1 and S0/S1, respectively, 
depending on their presence or absence. Crescents were defined as extravascular proliferation of capillaries of 
any size exceeding two cell layers. Renal tubular atrophy/interstitial fibrosis and crescent lesions were graded 
as T0 (0–25%), T1 (26–50%), or T2 (> 50%) and C0 (none), C1 (0–25%), or C2 (≥ 25%), respectively7. FPE was 
defined by the disappearance of the normal fissure diaphragm between adjacent foot processes or complete 
effacement. The extent of FPE was expressed as the percentage of the length of the FPE relative to the total length 
of each capillary loop; FPE ≥ 50% was classified as widespread FPE, while FPE < 50% was considered segmental 
FPE8,9. Renal pathology inflammatory cell infiltration (RPICI) primarily consisted of lymphocytes, monocytes, 
and plasma cells, with neutrophils and eosinophils being less frequent. The degree of inflammatory cell 
infiltration was classified into four categories: no infiltration, < 25%, > 25% but < 50%, and ≥ 50% inflammatory 
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cell infiltration7. All biopsy specimens were reviewed by two renal pathologists who were blinded to the clinical 
data.

Endpoint and and follow-up
A composite endpoint was defined as the development of ESRD (eGFR < 15 mL/min/1.73 m2, dialysis, or kidney 
transplantation), a doubling of serum creatinine (Scr) levels, or a 40% decline in eGFR within five years after the 
diagnostic renal biopsy. Information on Scr, eGFR, total follow-up duration, and whether the patient reached 
the renal composite endpoint within five years was recorded during each follow-up.In cases where information 
was unavailable, follow-up data were obtained via phone inquiry. To account for the potential competing risk 
of death occurring prior to renal endpoints, the single patient who died of an unknown cause was excluded 
from the analysis. This approach was undertaken to minimize bias arising from competing events during model 
development and evaluation, thereby preserving the integrity of the study cohort and ensuring the robustness 
of the predictive model.

Statistical analysis
The overall proportion of missing values per variable ranged from 0.2 to 10.6%, with BMI missing in 3.1% of 
cases, Hb, LDL, and renal C1q in 0.2%, SA in 0.4%, TC in 0.6%, 24 h UTP in 0.8%, MH and renal C4 in 1.2%, 
serum IgG, IgA, and IgM in 2.3%, serum C3 and C4 in 2.9%, and FPE in 10.6%; overall, no variable exceeded 15% 
missingness. Missing data were imputed using multiple imputation by chained equations (MICE) implemented 
via the mi package in R (version 4.4.1), ensuring sample representativeness and improving result accuracy. Each 
variable was imputed using a method appropriate to its type: 1) continuous variables: predictive mean matching 
(PMM); 2) categorical variables: multinomial logistic regression;3) ordinal variables: proportional odds model.
We generated five imputed datasets, each subjected to model fitting, and pooled estimates were obtained 
according to Rubin’s rules to ensure robust inference.Given the single-center origin of the dataset, stringent 
internal validation protocols were implemented to reduce overfitting and enhance model generalizability. The 
cohort was randomly split into training (70%) and independent internal validation (30%) sets.

In the training set, bootstrap resampling generated 1000 replicates, each undergoing tenfold cross-validation 
to identify the optimal regularization parameter (λ) that minimized cross-validation error. LASSO Cox 
proportional hazards models were then applied to each bootstrap sample at the selected λ threshold, recording 
variables with non-zero coefficients. Variables were ranked based on their selection frequency across iterations. 

Fig. 1.  The flowchart of our study.
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Characteristics

HZSZZY

External 
Validation1

External 
Validation2Overall

Outcome

Non-endpoint event 
group

Endpoint 
event
group p

Patients  (n) 723 679 44 352 352

Age  (mean ± SD) 35 [29,44] 35 [29,44] 42.5 [30,49] 0.024* 37 [30,47] 37 [30,47]

Gender = Male  (%) 304 (42) 284 (41.8) 20 (45.5) 0.637 156 (44.3) 156 (44.3)

BMI  (mean ± SD) Kg/m2 22.66 
[20.40,24.81] 22.68 [20.45,24.81] 21.53 

[18.92,25.45] 0.086 23.45 
[21.23,25.62]

23.45 
[21.23,25.62]

Hb  (mean ± SD) g/L 120 [109,133] 121 [110,133] 110 
[100,122.75]  < 0.001* 124 [111,136.75] 124 

[111,136.75]

SA  (mean ± SD) g/L 37.9 
[35.3,40.5] 38 [35.5,40.7] 34.45 

[30.43,38.38]  < 0.001* 37.6 [34.73,40.6] 37.6 
[34.73,40.6]

