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Recent advances in deep learning have achieved impressive accuracy in various building analysis 
tasks using street view imagery). However, a major challenge lies in the large-scale, labeled datasets 
typically required—an obstacle driven by limited raw data access and labor-intensive annotations. 
To overcome this, the present study introduces a domain adaptation (DA) framework for classifying 
exterior cladding materials. Six categories are targeted: Brick, Concrete, Glass, Stone, Mixed, and 
Others. A fully labeled dataset from Scotland and a partially labeled dataset from London form the 
basis of the approach, which leverages transformer-based architectures, data augmentation, and 
hyperparameter optimization to boost accuracy. In evaluations on unseen data, an axial transformer 
trained with augmented data and optimized hyperparameters emerged as most effective, achieving 
class-specific accuracies of 88.43% (Brick), 73.71% (Concrete), 68.67% (Glass), 91.33% (Stone), 86.65% 
(Mixed), and 83.46% (Others), culminating in an overall accuracy of 82.04%. These findings illustrate 
the potential of the DA-based method to maintain strong performance, with further refinements 
suggested for future work. The paper subsequently explores additional applications of this proposed 
strategy.

Keywords  Exterior cladding material, Street view images, Google street view images, Image augmentation, 
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Exterior cladding materials—such as brick, concrete, and paneling—form the building’s outermost protective 
layer. Their selection often depends on cost, local climate, personal preferences (e.g., texture and color palette), 
and overall durability with respect to maintenance1.

Because of these wide-ranging variables, numerous studies have examined the distribution of cladding 
materials at both urban and national scales2,3. Understanding how these materials are employed is vital for 
multiple applications. For instance, urban heat island analyses depend on recognizing that each cladding type 
exhibits distinct thermal properties affecting heat retention4. Similarly, in post-earthquake scenarios, differences 
in cladding choices can significantly influence both the extent and nature of observed damage5.

Among current methods for examining exterior cladding, street view imagery (SVI) stands out as an efficient 
and cost-effective alternative to on-site inspections, providing a direct view of building façades for focused 
observations6. In particular, google street view (GSV)—a widely adopted SVI platform—spans over 16 million 
kilometers across 83 countries. By simply entering geographic coordinates, users can readily access these images, 
making GSV indispensable for large-scale endeavors such as urban planning or nationwide surveys7.

Despite its accessibility, analyzing SVI to extract exterior cladding materials can be both labor-intensive and 
time-consuming, especially over large geographical areas. Typical deep learning can automate much of this 
manual image processing by training a model on large sets of labeled images that capture varied conditions (e.g., 
differing illumination or scale), thereby exhibiting robust generalization8. However, two primary challenges arise 
when applying exterior cladding material classification to SVI data: (1) acquiring a sufficiently comprehensive 
set of images (e.g., abundant examples of brick but fewer examples of stone) under diverse real-world conditions, 
and (2) labeling this large volume of images, which is both tedious and resource-intensive.

A potential solution involves leveraging existing, well-labeled source datasets (i.e., from regions where 
data is readily available) and applying them to a different target domain (i.e., where labeled data are scarce). 
However, these source datasets may differ substantially from the target domain in terms of their underlying data 

Institute for Environmental Design and Engineering, University College London, London WC1H 0NN, UK. email: 
seung-hyun.wang@ucl.ac.uk

OPEN

Scientific Reports |         (2026) 16:2696 1| https://doi.org/10.1038/s41598-025-32524-7

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-025-32524-7&domain=pdf&date_stamp=2025-12-17


distributions—a phenomenon known as domain shift. For instance, architectural styles vary among London, 
Scotland, and South Korea due to distinct cultural contexts and regional building practices. While London and 
Scotland share certain architectural similarities, South Korea’s style diverges more noticeably6,9. This contrast 
becomes evident when visualizing their distributions using t-distributed Stochastic Neighbor Embedding 
(t-SNE): London and Scotland’s data points cluster more closely together, whereas South Korea’s points lie farther 
away, as illustrated in Fig. 1. Such differences—including materials, design principles, and aesthetic nuances—
can degrade model performance when a model trained on one region is applied to another.

