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Accurate prediction of the state of charge (SOC) in lithium-ion batteries is critical for unmanned 
aerial vehicle (UAV) flight safety and energy management. Current deep learning approaches lack 
explicit temporal modeling, limiting their ability to predict multi-step SOC trajectories under dynamic 
condition adaptability. To address these limitations, this paper proposes a hybrid deep learning 
framework, termed temporal-aware transformer networks (TATNS). The framework combines 
localized spatio-temporal feature extraction with long-range dependency modeling through temporal 
encoders and a sliding window-based multi-output mechanism, enhancing prediction accuracy and 
adaptability in fluctuating environments. Experimental validation was conducted using a large-
scale dataset under varying operational conditions. The prediction results demonstrate the superior 
performance, with mean absolute percentage error values of 4.320, respectively, representing 
reductions more than 7.97% compared to conventional models including long short-term memory, 
recurrent neural network, and standalone convolutional neural network/transformer architectures. The 
model robustness was further verified across diverse temperature scenarios, consistently achieving 
high prediction accuracy. Compared to traditional deep learning methods, the TATNS framework 
exhibits enhanced reliability and precision in SOC prediction, demonstrating significant potential for 
next-generation UAV systems.
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 The global energy crisis and environmental degradation have intensified the shift from conventional energy 
sources to renewable alternatives1,2. In aeronautical applications, lithium-ion batteries have become the primary 
power source for unmanned aerial vehicles (UAVs) owing to their high energy density, extended cycle life, and 
lightweight properties3–5. However, UAV performance and safety are heavily dependent on accurate state of 
charge (SOC) estimation, as SOC directly governs operational efficiency, mitigates power failures, and prolongs 
battery lifespan6,7. SOC prediction is inherently complex due to dynamic factors such as temperature fluctuations, 
aging effects, and varying operational conditions, which alter internal battery dynamics8. Consequently, precise 
SOC estimation is essential for optimizing charge/discharge cycles and enhancing overall system reliability9.

Existing SOC prediction methods, including recurrent neural networks (RNN) and long short-term memory 
(LSTM) models, have demonstrated partial success10 but remain limited by their inability to explicitly model 
temporal dynamics and adapt to rapidly changing UAV flight conditions11. These approaches often focus solely 
on battery-specific parameters while neglecting temporal dependencies, further compromising accuracy. To 
address these challenges, a temporal-aware transformer networks (TATNS) is proposed, integrating localized 
spatio-temporal feature extraction with long-range dependency modeling. The framework employs a temporal 
encoder and a sliding window-based multi-output mechanism to improve adaptability and prediction robustness 
in real-world UAV applications. To rigorously evaluate the proposed framework, extensive experiments are 
conducted on a publicly available, large-scale dataset.

This study presents three key contributions:
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	(1)	 A hybrid temporal-aware transformer networks is developed, combining transformer architecture with 
deep feature fusion to enhance SOC prediction accuracy. TATNS achieves a mean absolute percentage 
error (MAPE) of 4.320%, outperforming the best baseline by 7.97%.

	(2)	 A temporal enhancement strategy is introduced to capture time-series dependencies without additional 
parameters. This method significantly strengthens temporal representation and enhances prediction relia-
bility.

	(3)	 A multi-output sliding window framework is proposed to overcome the limitations of single-output fore-
casting. This framework effectively aligns predictions with the practical operational requirements of UAVs.

 The remainder of this paper is structured as follows: Sect.  2 reviews existing SOC estimation methods. 
Section 3 details the proposed TATNS framework and theoretical foundations. Section 4 outlines experimental 
methodologies, while Sect. 5 presents results and analysis. Finally, Sect. 6 concludes the study and discusses 
future research directions.

Literature review
Generally, the SOC of a battery is defined as the ratio of the remaining capacity to its total capacity12,13 is critical 
for lithium-ion battery management. Existing SOC estimation methods are broadly categorized into coulomb 
counting14, open circuit voltage (OCV) analysis15, model-based approaches16, and data-driven techniques17. 
This study focuses on data-driven methods due to their adaptability and accuracy potential.

