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Pharmacological studies revealed that the Balanophora species contains diverse phytochemicals which 
enable interesting biological activities and emphasize their pharmaceutical relevance. Previously, we 
identified significant xanthine oxidase (XO) inhibitory activity from extracts of the two Balanophora 
spp. (Balanophora subcupularis P.C. Tam and Balanophora tobiracola Makino). However, the specific 
compounds responsible for this activity remain unidentified so far. Thus, in the present study, we 
focused on elucidating the compounds inducing the XO inhibitory effect of extracts from Balanophora 
species. Therefore, a combination of advanced liquid chromatography and mass spectrometry (LC-
QToF-HRMS), virtual screening using machine learning (ML) models, and molecular docking simulation 
was applied. Using LC-QToF-HRMS, 23 and 21 compounds were identified in the ethyl acetate fractions 
of B. subcupularis and B. tobiracola, respectively. Next, a curated dataset of natural and synthetic 
compounds with known XO inhibitory activity was employed to train several ML models. Adducing 
five selected ML models, the virtual screening process identified the potentially active compounds 
1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1,2-dihydro-2,3-naphthalenedicarboxylic acid, taxifolin, 
and 1-O-caffeoyl-6-O-(S)-brevifolincarboxyl-β-D-glucopyranose. All the compounds found in the two 
Balanophora spp. underwent docking simulations, in which MTE, FES, and AFH were retained in the 
active site of XO, ensuring reliable re-docking results. Finally, taxifolin emerged as the most promising 
novel XO inhibitor, demonstrating greater potential than the established drug allopurinol, as 
supported by both the virtual screening nomination and docking simuation. These findings contribute 
to the development of natural XO inhibitors and may open new opportunities for gout treatment and 
uric acid level control.
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The genus Balanophora J. R. Forst. & G. Forst., belonging to the family Balanophoraceae, comprises 
approximately 23 species of parasitic plants predominantly distributed in Asia, Africa, and Australia. These 
plants are holoparasites that rely entirely on host plants for nutrients and are characterized by their highly 
reduced morphologies and unique reproductive structures1. Traditionally, Balanophora species have been 
widely utilized in various Asian medicinal practices for treating ailments such as stomach pain, uterine prolapse, 
wounds, hemorrhoids, and inflammation. They have also been employed due to hemostatic, antipyretic, and 
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analgesic properties2,3. For instance, in Chinese medicine and Vietnamese folk medicine, Balanophora fungosa 
is particularly valued for its ability to improve blood circulation, reduce swelling, and promote wound healing4. 
In Taiwan, Balanophora laxiflora Hemsl. has been used as a medicinal plant to treat cough, metrorrhagia, and 
hemorrhoids5.

Pharmacological studies have revealed that these plants contain diverse phytochemicals, including tannins, 
flavonoids, lignans, terpenes, and phenylpropanoids, which contribute to their biological activities6. Notably, 
Balanophora extracts demonstrated potent antioxidant and anti-inflammatory effects, making them promising 
candidates for combating oxidative stress-related diseases7,8. They also exhibited antimicrobial activity against 
various bacterial strains, indicating their potential as natural antibiotics9. Some species, such as Balanophora 
polyandra and Balanophora japonica, showed cytotoxicity against cancer cell lines, suggesting anticancer 
potential through induction of apoptosis and cell cycle arrest10,11. Furthermore, Balanophora species displayed 
hypouricemic effects by inhibiting xanthine oxidase (XO), a key enzyme involved in uric acid production, 
offering a natural alternative for managing gout and hyperuricemia. Compounds such as hydrolysable 
tannins were identified as effective XO inhibitors, rivaling the potency of synthetic drugs like allopurinol5. 
Other pharmacological properties of Balanophora extracts include hepatoprotective effects, neuroprotection, 
gastroprotection, and enhanced inhibition of melanin synthesis, making these plants valuable for cosmetic 
and dermatological applications6. This growing body of evidence highlights Balanophora as a promising genus 
for drug discovery and supports its integration into modern medicine while preserving its traditional use​. 
Despite their diverse bioactivity potentials, further research is required to explore their mechanisms of action, 
toxicological profiles, and clinical applications.

Our research focuses on two relatively understudied species within this genus, i.e., Balanophora subcupularis 
and Balanophora tobiracola. The existing literature on these species is sparse, with few studies detailing 
their phytochemical composition or pharmacological activities. Notably, B. tobiracola was found to contain 
hydrolysable tannins, particularly ellagitannins, which exhibited radical-scavenging and potential HIV-
inhibiting activites12. Related studies on B. japonica reported on the presence of bioactive caffeoyl and galloyl 
derivatives with antioxidant and enzyme-inhibitory activities on α-glucosidase13. Previous investigations by our 
group identified significant XO inhibitory activity in extracts from both species, with the ethyl acetate fraction 
demonstrating the most potent effect14. However, the specific compounds responsible for this activity remain 
unidentified thus far. In general, XO is an enzyme catalyzing the oxidation of xanthine and hypoxanthine to uric 
acid. In the active center, XO bears two flavin adenine dinucleotides, twice molybdenum and eight-times iron. 
The enzyme is involved in the production of reactive oxygen species (ROS) and thus contributes to oxidative 
stress15. Its increased activity causes enhanced levels of uric acid and thus contributes to the development of gout 
and other hyperuricemia-related disorders16. Hence, inhibition of XO with small molecules (e.g., allopurinol) is 
a main strategy to treat such diseases17.

To address this, we employed advanced liquid chromatography coupled with quadrupole time-of-flight 
high-resolution mass spectrometry (LC-QToF-HRMS) to comprehensively profile the chemical constituents 
present in the ethyl acetate extracts. LC-QToF-HRMS represents a state-of-the-art analytical platform for 
comprehensive phytochemical profiling. Its exceptional sensitivity and mass accuracy facilitate precise molecular 
formula determination, enabling the identification of both known and novel compounds within complex plant 
extracts. Furthermore, its advanced fragmentation capabilities provide detailed structural insights, allowing 
differentiation of isomers and closely related compounds. The suitability of the technique for non-targeted 
metabolomics and broad-spectrum compound detection underscores its critical role in natural product research 
and drug discovery18.