In this paper, DA techniques are introduced to have the reliable accuracy of deep learning models for 
extracting the information of exterior cladding materials from SVI. The main contributions are as follows:

	1.	 A DA strategy employing DANN is proposed for robust feature alignment between source and target do-
mains.

	2.	 Five distinct transformer architectures—including Swin Transformer and Axial Transformer—are assessed 
to determine their suitability as feature extractors.

	3.	 Various hyperparameters are systematically investigated to understand their effect on model performance.
	4.	 An in-depth examination identifies the top-performing model within each architecture–dataset configura-

tion.
	5.	 Both supervised learning and DA methods are evaluated under domain shift conditions.

Literature review
Existing studies that apply supervised learning to building façade image analysis, as well as work on domain 
adaptation in related contexts, are examined here to clarify the research gap.

Supervised learning
Supervised learning—often termed general deep learning—is widely applied to labeled datasets, enabling models 
to learn from annotated examples. Within building façade image analysis, numerous studies have utilized SVI 
to extract the useful information including exterior cladding materials. For instance, Ilic et al.12 employed 
Convolutional Neural Networks (CNNs) to detect gentrification-related changes in sequential GSV images, 
achieving 95.6% accuracy in Ottawa. Hu et al.13 focused on classifying urban geometry using GSV and Densely 
Connected Convolutional Networks (DenseNets), reporting 89.3%, 86.6%, and 86.1% accuracies across three 
Hong Kong regions. Meanwhile, Campbell et al.14 explored deep learning for autonomous traffic sign detection 
in GSV images from the City of Greater Geelong, attaining 95.63% accuracy using Single Shot Detection (SSD) 

Fig. 1.  Visualization of domain shift in three datasets.

 

Scientific Reports |         (2026) 16:2696 2| https://doi.org/10.1038/s41598-025-32524-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


with MobileNet. Similarly, Yan and Ryu15 utilized GSV images and a CNN-based approach to categorize nine 
crop types (e.g., corn, soybean), reaching 92% accuracy in California’s Central Valley and 97% in Illinois.

In another study, Zou and Wang16 proposed a CNN-VGG16-based technique to identify abandoned houses 
from GSV data, recording 84% accuracy in five Rust Belt regions. Kim et al.17 introduced a ResNet-based method 
to differentiate wooden and metal poles, achieving 97.5% accuracy in Texas. Likewise, Kalfarisi et al.18 developed 
a large-scale solution for detecting soft-story buildings via Faster R-CNN with ResNet-50 and Inception-V2, 
recording 88% accuracy in both San Bruno and Seattle. Finally, Wang and Han6 proposed an automated system 
to classify exterior cladding materials using deep learning and GSV images; for London and Scotland, their 
MobileNetV3 model attained average accuracies of 75.65% and 73.45%, respectively.

Application of domain adaptation in other contexts
The distinction between supervised learning and DA is illustrated in Fig. 2 using an example of two classes—
brick and concrete—sourced from Scotland (source domain) and London (target domain). In the left panel, 
where supervised learning is applied, source and target samples of the same class form separate clusters, and the 
decision boundary fitted on the source domain does not generalize well to the target domain because of domain 
shift.

In the right panel, where DA is applied, the framework aligns the feature distributions of the two domains so 
that brick and concrete samples from Scotland and London become more intermixed within each class, and the 
decision boundary is adjusted to separate both classes consistently across domains. As noted, DA helps address 
data-availability challenges for both raw and labeled images when classifying exterior cladding materials across 
different regions.

For DA to function effectively, several conditions generally need to be fulfilled. First, the source and target 
domains should share the same task and label space, since the labeled data resides only in the source domain, and 
both domains’ representations must map to these labels. Second, the domains should be sufficiently related—
if no direct correspondence exists, knowledge transfer is likely to fail19, and may even degrade performance 
compared to training without transfer20,21. Finally, both domains should have enough data to produce a robust 
shared representation; heavily skewed or insufficient datasets in either domain often result in low accuracy in 
both training and testing22.