The coulomb counting method estimates SOC by integrating the current flowing into and out of the battery 
over time. Kong et al.18 proposed a smart prediction method based on coulomb counting method to improve the 
prediction accuracy. Zhang et al.19 proposed a model-free state of health (SOH) calculation method by fusion 
of coulomb counting method and differential voltage analysis. While this method is relatively straightforward 
and easy to implement, it is susceptible to cumulative errors arising from inaccuracies in current measurement 
and variations in battery capacity due to factors such as temperature fluctuations. These cumulative errors can 
significantly degrade the reliability of SOC estimates over prolonged usage periods. Furthermore, the method is 
highly sensitive to initial SOC conditions, which are often difficult to determine accurately.

The OCV method estimates SOC by measuring the battery voltage when it is in a resting state and comparing 
it against a predefined lookup table or mathematical model. Pattipati et al.20 proposed a robust normalized OCV 
modeling approach that dramatically reduces the number of OCV-SOC parameters and as a result simplifies 
and generalizes the BFG across temperatures and aging. Birkl et al.21 present an OCV model for lithium-ion 
cells which can be parameterized by measurements of the OCV of positive and negative electrode half-cells and 
a full cell. Although this method is simpler compared to coulomb counting, it is also influenced by temperature 
variations and the dynamic aging properties of the battery22. Tian et al.23 propose a method to estimate the 
results of offline OCV based ageing diagnosis, the error is less than 1%. Moreover, the nonlinear relationship 
between SOC and OCV necessitates precise calibration and high-precision sensors to minimize prediction 
errors, thereby imposing stringent requirements on the prediction conditions24. The method assumes that 
the battery reaches a fully relaxed state, which is impractical in dynamic UAV applications where continuous 
operation prevents sufficient rest periods. These limitations hinder the scalability and adaptability of the OCV 
method in real-world scenarios.

To enhance SOC prediction accuracy, various model-based methods have been proposed, including 
electrochemical models25, equivalent circuit models (ECM)26, Kalman filter-based models27, and hybrid 
models. For instance, Lai et al.26 introduced a first and second-order resistance-capacitance model to capture the 
dynamic behavior of the battery. Lim et al.28 developed a fading Kalman filter approach to estimate OCV from 
model parameters, achieving SOC prediction errors below 3%. Additionally, Li et al.29 proposed an adaptive 
unscented Kalman filter based on an extended single particle model, which accurately and robustly estimates 
SOC, lithium-ion concentration, and potential. Despite their accuracy, model-based methods are often overly 
complex, particularly when dealing with the nonlinear characteristics of battery systems. These methods require 
specific calibration for each battery type or configuration, limiting their generalizability across different systems. 
Additionally, they struggle to adapt to new battery technologies or changing environmental conditions, which is 
a critical limitation for UAV applications operating in dynamic and unpredictable environments.

Coulomb counting, OCV, and model-based approaches are primarily intended to estimate the current SOC 
under quasi-steady-state conditions using instantaneous or short-term historical measurements. These methods 
are inherently reactive and cannot predict future battery states. In contrast, SOC prediction aims to forecast the 
SOC over multiple future steps. For UAVs operating in real-world scenarios, multi-step SOC prediction is essential 
for proactive energy allocation, safe path replanning, and real-time battery health monitoring. The use of data-
driven methods enables more accurate prediction of multi-step SOC data. Data-driven methods, encompassing 
machine learning and neural network techniques, offer a promising alternative by eliminating the need for 
intricate modeling processes. These methods directly establish and train a mapping between monitored data, 
such as voltage, current, temperature, and SOC30. The reliance solely on directly measurable parameters allows 
for greater flexibility and the potential to generalize across various battery types for SOC prediction. Within the 
realm of machine learning, Li et al.31 employed the least squares support vector machine (LSSVM) to develop a 
battery model, while Zhao et al.32 introduced an extreme learning machine (ELM) approach for SOC prediction, 
constructing an ECM based on a recursive least squares method. Their results demonstrated that the ELM-based 
model significantly outperformed traditional methods, reducing the mean absolute error (MAE) and root mean 
square error (RMSE) by at least 50%. Furthermore, Zhou et al.33 proposed a combined data-driven modeling 
approach that integrates LSSVM with particle swarm optimization and unscented Kalman filter, achieving 
maximum SOC errors constrained to within 0.5% under various operating conditions. However, traditional 
machine learning techniques often require manual feature extraction, which can introduce unnecessary errors 
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and limit model performance. Moreover, these methods typically focus on short-term dependencies and fail to 
capture long-range temporal patterns effectively. This limitation is particularly problematic in UAV applications, 
where dynamic operating conditions demand robust multi-output predictions.