Despite enormous advancement in characterization of phytochemicals and pharmacological screening 
across botanical sources, activity-oriented isolation methods still have a number of shortcomings. These 
methods are time-consuming, costly, and are mainly concerned with the isolation of separate components, 
but the discovered biological activity of natural constituents often corresponds to the resultant of synergetic 
interactions among various molecules. In addition, the elucidation of structure and verification of activity of 
low-abundance or unstable components are difficult and thus complicate the whole research process. In this 
context, both B. tobiracola and B. subcupularis are demonstrably rare in the wild and conservation-sensitive, 
with few documented populations and restricted distributions19,20. Because activity-guided isolation requires 
considerable biomass for repeated fractionation and assays, it may exert disproportionate pressure on these 
already limited populations. In contrast, machine learning (ML)-based screening provides a modern, data-
driven alternative by allowing the extraction of patterns from existing chemical and biological data to predict the 
potential bioactivity of compounds. Instead of isolating and testing individual components, ML models can learn 
meaningful representations of molecular structures to predict inhibitory potential or other bioactivities. This 
approach shortens time and cost for testing and increases the screening range to difficult-to-isolate or first-test-
before components. Recent works have shown that combining chemical and biological data sets and ML-based 
models has been able to evidently enhance predictive accuracy and generalizability and provide a more efficient 
route to natural product discovery21. Within efforts to discover XO inhibitors, Wu et al. developed a ML-assisted 
quantitative structure–activity relationship (QSAR) model that effectively predicted the inhibitory potency from 
molecular fingerprints22. Similarly, Zhou et al. combined ML approaches with molecular simulations to screen 
natural compounds for XO inhibitory activity, successfully identifying vanillic acid as a promising XO inhibitor 
candidate23. However, existing ML approaches often face challenges such as small training datasets24, lack of 
applicability domain (AD) definitions25, and reduced prediction reliability when applied to novel chemical 
spaces. To address these limitations, we expanded our dataset by integrating diverse compound libraries and 
established robust applicability domains to enhance prediction confidence. This strategic improvement ensures 
that models can generalize effectively and provide accurate predictions for new compounds.
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This study focuses on elucidating the compounds causing the XO inhibitory effect of two Balanophora 
spp. extracts through a systematic combination of advanced liquid chromatography, LC-QToF-HRMS, virtual 
screening using ML models, and molecular docking simulation. The results highlight the potential of Balanophora 
species as sources of natural XO inhibitors and is hoped to provide a framework for developing safer and more 
effective therapeutic options to manage hyperuricemia and gout.

Methods
Identification of chemical constituents
Plant material
Fresh plant materials of Balanophora subcupularis (BS, 2.5 kg) were collected in Muong Lay District, Dien Bien 
Province, Vietnam (22°03′56″ N; 103°06′13″ E) in November 2017.

Samples of Balanophora tobiracola (BT, 3.0  kg) were collected in Bac Son District, Lang Son Province, 
Vietnam (21°53′33″ N; 106°22′57″ E) in January 2018. Voucher specimens were deposited at the Department 
of Botany, Hanoi University of Pharmacy (B. subcupularis: HNIP/18,638/21; B. tobiracola: HNIP/18,640/21), 
the Department of Plant Resources, Institute of Ecology and Biological Resources (IEBR/TNTV-03 and IEBR/
TNTV-07), and the Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi (HNU 
024,068 and HNU 024,056). The botanical identification of both species was performed by Dr. Nguyen Quang 
Hung (Department of Plant Resources, Institute of Biology, Vietnam Academy of Science and Technology, 
Hanoi, Vietnam).

Fieldwork and collection of wild plant materials was carried out in accordance with the Vietnamese 
legislation on biodiversity conservation and the management of endangered forest plants, including the Law on 
Biodiversity (Law No. 20/2008/QH12 of the National Assembly of Vietnam) and its implementing regulations 
such as Governments Decree No. 06/2019/NĐ-CP and Decree No. 84/2021/NĐ-CP on the management of 
endangered, precious, and rare forest plants and animals as well as the implementation of the Convention on 
International Trade in Endangered Species of Wild Fauna and Flora (CITES). On the other hand, B. subcupularis 
and B. tobiracola are not listed as engangered species according to the current IUCN Red List and the CITES 
Appendices and are not included in the CITES Appendices. Therefore, this study complies with the IUCN Policy 
Statement on Research Involving Species at Risk of Extinction and with CITES.

Chemical components by LC-QToF-HRMS
For chromatographic analysis, 200 g of air-dried and powdered herbs of each species were extracted with 80% 
aqueous methanol (3 times) in a sonic bath. After filtration, the filtrate was evaporated in vacuo. The extract was 
then suspended in water and successfully partitioned with n-hexane (3 times) and ethyl acetate (3 times). The 
ethyl acetate fractions were evaporated in vacuo to obtain ethyl acetate extracts of B. subcupularis (8 g) and B. 
tobiracola (10 g). The ethyl acetate extracts (10 mg) were then dissolved in methanol and transferred to a 5.0 mL 
volumetric flask, which was filled up with methanol. The mixtures were then filtered through a 0.45 µm syringe 
filter membrane and the filtrate were transferred into vials prior to analysis with LC-QToF-HRMS.

The liquid chromatographic analysis of the solutions was carried out using an Exion LC™ coupled to a X500R 
Q-TOF mass spectrometer (Sciex, USA). Separation of the compounds was performed with a Hypersil GOLD 
Dim. column (150 mm × 2.1 mm, 3 µm) (Thermo Scientific, USA). The flow rate from the delivery system was set 
at 0.400 mL/min, the sample injection volume was 2.0 µL. The mobile phase consisted of (A) 0.1% formic acid in 
water and (B) 0.1% formic acid in acetonitrile (Merck, Darmstadt, Germany). A linear gradient elution program 
was applied as follows: 0–1.0 min (0% B), 1.0–20.0 min (2% B), 20.0–25.0 min (98% B). MS/MS detection was 
performed in negative ion mode in the m/z interval of 50–2000 amu. Phenolic compounds were identified by 
mass to charge ratio (m/z), retention time, and MS fragmentation patterns. The identification was confirmed 
with commercial standards of gallic acid, p-coumaric acid, trans-caffeic acid, cinnamic acid, and kaempferol. 
Mass errors (Δppm) were computed from calibrated measurements versus theoretical [M ± adduct] masses and 
are reported to two decimal places. Values shown as 0.00 ppm reflect deviations < 0.005 ppm due to rounding, 
not absolute zero.