TC  (mean ± SD) mmol/L 4.41 
[3.79,5.10] 4.4 [3.77,5.07] 4.63 [4.01,5.71] 0.053 4.44 [3.97,5.18] 4.44 [3.97,5.18]

LDL  (mean ± SD) mmol/L 2.59 
[2.07,3.14] 2.57 [2.06,3.10] 2.92 [2.39,3.60] 0.006* 2.68 [2.29,3.22] 2.68 [2.29,3.22]

HDL  (mean ± SD) mmol/L 1.08 
[0.91,1.29] 1.08 [0.91,1.30] 1.09 [0.93,1.25] 0.815 0.96 [0.85,1.14] 0.96 [0.85,1.14]

BUA  (mean ± SD) μmol/L 306 [250,367] 304 [248,364] 365 [308.5,410]  < 0.001* 305 [244,365] 305 [244,365]

HTN = 1  (%) 272 (37.6) 234 (34.5) 38 (86.4)  < 0.001* 147 (41.8) 147 (41.8)

24 h UTP  (mean ± SD) g/24 h 0.9 
[0.46,1.74] 0.85 [0.45,1.57] 2.40 [1.25,3.77]  < 0.001* 0.88 [0.46,1.8] 0.88 [0.46,1.8]

Microscopic Hematuria (%) 0.141

   0 180 (24.9) 165 (24.3) 15 (34.1) 83 (23.6) 83 (23.6)

   1 106 (14.7) 99 (14.6) 7 (15.9) 46 (13.1) 46 (13.1)

   2 134 (18.5) 129 (19) 5 (11.4) 68 (19.3) 68 (19.3)

   3 248 (34.3) 231 (34) 17 (38.6) 117 (33.2) 117 (33.2)

   4 55 (7.6) 55 (8.1) 0 (0) 38 (10.8) 38 (10.8)

eGFR Stage  < 0.001*

   G1 363 (50.2) 359 (52.9) 4 (9.1) 196 (55.7) 196 (55.7)

   G2 214 (29.6) 208 (30.6) 6 (13.6) 83 (23.6) 83 (23.6)

   G3 121 (16.7) 100 (14.7) 21 (47.7) 59 (16.8) 59 (16.8)

   G4 25 (3.5) 12 (1.8) 13 (29.5) 14 (4) 14 (4)

Serum IgG  (mean ± SD) mg/dl 1060 
[905,1250] 1060 [905,1250] 1033.5 

[864.25,1215] 0.372 1110 
[950.25,1250]

1110 
[950.25,1250]

Serum IgA  (mean ± SD) mg/dl 295 [235,358] 295 [235,359] 289 
[243.5,350.75] 0.866 298 [227.25,375] 298 

[227.25,375]

Serum IgM  (mean ± SD) mg/dl 108 [80,144] 107 [79,144] 116 
[84.25,145.75] 0.501 101 [72,140.75] 101 [72,140.75]

Serum C3  (mean ± SD) mg/dl 97 [86,110] 97 [86,111] 90 [78,107.5] 0.052 97 [85,110] 97 [85,110]

Serum C4  (mean ± SD) mg/dl 23 [19, 27] 23 [19, 27] 24 [19,26.75] 0.854 23 [18, 28] 23 [18, 28]

Renal IgA deposition  (%) 0.722

   0 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

   1 12 (1.7) 11 (1.6) 1 (2.3) 3 (0.9) 3 (0.9)

   2 135 (18.7) 130 (19.1) 5 (11.4) 54 (15.3) 54 (15.3)

   3 497 (68.7) 462 (68) 35 (79.5) 266 (75.6) 266 (75.6)

   4 79 (10.9) 76 (11.2) 3 (6.8) 29 (8.2) 29 (8.2)

Renal IgG deposition  (%) 0.094

   0 590 (81.6) 558 (82.2) 32 (72.7) 246 (69.9) 246 (69.9)

   1 105 (14.5) 97 (14.3) 8 (18.2) 91 (25.9) 91 (25.9)

   2 23 (3.2) 20 (2.9) 3 (6.8) 14 (4) 14 (4)

   3 5 (0.7) 4 (0.6) 1 (2.3) 1 (0.3) 1 (0.3)

Renal IgM deposition  (%) 0.459

   0 96 (13.3) 89 (13.1) 7 (15.9) 15 (4.3) 15 (4.3)

   1 444 (61.4) 422 (62.2) 22 (50) 217 (61.6) 217 (61.6)