Deep neural network approaches offer substantial improvements over traditional machine learning methods 
by obviating the need for manual feature extraction and thereby enhancing the capability to capture the complex 
nonlinear features inherent in lithium-ion batteries34–36. For example, Song et al.37 developed a hybrid CNN 
and LSTM network to infer SOC from measurable data, achieving a maximum average error below 1.5% and 
a maximum RMSE below 2%. Chatterjee et al.38 proposed a Bi-LSTM model to make real-time decisions on 
power distribution and operation modes. Liu et al.39 introduced a Multiscale and fast Fourier gating mechanism 
for sodium-ion batteries, integrating multi-scale temporal branches with a fast Fourier transform based gating 
mechanism to suppress high-frequency noise and enhance modeling of nonlinear voltage-SOC dynamics. 
Separately, a MConvTCN-Informer framework40 combines multi-scale temporal convolutions with the Informer’s 
efficient attention to jointly capture short-term fluctuations and long-range dependencies in lithium-ion cells. 
Existing research underscores that CNNs are adept at extracting essential features from data, while transformer 
networks excel in capturing comprehensive information from entire input sequences, particularly benefiting 
the handling of long-sequence data. Consequently, both CNN and transformer models exhibit significant 
advantages in enhancing the accuracy and reliability of battery SOC predictions. Despite advancements, existing 
frameworks often neglect temporal dependency awareness-a critical gap under fluctuating UAV conditions. To 
address these limitations, the proposed TATNS integrates a parameter-efficient temporal encoder for explicit 
time-series dependency modeling. Unlike single-output methods, TATNS employs a sliding window-based 
multi-output strategy to predict SOC across 60 future time steps, aligning with real-world battery management 
system (BMS) requirements. This approach enhances adaptability and robustness in dynamic environments, as 
validated in subsequent experiments. A summary of reviewed methodologies is provided in Table 1.

Methods
The main objective of the proposed TATNS model is to predict SOC from historical data while overcoming 
the limitations of existing methods. A deep learning architecture is developed by integrating CNN, temporal 
encoding, transformer, and a Kalman filter to improve accuracy and adaptability. Accurate and timely SOC 
prediction is essential for maintaining battery operation and planning maintenance, especially in dynamic UAV 
environments where conditions change rapidly. In this study, typical UAV battery models are selected as the 
source of battery data. A detailed description of the TATNS architecture and its components is provided in the 
following sections. The overall framework is shown in Fig. 1. As shown in Fig. 1, the overall process consists of 
four consecutive stages: (1) local spatio-temporal feature extraction through 1D CNN, (2) explicit time coding, 
(3) long-distance dependency modeling through the converter encoder, and (4) noise-aware refinement using 
Kalman filtering.

Convolutional neural network
CNNs are deep learning models designed for processing data with spatial structures. They are widely used in 
image processing and computer vision tasks. CNNs are also effective for handling time-series data with local 
dependencies by efficiently extracting local features. The core component of a CNN is the convolutional layer, 
where learnable kernels perform sliding window operations to extract features across spatial locations. In this 
study, a 1D CNN architecture with small kernels and adaptive stride is adopted, the small kernel focuses on local 
voltage-current correlations during current pulses, while adaptive stride adjusts according to current change 
rate to balance feature detail and computational efficiency, with the addition of batch normalization (BN) and 
activation layers. The BN layer is placed before the activation function to accelerate training convergence.

The core operation involves 1D convolution, where the kernel slides along the time axis to capture local 
temporal dependencies. The convolution is mathematically expressed as:

	 Conv1d(X) = Wconv ∗ X + bconv � (1)

where Wconv  represents the weights of the convolutional kernel, and bconv  is the bias term.
The complete convolution operation, including batch normalization and ReLU activation, is expressed as:

	 Xcnn = ReLU(BatchNorm1d(Conv1d(X)))� (2)

Method Temporal aware Multi-output

LSTM41, CNN-LSTM42, PSO-TCN-Attention43 × ×

LSTM-SA44, CNN with U-Net45, DCNN46 × ×

LSTM-GRU47, CNN-DBLSTM48 × √

Swin Transformer49 × √

VIT and an AGFF35 √ ×

TATNS √ √

Table 1.  Comparison of available relevant studies.
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This CNN module captures local temporal dependencies in the SOC sequence, allowing the model to learn key 
features that are critical for accurate SOC prediction.