Chromatographic and spectral data processing and annotation
Raw LC–MS/MS data were processed in MZmine 2.33, with mass detection thresholds set at 200 (MS) and 20 
(MS/MS). Chromatograms were generated using ions with a 0.02-min time span, ≥ 5000 peak height, and an m/z 
tolerance of 0.002 (5 ppm). Missing data were filled via the peak extender module, and chromatograms were 
deconvoluted employing a baseline cutoff algorithm. Aligned peak tables excluded peaks lacking MS/MS scans, 
filtered by the Global Natural Product Social Molecular Networking (GNPS) module, and gap-filled using the 
peak finder.

Molecular networking and annotation
Global Natural Product Social Molecular Networking (GNPS)26 generated molecular networks with edges 
retained for cosine similarity > 0.70 and ≥ 4 matched peaks (job ID: 23dfe918a19b41ed87b62b9786f68a38 (B. 
subcupularis); 0c3770afb4424203b66b44ecdb1f4c68 (B. tobiracola), obtained on May 20th of 2024 on ​h​t​t​p​s​:​/​/​
g​n​p​s​.​u​c​s​d​.​e​d​u​/​​​​​)​. The spectra were queried against the GNPS spectral library and visualized with the software 
Cytoscape (version 3.10.2).

In silico annotation and integration
Network Annotation Propagation (NAP) annotated networks with top 10 candidate structures using a 5-ppm 
tolerance and the SuperNatural database. MS2LDA extracted Mass2Motifs using 5-ppm m/z and 10-s retention 
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time tolerances. MolNetEnhancer integrated NAP and MS2LDA data, providing chemical class annotations and 
visualizing motif distributions.

Machine learning model training
Data collection and molecular descriptor calculation
The dataset was compiled by collecting 625 XO inhibitory structures from research articles on CHEMBL3327. 
Molecular fingerprints, including MACCS-167 bits, ECFP4-1024 bits, ECFP4-2048 bits, ECFP6-1024 bits, and 
ECFP6-2048 bits, were generated for each compound using the RDKit toolkit28. During the preprocessing stage, 
compounds that could not be properly encoded were removed, resulting in a total of 483 compounds for further 
analysis.

To evaluate the structural diversity of the dataset, the Tanimoto coefficient (Tc)29 was used. The Tc is a widely 
recognized metric for assessing structural similarity between compound pairs and is calculated using formula 
(1):

	
T c = |A ∩ B|

|A ∪ B| � (1)

where A and B represent the encoded molecular fingerprints of the compounds. In this study, Tc values were 
computed using ECFP4-1024 bit fingerprints. The value of the Tc can range from 0 to 1, where a value close 
to 1 indicates high structural similarity between two compounds, while a value closer to 0 indicates greater 
dissimilarity. By calculating the Tc for all compound pairs, this analysis provides insights into the structural 
variability within the dataset, ensuring a balanced representation of chemical space.

After preprocessed, the 483 compounds were divided randomly into three sets using the train_test_split 
function from sklearn library: training (70%), validation (15%), and test (15%). The splitting was done using a 
random shuffle to remove any possible bias from the original dataset order and provide an unbiased distribution. 
Stratified sampling was used to maintain the proportional representation of each class in all sets. This approach 
helped maintain dataset representativeness and prevent biases that could affect model training and evaluation. 
The validation set was used to select optimal hyperparameters, while the test set was employed to objectively 
evaluate the effectiveness of the model after hyperparameter optimization. The training set consisted of 150 
active and 187 inactive compounds, the validation set contained 33 active and 40 inactive compounds, and the 
test set included 33 active and 40 inactive compounds. The total number of compounds in each dataset was 337 
for training and 73 for validation and testing.

The structural diversity of the dataset was assessed by calculating the values of the Tc for all compound pairs. 
The results, presented in Fig. 1 and Table S1 (Supplementary Information), show that approximately 96.7% of 
the Tc for compound pairs encoded by the ECFP4-1024 bit algorithm is below 0.4, indicating that the dataset 
has relatively high structural diversity.

Performance assessment
All models were based on the Extreme Gradient Boosting (XGBoost) algorithm30, a decision trees algorithm 
using gradient boosting to improve performance. The XGBoost library with python programming language 
was used to implement and train models. The optimization of hyperparameters31 was processed to prevent 

Fig. 1.  Pairwise values of the Tc distribution of the input dataset.

 

Scientific Reports |        (2025) 15:43877 4| https://doi.org/10.1038/s41598-025-32282-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


overfitting and help the model achieve good prediction results. Specifically, the hyperparameters were optimized 
to maximize the predictive performance of the model while ensuring that the accuracy difference among the 
train, validation, and test sets did not exceed 5%, thereby maintaining generalization and preventing overfitting. 
The models were optimized for hyperparameters using the Grid Search method, with the search space consisting 
of the hyperparameters of the XGBoost algorithm as follows: the parameter “n_estimators” took values from 5 to 
200; the parameter “max_depth” ranged from 2 to 10; the parameter “learning_rate” had one of the values 0.001, 
0.01, 0.1; the parameter ‘colsample_bytree’ took values 0.5, 0.7, 0.9; the parameter ‘reg_lambda’ had one of the 
values 0, 0.001, 0.01, 0.1, 1; the parameter ‘min_child_weight’ was set to one of the values 7, 9, 11, 13.

By examining the label distribution, we observed a mild imbalance in the XO dataset (active ~ 45%, 
inactive ~ 55%), which limits potential training bias. To preserve the natural data distribution, we did not 
perform any explicit imbalance-handling techniques, such as oversampling or undersampling. Instead, rather 
than relying solely on accuracy (the proportion of correct predictions out of the total number of data), we 
reported multiple complementary metrics including precision, recall, F1-score, and area under the ROC curve 
(AUC) to provide a more comprehensive assessment. All metrics are computed under stratified tenfold cross-
validation to preserve class proportions across folds32. The formulas for these metrics are shown in the following 
Eqs. (2) to (5)

	
Accuracy = T P + T N

T P + T N + F P + F N
� (2)

	
F1 − score = 2T P

2T P + F P + F N
� (3)

	
Precision = T P

T P + F N
� (4)

	
Recall = T P

T P + F P
� (5)

In the above formulas, TP, FP, TN, and FN represent the number of true positive, false positive, true negative, 
and false negative compounds, respectively.

