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Underwater acoustic target recognition is critical for a broad spectrum of marine applications, yet 
its performance is often hindered by environmental variability, non-stationary propagation effects, 
and inherently low signal-to-noise ratio conditions. This work presents a novel hybrid deep learning 
framework that synergistically integrates global and local acoustic representations to enhance 
recognition robustness under such adverse conditions. The proposed approach employs a dual-branch 
encoder: a pre-trained self-supervised Audio Spectrogram Transformer branch to capture long-range 
temporal dependencies, and a multi-scale convolutional branch to extract fine-grained local spectral 
patterns. To further improve decision stability and mitigate uncertainty near classification boundaries, 
we introduce a Gaussian sampling-based classification module, which models class-specific weights 
as probabilistic distributions and performs Monte Carlo inference. Experiments on two representative 
underwater acoustic benchmark demonstrate that the proposed method not only achieves state-
of-the-art recognition accuracy but also exhibits strong resilience to different environmental noise. 
Ablation analyses further validate the complementary advantages of local-global feature fusion and 
the probabilistic decision mechanism. These findings suggest that the proposed hybrid architecture 
offers a promising and practical solution for robust underwater acoustic classification in real-world 
operational scenarios.

Underwater acoustic target recognition (UATR) is a fundamental capability underpinning a wide range of 
maritime applications, including naval surveillance, autonomous underwater vehicle (AUV) navigation, 
ocean environment monitoring, and maritime situational awareness1,2. In the underwater domain, where 
electromagnetic wave propagation is severely constrained, acoustic sensing remains the most reliable long-range 
modality. However, robust recognition of underwater targets from acoustic signals remains challenging due to 
the highly complex and non-stationary nature of the acoustic channel. This complexity arises from multipath 
propagation, frequency-dependent attenuation, Doppler shifts, and environmental noise originating from 
both biological and anthropogenic sources3, all of which degrade signal fidelity and hinder automatic target 
recognition (ATR)4.

Convolutional neural networks (CNNs) have been widely adopted for underwater acoustic classification 
owing to their strong inductive bias for detecting localized patterns in time-frequency representations5,6. By 
exploiting local receptive fields, CNNs effectively capture salient spectral-temporal cues such as tonal harmonics 
and transient bursts7. Nevertheless, their fixed and limited receptive field hampers the mtation learning. Our 
dual-branch encoder integrates a pre-trained Transformer branch for long-range temporal modeling with a 
multi-scale convolutional branch for frequency-sensitive feature extraction, enabling robust joint learning of 
global and local acoustic cues. Beyond feature extraction, we introduce a Gaussian sampling-based stochastic 
classifier, which performs probabilistic ensembling at inference to enhance robustness and provide uncertainty-
aware predictions under low-SNR and ambiguous conditions. Extensive evaluations on benchmark datasets 
demonstrate that our method consistently outperforms state-of-the-art approaches, with ablation studies 
confirming the complementary benefits of both the hybrid encoder and the stochastic classification module. 
This work should be of interest to the broad audiences that Scientific Reports wishes to reach, odeling of long-
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range temporal dependencies—an essential property for underwater acoustic signals that may exhibit slow-
varying or intermittent modulation patterns.

Transformer-based architectures8, initially developed for natural language processing, have recently 
demonstrated strong potential in acoustic modeling  9–14. Their self-attention mechanism enables global 
contextual reasoning and the capture of long-range dependencies, both of which are critical for decoding 
complex underwater acoustic structures. However, Transformers often lack local inductive biases and demand 
large-scale labeled datasets to generalize effectively-limitations that are particularly pronounced in underwater 
applications, where annotated data are scarce and costly to obtain15,16. As illustrated in Fig. 1, SSAST treats the 
entire log-Mel spectrogram with uniform attention, thereby neglecting important local patterns.

To overcome these challenges, we propose a novel hybrid neural architecture that unifies the global modeling 
capacity of a pre-trained Transformer with the fine-grained spectral sensitivity of convolutional networks. 
Specifically, our dual-branch encoder comprises: (i) a self-supervised Audio Spectrogram Transformer (SSAST) 
branch to model long-range temporal structures, and (ii) a frequency-aware multi-scale convolutional branch 
to extract localized spectral features via residual encoding. This complementary design enables the joint 
learning of global and local acoustic representations, thereby improving discriminability in complex and noisy 
environments.

In addition to feature extraction, we address decision uncertainty by introducing a Gaussian sampling-based 
stochastic classification module. Unlike conventional deterministic classifiers, our method models each class-
specific weight vector as a multivariate Gaussian distribution, performing Monte Carlo sampling at inference. 
This probabilistic formulation implicitly ensembles multiple decision boundaries, enhances robustness near 
class margins, and enables uncertainty-aware predictions—a particularly desirable property under low signal-
to-noise ratio (SNR) conditions and in the presence of ambiguous targets.

We validate our approach on representative benchmark datasets, demonstrating consistent improvements over 
prior state-of-the-art methods and strong robustness against additive and environmental noise. Comprehensive 
ablation experiments confirm the complementary contributions of the local-global feature fusion and the 
stochastic classification mechanism. In summary, the main contributions of this work are as follows:

•	 We propose a hybrid local-global representation learning framework integrating a self-supervised SSAST 
Transformer for global contextual modeling and a multi-scale convolutional pathway for local feature extrac-
tion, tailored to the complex characteristics of underwater acoustic signals.

•	 A stochastic classification module based on Gaussian weight sampling, which enhances decision diversity, 
improves generalization, and enables uncertainty-aware prediction.

•	 Comprehensive evaluation and ablation studies on real-world underwater datasets, demonstrating superior 
recognition accuracy and robustness in noisy operational scenarios.

The remainder of this paper is organized as follows. Section 2 reviews relevant literature on UATR. Section 3 
details the proposed framework. Section  4 describes the experimental setup and presents performance 
evaluation. Finally, Section 5 concludes the paper and discusses future research directions.

Related work
Traditional underwater acoustic target recognition methods
Early approaches to UATR primarily relied on handcrafted feature engineering combined with conventional 
machine learning classifiers. Feature extraction served as the cornerstone of these methods, transforming raw 
time-series signals into compact representations that preserved intrinsic signal characteristics while suppressing 
the effects of oceanic noise, reverberation, and propagation distortion. Commonly used acoustic descriptors 
included Mel-Frequency Cepstral Coefficients (MFCCs)17, wavelet-based features18, and time–frequency 
spectral statistics19. These features were typically paired with classifiers such as Support Vector Machines 
(SVMs)20, Gaussian Mixture Models (GMMs)21, k-Nearest Neighbors (KNN)22, or Random Forests23.