Temporal-aware encoding module
In time-series prediction tasks, such as battery SOC estimation, the sequential order and temporal dependencies 
between time steps are critical. Although 1D CNNs are shift-invariant and effective at local feature extraction, 
they lack awareness of absolute time position, which is critical in UAV scenarios where identical current patterns 
may correspond to different SOC trajectories depending on flight phase. The proposed sinusoidal temporal 
encoding. Standard neural networks often fail to capture this order, leading to a loss of temporal information. 
To address this issue, a temporal-aware encoding module is incorporated, can explicitly inject time-step 
information, enabling the model to distinguish contextually similar but temporally distinct events based on the 
approach used in transformer models. To address this issue, a temporal-aware encoding module is incorporated, 
based on the approach used in transformer models.

The core idea is to generate sinusoidal embedding vectors that vary with each time step, encoding temporal 
order into a fixed-length representation. The periodic nature of sine and cosine functions allows long sequences 
to be encoded without explicitly memorizing each position. For a time-series of maximum length Lmax, the 
temporal encoding vector Ti ∈ Rdmodel  for time step i is computed as:

	
Ti =

[
sin

(
i

10000
2k

dmodel

)
, cos

(
i

10000
2k+1

dmodel

)]dmodel /2−1

k=0

� (3)

where dmodel is the model dimension, i is the position of the time step. The scaling factor 10,000 is an empirically 
determined constant that balances the modeling of short-term and long-term temporal dependencies. By testing 
1000 and 100,000 equivalents, it is found that they are the most suitable coefficients for the framework. In our 
ablation tests, this value yielded optimal performance across the 128-step input window. Other architectural 
parameters are fine-tuned via grid search. The indices i and j denote the time-step position and embedding 
dimension, respectively, enabling the model to encode temporal order through a combination of high and low 

Fig. 1.  Proposed SOC prediction process for li-ion batteries.
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frequency sinusoidal functions. These encodings are added to input features (Fig. 2), enabling the model to learn 
relative temporal relationships while preserving local spatial features.

The temporal encoding vector is then added to the input features to generate a feature representation that 
incorporates temporal information. This addition allows the model to learn not only the local features of the 
input data but also the relative position of each time step in the sequence.

Temporal encoding enables the model to effectively understand the temporal dependencies in time-series 
data. This explicit temporal awareness enables the model to distinguish identical electrical patterns occurring 
at different operational phases, thereby enhancing its adaptability to non-stationary and dynamic UAV 
environments. This allows the model to make more accurate predictions at different positions in the sequence, 
improving the overall accuracy of the time-series forecast.

Transformer module
The transformer is a deep learning model based on the self-attention mechanism, originally proposed by 
Vaswani et al.50 for natural language processing tasks. Due to its strong sequence modeling capability and 
efficient parallelization, it has been widely applied in time-series prediction. In this study, the transformer 
module is employed to capture long-term dependencies and nonlinear dynamics in battery SOC sequences. The 
self-attention mechanism is shown in Fig. 3.

Self-attention mechanism
The self-attention mechanism dynamically assigns weights by computing the relevance between each time step 
and all others in the sequence. Given an input sequence X ∈ RT ×d (where T is the sequence length and d is the 
feature dimension), the self-attention mechanism is computed as follows:

Fig. 3.  Self-attention mechanism in transformer model.

 

Fig. 2.  Temporal encoding mechanism for sequential data.
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Linear transformation  The input sequence X is mapped to queries (Q), keys (K), and values (V) using learnable 
weight matrices WQ, Wk , and WV .

Attention score calculation  The similarity between queries and keys is computed via dot product, resulting in 
an attention score matrix A ∈ RT ×T .

Weighted summation  The attention scores are used to compute a weighted sum of the values V, yielding the 
self-attention output:

	
Attention(Q, K, V ) = softmax(QKT

√
dk

)V � (4)

here, 
√

dk  is used to scale the dot product results, preventing gradient vanishing issues.

Multi-head attention mechanism
To improve model expressiveness, queries, keys, and values are projected into multiple subspaces. Attention is 
computed independently in each subspace and the results are concatenated before a final projection:

	 MultiHead(Q, K, V ) = Concat(head1, head2, . . . , headh)WO � (5)

where headi = Attention(QWQi , KWKi , V WVi ), and WO  is the output projection matrix.