   2 166 (23) 152 (22.4) 14 (31.8) 117 (33.2) 117 (33.2)

   3 17 (2.4) 16 (2.4) 1 (2.3) 3 (0.9) 3 (0.9)

Renal C3 deposition  (%) 0.392

   0 30 (4.1) 29 (4.3) 1 (2.3) 16 (4.5) 16 (4.5)

Continued
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Characteristics

HZSZZY

External 
Validation1

External 
Validation2Overall

Outcome

Non-endpoint event 
group

Endpoint 
event
group p

   1 83 (11.5) 75 (11) 8 (18.2) 40 (11.4) 40 (11.4)

   2 294 (40.7) 276 (40.6) 18 (40.9) 130 (36.9) 130 (36.9)

   3 313 (43.3) 296 (43.6) 17 (38.6) 165 (46.9) 165 (46.9)

   4 3 (0.4) 3 (0.4) 0 (0) 1 (0.3) 1 (0.3)

Renal C4 deposition  (%) 0.699

   0 665 (92) 625 (92) 40 (90.9) 330 (93.8) 330 (93.8)

   1 48 (6.6) 47 (6.9) 1 (2.3) 19 (5.4) 19 (5.4)

   2 8 (1.1) 7 (1) 1 (2.3) 3 (0.9) 3 (0.9)

   3 2 (0.3) 0 (0) 2 (4.5) 0 (0) 0 (0)

Renal C1q deposition  (%) 0.003*

   0 549 (75.9) 523 (77) 26 (59.1) 317 (90.1) 317 (90.1)

   1 159 (22) 146 (21.5) 13 (29.5) 32 (9.1) 32 (9.1)

   2 14 (1.9) 9 (1.3) 5 (11.4) 3 (0.9) 3 (0.9)

   3 1 (0.1) 1 (0.1) 0 (0) 0 (0) 0 (0)

RPICI  (%)  < 0.001*

   0 1 (0.1) 1 (0.1) 0 (0) 2 (0.6) 2 (0.6)

   1 444 (61.4) 438 (64.5) 6 (13.6) 217 (61.6) 217 (61.6)

   2 216 (29.9) 202 (29.7) 14 (31.8) 93 (26.4) 93 (26.4)

   3 62 (8.6) 38 (5.6) 24 (54.5) 40 (11.4) 40 (11.4)

FPE  (%)  < 0.001*

   0 109 (15.1) 108 (15.9) 1 (2.3) 35 (9.9) 35 (9.9)

   1 369 (51) 354 (52.1) 15 (34.1) 195 (55.4) 195 (55.4)

   2 170 (23.5) 154 (22.7) 16 (36.4) 72 (20.5) 72 (20.5)

   3 67 (9.3) 56 (8.2) 11 (25) 45 (12.8) 45 (12.8)

   4 8 (1.1) 7 (1) 1 (2.3) 5 (1.4) 5 (1.4)

M = 1  (%) 1.000

   0 3 (0.4) 3 (0.4) 0 (0) 23 (6.5) 23 (6.5)

   1 720 (99.6) 676 (99.6) 44 (100) 329 (93.5) 329 (93.5)

E = 1  (%) 0.081

   0 545 (75.4) 507 (74.7) 38 (86.4) 217 (61.6) 217 (61.6)

   1 178 (24.6) 172 (25.3) 6 (13.6) 135 (38.4) 135 (38.4)

S = 1  (%) 0.185

   0 97 (13.4) 94 (13.8) 3 (6.8) 56 (15.9) 56 (15.9)

   1 626 (86.6) 585 (86.2) 41 (93.2) 296 (84.1) 296 (84.1)

T  (%)  < 0.001*

   0 510 (70.5) 503 (74.1) 7 (15.9) 249 (70.7) 249 (70.7)

   1 173 (23.9) 159 (23.4) 14 (31.8) 79 (22.4) 79 (22.4)

   2 40 (5.5) 17 (2.5) 23 (52.3) 24 (6.8) 24 (6.8)

Continued
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The top five features were analyzed for correlation and collinearity, with results visualized in Fig. 3 using SHAP 
plots. These features informed the XGBoost model for predicting 5-year IgAN survival. Model performance was 
evaluated based on discrimination (AUC), calibration (Brier scores and calibration curve), and clinical utility 
(decision curve analysis [DCA]).External validation was performed using datasets from Zhejiang Provincial 
People’s Hospital and Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine to assess 
clinical applicability, with AUC values confirming model promising predictive ability.Two validation analyses 
were performed: the first used an endpoint defined as the development of ESRD (eGFR < 15 mL/min/1.73 m2, 
initiation of dialysis, or kidney transplantation), a doubling of serum creatinine (Scr) levels, or a 40% decline in 
eGFR within five years after the diagnostic renal biopsy; the second used an endpoint defined as the development 
of ESRD (eGFR < 15 mL/min/1.73 m2, initiation of dialysis, or kidney transplantation), a doubling of Scr levels, 
or a 50% decline in eGFR within five years after the diagnostic renal biopsy to allow comparison with the 
International IgA Nephropathy Prediction Tool (IIgANPT). Model discrimination was assessed using the AUC.