Fig. 1.  Visualization of class activation maps on the log-Mel spectrogram, highlighting important time–
frequency regions in comparison between the baseline SSAST and our hybrid local-global representation 
learning framework.
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While traditional pipelines were computationally efficient and interpretable, they faced two main limitations: 
(i) high sensitivity to challenging underwater conditions, including variable SNR, multipath propagation, and 
non-stationary noise; and (ii) strong dependence on expert knowledge for the manual design and selection of 
discriminative features24. Feature extraction was typically categorized into time-domain, frequency-domain, and 
time-frequency representations, with classification accuracy highly dependent on the suitability of the chosen 
descriptors25. Although modern deep learning methods have largely outperformed handcrafted approaches 
in complex environments26, the latter remain relevant in scenarios requiring real-time inference on resource-
limited platforms or when labeled data are scarce.

Deep learning–based underwater acoustic target recognition methods
The limitations of handcrafted pipelines have driven a shift toward end-to-end deep learning methods 
capable of directly learning hierarchical representations from raw waveforms or spectrograms1,27. Among 
these, Convolutional Neural Networks (CNNs) have become the dominant paradigm in UATR, owing to their 
inductive bias toward localized time-frequency patterns28,29. CNNs automatically learn convolutional filters that 
capture key components such as tonal harmonics, spectral sweeps, and modulated frequency structures-features 
that previously required manual engineering30,31.

Early work adopted shallow CNN architectures for ship-radiated noise classification32, while later studies 
explored deeper and more expressive models, including ResNet variants33 and attention-augmented CNNs34,35. 
Xiao et al.35, for example, incorporated both channel-wise and spatial attention mechanisms to enhance 
feature discrimination. Additional improvements have included spectral pyramid encoding, frequency-band 
enhancement, and specialized loss functions that improve class separability in complex acoustic environments.

To improve generalization in noisy or low-resource settings, Fang et al.36 introduced a momentum adversarial 
training strategy that enforces robustness under domain shifts such as vessel type variability and environmental 
changes. However, CNNs remain inherently limited by their local receptive fields, which constrain their ability 
to capture the long-range temporal dependencies characteristic of underwater acoustic signals, especially when 
modulation patterns evolve slowly or occur intermittently.

Transformer-based acoustic signal modeling
Transformer architectures8, originally developed for natural language processing, leverage self-attention 
mechanisms to capture global temporal dependencies and model non-local relationships within sequences. 
Their success in speech and general audio tasks10,12,13 has motivated their adoption in UATR, although the 
field remains relatively nascent. Li et al.37 proposed the Spectrogram Transformer (STM), which outperformed 
ResNet and CRNN baselines, particularly for signals with extended temporal structures. Fan et al.38 developed 
an end-to-end soft-threshold Swin Transformer (ESTMST-ST) incorporating a learnable dual filter module, 
soft-threshold mechanism, and a multi-loss self-distillation strategy, achieving substantial performance gains 
on the ShipsEar and DeepShip datasets. In the self-supervised domain, Feng et al.39 introduced MHT-UATR, a 
hierarchical masked token learning framework for extracting structure-aware features from Mel-spectrograms 
without requiring manual labels, thereby improving robustness to occlusion and noise.

While these studies demonstrate the potential of Transformers for UATR, two challenges persist: (i) a lack 
of strong local inductive biases for capturing short-term spectral details, and (ii) high data requirements, which 
conflict with the scarcity of labeled underwater datasets15,16.

Hybrid CNN–transformer architectures
To address the complementary weaknesses of CNNs and Transformers, hybrid architectures that integrate 
the local pattern recognition capabilities of CNNs with the global contextual modeling of Transformers have 
emerged in other domains such as computer vision40,41 and natural language processing42,43. Such designs offer 
a promising pathway for UATR by leveraging CNNs to extract fine-grained spectral features while enabling 
Transformers to capture long-range temporal relationships. However, their adaptation to underwater acoustic 
recognition remains underexplored, particularly for scenarios characterized by high uncertainty, low SNR, 
and limited annotated data. These limitations highlight the need for architectures that can not only fuse 
complementary global and local representations, but also incorporate uncertainty-aware decision mechanisms 
to enhance robustness in real-world conditions.

Motivated by this gap, we propose a dual-branch hybrid framework that integrates a self-supervised 
Transformer for global context modeling with a multi-scale convolutional pathway for local feature extraction, 
coupled with a probabilistic classifier to improve decision reliability under adverse acoustic environments.

Methodology
Let x(t) denote an input underwater acoustic signal. The objective of UATR is to assign x(t) to one of C target 
classes Y = {1, 2, . . . , c}, under adverse conditions such as low signal-to-noise ratio (SNR), time-varying 
multipath propagation, and non-stationary background noise. These factors produce spectral smearing, 
temporal distortion, and high inter-class confusion, which pose two primary challenges: (i) learning robust 
representations that capture both long-range temporal structure and local spectral detail, and (ii) making reliable 
predictions under label ambiguity and noise-induced decision uncertainty.

To address these challenges, we design a hybrid architecture with three synergistic components: 

	1.	 A dual-branch local-global feature extractor that exploits a self-supervised Transformer to capture global 
temporal dependencies and a multi-scale CNN to preserve fine-grained spectral cues critical to UTAR.

	2.	 A feature fusion and alignment module that adaptively integrates complementary embeddings from the two 
branches, balancing context modeling with local sensitivity.
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	3.	 A Gaussian sampling-based stochastic classifier that models each class boundary probabilistically to mitigate 
decision instability in low-SNR and ambiguous scenarios.

Given an input underwater acoustic signal x(t), our method first converts it into a log-Mel spectrogram to 
capture perceptually relevant spectral-temporal patterns. The spectrogram is then processed by a dual-branch 
feature extractor: a self-supervised Audio Spectrogram Transformer branch models long-range temporal 
dependencies to capture global contextual information, while a multi-scale convolutional branch extracts fine-
grained local spectral cues critical for distinguishing acoustically similar targets. The outputs of the two branches 
are fused via an adaptive alignment module, which balances global and local representations to produce a joint 
embedding that preserves both long-range context and detailed spectral features. Finally, a Gaussian sampling-
based stochastic classifier models each class weight vector as a multivariate Gaussian distribution, performing 
Monte Carlo sampling during inference to generate robust and uncertainty-aware predictions. This end-to-end 
pipeline jointly learns complementary local and global representations while accounting for decision uncertainty, 
enabling accurate and reliable underwater acoustic target recognition under challenging low-SNR and noisy 
conditions. The overall pipeline is illustrated in Fig. 2.

Dual-branch local–global feature extractor
Log-mel spectrogram
We first convert x(t) into a log-mel spectrogram S ∈ RF ×T , which is perceptually motivated and compresses 
spectral dynamics in a way that is robust to small frequency shifts common in underwater propagation. The 
magnitude spectrum is obtained via STFT:

	
X(f, τ) =

∣∣∣∣∣
N−1∑
n=0

x[n]w[n − τH]e−j2πfn/N

∣∣∣∣∣ ,� (1)

where w[·] is a Hamming window and H is the hop size. A Mel filterbank M ∈ RF ×FSTFT  projects X into the 
perceptual frequency scale:

	
SMel(m, τ) =

∑
f

M(m, f) X(f, τ),� (2)

and the log operation with offset ϵ ensures numerical stability:

	 S(m, τ) = log (SMel(m, τ) + ϵ) ,� (3)

The log-mel spectrogram is normalized to zero mean and unit variance.