Feedforward neural network (FFN)
Each position in the sequence goes through the same feed-forward network consisting of two linear 
transformations with a ReLU activation in between:

	 F F N(x) = max(0, xW1 + b1)W2 + b2� (6)

This FFN is applied independently and identically to each position in the sequence, following the self-attention 
layer.

Transformer decoder
In conventional applications, the transformer decoder generates sequences by combining masked multi-head 
self-attention, encoder-decoder attention, and feedforward networks. Masked attention ensures that each 
position attends only to previous positions. Encoder-decoder attention allows integration of encoder outputs, 
enhancing the model ability to generate contextually coherent predictions. Layer normalization, residual 
connections, and dropout are applied for regularization and stability.

In this study, only the transformer encoder is utilized. It processes the local features extracted by the CNN 
and the temporal information provided by the encoding module, capturing the complex dynamics of battery 
SOC sequences. The encoder output is further refined using a Kalman filter, which is discussed in the next 
section.

Kalman filter module
The Kalman filter is a recursive state estimation algorithm widely employed to predict and smooth noisy data. 
In this study, the Kalman filter is applied as a post-processing step to the sequence generated by the Transformer 
module, it treats the TATNS output as the prior state estimate. By incorporating the Kalman filter, the impact of 
measurement noise is reduced, and the overall prediction accuracy is improved.

The Kalman filter operates in two primary phases: the prediction phase and the update phase. In the 
prediction phase, the filter uses the previous state estimate x̂k−1 and the state transition matrix F to predict the 
next state x̂k . In the update phase, the filter adjusts the prediction by incorporating the new measurement zk , 
which in this case corresponds to the predicted SOC value from the transformer model. The measurement is 
combined with the predicted state using a gain matrix Kk , computed based on the measurement noise R and the 
process noise covariance Q. The update is given by:

	
Kk = Pk−1HT

HPk−1HT + R
� (7)

where Kk  is the Kalman gain, Pk−1 is the error covariance matrix, and H is the measurement matrix.
Through recursive updates, the Kalman filter continuously refines the SOC prediction by combining the 

model prior prediction with the latest measurement. This process effectively filters out random noise and 
enhances the stability of the predictions.

In this study, the Kalman filter is applied to the SOC outputs from the transformer encoder. As a result, 
the final SOC estimates are smoother, more robust against noise, and more reliable for long-term forecasting 
tasks. By adopting this approach, the adaptability and accuracy of the proposed TATNS model in dynamic 
environments are significantly improved. The computational complexity of TATNS is approximately 7.12 million 
FLOPs. Thanks to its parallelizable architecture, the model achieves an inference latency typically below 10 
ms on representative embedded AI platforms used in UAVs, satisfying the real-time requirement for onboard 
battery management systems.
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Experimental platform and data
Simulation platform
The model is implemented based on Pytorch 2.4.1 deep learning framework using Python 3.9.0. All experiments 
are conducted on a workstation with an AMD R7 5800 H CPU and a NVIDIA GeForce RTX 3060 Laptop GPU. 
Although the current hardware setup is sufficient for offline training and validation, future work will focus on 
optimizing the model for deployment on embedded systems with limited computational resources, such as those 
used in UAVs.

Dataset acquisition
One typical battery model for UAVs is the 18,650 lithium-ion battery, which has been applied to certain models 
of DJI drones and the UAVs developed by our research team. To validate the effectiveness of the battery SOC 
prediction method proposed in this study, experiments were conducted using publicly available datasets. The 
dataset used in this experiment is the LG 18650HG2 Li-ion battery data, made publicly available by Dr. Phillip 
Kollmeyer from McMaster University51. The data can be accessed through the following link: ​h​t​t​p​s​:​/​/​d​a​t​a​.​m​
e​n​d​e​l​e​y​.​c​o​m​/​d​a​t​a​s​e​t​s​/​c​p​3​4​7​3​x​7​x​v​/​3​​​​​. This dataset is based on a brand-new LG 18650HG2 Li-ion battery and 
records voltage, current, temperature, and SOC data under various charge and discharge conditions, making 
it particularly suitable for deep learning-based battery SOC prediction tasks. Notably, voltage, current, and 
temperature are standard measurements in virtually all modern UAV battery management systems. Their 
acquisition requires only low-cost, off-the-shelf sensors, and thus imposes no significant hardware burden on 
practical UAV deployments.The core advantage of this dataset lies in its high-resolution time-series data and 
diverse experimental conditions, which effectively support the modeling of complex nonlinear relationships 
required by the model. Data were collected at ambient temperatures ranging from − 10 °C to 25 °C, covering 
UAV outdoor flight environment, enabling robust evaluation of thermal effects on battery dynamics. The dataset 
granular temporal resolution and operational variability support modeling of nonlinear SOC relationships critical 
for UAV applications. Although the cycle curves are generated in the laboratory, they provide a standardized 
benchmark that can first verify the effectiveness of the algorithm’s core in a controlled environment. The basic 
parameters of the batteries used in the dataset are shown in Table 2.