Continuous variables are presented as mean ± SD and compared using t-tests (for normally distributed data) 
or Kruskal–Wallis tests (for non-normally distributed data). Categorical variables are expressed as frequencies 
and compared using chi-square tests. Statistical significance was set at P < 0.05. Analyses were performed using 
SPSS (v29.0, Mac) and R (v4.4.1).

Methods statements
All methods were performed in accordance with the relevant guidelines and regulations.

Results
Characteristics of the clinical variables of studied participants
Each patient’s baseline was defined as the time of renal biopsy, which ranged from January 2014 to December 
2017 in the dataset. The total follow-up period was 5 years following the renal biopsy. Within this cohort, 44 

Characteristics

HZSZZY

External 
Validation1

External 
Validation2Overall

Outcome

Non-endpoint event 
group

Endpoint 
event
group p

C  (%) 0.077

   0 258 (35.7) 235 (34.6) 23 (52.3) 114 (32.4) 114 (32.4)

   1 406 (56.2) 390 (57.4) 16 (36.4) 209 (59.4) 209 (59.4)

   2 59 (8.2) 54 (8) 5 (11.4) 29 (8.2) 29 (8.2)

EndEvent = 1 (%) 44 (6.1) 0 (0) 44 (100) 20 (5.7) 18 (5.1)

Table 1.  Baseline characteristics of clinical variables for patients with IgAN enrolled in our study at the time 
of renal biopsy. 1. Outcome was defined as: combined event of ESRD (eGFR < 15 mL/min/1.73m2, dialysis, 
or kidney transplantation) or Scr level doubled or a 40% decline in eGFR within 5 years after diagnostic renal 
biopsy. 2. p-value refers to the p-values from statistical tests comparing patients with and without outcome 
(Chi-square test for categorical variables, and t-test for continuous variables).* Abbreviations:BMI, Body 
Mass Index; Hb, Hemoglobin; SA, Serum Albumin; TC, Total Cholesterol;  LDL, Low-Density Lipoprotein; 
HDL, High-Density Lipoprotein; BUA, Blood Uric Acid; 5y Scr, 5-year Serum creatinine; 24-h UTP, 24-h 
Urinary Total Protein; IgA, Immunoglobulin A; IgG, Immunoglobulin G; IgM, Immunoglobulin M; Serum 
C3:, Serum complement C3; Serum C4, Serum complement C4; MH, Microscopic Hematuria, MH0(without 
MH), MH1( +), MH2(+ +), MH3(+ + +), MH4(+ +  + +); Renal IgA deposition, 0(without deposition), 
1(+ deposition), 2(+ + deposition), 3(+ +  + deposition), 4(+ +  +  + deposition); Renal IgG deposition, 
0(without deposition), 1(+ deposition), 2(+ + deposition), 3(+ +  + deposition); Renal IgM deposition, 
0(without deposition), 1(+ deposition), 2(+ + deposition), 3(+ +  + deposition); Renal C3 deposition, 0(without 
deposition), 1(+ deposition), 2(+ + deposition), 3(+ +  + deposition), 4(+ +  +  + deposition); Renal C4 deposition, 
0(without deposition), 1(+ deposition), 2(+ + deposition), 3(+ +  + deposition); Renal C1q deposition, 0(without 
deposition), 1(+ deposition), 2(+ + deposition), 3(+ +  + deposition); eGFR, estimated Glomerular Filtration 
Rate (caculated by EPI formula), G4(< 30 mL/min/1.73 m2), G3 (30-59 mL/min/1.73 m2), G2 (60-89 mL/
min/1.73 m2), G1 (≥ 90 mL/min/1.73m2); HTN, Hypertension; RPICI, Renal Pathology Inflammatory Cell 
Infiltration, RPICI0(no inflammatory cell infiltration), RPICI1(< 25%), RPICI2(25–50%), RPICI3(> 50%); 
FPE, Foot Process Effacement, FPE0(< 15%), FPE1(15–50%), FPE2(50–75%), FPE3(75–90%),FPE4(> 90%); M, 
Mesangial, M0(≤ 50% of glomeruli have mesangial cell proliferation) M1(> 50% of glomeruli have mesangial 
cell proliferation); E, Endocapillary, E0(No capillary endothelial cell proliferation), E1(Capillary endothelial 
cell proliferation is present); S, Glomerular sclerosis, S0(No segmental glomerulosclerosis), S1(Presence of 
segmental glomerulosclerosis); T, Tubulointerstitialfibrosis, T0 (Tubular atrophy and interstitial fibrosis ≤ 25%), 
T1 (Tubular atrophy and interstitial fibrosis26-50%), T2 (Tubular atrophy and interstitial fibrosis > 50%); C, 
Crescents, C0 (none), C1 (0–25% of glomeruli with crescent formation), C2 (≥ 25% of glomeruli with crescent 
formation).