Global branch: SSAST
The global branch leverages a Self-Supervised Audio Spectrogram Transformer (SSAST) pretrained on large-
scale audio dataset, to learn contextualized embeddings with long-range temporal dependencies, which are 
important in UTAR for recognizing targets with slow or intermittent modulation patterns. Specifically, the 
spectrogram S is divided into M non-overlapping patches {pi} of size Fp × Tp, which are projected into a 
higher-dimensional embedding space through a patch embedding operation:

	 Ei = wp vec(pi) + bp, Ei ∈ Rd,� (4)

Fig. 2.  Overview of the proposed framework for underwater acoustic target recognition. The architecture 
comprises (A) a dual-branch local–global feature extractor, (B) a feature fusion and alignment module, and (C) 
a Gaussian sampling-based classifier.
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where Ei ∈ Rd is obtained through patch embedding, enabling the model to learn richer representations and 
capture complex temporal-spectral relationships. And wp denotes the patch embedding weights and bp the 
corresponding bias. To preserve order information, a positional embedding Pi ∈ Rd of the same dimension is 
added:

	 Zi = Ei + Pi,� (5)

after which the sequence Z = {Z1, Z2, . . . , ZM } is fed into LT  Transformer encoder blocks.

	 Z′ = Z + MHSA(LN(Z)), � (6)

	 Zout = Z′ + FFN(LN(Z′)). � (7)

yielding global embeddings Eglobal ∈ RM×d.

Local branch: Multi-scale CNN
The global branch excels at capturing long-range temporal dependencies through the Transformer’s self-attention 
mechanism, enabling effective modeling of global contextual patterns. However, it lacks inductive bias for short-
term spectral details, which are critical for distinguishing vessels with similar overall structures but distinct 
tonal line patterns. To overcome this limitation, we introduce a local branch composed of LC  filters, where 
each filter applies parallel convolutions with multiple kernel sizes. Smaller kernels are effective for detecting 
fine-grained spectral details such as tonal lines, while larger kernels capture broader frequency-temporal cues, 
as demonstrated in44. Specifically, the spectrogram S is filtered by:

	

Sc[i, j] = Conv(S ∗ h)[i, j]

=
M∑

m=−M

N∑
n=−N

S[i − m, j − n] h[m, n] + bk,
� (8)

where Sc[i, j] is the output at spatial position (i,  j) for channel c, h[m, n] denotes the convolution kernel, M 
and N specify the kernel’s half-size along the two dimensions, and bk  is the bias term. This convolution captures 
spectral cues at different resolutions, complementing the global branch and enhancing the model’s ability to 
discriminate subtle tonal variations.

To learn richer and more hierarchical feature representations, the output of the convolutional filter is further 
processed by a residual block. The skip connection preserves fine-grained spectral details while enabling the 
modeling of higher-level abstractions. When combined with parallel convolutions of different kernel sizes, the 
residual block facilitates multi-resolution feature extraction, capturing both short-term tonal lines and broader 
frequency-temporal patterns. This process can be formulated as:

	 F (Sc) = σ(Conv2(σ(Conv1(Sc)))), � (9)

	 Elocal = Sc + F (Sc). � (10)

where Conv1 and Conv2 are convolution operations, and σ(·) denotes the ReLU activation. The outputs are 
then projected to d channels and reshaped to Elocal ∈ RM×d for alignment.

Feature fusion
Although the global branch effectively captures long-range temporal-spectral context and the local branch 
emphasizes fine-grained spectral details, either branch alone remains insufficient for comprehensive 
representation. Specifically, the global branch may overlook subtle tonal variations, while the local branch may 
fail to encode broader contextual dependencies. To leverage their complementary strengths, we integrate their 
embeddings through a weighted feature fusion mechanism:

	 E = αEglobal + (1 − α)Elocal,� (11)

where α is an empirically chosen hyperparameter that enables the network to adaptively balance global 
context and local detail under varying task and noise conditions. The fused embedding E is then normalized 
into a fixed-dimensional vector E ∈ Rd. This fusion strategy enhances the model’s ability to capture subtle 
vocalization patterns while preserving robustness against noise, thereby providing a more informative and 
reliable representation for downstream classification tasks.

Gaussian sampling–based stochastic classifier
Conventional UTAR classifiers typically employ a single linear layer or a shallow MLP, where each class is 
represented by a fixed weight vector. While simple, such classifiers are prone to overfitting noise artifacts and 
may produce brittle decision boundaries, as the weight vectors cannot adapt to variations in the input embedding 
distribution. To mitigate this, we model each class weight vector wc as a Gaussian random variable:

	 wc ∼ N (µc, diag(σ2
c)),� (12)
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where µc and σc represent the mean and standard deviation of the class weight vector, respectively, and both 
are learnable parameters. The standard deviation is parameterized as σc = softplus(ρc) to ensure positivity. 
Unlike conventional classifiers with fixed weights, this probabilistic formulation captures uncertainty in the class 
representations, enabling the model to more effectively handle noisy or ambiguous inputs.

During training, the mean and variance parameters (µc, σc) are optimized using standard cross-entropy 
loss, with weight sampling incorporated to approximate the expected logits over the Gaussian distribution. This 
encourages the model to learn weight distributions that are robust to input variations rather than relying on 
single deterministic weights.

During inference, K samples of each weight vector are drawn using the reparameterization strategy:

	 w(k)
c = µc + σc ⊙ z(k), z(k) ∼ N (0, I),� (13)

which are then used to compute the corresponding class logits and probabilities:

	
p(k)

c = exp(w(k)⊤
c e)∑

c′ exp(w(k)⊤
c′ e)

, p̄c = 1
K

K∑
k=1

p(k)
c .� (14)

By averaging over multiple stochastic weight samples, this approach effectively forms an ensemble of classifiers 
without additional network parameters. The resulting stochastic ensembling reduces prediction variance, 
enhances robustness to spectral distortions, and provides a natural measure of predictive uncertainty, which is 
particularly valuable for operational decision-making in challenging acoustic environments.

Model architecture and training objective
The proposed model comprises two parallel branches: a Self-Supervised Audio Spectrogram Transformer 
(SSAST) branch and a CNN branch. The SSAST branch adopts the base architecture and is initialized with 
weights obtained from self-supervised pretraining, thereby providing strong prior representations. In contrast, 
the CNN branch is initialized using He initialization45 to ensure stable gradient propagation. Specifically, the 
CNN branch consists of a 1 × 1 convolution, followed by a 3 × 3 convolution, a residual block composed of a 
3 × 3 convolution with ReLU activation and another 3 × 3 convolution with ReLU, and a final 1 × 1 convolution.