Despite these requirements, DA methods can rival or exceed supervised learning while demanding fewer 
labeled samples. Hong et al.23 tackled a face detection challenge—using only one passport photo—by employing 
facial landmark detection to expand the dataset, achieving 97.91% accuracy. Hu et al.24 bridged the gap 
between synthetic point clouds from Building Information Modeling (BIM) and real point clouds for semantic 
segmentation, achieving an average accuracy of 91.03%. Hong et al.25 tested data from one construction site 
(source) against three different sites (targets), with DA boosting accuracy from 40.43 to 82.76%. Duan et al.26 
introduced an unsupervised, feature-level DA approach to enhance a reinforcement learning (RL) strategy for 
cable-in-duct installation, raising a 98% success rate in simulation to 95.8% in real-world conditions. Similarly, 
Tran et al.27 demonstrated that adopting DA in worker detection via object detection models at construction 
sites led to a 93% success rate in real-world applications.

Such work demonstrates that domain adaptation can substantially enhance performance without relying 
on large amounts of labeled data, particularly in fields requiring robust transfer from one domain to another. 

Fig. 2.  Visualization of class distributions of source and target domains.
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Consequently, if DA techniques are applied to exterior cladding material classification with appropriately 
designed configurations, high accuracy can be achieved. By leveraging more plentiful datasets from a different 
source region, domain adaptation boosts model performance while reducing the labeling burden with the 
collection of raw data for the target domain.

Proposed approach
To accurately classify exterior cladding materials, this study presents a DA) methodology based on DANN, 
organized into the workflow shown in Fig. 3. The approach comprises six main components—(1) input domain, 
(2) image augmentation, (3) feature extractor, (4) domain alignment, (5) domain classifier, and (6) label classifier. 
The subsequent sections provide a detailed explanation of how each component is built and evaluated within the 
deep learning framework.

Input domain
The input domain consists of all images feeding into the pipeline—whether from the source or target distribution. 
While both domains may appear generally similar, they can differ significantly in attributes such as visual style 
and architectural design. The following subsections describe each domain module’s function.

Source domain
The source domain module supplies a labeled dataset that underpins supervised training. It provides both 
images and corresponding class labels (e.g., “brick,” “concrete,” “stone”), enabling the model to learn how specific 
features map to each material category. By exposing the feature extractor and label classifier to a sufficiently 
diverse range of labeled samples, this module ensures a robust foundation for classification. Moreover, the 
knowledge the model acquires here—such as recognizing common textures or color patterns—is transferred or 
adapted when encountering the unlabeled target domain.

Target domain
The target domain module contains images that lack reliable labels. Although these images may appear similar 
to those in the source dataset, they often differ in architecture, context, or lighting, leading to a domain shift28. 
The model, initially trained on the source domain’s labeled data, uses DA techniques to accommodate these 
unlabeled target images. By realigning feature distributions between source and target, DA greatly reduces the 
need for extensive new labeling in the target environment. Consequently, the model continues to exhibit strong 
classification performance, even in large-scale or dynamically changing conditions where assembling a fully 
labeled dataset would be impractical.

Fig. 3.  Overall framework of proposed method based on DA.
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Image augmentation
Constructing comprehensive datasets for deep learning typically demands substantial time and effort. To 
alleviate these challenges, image augmentation is employed to artificially expand the training set. In this study, 
six different augmentation techniques are utilized, each addressing specific issues as outlined in Table 1. A more 
detailed, mathematical discussion of these methods is available in prior work29,30.

Since SVI data are captured outdoors, lighting conditions often fluctuate with factors like weather or time 
of day. Brightness augmentation replicates such variations by adjusting the light intensity in images, producing 
outputs that range from brighter to darker31. Contrast augmentation, on the other hand, increases luminance 
contrast, making object features more prominent—particularly useful for emphasizing contours and edges in 
architectural elements32.