 

Scientific Reports |         (2026) 16:2486 6| https://doi.org/10.1038/s41598-025-32280-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


patients (6.1%) reached the endpoint event within 5 years after biopsy. Based on the occurrence of endpoint 
events, the 723 patients were divided into two groups: the endpoint events group and the non-endpoint events 
group. Thirty-one candidate predictors were considered, including demographics, clinical characteristics, and 
pathological features. Overall, patients undergoing renal biopsy were middle-aged, with a median age of 35 years, 
and predominantly female (58.0%). The median BMI was 22.66 kg/m2. Specifically, patients in the endpoint 
events group had higher values for age (mean 42.5 vs. 35 years), LDL (mean 2.92 mmol/L vs. 2.57 mmol/L), 
BUA (mean 365 μmol/L vs. 304 μmol/L), 24 h UTP (mean 2.40 g/24 h vs. 0.85 g/24 h), and HTN (86.4% vs. 
34.5%) and lower Hb (mean 110 g/L vs. 121 g/L) and SA (mean 34.45 g/L vs. 38 g/L) compared to those without 
endpoint events. These differences were statistically significant (P < 0.05). Notably, patients with lower baseline 
eGFR stages were more likely to progress to end-stage kidney disease (ESKD). Specifically, 1.8% of patients in 
Group 1 (eGFR stage G4) progressed to ESKD, compared to 29.5% in Group 2. Similar trends were observed 
for renal C1q deposition, RPICI, FPE, and T. In addition, several predictors, including gender, BMI, TC, HDL, 
MH, serum immunoglobulins (IgA, IgG, IgM), serum C3, serum C4, and renal IgA, IgG, IgM, C3, and C4 
deposition, as well as the M, E, S, and C scores, showed no statistically significant differences between the two 
groups at baseline. The clinical characteristics of the endpoint event group and non-endpoint event group from 
the Hangzhou TCM Hospital of Zhejiang Chinese Medical University are summarized in Table 1.

The external validation cohort, comprising patients from Hangzhou Hospital of Traditional Chinese 
Medicine,Zhejiang Provincial People’s Hospital and Wenzhou Hospital of Integrated Traditional Chinese and 
Western Medicine, had follow-up durations and variables consistent with the training and internal validation 
cohorts. The external cohort was predominantly composed of middle-aged individuals, with a median age of 
37 years, and a majority of females (55.7%). The median BMI was 23.45 kg/m2, and 20 patients (5.7%) reached 
the endpoint event. The characteristics of the external validation cohort are presented in Table 1.

Model performance
A correlation analysis was performed on the included variables, revealing strong correlations between TC and 
LDL, SA and 24 h UTP, as well as RPICI and T. Based on prior research findings, TC, SA, and RPICI were 
excluded from further analysis. A correlation heat map of continuous variables (Fig.  2) showed significant 

Fig. 2.  Correlation heat map of continuous variables, color depth represents correlation coefficient (r value), 
* < 0.05; *** < 0.001.
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correlations among several variables, with color depth representing the correlation coefficient. To address the 
potential impact of multicollinearity on the model, a LASSO Cox proportional hazards model was employed for 
variable selection. The top five selected variables were further analyzed for correlation and collinearity, and the 
results indicated no significant multicollinearity among them. These selected variables—Hb, 24 h UTP, HTN, 
eGFR, and Oxford classification T—were used to construct the XGBoost model for predicting the 5-year survival 
rate of patients with IgAN. Figure 4 illustrates the Kaplan–Meier curve showing the association of these variables 
with endpoint events. In the training set, the AUC of the XGBoost model was 0.951 (95% CI: 0.914–0.988), 
and in the internal validation set, it was 0.927 (95% CI: 0.877–0.978), indicating that the model did not exhibit 
overfitting. The Brier scores for the internal and external validation cohorts were 0.029 and 0.045, respectively. 
Both the Brier score and DCA confirmed the model’s good calibration and clinical applicability. External 
validation using data from patients with IgAN at Hangzhou Hospital of Traditional Chinese Medicine,Zhejiang 
Provincial People’s Hospital and Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine 
showed an AUC of 0.913 (95% CI: 0.870–0.955), suggesting that the model demonstrates promising predictive 
performance and potential clinical utility. A more detailed presentation of the model’s performance is provided 
in Table 2, with the ROC curve and DCA displayed in Fig. 5.