The two branches are trained jointly in an end-to-end manner. The final prediction is obtained by averaging 
the outputs from both branches, and the model is optimized using the cross-entropy loss:

	
L = − 1

N

N∑
i=1

C∑
c=1

yi,c log p̄i,c,� (15)

where p̄i,c denotes the averaged class probability of sample i for class c, yi,c is the corresponding one-hot label, 
N is the batch size, and C is the total number of classes.

Experiments
In this section, we evaluate the effectiveness of the proposed hybrid CNN-inserted Transformer model with 
stochastic classification on benchmark underwater acoustic datasets. We compare our method against state-of-
the-art CNN and Transformer-based baselines under various conditions, including low signal-to-noise ratio 
(SNR) and limited training data. We also conduct ablation studies to assess the contribution of each architectural 
component.

Evaluation setup
We evaluate the proposed hybrid CNN-Transformer model on the DeepShip dataset and ShipsEar dataset, 
two widely used benchmark for underwater acoustic target recognition. These dataset consists of passive sonar 
recordings of various surface vessels under diverse environmental and operational conditions. To ensure fair 
comparison and robustness, all models are trained and tested using stratified splits, and results are averaged over 
three independent runs.

All models are implemented in PyTorch and trained on NVIDIA RTX 3090 GPUs. The log-mel spectrograms 
are extracted with a frame length of 1024 and hop length of 320, and normalized per utterance.

Training is conducted using the Adam optimizer with an initial learning rate of 5e-4, batch size of 32, and 
cosine annealing for 100 epochs. For the stochastic classifier, we use K = 5 classifiers with dropout rate p = 0.3. 
Early stopping is applied based on validation F1-score.

Benchmark datasets
This paper evaluates the proposed method on the DeepShip dataset. DeepShip46 comprises approximately 
47 hours of real-world underwater acoustic recordings captured from 265 distinct vessels under diverse sea 
states and varying ambient noise conditions, providing a challenging benchmark for underwater acoustic target 
recognition. The original dataset categorizes vessels into four classes; following prior studies12,47, we augment 
the dataset by incorporating background noise as a fifth class, thereby enhancing its realism and suitability 
for evaluating model performance under noisy operational scenarios. ShipsEar48 is an open-source underwater 
acoustic database containing real-world recordings collected near the Port of Vigo, Spain. The dataset consists of 
90 raw underwater sound recordings spanning 11 representative vessel types, including fishing boats, trawlers, 
tugboats, dredgers, pilot boats, sailboats, ferries, and large ocean-going vessels, along with natural ambient 
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ocean noise. Following prior studies48, we regroup these categories into five broader classes to ensure consistent 
labeling and sufficient sample coverage for model evaluation.

For experimental rigor, the dataset is randomly partitioned into training and test subsets in a 7:3 ratio, and 
five-fold cross-validation is employed to ensure a robust and statistically meaningful performance assessment. 
For feature representation, log-Mel spectrograms are computed using a 10 ms frame window and 128 frequency 
bins, serving as the input to our proposed hybrid learning framework. This configuration allows effective capture 
of both spectral and temporal characteristics of underwater acoustic signals, facilitating the evaluation of our 
model’s capability in complex and noisy environments.

Evaluation metrics
To comprehensively assess model performance, we employ a set of widely used classification metrics. While 
these metrics are standard for binary classification, they can be naturally extended to multi-class settings. A 
common strategy is to treat each class as a one-vs-rest binary problem, compute the corresponding score per 
class, and then report either the macro-averaged (unweighted mean across classes) or micro-averaged (global 
aggregation) results. For example, the multi-class F1-score is typically computed as the average of per-class F1-
scores.

Let TP, TN, FP, and FN denote the numbers of true positives, true negatives, false positives, and false 
negatives, respectively. The metrics are formally defined as follows:

•	 Accuracy (Acc): The proportion of correctly classified samples among all samples: 

	
Accuracy = T P + T N

T P + T N + F P + F N
,� (16)

•	 Precision (Prec): The fraction of true positive predictions among all positive predictions. Precision reflects 
the model’s ability to avoid false alarms, which is particularly critical in safety-sensitive applications: 

	
Precision = T P

T P + F P
,� (17)

•	 Recall (Rec): The fraction of actual positives that are correctly identified. Recall evaluates the model’s ability 
to capture target events, which is crucial when missed detections are costly: 

	
Recall = T P

T P + F N
,� (18)

•	 F1-score (F1): The harmonic mean of precision and recall. F1 provides a balanced measure in scenarios with 
uneven trade-offs between false alarms and missed detections, and is especially useful under class imbalance: 

	
F1 = 2 × Precision × Recall

Precision + Recall
,� (19)

Together, these metrics capture complementary aspects of classification performance, enabling a robust and fair 
evaluation across diverse operating conditions.

Baseline methods
To evaluate the effectiveness of our proposed model, we compare it against a comprehensive set of baseline 
methods, including traditional machine learning classifiers, conventional supervised deep neural networks, and 
recent self-supervised and Transformer-based architectures.

Traditional machine learning methods include Support Vector Machine (SVM), Random Forest (RF), and 
K-Nearest Neighbors (KNN), all trained using log-mel spectrogram features. These approaches represent early-
stage acoustic classification pipelines and serve as classical benchmarks in underwater acoustic target recognition.

Supervised deep learning baselines comprise several representative architectures, such as Deep Neural 
Network (DNN), Residual CNN, Inception, Stacked Convolutional Autoencoder (SCAE), and Ship radiated 
Noise spectrum component Analysis-based Network (SNANet, Applied acoustics 202349). These models are fully 
trained with labeled data and emphasize the ability of deeper networks to capture hierarchical representations 
from spectrogram inputs.

Self-supervised and advanced learning methods are also included in our comparison. These encompass recent 
audio pre-training models such as SSAST (AAAI 202210), AudioMAE (NeurIPS 202250), and SSLMM (JASA 
202312), which leverage unlabeled data through masked prediction or contrastive objectives. MIXUP (IEEE 
JSTARS 202347) applies data-level augmentation to improve robustness. TR-Tral (IEEE/ACM TASLP 202416) 
represents a strong Transformer-based architecture trained with time-frequency masking strategies.

Quantitative results and analysis
Table 1 presents the quantitative evaluation of all baseline methods alongside our proposed approach on the 
DeepShip dataset. Several key trends emerge across traditional, supervised, and self-supervised approaches. 
Traditional machine learning methods such as SVM and RF achieve moderate performance, with SVM reaching 
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an F1-score of 72.28%. These models, although efficient, are inherently limited in capturing complex temporal 
and spectral structures present in underwater acoustic signals, particularly under multipath propagation and 
strong background interference. KNN performs the worst among traditional models due to its sensitivity to 
noisy or overlapping features.