Since SVI images are taken from diverse angles, perspective transformation modifies the homography matrix 
so that buildings can be recognized regardless of the viewing angle. Scale augmentation, an affine transformation, 
replicates varying distances and accommodates actual size differences among buildings. Likewise, building 
façades may appear misaligned if the camera is not level; rotation augmentation compensates for this, supporting 
accurate detection of features irrespective of orientation. Finally, shear augmentation addresses distortions 
caused by an off-perpendicular camera angle, simulating a skew along a chosen axis33.

Feature extractor
The feature extractor, also known as the encoder or backbone model, converts raw inputs into higher-level, 
more abstract representations. Rather than relying on raw pixel intensities, the model exploits these extracted 
features—patterns or attributes that are more stable indicators of content34–36. In domain adaptation, a single 
feature extractor is typically shared by both source and target data, enabling the model to learn a representation 
space that, ideally, generalizes across domains.

Building on prior work, this study integrates several transformer-based architectures within the domain 
adaptation framework—namely ViT, Swin Transformer, PVT, MobileViT, and Axial Transformer—chosen for 
their potential to deliver reliable accuracy in many studies37–40. Figures for each architecture are presented to 
illustrate their unique structures. Readers seeking deeper methodological insights into the components of each 
model are referred to the comprehensive description in41. The subsequent subsections offer a concise overview 
of the fundamental concepts behind each architecture.

ViT
Vision Transformer (ViT) employs a pure transformer design for image recognition by partitioning images into 
fixed-size patches and treating each patch as a token (Fig. 4). A key advantage lies in applying self-attention 
directly to these patch sequences, which allows the model to capture global dependencies across the entire 
image. This contrasts with traditional CNNs that focus on local receptive fields and often require multiple layers 
to aggregate global context. However, ViT generally demands large-scale datasets and significant computational 
resources, owing to the quadratic complexity of self-attention with respect to the number of patches.

Swin transformer
Swin Transformer introduces a hierarchical architecture featuring shifted windows for self-attention (Fig. 5). 
The image is divided into non-overlapping local windows, and these window partitions shift between layers to 
capture cross-window interactions. This design yields a linear scaling in attention complexity with increasing 
image size, making it suitable for high-resolution data. The hierarchical nature also fosters multi-scale feature 
extraction, proving effective for tasks that require both local details and global context42.

PVT
PVT (Pyramid Vision Transformer) integrates pyramidal feature extraction—common in CNN-based models—
into a transformer framework (Fig. 6). It leverages spatial-reduction attention to downsample image dimensions 
in the attention layers, thus reducing the cost of processing large inputs43. By producing multi-scale feature 
maps via a pyramid structure, PVT effectively captures features at multiple resolutions, lending itself well to 
dense prediction tasks such as classification or detection. This structure preserves the global attention benefits of 
transformers while offering computational efficiency akin to CNNs44.

Mobilevit
MobileViT merges transformer-based self-attention with lightweight convolutional layers specifically designed 
for mobile and edge scenarios (Fig. 7). Its defining characteristic is its balanced approach: it harnesses the 

Augmentation techniques Parameters Ranges of parameter values

Brightness β [-30, 30]

Contrast α [0.5, 2.0]

Scale x, y [0.8, 1.2], [0.8, 1.2]

Perspective a31 ,​a32 ​, [0.01, 0.15]

Rotation θ [− 25°, 25°]

Shearing shx ​, shy [− 15°, 15°]

Table 1.  The used augmentation techniques with parameters and its values.
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power of global context provided by self-attention, while remaining resource-efficient by adopting mobile-
friendly architectural blocks45. Local features are captured through convolutions, whereas self-attention handles 
long-range dependencies without substantially increasing parameters or computational load46. Consequently, 
MobileViT suits applications requiring both high performance and limited hardware resources.