Evaluation metrics
This study uses MAE, RMSE and MAPE as evaluation metrics52. MAE represents the average absolute error 
between all predicted SOC values and actual SOC values. RMSE measures the square root of the average squared 
differences between predicted SOC values and actual SOC values, imposing a higher penalty on larger errors, 
as it squares the errors in its calculation. Therefore, RMSE is highly sensitive to large discrepancies. MAPE is 
used to measure the deviation of the predicted SOC from the actual SOC as a percentage of the actual value. The 
formulas are as follows:

	
MAE = 1

n

n∑
i=1

|SOCi − ŜOCi|� (8)

	

RMSE =

√√√√ 1
n

n∑
i=1

(
SOCi − ŜOCi

)2
� (9)

	
MAP E = 100%

n

n∑
i=1

∣∣∣∣
SOCi − ŜOCi

SOCi

∣∣∣∣� (10)

where SOCi is the actual value, ŜOCi is the predicted value, and n is the number of samples. Smaller MAE, 
RMSE, MAPE values indicate better predictive performance of the model.

Results and discussion
A sliding window technique was employed to capture temporal dependencies in battery time series data through 
sequence generation. Input sequences were mapped to corresponding outputs, enabling historical pattern 
recognition while maintaining computational efficiency. The input window length is set to 128 time steps, which 

Parameter Value

Chemistry Li[NiMnCo]O₂ (H-NMC)/Graphite + SiO

Nominal voltage 3.6 V

Charge profile Normal: 1.5 A, 4.2 V, 250 mA End-Current (CC-CV)
Fast: 4 A, 4.2 V, 100 mA End-Current (CC-CV)

Discharge profile 2 V End Voltage, 20 A MAX Continuous Current

Nominal capacity 3.0 Ah

Energy density 240 Wh/kg

Table 2.  LG HG2 cell basic performance parameters.
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is consistent with recent studies on real-world battery SOC prediction53 and adjusted to a power of two to 
improve training efficiency on GPU-based platforms. The predicted output is determined to be 60 steps through 
the grid search method. The parameters optimally determined by grid search are shown in Table 3.

Under the same condition, comparative experiments were conducted with mainstream and state-of-the-art 
methods. Subsequently, ablation experiments as well as testing and analyzing the ability of the proposed model 
to predict the SOC of the battery under a variety of temperature conditions were performed.

Comparison experiments
The proposed architecture was benchmarked against five neural network frameworks (Stacked CNN, MLP, 
RNN, LSTM, transformer, PatchTST, TimesNet) under standardized conditions. Performance metrics (MAE, 
RMSE, MAPE), all expressed as percentages, are summarized in Fig. 4; Table 4.

Table  4 presents the SOC prediction errors for different models. The TATNS model achieved the lowest 
prediction errors across all metrics, with a MAE of 2.165, RMSE of 2.703, and MAPE of 4.320, outperforming 
all baseline models. The transformer model ranked second overall, with a MAE of 2.488, RMSE of 3.131, and 
MAPE of 4.694, demonstrating its strength in capturing long-term dependencies. Stacked CNN also showed 
competitive performance with a MAE of 2.664, RMSE of 3.199, and MAPE of 5.572. In contrast, traditional 
sequential models such as LSTM, RNN and MLP exhibited higher error rates, indicating limitations in handling 
complex temporal patterns.

The transformer parallel structure allowed faster training compared to sequential models. This advantage is 
critical for real-time BMS. In Fig. 4, the predicted SOC values (blue) by TATNS closely follow the actual SOC 
(red), with minimal deviation, unlike other models.