Virtual screening
Using LC-QToF-HRMS, 23 compounds were identified in the ethyl acetate fraction of B.  subcupularis and 
21 compounds in the ethyl acetate fraction of B. tobiracola (Tables 1 and 2). Prior to screening, all structures 
were rigorously analyzed to ascertain their compliance with the applicability domain of the predictive models. 
The dataset was preprocessed following a systematic workflow: (1) elimination of duplicate compounds; (2) 
calculation of molecular weight and extended-connectivity fingerprints (ECFP4) as 1024-bit vectors; and (3) 
dataset filtering based on two criteria: (3a) molecular weight within the range of 200–700 Da, and (3b) a mean 
Tc ≥ 0.4 for the compound compared to its five most similar compounds in the training set. Only compounds 
meeting these criteria were subsequently evaluated for potential XO inhibitory activity using all five models. 
From 33 compounds identified in the extracts of the two Balanophora spp., a total of 19 compounds met the 
criteria for the application domain, with 9 compounds from the ethyl acetate fraction of B. subcupularis and 
10 compounds from that of B. tobiracola, collectively referred to as the screening set. Within this application 
domain, the trained models were expected to provide reliable predictions.

Five optimized models, using the XGBoost algorithm and five different fingerprints, were concurrently 
utilized to screen potential XO inhibitors from the chemical constituents of the ethyl acetate fractions of the two 
Balanophora spp. by predicting the biological activity of each compound. The purpose of this ensemble process 
was to minimize the effect of model bias and increase overall prediction accuracy. The candidates suggested by 
a majority of models were considered promising compounds to explain the inhibition of XO by the ethyl acetate 
fractions of the Balanophora extracts.

Molecular docking
Docking studies were performed using AutoDock458 to predict the binding interactions between the ligands 
and the active site of the target protein (PDB ID: 1VDV59). Protein and ligand structures were prepared using 
ChimeraX60 and AutodockTools58, ensuring proper protonation states at pH 7.4. Protein preparation involved 
the removal of water molecules and non-standard residues to streamline the docking process. However, critical 
residues such as MTE (phosphonic acidmono-(2-amino-5,6-dimercapto-4-oxo-3,7,8a,9,10,10a-hexahydro-
4H-8-oxa-1,3,9,10-tetraaza-anthracen-7-ylmethyl) ester), FAD (flavin-adenine dinucleotide), and FES (fe2/s2 
(inorganic) cluster) were retained in the protein structure. MTE and FAD are essential cofactors, while FES 
serves as an electron carrier, all of which play indispensable roles in the catalytic mechanism of XO61. Their 
inclusion was deemed crucial to accurately represent the physiological environment and the enzymatic activity 
of the target protein. The docking grid box was centered at the catalytic site (x = 65.378, y = − 4.343, z = 43.596) 
with dimensions of 40 × 40 × 40  d and a grid spacing of 0.750  Å. Docking simulations were performed with 
rigorous parameters, including 100 independent genetic algorithm runs, a population size of 150, a maximum of 
25 million energy evaluations, and a cap of 27,000 generations per run. Scoring was based on the lowest binding 
free energy (kcal/mol), and the results were validated by re-docking the orginal ligand with a root-mean-square 
deviation (RMSD) value of 0.87 Å, confirming the reliability of the method. Binding interactions were visualized 
and analyzed using PyMOL (License/Invoice No. inv56506), and BIOVIA Discovery Studio (Version 2021, San 
Diego: Dassault Systèmes, 2021) to identify hydrogen bonds and hydrophobic contacts.
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Results and discussion
Comprehensive chemical constituent profiling of the ethyl acetate fractions of two 
Balanophora spp.
The molecular networks generated via GNPS and visualized through the software Cytoscape elucidated numerous 
clusters comprising annotated chemical entities. These networks were stratified based on component annotations 
within each cluster, as delineated in Figs. 2 and 3. In particular, Figs. 2a and b showcase the molecular network 
derived from negative ionization data of the B. subcupularis sample extract, encompassing 880 nodes and 52 
molecular families. The classification of these molecular families is visually represented by node coloration 
in Fig. 2b. Using spectral library matching and in silico structure prediction tools, the chemical classes of key 
molecular families were tentatively determined. Similarly, the molecular network for the B. tobiracola sample, 
also based on negative ionization data, comprised 642 nodes and 56 molecular families (Fig. 3a). Prominent 

No
tR 
(min) Compound name Ion adduct

Precursor/Product 
ion (m/z)

Molecular 
formula 
(error in 
ppm) References

1 1.13 D-saccharose [M−H]−
341.109
(59, 113, 164, 202, 
244)

C12H22O11
(2.93)

33

2 1.17 D-trehalose [M+HCOO]−
387.115
(59, 89, 119, 179, 
341)

C12H22O11
(2.58)

34

3 1.35 malic acid [2 M+Na−2H]− 289.018
(71, 115, 133)

C4H6O5
(3.46)

35

4 4.09 gallic acid [M−H]− 169.014
(51, 79, 125)

C7H6O5
(0.00)

36

5 5.61 1,6-di-O-gallyol-β-D-glucose [M−H]− 483.076
(169, 271, 331)

C20H20O14
(− 2.07)

37

6 6.25 strictinin [M−H]− 633.073
(193, 300, 483)

C27H22O18
(0.00)

38

7 6.28 1-O-vanilloyl-β-D-glucose [M−H]−
329.088
(59, 71, 89, 101, 
151, 167, 209)

C14H18O9
(3.04)

39

8 7.57 1,3,6-tri-O-galloyl-β-D-glucose [M−H]− 635.086
(169, 295, 483)

C27H24O18
(− 3.15)

40

9 8.21 1,2,4,6-tetra-O-galloyl-β-D-glucopyranoside [M−H]− 787.099
(169, 295, 465, 635)

C34H28O22
(0.00)

41

10 8.34 6-O-[(2E)-3-(4-hydroxyphenyl)-2-propenoyl]-1-O-(3,4,5-trihydroxybenzoyl)hexopyranose [M+Cl]− 477.103
(125, 169, 313)

C22H22O12
(0.00)

42

11 8.37 pyracanthoside [M−H]− 449.109
(151, 287)

C21H22O11
(2.23)

43

12 8.47 lariciresinol-4-O-β-D-glucoside [M−H]− 521.202
(175, 329)