Axial transformer
Axial transformer decomposes the standard 2D self-attention operation into two sequential 1D attentions 
along an image’s height and width dimensions (Fig. 8). This axial split reduces the complexity of self-attention 
from quadratic to linear in terms of spatial size, enabling efficient processing of high-resolution data47,48. By 
applying attention along each axis independently, axial transformer preserves the ability to capture long-range 
dependencies while maintaining manageable computational demands.

Domain alignment
Even after feature extraction, a domain gap can persist between source and target data distributions. Domain 
adaptation addresses this issue by introducing alignment mechanisms. In adversarial methods, a domain 

Fig. 5.  The structure of Swin Transformer.

 

Fig. 4.  The structure of ViT.
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discriminator attempts to distinguish whether extracted features originate from the source or target domain, 
while the feature extractor aims to confuse the discriminator—forcing the two distributions to appear more 
similar.

One way to implement adversarial training is the gradient reversal layer (GRL) in DANN49. During forward 
propagation, the GRL passes features to the domain discriminator as usual. However, in backpropagation, it 
reverses the gradients before they reach the feature extractor. This effectively compels the feature extractor 
to minimize the discriminator’s accuracy, encouraging domain-invariant representations. Over time, this 
adversarial interplay causes source and target features to converge within the latent space, ultimately enhancing 
generalization without requiring extensive labeling in the target domain50.

Fig. 7.  The structure of MobileViT.

 

Fig. 6.  The structure of PVT.
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Domain classifier
After feature extraction, a Fully Connected (FC) network is used as the domain classifier. The dimensionality 
of its input layer matches that of the extracted features to allow seamless data flow. The output layer contains 
two neurons—corresponding to source and target domains—to reflect the model’s confidence in each domain 
category. The number and size of hidden layers can vary substantially, a choice typically treated as hyperparameter 
tuning51. In this study, the domain classifier is configured with two hidden layers of 32 and 16 neurons each.

Label classifier
In parallel, a label classifier is employed to predict material categories of interest (e.g., “brick,” “concrete,” 
“stone”) from the aligned features. Like the domain classifier, it also relies on FC layers, whose configuration is 
determined as part of hyperparameter tuning. In this work, the label classifier has three hidden layers consisting 
of 32, 16, and 8 neurons, respectively, plus an output layer corresponding to the number of cladding material 
classes. By making use of the newly aligned features, this classifier more effectively handles unlabeled data from 
the target domain.

Optimization of the hyperparameters
Although numerous hyperparameters can be tuned to optimize model performance, examining every possible 
configuration is nearly impossible due to time and computational constraints52. Consequently, this study focuses 
on a select subset of hyperparameters. Stochastic Gradient Descent (SGD) serves as the optimizer, using a batch 
size of either 1 or 2, which yields highly stochastic (per-sample or near-per-sample) weight updates. Within 
SGD, the current gradient is combined with scaled gradients from previous iterations using a momentum term, 
which in this study is set to 0.7 or 0.9.

To mitigate overfitting, a weight decay term (L2 regularization) is added to the loss function for all model 
weights, tested at 0.0005 or 0.001. The learning rate (step size for weight updates) is assigned either 0.00025 
or 0.0001. Because GPU memory limits the batch size, it remains 1 or 2, preserving the intensely stochastic 
nature of updates. Finally, the number of training iterations—which significantly impacts both precision and 
training time—is set at 3000 or 5000. Altogether, these five hyperparameters yield 32 unique configurations, as 
summarized in Table 2.

Evaluation of model performance
Various other metrics can be used to assess a model’s performance in image classification. In this study, three 
specific metrics are selected to evaluate the model.