Using the second endpoint definition—which included the development of ESRD, a doubling of serum 
creatinine levels, or a ≥ 50% decline in eGFR within five years—the external validation demonstrated that our 
XGBoost model achieved an AUC of 0.915 (95% CI: 0.870–0.961), whereas the IIgANPT showed an AUC of 0.715 
(95% CI: 0.559–0.872). These findings indicate that our model exhibited superior discriminative performance 
compared with the IIgANPT in the external cohort.

Constructing a nomogram
Based on the variables selected by LASSO—Hb, 24  h UTP, HTN, eGFR, and Oxford classification T—a 
nomogram was developed to predict the 5-year renal survival probability for patients with IgAN. The nomogram 
calculates the total score by projecting the values of each variable onto the points axis and summing the scores. 
The total score is then mapped to the risk axis to estimate the patient’s 5-year survival probability (Fig. 6). For 
example, for a patient with IgAN exhibiting 24  h UTP of 4.51  g/24  h, Oxford classification T = 2, HTN = 1, 
eGFR = G4, and no anemia, the respective scores are approximately 43.5, 100, 52.6, 47.5, and 0. The total score is 
243.6, which corresponds to a 5-year survival rate of about 13%, indicating a high risk of progression to ESRD. 

Fig. 3.  SHAP figure of variables selected by LASSO. Abbreviations: SHAP, SHapley Additive exPlanations; 
LASSO, Least Absolute Shrinkage and Selection Operator; HTN, hypertension; 24 h UTP, 24-h Urinary Total 
Protein; eGFR, estimated Glomerular Filtration Rate (caculated by EPI formula).
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Dataset AUC

95%CI

Brier score p valueLower Upper

Train set 0.951 0.914 0.988 0.029 0.729

Internal validation 0.927 0.877 0.978 0.039 0.753

External validation 0.913 0.870 0.955 0.045 0.295

Table 2.  Nomogram performance in training, internal and external validation cohorts.

 

Fig.4.  KM survival curve of clinical variables selected by LASSO. (A) KM suvival curve of anemia status. (B) 
KM suvival curve of hypertension. (C) KM suvival curve of T. (D) KM suvival curve of 24 h UTP. (E) KM 
suvival curve of eGFR stage. Abbreviations: KM, Kaplan–Meier Curve; LASSO, Least Absolute Shrinkage and 
Selection Operator; T, T in Oxford classification;eGFR stage, estimated Glomerular Filtration Rate,according to 
the KDIGO CKD staging,1-G1, 2-G2, 3-G3, 4-G4; Urine protein,1-urine protein < 1 g/24 h, 2-1 g/24 h <  = urine 
protein < 3 g/24 h, 3-urine protein >  = 3 g/24 h

 

Scientific Reports |         (2026) 16:2486 9| https://doi.org/10.1038/s41598-025-32280-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


This suggests that the patient warrants close clinical monitoring. Clinicians should comprehensively assess the 
patient’s condition, develop an individualized treatment plan, and regularly monitor renal function and 24 h 
UTP.

Discussion
This study developed an XGBoost model and a corresponding nomogram to predict the 5-year renal survival 
probability in patients with IgAN. The nomogram incorporated five readily available variables (anemia status, 
eGFR stage, HTN status, Oxford classification T score, and 24 h UTP) and demonstrated strong discriminatory 
performance and calibration in both internal and external validation cohorts. As a user-friendly tool, the 
nomogram enables primary care physicians to easily interpret the contribution and weight of each risk factor, 
thus facilitating more accurate and personalized risk assessment for patients with IgAN.