C26H34O11
(0.00)

44

13 8.89 pentagalloyl glucose [M−H]− 939.108
(769)

C41H32O26
(− 2.13)

45

14 9.19 1,6-di-O-galloyl-2-O-p-coumaroyl-β-D-glucose [M−H]− 629.112
(169, 477)

C29H26O16
(− 3.18)

GNPS 
libraries

15 9.26 luteolin-7-O-glucoside [M−H]− 447.092
(151, 285)

C21H20O11
(− 2.24)

46

16 9.41 (6R,7R,8S)-isolariciresinol [M−H]−
359.15
(109, 159, 203, 241, 
313, 344)

C20H24O6
(2.78)

47

17 9.56 ellagic acid [M−H]− 300.998
(145, 185, 229)

C14H6O8
(0.00)

48

18 9.67 rosmarinic acid [M−H]− 359.077
(72, 133, 161, 179)

C18H16O8
(0.00)

47

19 9.72 azelaic acid [M−H]− 187.098
(57, 97, 125)

C9H16O4
(5.34)

49

20 9.98 phloretin [M−H]− 273.076
(81, 167, 214)

C15H14O5
(0.00)

50

21 9.98 naringenin [M−H]−
271.061
(65, 83, 119, 151, 
177, 229)

C15H12O5
(0.00)

51

22 9.98 phloridizin [M−H]− 435.128
(167, 273)

C21H24O10
(− 2.30)

52

23 10.10 1-O-(E)-cinnamoyl-4-galloyl-β-D-glucopyranose [M−H]−
461.109
(125, 169, 211, 313, 
401)

C22H22O11
(2.17)

GNPS 
libraries

Table 1.  The characterized metabolites originating from the ethyl acetate extract of B. subcupularis.
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metabolites were organized into major molecular families, with representative compounds highlighted in Fig. 3b. 
These results demonstrate that molecular networking offers an effective platform for uncovering the metabolic 
diversity within the analyzed metabolomes, facilitating the visualization of shared and distinct metabolite classes 
across the studied herbal samples. By integrating the NAP tool with Reaxys data and corroborative literature 
sources, 23 and 21 chemical compounds were successfully annotated and identified in the B. subcupularis and B. 
tobiracola samples, respectively, as summarized in Tables 1 and 2.

The combination of LC-QToF-HRMS and the GNPS allowed the identification of 23 and 21 compounds 
from ethyl acetate fractions of B. subcupularis and B. tobiracola, respectively. Among the identified compounds, 
some could be identified in both samples such as strictinin; 1,6-di-O-galloyl-β-D-glucose; 1,3,6-tri-O-galloyl-
β-D-glucose; 1,2,4,6-tetra-O-galloyl-β-D-glucopyranoside; pyracanthoside; luteolin-7-O-glucoside; ellagic acid; 
naringenin; and phloridizin. Out of these, strictinin and pyracanthoside were identified in genus Balanophora 
for the first time while three hydrolyzable tannins had been isolated from some other species of the genus. Ellagic 
acid had been isolated from B. simaoensis (syn. B. fungosa subsp. indica)62, while naringenin had been found 
in B. involucrata63 previously. Some other components were also identified for the first time in the genus such 
as 1-O-vanilloyl-β-D-glucose; 6-O-[(2E)-3-(4-hydroxyphenyl)-2-propenoyl]-1-O-(3,4,5-trihydroxybenzoyl)
hexopyranose; rosmarinic acid; azelaic acid; carenone in the extract of B. subcupularis and secoxyloganin, 
taxifolin, oleuropein, and gingerlycolipid in the extract of B. tobiracola. Besides, some other compounds had 
been isolated from different species of the genus Balanophora. It was found that some hydrolyzable tannins 
structured from units of cinnamoyl-, galloyl-, caffeoyl-, brevifolincarboxyl-, and lignans (secoisolariciresinol) 
were characteristic of the extracts.

No tR (min) Compound name Ion adduct Precursor/Product ion (m/z)

Molecular 
formula (error in 
ppm) References

1 4.49 strictinin [M−H]− 633.073
(174, 300, 365, 404)

C27H22O18
(0.00)

38

2 5.96 1,6-di-O-gallyol-β-D-glucose [M−H]− 483.077
(125, 169, 331)

C20H20O14
(0.00)

37

3 7.00 1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1,2-dihydro-2,3-
naphthalenedicarboxylic acid [M−H]− 357.062

(109, 159, 203, 269, 313)
C18H14O8
(2.80)

GNPS 
libraries

4 7.08 7-β-1-D-glucopyranosyl 11-methyl oleoside [M−H]− 565.176
(59, 89, 223, 265)

C23H34O16
(− 1.77)

GNPS 
libraries

5 7.36 1,3,6-tri-O-galloyl-β-D-glucose [M−H]− 635.088
(169, 295, 423, 483)

C27H24O18
(0.00)

40

6 7.49 secoxyloganin [M−H]− 403.125
(59, 89)

C17H24O11
(2.48)

53

7 7.93 taxifolin [M−H]− 303.051
(125, 175)

C15H12O7
(3.30)

54

8 8.33 lariciresinol-4-O-β-D-glucoside [M−H]− 521.202
(89, 175, 329)

C26H34O11
(0.00)

44

9 8.35 1,2,4,6-tetra-O-galloyl-β-D-glucopyranoside [M−H]− 787.098
(635)

C34H28O22
(− 1.27)

41

10 8.38 pyracanthoside [M+Cl]− 485.085
(151, 287)

C21H22O11
(0.00)

43

11 8.56 luteolin-7-O-glucoside [M−H]− 447.093
(151, 285)

C21H20O11
(0.00)

46

12 8.60 quercetin 7-O-β-D-glucopyranoside [M−H]− 463.088
(301)

C21H20O12
(0.00)

55

13 8.90 secoisolariciresinol [M−H]− 361.166
(96, 122, 165, 315)

C20H26O6
(− 2.77)

GNPS 
libraries

14 8.96 prunin [M−H]− 433.114
(151, 271, 387)

C21H22O10
(2.31)

56

15 9.00 1-O-caffeoyl-6-O-(S)-brevifolincarboxyl-β-D-glucopyranose [M−H]− 615.097
(169, 313, 465)

C28H24O16
(− 3.25)

GNPS 
libraries

16 9.10 1-O-(E)-cinnamoyl-4-galloyl-β-D-glucopyranose [M−H]− 461.108
(169, 313)

C22H22O11
(0.00)

GNPS 
libraries

17 9.13 ellagic acid [M−H]− 300.999
(117, 151, 173, 229, 283)

C14H6O8
(3.32)

48

18 9.68 oleuropein [M−H]− 539.175
(89, 149, 275, 307, 377)

C25H32O13
(− 1.85)

GNPS 
libraries

19 9.83 phloridizin [M−H]− 435.129
(167, 273)

C21H24O10
(0.00)

52

20 10.32 naringenin [M−H]− 271.061
(65, 119, 151, 187)

C15H12O5
(0.00)

51

21 14.81 gingerglycolipid A [M+HCOO]− 721.364
(89, 277, 397)

C33H56O14
(− 1.39)

57

Table 2.  The characterized metabolites originated from the ethyl acetate extract of B. tobiracola.