Supervised deep learning models exhibit a clear performance improvement over traditional baselines. 
Architectures such as SCAE and Residual CNN achieve F1-scores of 77.58% and 76.92%, respectively, 
highlighting the benefits of hierarchical and residual feature extraction. Inception-based variants provide further 
gains by incorporating multi-scale convolutional filters. Nevertheless, these approaches remain constrained by 
their reliance on local receptive fields and the requirement for large volumes of labeled data, which hinders 
generalization in data-scarce scenarios.

Self-supervised learning approaches further advance performance by leveraging large-scale pretraining. 
SSAST, AudioMAE, and SSLMM consistently outperform supervised models, confirming the utility of label-
efficient pretraining for underwater acoustics. Notably, AudioMAE yields high precision (85.54%) but relatively 
lower recall, reflecting confident yet conservative predictions. More recent methods incorporating data 
augmentation and Transformer architectures, such as MIXUP and TR-Tral, push performance further, with TR-
Tral attaining an F1-score of 87.50%. Our proposed model achieves the best overall performance, establishing 
new state-of-the-art results on DeepShip: 88.48% accuracy, 89.42% precision, 89.41% recall, and 89.41% F1-
score.

To further demonstrate the cross-dataset generalization of our method, we conducted additional experiments 
on the ShipsEar dataset, which contains similar maritime sound classes but under different recording conditions 
compared to DeepShip. The quantitative results are summarized in the Table 2. Our method achieves 98.62% 
accuracy, 98.36% precision, 98.76% recall, and 98.56% F1-score, significantly outperforming both traditional 
machine learning approaches (e.g., SVM 83.10%, RF 81.35%) and recent deep learning methods, including 
supervised and self-supervised models such as SSAST (92.62%), AudioMAE (89.38%), and SNANet (93.13%). 
These results demonstrate that our approach can achieve strong performance across different datasets, 
highlighting its robustness and adaptability to varying maritime acoustic conditions. We think this consistent 
improvement across all metrics arises from two key innovations:

•	 Hybrid representation learning: The combination of a self-supervised pretrained SSAST branch with a CNN 
branch allows the model to jointly capture global contextual patterns and localized spectral–temporal struc-
tures, thereby enhancing feature diversity and complementarity.

•	 Stochastic prediction head: The incorporation of a random perturbation–based classification head reduces 
reliance on deterministic decision boundaries, improving generalization to unseen conditions and robustness 
against noisy or imbalanced labels.

Overall, these findings demonstrate that effective UTAR requires modeling both local spectral detail and 
global temporal context. While SSL methods benefit significantly from pretraining, our hybrid architecture, 
trained end-to-end in a supervised manner, still outperforms them, underscoring the structural advantages of 
combining convolutional and attention mechanisms for robust underwater acoustic target recognition.

Ablation study
To validate the effectiveness of the proposed designs, we conduct an ablation study on two key components: the 
stochastic classification (SC) head and the hybrid CNN–Transformer structure (hybrid branch). The results are 

Type Method Venue Sup. Self-sup. Acc. Prec. Rec. F1

Traditional ML

SVM
ESA
(2021)

✓ 72.24 72.49 72.08 72.28

RF ✓ 69.71 69.79 69.86 69.82

KNN ✓ 62.71 63.61 63.10 63.35

Deep Learning

SCAE

ESA
(2021)

✓ 77.53 77.75 77.41 77.58

Residual CNN ✓ 76.98 77.05 76.81 76.92

Inception ✓ 76.16 76.03 76.12 76.08

DNN ✓ 73.11 72.98 73.08 73.03

SSAST AAAI 2022 ✓ 77.70 78.13 78.25 78.19

AudioMAE NeurIPS 2022 ✓ 76.66 85.54 79.00 82.14

SSLM-M JASA 2023 ✓ 80.22 80.81 79.94 80.07

SNANet AA 2023 ✓ 78.25 79.55 79.39 79.16

MIXUP JSTARS 2023 ✓ 86.33 85.72 82.91 84.29

TR-Tral TASLP 2024 ✓ 87.26 87.45 87.80 87.50

Ours — ✓ 88.48 89.42 89.41 89.41

Table 1.  Quantitative Comparison on DeepShip Dataset. Models are grouped by method category and by 
supervised or self-supervised training. All values are reported in percentage (%). Bold values denotes the best 
performance for this metric.
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summarized in Table 3. We select SSAST with Mixup augmentation as the baseline, as it demonstrates strong 
performance with relatively low reliance on labeled data.

Incorporating the stochastic classification head consistently improves performance across all metrics, 
confirming its ability to introduce adaptive decision boundaries that enhance robustness under noisy and 
imbalanced label conditions. Building on this, integrating local convolutional branch with Transformer encoder 
yields further gains, reflecting the benefit of hybrid local–global modeling that captures fine-grained spectral 
cues while preserving long-range temporal dependencies. These results indicate that the stochastic classification 
head primarily drives the robustness and adaptability of the model, while the hybrid CNN–Transformer design 
complements it by strengthening feature representations, ultimately leading to the best overall performance.

Parameter sensitivity analysis
Temperature in random classifier
To assess the stability and robustness of the proposed model under varying hyperparameter configurations, we 
conducted a sensitivity analysis on the temperature parameter T used in the auxiliary random classifier. This 
parameter modulates the sharpness of the softmax output, thereby affecting the gradient signal propagated to 
the backbone during training. We systematically varied T from 8 to 24 and evaluated model performance on the 
DeepShip dataset.

As shown in Table  4, model performance is generally stable across a wide range of temperature values, 
demonstrating the robustness of the auxiliary classifier design. However, the results also reveal a clear peak at 
T = 14, where the model achieves the highest accuracy (88.10%) and F1-score (89.10%). This suggests that 
moderate softmax smoothness helps balance gradient flow from the auxiliary head and avoids overconfident 
supervision.

When the temperature is too low (e.g., T = 8), the auxiliary logits become sharper, which may result in 
unstable gradients and overfitting to noisy random targets. Conversely, when the temperature is too high (e.g., 
T = 24), the supervision signal becomes overly diffused, reducing its regularization effect. The proposed 
framework exhibits strong resilience to the temperature setting, while T = 14 provides an empirically optimal 
balance between training stability and representational diversity. We adopt this setting in all subsequent 
experiments unless otherwise specified.

Feature fusion hyperparameter analysis
To evaluate the impact of the fusion hyperparameter α on model performance, we conducted experiments 
by varying its value from 0.1 to 0.3 and reporting accuracy, precision, recall, and F1-score. The results are 

Accuracy Precision Recall F1-Score

baseline 84.03 86.98 85.51 86.24

+ SC 88.10 89.12 89.07 89.10

+ hybrid branch 88.48 89.42 89.41 89.41

Table 3.  The validation of proposed two key design. All values are reported in percentage (%). Bold values 
denotes the best performance for this metric.