The superior performance of TATNS can be attributed to its advanced temporal encoding mechanism, 
which effectively captures time-series dynamics. By integrating this with the transformer architecture, the 
model leverages both local and global temporal patterns, enhancing predictive accuracy. Additionally, the use 
of temporal encoders facilitates more precise sequence modeling, allowing the TATNS framework to adapt 
dynamically to changes in input data, thus ensuring high accuracy even under fluctuating operational conditions.

Ablation study
An ablation study was conducted to evaluate the contribution of individual components within the proposed 
TATNS model. Key elements, including the transformer, CNN, and temporal encoding modules, were 
systematically removed to assess their respective impacts on model performance. Additionally, the effectiveness 
of multi-output prediction was compared against single-output prediction under identical conditions. The 
results are illustrated in Fig. 5 and summarized in Tables 5 and 6.

The results clearly indicate that each component plays a vital role in the overall predictive performance of 
the TATNS model. The full model achieved the lowest error metrics, with a MAE of 2.165, RMSE of 2.703, and 
MAPE of 4.320, reflecting exceptional predictive accuracy.

The removal of the CNN module resulted in a noticeable decline in performance, underscoring its critical role 
in local feature extraction. The omission of the temporal encoding module led to a slight reduction in predictive 
accuracy, highlighting its importance in modeling time dependencies. The transformer module was found to 
be particularly essential, contributing substantially to the model ability to capture long-range dependencies and 
complex dynamic behaviors.

Moreover, the comparison between single-output and multi-output prediction strategies reveals that multi-
output prediction significantly outperforms its single-output counterpart. The multi-output approach achieved 
lower MAE, RMSE, and MAPE values, demonstrating superior capability in capturing the evolving nature of 
SOC over time.

Overall, the ablation study confirms that the CNN, temporal encoding, and transformer modules jointly 
enhance SOC prediction by addressing feature extraction and long-term dependency modeling. Furthermore, 
multi-output prediction improves forecasting accuracy by capturing temporal dynamics across multiple future 
steps. These findings emphasize the necessity of integrating advanced neural network structures and temporal 
modeling techniques to achieve high-performance SOC estimation in real-world applications.

Sensitivity analysis
The temperature sensitivity of the proposed model was evaluated under four distinct temperature conditions: 
− 10 °C, 0 °C, 10 °C, and 25 °C. The performance metrics for each temperature condition are summarized in 
Fig. 6; Table 7.

The TATNS model demonstrates a high degree of robustness across the tested temperature range. the model 
shows a slight drop in performance, yielding a MAE of 2.874, RMSE of 3.784, and MAPE of 4.879. Nevertheless, 

Parameter Value

Window size 128

Batch size 16

Num epochs 50

Learning rate 0.0005

Weight decay 0.01

Table 3.  Key parameters configuration for model training.
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this result still reflects a high level of accuracy, indicating the model capability to adapt to cold-temperature 
conditions where battery dynamics become more nonlinear and challenging to predict.

As the temperature increases to 0  °C, the model performance improves significantly, achieving its best 
performance across all tested conditions, with MAE of 1.474, RMSE of 1.781, and MAPE of 2.989. This suggests 
enhanced predictive capability under slightly cold but more stable conditions. At moderate temperatures of 
10  °C and 25  °C, the model continues to perform reliably, with errors remaining low. The MAE and RMSE 
values remain within 2.2–2.6%, and MAPE under 5%, confirming that the TATNS model maintains stable and 

Fig. 4.  Comparison of predicted and actual SOC for various experimental conditions.
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Forecasting method MAE RMSE MAPE

Single-output prediction 3.937 4.835 7.560

Multi-output prediction 2.165 2.703 4.320

Table 6.  Results of different prediction methods under the same step condition.

 

Model MAE RMSE MAPE

w/o CNN 4.074 4.839 7.089

w/o temporal encoding 3.795 4.450 8.242

w/o transformer 3.086 3.547 6.390

TATNS 2.165 2.703 4.320

Table 5.  Ablation study results for SOC prediction.

 

Fig. 5.  Impact of model components on SOC prediction.

 

Model MAE RMSE MAPE

RNN 2.889 3.584 5.988

Stacked CNN 2.664 3.199 5.572

MLP 3.041 3.658 5.830

LSTM 2.927 3.459 5.230

Transformer 2.488 3.131 4.694

PatchTST 3.084 3.543 5.990

TimesNet 2.901 3.298 5.654

TATNS 2.165 2.703 4.320

Table 4.  The comparison of SOC prediction errors of different existing methods.