 

Scientific Reports |        (2025) 15:43877 7| https://doi.org/10.1038/s41598-025-32282-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Machine learning models and virtual screening
Machine learning model and performance assessment results
Following optimizing the parameters along with the given conditions, the optimal hyperparameters for each 
model are listed in Table S2 (Supplementary Information). Other hyperparameters of the model not mentioned 
are kept at their default values. The results of the evaluation of the models on the test set are presented in Table 
3 and Fig. 4.

Table 3 demonstrates the performance of the XGBoost models when using MACCS, ECFP4 and ECFP6 
molecular fingerprints. The MACCS-167 fingerprint model showed lower performance with 80.0% tenfold cross-
validation accuracy and 82.2% test set accuracy and AUC of 85.9% and F1-score of 80.0% and precision of 78.8% 
and recall of 81.3%. The ECFP6-1024 fingerprint model demonstrated the highest predictive capability among 
all models by achieving 84.9% tenfold cross-validation accuracy and 89.0% test set accuracy along with AUC at 
91.2% and precision at 90.9% and recall at 85.7% and F1-score at 88.2%. The ECFP4-1024 model demonstrated 
good performance through its tenfold cross-validation accuracy of 84.1% and test set accuracy of 87.7% and 

Fig. 2.  Molecular networks of the ethyl acteate extract of B. subcupularis (a); putative chemical classes of major 
molecular families (b); and putative annotations of significant representatives (c).
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AUC of 90.2% and precision of 90.9% and recall of 83.3% and F1-score of 87.0%. The results demonstrated 
that ECFP6-1024 and ECFP4-1024 fingerprints may provide better molecular feature characterization than the 
MACCS-167 fingerprint, which leads to improved XGBoost-based classification results.

As shown in Fig. 4 and demonstrated by the AUC values in Table 3, all the models mentioned had AUC values 
greater than 85%, indicating good classification ability. The models using ECFP4 and ECFP6 fingerprints had AUC 
values ranging from 89.3% to 91.2%, while the model using MACCS fingerprint exhibited the lowest AUC value 
(85.9%), documenting poorer classification performance compared to the other models. MACCS performed 
worse due to its fixed bit size (167 bits), leading to a loss of detailed molecular information64. Additionally, 
MACCS only detects the presence of common functional groups without considering substructures and atomic 
environments like ECFP4/ECFP6, making it less accurate in distinguishing compounds65. It is worth noting 

Fig. 2.  (continued)
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that when increasing the fingerprint length from 1024 to 2048 bits for both ECFP4 and ECFP6 fingerprints, 
the prediction performance of the models decreased. This may suggest that, for the given dataset addressing 
the focus on XO, increasing the dimensionality to 2048 bits could lead to overfitting or noise in the model, 
without providing significant benefits. Table 4 shows that the optimized models had consistent classification 
performance in the training, validation, and test sets, suggesting good confidence in the predictive outcomes for 
the subsequent virtual screening process.

The results of evaluating the overfitting and stability of the models are shown through the difference in model 
accuracy when calculated on different data sets including training set, evaluation set, and test set in Table 4.

The data in Table 4 show that the optimized models had differences of less than 5% between the training set 
and the test and validation sets, indicating that the models are not overfitting. Furthermore, the discrepancies 
between the test and validation sets after hyperparameter tuning were less than 1.5%, confirming the consistency 
of the models. Consequently, the analysis suggests that models utilizing ECFP4, ECFP6, and MACCS fingerprints 
exhibit stable classification, avoiding overfitting, and instilling high confidence in the predictive outcomes for 
the subsequent virtual screening process.

To further evaluate the robustness of the proposed ML pipeline, an external validation step was performed 
using two independent enzyme inhibitor datasets including an HDAC2 dataset66 and a newly curated HDAC3 

Fig. 3.  Molecular networks of the ethyl acetate extract of B. tobiracola (a); putative chemical classes of major 
molecular families (b); and putative annotations of significant representatives (c).
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dataset. These datasets are chemically and biologically distinct from the primary XO dataset and were used to 
test model performance without retraining. The external validation results confirmed that the pipeline maintains 
high predictive performance across different targets, with AUC values ranging from approximately 0.84 to 0.92 

Fig. 3.  (continued)

 

Scientific Reports |        (2025) 15:43877 11| https://doi.org/10.1038/s41598-025-32282-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Fingerprint

Difference in accuracy values

Training accuracy (%) Validation accuracy (%) Test accuracy (%)

MACCS-167bits 85.8 83.6 82.2

ECFP4-1024bits 91.1 91.1 87.7

ECFP4-2048bits 86.9 85.5 84.9

ECFP6-1024bits 92.5 93.9 89.0

ECFP6-2048bits 90.5 90.5 86.3

Table 4.  Evaluation of model stability and overfitting prevention.

 

Fig. 4.  Receiver operating characteristic (ROC) curves of the models using the XGBoost algorithm.

 

Fingerprint tenfold-cross-validation (%) Test set accuracy (%) Test set F1-Score (%) Test set AUC (%) Test set Precision (%) Test set Recall (%)

MACCS-167 bits 80.0 82.2 80.0 85.9 78.8 81.3

ECFP4-1024 bits 84.1 87.7 87.0 90.2 90.9 83.3

ECFP4-2048 bits 83.7 84.9 84.1 89.3 87.9 80.6

ECFP6-1024 bits 84.9 89.0 88.2 91.2 90.9 85.7

ECFP6-2048 bits 84.9 86.3 85.7 89.5 90.9 81.1

Table 3.  Performance metrics of the optimized models.
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(Table S3 – Supplementary Information). Differences observed in Precision and Recall between the two datasets 
reflect their respective class distributions, further emphasizing the importance of using multiple evaluation 
metrics for robust assessment. Detailed experimental setup and complete performance metrics are provided in 
Tables S3-S4 of the Supplementary Information.