The IIgANPT is a widely used model that integrates clinical parameters and the Oxford MEST score to 
estimate the risk of a 50% decline in eGFR or progression to ESRD within 60 months. It includes two versions: 
one with and one without a race parameter10. In our study, we conducted two external validation analyses to 
compare the performance of our XGBoost model with the IIgANPT. Using the endpoint consistent with model 
development (ESRD, doubling of serum creatinine, or a ≥ 40% decline in eGFR), our model demonstrated 
robust predictive performance. To enable direct comparison with the IIgANPT, we redefined the external cohort 
endpoint as a ≥ 50% decline in eGFR, under which our XGBoost model achieved a substantially higher AUC 
of 0.915, indicating superior discriminative ability. Moreover, adopting a ≥ 40% eGFR decline as the primary 
endpoint allows our model to identify high-risk patients earlier than the IIgANPT, providing a longer window 
for clinical intervention and increasing sensitivity to early disease progression.Several other models have 
also been proposed. For instance, Zhang-Yu Tian et al. developed a prediction model based on five variables 
(n = 519)-LDL, Oxford S and T scores, cardiovascular disease, and 24 h UTP-to estimate the risk of initiating 
renal replacement therapy or reaching an eGFR < 15 mL·min−1·(1.73 m2)−1 at 5, 8, and 10 years11. Notably, this 
model includes only the M, E, S, and T scores of the Oxford classification, excluding the C score—a pathological 
feature that is closely associated with poor prognosis in Asian patients with IgAN—thereby potentially limiting 
the comprehensiveness and accuracy of the model’s prognostic assessment for this population.

Fig.5.  ROC curve and DCA curve of XGBoost model. (A) ROC curve and DCA curve of XGBoost model on 
the training set. (B) ROC curve and DCA curve of XGBoost model on the internal validation set. (C) ROC 
curve and DCA curve of XGBoost model on the external validation set. Abbreviations: DCA, decision curve 
analysis; XGBoost, Extreme Gradient Boosting.
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With the advancement of ML, Yngvar Lunde Haaskjold et al. applied a random forest approach to data from 
Norwegian patients (n = 232) to identify predictive features and develop a risk prediction model. The selected 
predictors included T%, segmental glomerular sclerosis, normal glomeruli, global sclerotic glomeruli, segmental 
adherence, and perihilar glomerular sclerosis. While the model showed potential, it has not undergone rigorous 
external validation, and its clinical utility remains uncertain12.

To address these limitations, this study contributes novel insights to the existing literature by developing a 
prognostic model using multicenter data and conducting independent external validation, which confirmed 
the model’s strong discriminatory performance. The final model incorporated anemia status, eGFR stage, HTN 
status, the T score from the Oxford classification, and 24 h UTP. Among these variables, the Oxford T score, 
eGFR stage, and 24 h UTP align with KDIGO guidelines and are widely recognized as key prognostic indicators 
in IgAN. Early identification of CKD stages is clinically significant for risk stratification and the development 
of personalized intervention strategies, potentially delaying renal function deterioration and improving long-
term outcomes and quality of life . Proteinuria is the most extensively studied risk factor for IgAN progression 
to ESRD, and recent reports have identified proteinuria reduction as a surrogate endpoint in IgAN trials13. 
Our study found that proteinuria levels > 1 g/24 h are a risk factor for poor prognosis, which is consistent with 
KDIGO recommendations that suggest targeting proteinuria < 1 g/24 h as a reasonable therapeutic goal13. A 
retrospective study by Heather N. Reich et al., which included follow-up data from 542 patients with IgAN, 
reported that those with persistent proteinuria > 3 g/day experienced a renal function decline rate 25 times faster 
than patients with proteinuria < 1 g/day14. However, after adjusting for time-dependent confounding factors, 
Chen Tang et al. observed that patients with proteinuria ≥ 0.5 g/24 h were still at an increased risk of kidney 
failure, highlighting the importance of controlling proteinuria in IgAN management, even at lower levels15. 
The prognostic significance of tubulointerstitial lesions has also been well established. A retrospective cohort 
study and meta-analysis by Bingxin Yu et al. confirmed that the presence of T lesions is a strong predictor of 
poor renal outcomes in IgAN, independent of all clinical and laboratory parameters16. Our findings support 

Fig.6.  Nomogram based on XGBoost model. The nomogram was constructed to estimate the 5-year 
renal survival probability in patients with IgAN. To utilize the nomogram, each predictor is located on its 
corresponding axis, and a vertical line is drawn upward to determine the number of points assigned. The 
total score is calculated by summing the individual points from all variables. This total score is then projected 
downward onto the probability scale to estimate the 5-year renal survival likelihood. Abbreviations: XGBoost, 
Extreme Gradient Boosting; T, T in Oxford classification; eGFR stage, estimated Glomerular Filtration Rate, 
according to the KDIGO CKD staging, 1-G1, 2-G2, 3-G3, 4-G4; Urine protein, 1-urine protein < 1 g/24 h, 
2-1 g/24 h <  = urine protein < 3 g/24 h, 3-urine protein >  = 3 g/24 h; anemia, 0-without anemia, 1-with anemia; 
hypertension, 0-without hypertension, 1-with hypertension.
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this conclusion. In the Oxford classification, the T score reflects the extent of tubulointerstitial injury. During 
the pathogenesis and progression of IgAN, the deposition of immune complexes-particularly IgA-in the 
tubulointerstitium activates local immune responses and triggers sustained inflammation, ultimately leading to 
interstitial fibrosis17. Therefore, a higher T score is associated with an increased risk of progression to ESRD and 
necessitates close clinical monitoring and targeted interventions.