 

Scientific Reports |         (2026) 16:2543 10| https://doi.org/10.1038/s41598-025-32347-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


accurate predictions under typical operating temperatures. This consistent performance across diverse thermal 
conditions underscores the model’s strong dynamic adaptability, a critical requirement for UAVs operating in 
real-world, rapidly changing environments.

In Fig. 7, the error analysis, defined as the difference between actual and predicted SOC, provides further 
insight into the model performance. At lower temperatures, the prediction error exhibits greater variability, 
which can be attributed to the more complex dynamics of battery behavior in colder environments. However, 
despite these challenges, the model maintains relatively low errors, demonstrating resilience in extreme thermal 
conditions. At higher temperatures (10 °C and 25 °C), the prediction errors are significantly reduced, reflecting 
enhanced consistency and accuracy under less thermally restrictive conditions.

These findings collectively highlight the robustness and reliability of the TATNS framework, making it well-
suited for real-world applications where batteries are exposed to diverse and varying environmental conditions. 
By effectively capturing the temperature-dependent relationships inherent in battery SOC prediction, the model 
ensures accurate and dependable performance across a broad range of thermal environments, emphasizing its 
practical value and adaptability in dynamic operational scenarios.

Temperature MAE RMSE MAPE

− 10 ℃ 2.874 3.784 4.879

0 ℃ 1.474 1.781 2.989

10 ℃ 2.195 2.619 4.434

25 ℃ 2.118 2.629 4.978

Table 7.  Performance metrics for SOC prediction at different temperatures.

 

Fig. 6.  SOC prediction condition for different temperatures.
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Conclusion
In UAV operations, accurate SOC prediction for lithium-ion batteries is critical for safe flight planning but 
complicated by dynamic loads, temperature variations, and nonlinear electrochemical behavior. This study 
presents a novel deep learning framework, TATNS, designed to predict the SOC in UAV lithium-ion batteries. 
TATNS integrates CNNs, transformer-based attention mechanisms, and temporal encoding strategies 
for dynamic error correction. This hybrid architecture effectively captures both localized electrochemical 
characteristics and long-term temporal dependencies, significantly improving the prediction robustness under 
dynamic operating conditions. The Transformer module in the TATNS framework can handle dynamic feature 
problems, and the Kalman filter can suppress noise. The model sliding window processing and multi-output 
forecasting methods could adapt to battery dynamic change and SOC nonlinear change.

Experimental validation on a large-scale UAV battery dataset demonstrates the superior performance 
of TATNS, with a MAE of 2.165, RMSE of 2.703 and MAPE of 4.320. Compared to the second-best model, 
the TATNS method reduces MAE by 12.98%, RMSE by 13.66%, and MAPE by 7.97%. These results reflect 
a significant reduction in error compared to existing models, including LSTM, RNN, and standalone CNN/
transformer models. Additionally, the TATNS framework shows robust performance against environmental 
perturbations and thermal fluctuations, which are essential for UAV applications where ambient temperature 
variations can degrade battery performance.

Despite these advancements, TATNS has some certain limitations. The model performance decreases under 
ultra-low temperature conditions, indicating the demand for further enhancement in its adaptability to extreme 
thermal environments. While lightweight models offer higher computational efficiency, TATNS prioritizes 
prediction accuracy over speed, aligning with UAV safety-critical BMS requirements. Experiments are conducted 
on laboratory cycling data. Real UAV flight data are not yet included. Validating TATNS on actual UAV telemetry 
data is therefore the highest priority in our future work. Current research focuses on the deployment of a single 
UAV. In future studies, the model deployment issue of UAV swarms can be further explored. This expansion to 
swarm operations would necessitate addressing critical challenges in distributed computing communication 
protocols. Successfully overcoming these hurdles could enable more complex missions through collaborative 
intelligence and resource sharing among multiple autonomous platforms. These improvements could further 
enhance the framework scalability and applicability, providing a more robust solution for next-generation UAVs 
that demand enhanced operational intelligence and reliability.

Data availability
The dataset used in this experiment is available at https://data.mendeley.com/datasets/cp3473x7xv/3.
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Fig. 7.  Prediction error of battery SOC at different temperatures.
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