Virtual screening results
A dataset consisting of 33 structures identified in the ethyl acetate extracts of the two Balanophora species was 
used to search for potential compounds that inhibit XO. Five models were adduced to assess the activity of each 
structure. During the screening process, 20 compounds were randomly selected from the training dataset, all 
labeled as active by at least one model, to serve as decoy compounds. The screening results are summarized 
in Table 5. The screening results showed that all four models were able to detect all the decoy compounds, 
demonstrating the capability of the models to search for active compounds. To prioritize selecting structures 
with genuine activity, the current study focuses on choosing the group of structures that satisfy the most models.

From Table 5, it can be seen that taxifolin and 1-O-caffeoyl-6-O-(S)-brevifolincarboxyl-β-D-glucopyranose 
were predicted by four and three models to be active, respectively, and 1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-
1,2-dihydro-2,3-naphthalenedicarboxylic acid was found to be active by only one model, which was XGB-
MACCS. All these compounds also fall within the application domain, which means that the established models 
could give promising predictions on these compounds.

Strikingly, all three identified compounds were exclusively found in the ethyl acetate fraction of B. tobiracola, 
with none detected in B. subcupularis. Moreover, the ethyl acetate fraction of B. tobiracola exhibited significantly 
stronger XO inhibitory activity compared to that of B. subcupularis, as evidenced by its markedly lower IC₅₀ 
value (11.87 ± 1.28 µg/mL vs. 48.41 ± 1.56 µg/mL)14. This substantial difference suggests that B. tobiracola might 
harbor more potent XO-inhibitory constituents. Among the identified compounds, 1-(3,4-dihydroxyphenyl)-
6,7-dihydroxy-1,2-dihydro-2,3-naphthalenedicarboxylic acid, taxifolin, and 1-O-caffeoyl-6-O-(S)-
brevifolincarboxyl-β-D-glucopyranose were predicted to be the principal contributors to this superior inhibitory 
effect. These findings highlight the potential of B. tobiracola as a more promising source of natural XO inhibitors 
compared to B. subcupularis.

Docking results
To validate the accuracy and reliability of our elaborated molecular docking protocol, a re-docking procedure 
was performed using crystal structures of XO complexed with known inhibitors. The docking methodology was 
assessed by comparing the binding conformations of the re-docked ligands with their experimentally determined 
crystal poses, evaluating the RMSD values. Additionally, the correlation between docking scores and Gibbs free 
energy of binding (delta G) calculated from reported inhibition constants (Ki) was analyzed to ensure predictive 
robustness. The results of the re-docking validation are summarized in Table S5—Supplementary Information.

The re-docking validation confirmed that the molecular docking protocol used in this study is reliable for 
evaluating XO inhibitors. The low RMSD values across all complexes (RMSD < 2  Å) demonstrated that the 
docking method effectively reproduces the experimentally determined ligand-binding conformations, ensuring 
accuracy in the subsequent screening processes. Moreover, the strong correlation between docking scores 
and experimental binding affinities (R2 = 0.95) suggested that the computational predictions align well with 
experimental inhibitory effects.

Among the tested XO crystal structures, 1VDV emerged as the most representative model, with a low RMSD, 
strong binding affinity, and essentials cofactors within the active site59. The presence of key interactions with 
critical residues such as Asn768, Glu802, Arg880, Phe914, and Thr1010 further reinforced its relevance for 
assessing potential inhibitors (Fig. 5).

Overall, the validated docking approach provided a robust framework for identifying novel XO inhibitors, 
ensuring that the predicted binding affinities and interactions are biologically meaningful. These findings lay 
a solid foundation for the subsequent virtual screening in the discovery of potent natural XO inhibitors from 
Balanophora species.

Utilizing the validated docking protocol, we screened all identified compounds from extracts of B. subcupularis 
and B. tobiracola to assess their potential as XO inhibitors (Table S6, Supplementary Information). The docking 
results revealed that five compounds demonstrated binding affinities equal to or better than allopurinol, a 
clinically approved XO inhibitor (Fig. 6).

Fingerprint Decoy compounds found Predicted active compounds

MACCS-167bits 20/20 1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1,2-dihydro-2,3-naphthalenedicarboxylic acid
taxifolin

ECFP4-1024bits 20/20 1-O-caffeoyl-6-O-(S)-brevifolincarboxyl-β-D-glucopyranose
taxifolin

ECFP4-2048bits 20/20 1-O-caffeoyl-6-O-(S)-brevifolincarboxyl-β-D-glucopyranose
taxifolin

ECFP6-1024bits 20/20 none

ECFP6-2048bits 20/20 1-O-caffeoyl-6-O-(S)-brevifolincarboxyl-β-D-glucopyranose
taxifolin

Table 5.  Predicted active compounds by the five models using XGBoost algorithm.
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Notably, among these compounds, several have been previously reported to exhibit hypouricemic effects 
or XO inhibitory activity, further supporting their relevance in gout and hyperuricemia treatment. The top-
performing compounds included naringenin (−  6.84  kcal/mol), phloretin (-6.62  kcal/mol), and taxifolin 
(-6.46  kcal/mol), all of which exhibited stronger docking scores compared to allopurinol (-5.63  kcal/mol). 
Naringenin and taxifolin are well-documented flavonoids known for their uric acid-lowering effects67,68. 
Previous studies highlighted that taxifolin can inhibit XO and reduce uric acid levels in vivo67, while naringenin 
was also reported to exhibit hypouricemic effects at a high dose (100 mg/kg)69. Phloretin was studied for its 
effects on XO, showing comparable inhibitory activity to allopurinol70. Besides the three above-mentiond 
phenolic compounds, 1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1,2-dihydro-2,3-naphthalenedicarboxylic 
acid (-5.56 kcal/mol) and prunin (-5.44 kcal/mol) exhibited comparable binding affinities, thus suggesting a 
promising role in XO inhibition, too.