 

Type Method Venue Sup. Self-sup. Acc. Prec. Rec. F1

Traditional ML

SVM
ESA
(2021)

✓ 83.10 83.39 83.10 83.24

RF ✓ 81.35 81.54 81.35 81.44

KNN ✓ 73.72 76.03 73.72 74.86

Deep Learning

SCAE
ESA
(2021)

✓ – – – –

Residual† ✓ 84.71 83.92 83.05 83.48

Inception ✓ – – - –

DNN ✓ 83.48 83.31 82.53 82.92

SSAST AAAI 2022 ✓ 92.62 92.94 94.00 93.47

AudioMAE NeurIPS 2022 ✓ 89.38 90.16 87.95 89.04

SSLMM JASA 2023 ✓ – – – –

SNANet AA 2023 ✓ 93.13 93.02 91.97 92.49

MIXUP JSTARS 2023 ✓ 88.70 90.20 86.80 88.47

TR-Tral TASLP 2024 ✓ – – – –

Ours ✓ 98.62 98.36 98.76 98.56

Table 2.  Quantitative comparison on ShipsEar dataset. Models are grouped by method category and by 
supervised or self-supervised training. All values are reported in percentage (%).†indicates results cited from 
the original reference, and - denotes unavailable results due to the code not being publicly accessible. Bold 
values denotes the best performance for this metric.
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summarized in Fig. 3. From the results, it can be observed that the fusion hyperparameter significantly influences 
model performance. When the hyperparameter is set to 0.2, the model achieves the best overall performance 
across all metrics, with an accuracy of 88.48% and an F1-score of 89.41%. This demonstrates that 0.2 provides the 
most effective balance between the fused components. While the performance at 0.3 also appears competitive, 
the improvements over lower values are less consistent and slightly weaker compared to the gains observed at 
0.2. Thus, 0.2 can be regarded as the optimal setting among the tested values.

Analysis of local branch design variants and integration position
Evaluation of local branch design variants
Table 5 presents a comparative evaluation of several local branch design variants, including standard backbones 
(ResNet18 and ResNet34) and two customized residual configurations with lightweight convolutional layers. The 
first custom architecture version is nn.Conv2d(1, 3) +  ResidualBlock(3, 1) +  nn.Conv2d(1, 
1), and the second version is nn.Conv2d(1, 6) + ResidualBlock(6, 1) + nn.Conv2d(1, 1). 
All models are evaluated on the same underwater acoustic classification task using Accuracy, Precision, Recall, 
and F1-Score as metrics.

As expected, all hybrid CNN–Transformer variants outperform the baseline models. In addition, as expected, 
all hybrid CNN–Transformer variants outperform the baseline models. In addition, ResNet34 outperforms 
ResNet18, achieving an accuracy of 87.44% versus 86.74%, which can be attributed to the deeper architecture’s 
increased capacity for modeling hierarchical features. However, the improvement is modest, suggesting that 
simply increasing depth does not guarantee substantial gains for underwater acoustic signals, where fine-grained 
spectral patterns are critical.

Interestingly, the first custom configuration, which employs Conv2d(1, 3) in the first layer followed by a 
lightweight residual block, achieves the best overall performance, surpassing both ResNet18 and ResNet34. This 

Local branch architecture Accuracy Precision Recall F1-Score

baseline 84.03 86.98 85.51 86.24

ResNet18 86.74 87.81 87.91 87.27

ResNet34 87.44 88.49 88.43 87.96

Custom architecture version 1 88.48 89.42 89.41 89.41

Custom architecture version 2 86.96 88.18 87.93 87.57

Table 5.  Comparison of different local branch architectures. Residual block configurations with varying 
channel sizes are compared in terms of classification performance. All values are reported in percentage (%). 
Bold values denotes the best performance for this metric.

 

Fig. 3.  Performance variation with respect to the fusion hyperparameter α across accuracy, precision, recall, 
and F1-score.

 

Temp Accuracy Precision Recall F1-score

8 86.79 87.84 87.93 87.88

10 86.32 87.48 87.43 87.46

12 85.10 86.39 86.20 86.29

14 88.48 89.42 89.41 89.41

16 87.48 88.49 88.49 88.49

18 86.03 87.26 87.12 87.19

20 86.88 87.93 87.93 87.93

22 87.28 88.35 88.36 88.35

24 85.79 86.97 87.03 87.00

Table 4.  Temperature sensitivity analysis for the auxiliary random classifier. All values are reported in 
percentage (%). Bold values denotes the best performance for this metric.
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demonstrates that network depth is not the sole determinant of performance. Instead, the superior results stem 
from the carefully tailored convolutional design: the smaller kernel focuses on fine-grained local spectral cues, 
and the residual connections efficiently capture hierarchical features without over-parameterization. In contrast, 
larger kernels (e.g., Conv2d(1, 6)) or standard ResNet blocks may dilute these critical local features, limiting 
performance despite deeper or wider architectures.

These observations highlight that, for underwater acoustic target recognition, a shallow yet structurally 
optimized residual design can more effectively balance local feature extraction and overall feature hierarchy, 
outperforming deeper generic networks while maintaining low model complexity. This insight motivates the 
integration of such custom convolutional blocks into our hybrid local–global representation learning framework.

Evaluation of local branch integration position
To determine the optimal integration strategy for the local branch, we evaluate two alternatives, as illustrated 
in Fig. 4: ① embedding the local branch within each Transformer block, and ② incorporating it as a parallel 
Transformer encoder.

The results are summarized in Table 6. When the local branch is integrated inside every Transformer block 
(①), the model achieves an accuracy of 86.14% and an F1-score of 87.21%. While this design allows local 
convolutional cues to interact directly with global attention at each layer, it may also introduce redundancy 
and interfere with the Transformer’s capacity to capture long-range dependencies, leading to suboptimal 
performance.

In contrast, positioning the local branch as an independent encoder (②) yields a substantial performance 
boost, achieving the highest accuracy (88.48%) and F1-score (89.41%). This configuration enables the branch 
to specialize in modeling fine-grained spectral structures, while the Transformer encoder focuses on global 
temporal–spectral dependencies. The complementary representations are then fused effectively at a higher level, 
producing more balanced and discriminative features.

Overall, the results highlight that integrating the local branch as a standalone encoder (②) is more effective 
than embedding it within each Transformer block, confirming that separating local and global modeling streams 
leads to superior feature representation and classification performance.

Noise robustness evaluation
To assess robustness under adverse acoustic conditions, we introduced additive white Gaussian noise (AWGN) 
at different signal-to-noise ratios (SNRs: −5, −1, 0, 1, and 5 dB). The resulting accuracy curves are shown in Fig. 
5. Across all SNR levels, the proposed model consistently outperforms the baselines. Under the most challenging 
condition (−5 dB), it achieves 77.33% accuracy, clearly surpassing MIXUP (73.64%) and SSLMM (72.60%). At 
0 dB, the advantage remains evident with 80.06% accuracy compared to 77.57% (MIXUP) and 75.33% (SSLMM). 
In moderate-to-clean scenarios (1–5 dB), our method continues to lead, reaching 83.39% at 5 dB. In the noise-
free case, it attains the highest accuracy of 88.48%, outperforming MIXUP (86.33%) and SSLMM (80.22%). 
Conventional CNN-based baselines (SCAE, ResNet, Inception) exhibit pronounced performance degradation 
under noise. For instance, ResNet yields only 68.05% at −5 dB and remains below 70% even without noise, 
underscoring the difficulty of relying solely on convolutional filters in such conditions.