In addition to the previously discussed indicators, anemia was identified as a strong and independent 
predictor of poor renal prognosis in patients with IgAN. Chronic kidney injury can contribute to anemia through 
several mechanisms, including reduced red blood cell survival, erythropoietin (EPO) deficiency, suppressed 
erythropoiesis, and iron dysregulation18–23. Anemia may further aggravate renal damage by inducing tissue 
hypoxia, potentially via activation of the hypoxia-inducible factor (HIF) signaling pathway, which plays a role in 
the progression of chronic kidney disease24,25. This mechanistic pathway helps explain the observed association 
between anemia and adverse renal outcomes in our cohort. A retrospective study by Tae Ryom Oh et al., involving 
4,326 patients with biopsy-confirmed IgAN, found that for each 1.0 g/dL increase in Hb, the risk of disease 
progression decreased by 13%, aligning with our findings26. Renal anemia is driven by various mechanisms, 
including reduced red blood cell survival, EPO deficiency, suppressed erythropoiesis, and iron imbalance18–23. 
Among these, EPO deficiency and functional iron deficiency—both related to the HIF pathway—have attracted 
increasing attention for their roles in renal anemia and disease progression27. Furthermore, prior studies 
have documented a correlation between anemia and tubulointerstitial injury in IgAN, further underscoring 
its prognostic significance28,29. Our study further validates anemia as a risk factor for poor renal prognosis. 
Additionally, the importance of HTN in IgAN is reinforced. HTN at the time of renal biopsy has been linked 
to increased urinary protein excretion during follow-up, suggesting its ongoing impact on glomerular injury. 
Histopathological findings indicate that hypertensive patients typically exhibit more severe vascular lesions, 
which, compared to mesangial cell proliferation, play a more dominant role in glomerulosclerosis30. Therefore, 
in IgAN individuals with comorbid HTN, regular blood pressure monitoring and the use of antihypertensive 
medications during treatment are crucial for improving patient outcomes.

This study has several limitations. Firstly, event-per-variable (EPV) ratio of our study is relatively low, with 
31 candidate predictors and 44 outcome events (EPV = 1.19), which may introduce some risk of overfitting 
and affect the stability of parameter estimates. In future studies, larger cohorts with more outcome events are 
needed to increase the EPV and improve the robustness and generalizability of the predictive model.Secondly, 
as a retrospective study, while multiple imputation using the “mi” package was applied to address missing 
data, residual bias cannot be entirely ruled out. Prospective studies with standardized and comprehensive 
data collection are necessary to validate these findings and minimize potential bias. Finally, this study focused 
solely on clinical and histopathological data, excluding genetic information. With the increasing accessibility 
of genomic sequencing technologies, integrating clinical and genetic data may provide additional value in 
improving risk prediction, diagnosis, and prognostication in IgAN, and should be explored in future research.

Conclusion
Using real-world data and a data-driven approach, this study developed a 5-year survival prediction model for 
IgAN utilizing the XGBoost ML algorithm. The model incorporates five routinely available clinical variables 
at the time of renal biopsy and demonstrated promising predictive performance in both internal and external 
validation cohorts. Moreover, when compared with the widely used IIgANPT, our model achieved higher 
discriminative efficiency and, by adopting a ≥ 40% decline in eGFR as the primary endpoint, was able to identify 
high-risk patients at an earlier stage, providing a longer window for clinical intervention and greater sensitivity 
to early disease progression. An intuitive nomogram derived from the model enables individualized risk 
assessment at diagnosis, helping primary care physicians recognize high-risk individuals, optimize follow-up 
strategies, and guide early, personalized management. By facilitating timely risk stratification and supporting 
evidence-based decision-making, this model may contribute to more precise, proactive, and resource-efficient 
care in IgAN, ultimately improving long-term outcomes. Further multicenter, prospective studies are warranted 
to validate its generalizability and support its integration into routine clinical practice.
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The data underlying this article will be shared on reasonable request to the corresponding author.
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