Taxifolin emerged as a key contributor due to its favorable docking score, previously reported hypouricemic 
effects, and identification as an XO inhibitor through both ML-based screening and docking analysis. Figure 7 
illustrates the detailed interactions of taxifolin with the active site of XO. The interaction with allopurinol is 
shown for comparison.

Fig. 6.  Result of docking studies for discovering potential XO inhibitor in two Balanophora species fractions.

 

Fig. 5.  The interaction between the ligand and the enzyme is re-established in the 1VDV complex; Protein 
(grey cartoon), MOS (sphere), MTE (yellow), crystal ligand (blue), redock ligand (magenta).
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The docking analysis suggested that taxifolin interacts with XO through a network comparable to that of the 
established urate-lowering drug allopurinol. Recently, Pan et al.61 pointed out that the following amino acids 
residues were the most important for allopurinol binding, namely Arg880, Ala1079, and Thr1010. These three 
residues made at least one hydrogen bonds with allopurinol. The results from our finding support that claim and 
also allopurinol can establish another hydrogen bonds with Glu802. Similarly, taxifolin also formed hydrogen 
bonds with 3/4 key amino acids in the active site as allopurinol. Though lack of hydrogen bonds between the 
ligand and Thr1010, taxifolin and XO have additionalyl two strong to mild hydrogen bonds at residue Ser876 
with the distance range from 2.22 to 3.23 Å. Besides, several reports showed that the amino acids Glu802 and 
Arg880 were critical in the hydroxylation of substrate xanthine71.

Both compounds establish key π-π stacking interactions with Phe914 and Phe1009, key residues contributing 
to ligand stabilization within the active site72. In comparison to allopurinol, taxifolin formed multiple hydrophobic 
interactions, including Leu648 and Phe649, Leu873, Val1011, and Leu1014. This can be explained as taxifolin 
contains more aromatic rings in contrast to allopurinol structure. Additionally, hydrophobic interaction between 
taxifolin and Leu648 can lead to the stabilization of the compound inside the active site73. The distance between 
taxifolin and the molybdenum cofactor (4.7 Å) closely resembles that of allopurinol (4.9 Å), indicating that 
taxifolin can penetrate the catalytic core of XO to a similar extent. From the findings of the molecular docking in 
this research in comparison with previous research, taxifolin can be considered a potent XO inhibitor.

Allopurinol, known as the common treatment for hyperuricemia and gout, is associated with hypersensitivity 
reactions (HSRs) that can range from mild skin rashes to severe, life-threatening conditions such as Stevens-
Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN)74,75. The purine-like structure of allopurinol may 
interfere with other purine metabolic pathways, potentially resulting in such adverse effects. Additionally, both 
allopurinol and its metabolite, oxypurinol, can bind to specific human leukocyte antigen (HLA) molecules, 
notably HLA-B*58:01, facilitating the presentation of the drug as an antigen to T cells and triggering immune 
responses76,77.

Taxifolin, in contrast, is a naturally occurring flavonoid without a purine core, potentially reducing the risk of 
such adverse effects. Moreover, taxifolin has been extensively studied for its diverse pharmacological properties, 
including antioxidant activity78, anti-inflammatory effects79, cardiovascular protection80, potential anticancer 
properties81, among others. Given its strong XO inhibitory potential, supposedly lower risk of purine-related side 
effects, and additional health benefits, taxifolin emerges as a promising natural lead compound for developing 
next-generation XO inhibitors. The potential of taxifolin as an XO inhibitor was finally unveiled by ML-based 
virtual screening and docking experiments in the context of investigating extracts of Balanophor spp. Consistent 
with prior in vitro evidence, the ethyl acetate fraction of B. tobiracola consistently outperformed that of B. 

Fig. 7.  Interactions of taxifolin (top) and allopurinol (bottom) with the active site of XO.
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subcupularis in XO inhibition, which is consistent with the localization of predicted actives in these fractions. 
This integrative view links model-derived hypotheses with observed bioactivity and clarifies pharmacological 
relevance. In this framework, the computational results complement experimental evidence and help prioritize 
compounds for subsequent validation.

Conclusion
This study successfully identified constituents from the ethyl acetate extracts of Balanophora subcupularis and 
Balanophora tobiracola using LC-QToF-HRMS analysis, providing a comprehensive phytochemical profile of 
these medicinal plants. Several compounds were identified for the first time in the Balanophora genus, including 
strictinin and pyracanthoside, expanding the known chemical diversity of this plant family. To further elucidate 
the xanthine oxidase (XO) inhibitory potential of these extracts, machine learning (ML)-based virtual screening 
models were developed using a diverse dataset of 483 known XO inhibitors. The ML models demonstrated high 
predictive accuracy, enabling the efficient selection of promising candidate compounds in the extracts of the two 
Balanophora spp. However, the elaborated procedure might also be applied to further extracts of other medicinal 
plants. By integrating ML screening with molecular docking simulations, this study proposed taxifolin and 
1-(3,4-dihydroxyphenyl)-6,7-dihydroxy-1,2-dihydro-2,3-naphthalenedicarboxylic acid as key contributors to 
the stronger inhibitory effect observed in B. tobiracola compared to B. subcupularis. Taxifolin emerged as the 
most promising XO inhibitor, being reported for the first time in B. tobiracola. It was predicted as active by four 
out of five ML models, and exhibiting strong docking interactions mimicking allopurinol. The developed models 
proved suitability for the search of novel XO inhibitors in extracts of pharmaceutical species. Taken together, 
our ML and docking guided results, supported by fraction-level activity, should be regarded as hypothesis-
generating pending compound-level validation with authentic standards and targeted XO assays. The absence of 
the latter is considered a limitation of the current study and must be taken into account in future work. However, 
the aim of this project was to gain insight based on ML-based approaches, and this goal was achieved. Future 
research should focus on structural optimization of the hit compound taxifolin to explore its full therapeutic 
potential as a safer alternative to allopurinol in hyperuricemia and gout management.

Data availability
The datasets used and analysed during the current study available from the corresponding author Do Thi Mai 
Dung ( dungdtm@hup.edu.vn ) on reasonable request. The datasets generated and analysed during the current 
study are available at ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​m​y​L​​​a​b​-​U​​E​​T​/​m​y​​l​a​​b​-​x​a​n​t​​h​​i​n​e​-​​o​x​i​​d​a​s​e​/​​t​r​e​e​/​m​a​i​n .
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