Beyond additive Gaussian noise, underwater acoustic signals are frequently corrupted by non-Gaussian 
and environment-specific interference, such as impulsive transient disturbances, biological ambient noise, 

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

① 86.14 87.28 87.14 87.21

② 88.48 89.42 89.41 89.41

Table 6.  The impact of local branch integration position. Bold values denotes the best performance for this 
metric.

 

Fig. 4.  Illustration of local–global branch integration strategies: (a) serial integration, where the local and 
global branches are fused sequentially; and (b) parallel integration, where both branches operate concurrently 
before fusion.
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and Doppler-induced spectral distortions. To comprehensively evaluate robustness under realistic operating 
conditions, we further introduce three representative types of noise: impulse noise, biological noise, and Doppler 
frequency shifts.

Impulse noise, characterized by short-duration high-amplitude spikes, is common in underwater sensing due 
to mechanical impacts, communication glitches, and sensor instability. We vary both the occurrence probability 
(0.005–0.025) and relative amplitude (0.5–2.5) to assess the model’s resilience under increasingly challenging 
transient disruptions. As shown in Fig. 6, across all amplitude groups, performance remains stable with respect 
to probability, reflecting the model’s tolerance to sparse impulsive disturbances. When amplitude increases, a 
gradual yet controlled degradation is observed, indicating that the model’s feature extraction pipeline maintains 
robustness even when strong outliers appear in the waveform. At low distortion levels (amplitude = 0.5), the 
model consistently achieves 74–77% accuracy and 78–79% F1-score, with the best performance obtained at 
probability = 0.020 (accuracy = 77.17%, F1 = 79.00%). At medium distortion (amplitude = 1.0–1.5), results 
remain reasonable; for example, amplitude = 1.0 yields accuracy 68.3–69.96% and F1-score around 72% across 
all probabilities. Even under severe impulsive interference (amplitude = 2.5), where signal waveforms are heavily 
distorted, the model maintains 49.22% accuracy and 55.19% F1-score at the worst case (probability = 0.025). 
This demonstrates that the proposed method retains a meaningful level of discrimination ability against strong, 
burst-type perturbations—conditions under which conventional CNN models typically collapse.

Biological noise is a naturally occurring and persistent interference in shallow-water environments, 
introduced by snapping shrimp, cetaceans, and various marine organisms. To simulate its masking effect, we 
mix biological noise at amplitude ratios ranging from 0.1 to 0.9. As shown in Fig. 7, across all tested conditions, 
the model exhibits highly stable performance, with mean accuracy of 80.61%, mean precision of 82.75%, mean 
recall of 82.00%, and mean F1-score of 82.37%, accompanied by small standard deviations (3.01–3.69%). These 
results confirm that biological ambient noise leads to only modest performance variations. Notably, even at the 
strongest biological noise ratio (0.9), the model still achieves 76.61% accuracy and 78.95% F1-score, indicating 
that the proposed representation is robust to natural underwater interference that typically overlaps spectrally 
with vessel signatures. These findings align with the expectation that biological noise, though broadband and 
fluctuating, does not severely disrupt the learned temporal–spectral structure of vessel acoustics.

Fig. 6.  Performance variations of Accuracy, Precision, Recall, and F1-score on the DeepShip dataset under 
impulse noise. The x-axis indicates the impulse noise probability, while each colored line represents a different 
impulse noise amplitude.

 

Fig. 5.  Accuracy vs. SNR on Deepship dataset under additive white noise.
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Underwater acoustic signals are also subject to Doppler-induced spectral distortion when the source moves 
relative to the receiver, leading to frequency scaling and temporal warping that can substantially modify the 
observed waveform. To assess the robustness of the proposed method under such motion-induced effects, we 
simulate Doppler frequency shifts corresponding to maximum target velocities ranging from vmax = 10 to 50. 
As shown in Fig. 8, across all tested velocities, the model exhibits remarkably stable performance, indicating 
that its learned representations remain resilient to elastic frequency variations. The accuracy consistently stays 
within a narrow range of approximately 81–83%, while the F1-score fluctuates only slightly around 84–85%, 
yielding very low standard deviations (0.71% for accuracy and 0.63% for F1-score). These results demonstrate 
that the model’s spectral–temporal encoding effectively preserves discriminative structure even when frequency 
components are compressed or stretched due to Doppler effects. Overall, the minimal performance variation 
across increasing velocities confirms that the proposed method maintains strong robustness to realistic Doppler-
induced distortions commonly encountered in dynamic maritime environments.

Fig. 8.  Variations in Accuracy, Precision, Recall, and F1-score on the DeepShip dataset under Doppler-
induced spectral distortion. Each boxplot visualizes the distribution of performance metrics obtained under 
different maximum target velocities (vmax = 10–50), where Doppler shifting is simulated by time-scaling 
the waveform to emulate frequency compression or expansion caused by source-receiver relative motion. 
The boxes indicate the interquartile range (IQR), the central line denotes the median, and whiskers represent 
non-outlier ranges. Across all Doppler velocities, the metrics exhibit minimal spread and consistent central 
tendencies, demonstrating that the proposed model is highly robust to spectral deformation induced by 
Doppler effects.

 

Fig. 7.  Variations in Accuracy, Precision, Recall, and F1-score on the DeepShip dataset under biological noise. 
Each color represents a different biological noise amplitude ratio under the same experimental configuration.
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These results show that the proposed hybrid CNN–Transformer equipped with stochastic classification 
maintains strong robustness under diverse acoustic degradations, including additive noise, impulsive 
disturbances, biological noise and Doppler-induced spectral distortion. Across all noise conditions and intensity 
levels, the model consistently exhibits higher stability. This makes it particularly well suited for real-world noisy 
underwater acoustic scenarios.

Class-wise performance and confusion analysis
To provide a detailed assessment of the model’s discriminative capability across different vessel types, we 
analyzed the confusion matrix on the DeepShip dataset. Figure  9 shows that the proposed model achieves 
balanced performance across all vessel categories and maintains perfect separation of the Background class, 
demonstrating its ability to reliably distinguish ship-generated signals from ambient noise.

Most vessel classes are recognized with high accuracy, although misclassifications primarily occur among 
acoustically similar types, as illustrated in Fig. 10. Cargo ships are occasionally confused with Tankers or Tugs, 
reflecting overlapping low-frequency spectral patterns. Similarly, Tankers exhibit confusion with both Cargo 
and PassengerShips, consistent with partially shared broadband noise characteristics. Misclassifications of Tugs 
are less frequent but distributed across other ship classes, likely due to variable operational conditions.

In contrast, PassengerShips are identified with particularly high reliability, benefiting from distinct tonal 
structures and stable harmonic features. The stochastic classification head further enhances robustness: by 
averaging predictions across perturbed decision boundaries, it suppresses spurious misassignments and produces 
more consistent outputs, especially among closely related vessel types. The confusion matrix demonstrates 
that the hybrid CNN-Transformer with stochastic classification provides strong per-class discrimination and 
effectively handles inter-class similarities, resulting in consistently reliable performance across all categories.

Fig. 10.  Visualization of spectrograms across different classes. Cargo ships, tankers, and tugs exhibit similar 
acoustic patterns, making them prone to mis-classification, whereas passenger ships and background noise 
show more distinct characteristics, resulting in fewer errors.

 

Fig. 9.  Confusion matrix for proposed model on deepship dataset.
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To further understand how uncertainty quantification supports practical decision-making, we analyze the 
predictive distributions produced by the stochastic classifier across multiple sampled classifier instances. We 
randomly selected a batch of samples and performed multiple stochastic forward passes (5 in our experiments) 
to compute prediction uncertainty. As shown in Fig. 11, the results show a clear correspondence between 
uncertainty levels and decision reliability: samples with concentrated predictive distributions (low variance) 
consistently achieve high classification accuracy, indicating that the model can confidently commit to a decision. 
In contrast, high-uncertainty cases strongly correlate with misclassifications or class ambiguities, providing an 
effective signal for triggering alternative actions such as requesting additional observations, switching to higher-
resolution sensing, or deferring classification.

Parameter efficiency and inference speed
Despite its hybrid design, the proposed CNN-Transformer model remains computationally efficient. Table 7 
summarizes the parameter size, computational cost (Gflops), and classification accuracy of major architectures 
on the DeepShip dataset, evaluated on a single NVIDIA RTX 3090 GPU. The integration of local convolutions 
within the Transformer introduces only a modest 12% parameter overhead compared to a pure Transformer 
while delivering substantial improvements in accuracy and stability. This demonstrates that the architecture 
achieves a favorable trade-off between performance and efficiency, making it suitable for real-time or resource-
constrained underwater systems.

Among lightweight models, the standard DNN achieves the lowest computational cost (1.08 GFLOPS) with 
a modest parameter size of 67.24 MB, yet its accuracy is limited to 73.11%, reflecting its constrained capacity 

Model params(MB) Gflops Accuracy

DNN 67.24 1.08 73.11

Inception 48.46 260.67 76.16

Residual 23.51 169.40 76.98

AudioMAE 85.26 349.68 76.66

SSAST 85.26 827.54 77.70

SSLMM 86.68 633.62 80.22

MIXUP 86.68 1900.86 86.23

Ours 87.74 833.31 88.48

Table 7.  Model efficiency comparison on Deepship, using single RTX 3090. Bold values denotes the best 
performance for this metric.

 

Fig. 11.  Uncertainty analysis using five stochastic forward passes. Samples with low predictive variance 
correspond to confident and correct decisions, while high-variance predictions align with misclassifications or 
ambiguous cases, offering a reliable cue for uncertainty-aware decision-making.
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for modeling complex temporal–spectral patterns. The Residual network provides a favorable balance, with 
only 23.51 MB of parameters and 169.40 GFLOPS, achieving 76.98% accuracy. Inception, while slightly larger, 
reaches 76.16% accuracy at a substantially higher computational cost (260.67 Gflops).

Self-supervised Transformer-based models (SSAST, AudioMAE, SSLMM, MIXUP) demand considerably 
more computation, ranging from 349.68 to 1900.86 Gflops, with parameter sizes around 85–87 MB. These 
models achieve higher accuracy than lightweight architectures, with SSLMM and MIXUP attaining 80.22% and 
86.23%, respectively. MIXUP incurs the highest computational cost due to extensive data augmentation and 
transformer operations.

Our hybrid CNN-Transformer surpasses all baselines, achieving 88.48% accuracy with moderate parameter 
size (87.74 MB) and manageable computational cost (833.31 GFLOPS). This performance reflects the 
complementary strengths of local convolutions for fine-grained spectral feature extraction and global attention 
for long-range contextual modeling. Overall, the results indicate that the proposed architecture provides an 
effective balance between accuracy, parameter efficiency, and inference speed, making it highly suitable for 
practical underwater acoustic applications.

Conclusion
In this work, we proposed a novel hybrid deep learning framework for underwater acoustic target recognition 
that effectively integrates local and global feature modeling capabilities. By integrate convolutional module 
with Transformer encoder, the model captures both fine-grained spectral patterns and long-range temporal 
dependencies, addressing the limitations of CNN-only and Transformer-only architectures. Additionally, we 
introduced a stochastic classifier ensemble to enhance the model’s robustness, particularly under low-SNR 
and ambiguous signal conditions frequently encountered in real-world underwater environments. Extensive 
experiments on two benchmark datasets DeepShip and ShipsEar, demonstrated the superior performance of the 
proposed approach. The hybrid CNN-inserted Transformer significantly outperformed conventional baselines 
in terms of accuracy, F1-score, and robustness to acoustic noise. Ablation studies confirmed the individual 
effectiveness of both the CNN-insertion mechanism and the stochastic classification module. Furthermore, 
evaluations under multiple noise conditions and cross-region testing demonstrate that the model maintains 
strong generalization across diverse acoustic propagation environments. This study provides new insights into 
architectural design for underwater acoustic analysis, highlighting the importance of multi-scale representation 
learning and uncertainty-aware classification in hostile acoustic environments.

Future work. Building upon the proposed hybrid local-global representation framework and Gaussian 
sampling-based stochastic classifier, future research will focus on enhancing model generalization and practical 
applicability. Specifically, we plan to explore self-supervised pretraining strategies tailored to underwater acoustic 
signals to further reduce reliance on labeled data, and to investigate extensions of the dual-branch architecture 
for multi-modal fusion, incorporating complementary visual, sonar, or bathymetric cues to strengthen feature 
representations. Furthermore, we aim to optimize the framework for real-time inference and efficient deployment 
on embedded underwater platforms, ensuring that the method maintains robustness and predictive reliability 
under operational constraints.

Data availability
The datasets generated and analysed during the current study are available in the ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​i​r​f​a​n​k​a​m​
b​o​h​/​D​e​e​p​S​h​i​p repository and the fifth class Background noise is in the ​h​t​t​​​​p​s​:​​/​​/​g​i​t​h​​u​b​.​​c​o​​m​/​Z​h​​​u​P​​e​n​g​s​​e​n​/​M​e​t​h​o​
d​-​f​o​r​-​S​p​l​i​t​t​i​n​g​-​t​h​e​-​D​e​e​p​S​h​i​p​-​D​a​t​a​s​e​t repository.
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