Underfitting, and overfitting
The evaluation of loss progression throughout iterative training provides ensuring two common issues: 
underfitting and overfitting. The underfitting is characterized by the persistence of high training and validation 
loss. Models that underfit, having failed to sufficiently learn from the training data, are likely to deliver high 
performance on both training and unseen data. In contrast, overfitting manifests as a significant discrepancy 
between a low training loss and a relatively high validation loss. Models that overfit, despite potentially 
demonstrating high performance on training data, are prone to failure when exposed to new unseen data53. 
In this study, the models exhibiting signs of underfitting or overfitting were disregarded, as these models are 
unlikely to yield satisfactory performance on even training or, unseen data, respectively.

F1-score
In image classification, the F1-score is commonly used to evaluate accuracy because it incorporates both 
precision and recall. Precision represents the proportion of positive predictions that are correct, while recall 

Fig. 8.  The structure of axial transformer.
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reflects the proportion of actual positives that are correctly identified. These metrics are defined mathematically 
in Eqs. (1) and (2):

	
Precision = TP

TP + FP
� (1)

	
Recall = TP

TP + FN
� (2)

where true positives (TP) denotes the number of correctly identified positive samples, false positives (FP) refers 
to the number of incorrectly classified positives, and false negatives (FN) represents the number of positive 
samples the model failed to detect.

The F1-score merges precision and recall using their harmonic mean, making it highly sensitive to low values 
in either metric. As a result, a model needs sufficiently high precision and recall to achieve an elevated F1-score. 
Its formulation is provided by Eq. (3):

	
F1-score = 2 × precision × recall

precision + recall
� (3)

Detection speed
Detection speed represents the time a model needs to process each frame, typically reported as Frames Per 
Second (FPS). Measuring FPS helps determine how swiftly the classification model can handle incoming images, 
providing insight into its practical efficiency—especially in scenarios requiring real-time or high-throughput 
processing.

Case

Hyperparameters

Batch size Learning rate Weight decay Momentum Iteration

1 1 0.00025 0.0001 0.7 3000

2 1 0.00025 0.0001 0.9 3000

3 1 0.00025 0.0005 0.7 3000

4 1 0.00025 0.0005 0.9 3000

5 1 0.001 0.0001 0.7 3000

6 1 0.001 0.0001 0.9 3000

7 1 0.001 0.0005 0.7 3000

8 1 0.001 0.0005 0.9 3000

9 2 0.00025 0.0001 0.7 3000

10 2 0.00025 0.0001 0.9 3000

11 2 0.00025 0.0005 0.7 3000

12 2 0.00025 0.0005 0.9 3000

13 2 0.001 0.0001 0.7 3000

14 2 0.001 0.0001 0.9 3000

15 2 0.001 0.0005 0.7 3000

16 2 0.001 0.0005 0.9 3000

17 1 0.00025 0.0001 0.7 5000

18 1 0.00025 0.0001 0.9 5000

19 1 0.00025 0.0005 0.7 5000

20 1 0.00025 0.0005 0.9 5000

21 1 0.001 0.0001 0.7 5000

22 1 0.001 0.0001 0.9 5000

23 1 0.001 0.0005 0.7 5000

24 1 0.001 0.0005 0.9 5000

25 2 0.00025 0.0001 0.7 5000

26 2 0.00025 0.0001 0.9 5000

27 2 0.00025 0.0005 0.7 5000

28 2 0.00025 0.0005 0.9 5000

29 2 0.001 0.0001 0.7 5000

30 2 0.001 0.0001 0.9 5000

31 2 0.001 0.0005 0.7 5000

32 2 0.001 0.0005 0.9 5000

Table 2.  Combinations of hyperparameters.
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Experiment
Dataset preparation
In this research, the dataset collected in our previous work6 using supervised learning was utilized to demonstrate 
the proposed method. The data collection methodology is briefly described here, with more emphasis placed on 
showcasing the potential of transformer-based domain adaptation.

Original dataset
For this case study, the United Kingdom was selected because its legal framework permits collecting SVI. In 
practice, SVI platforms provide large numbers of façade images across many cities, but the distribution of 
cladding types is uneven and manual annotation is expensive. Rather than repeatedly labeling a full dataset for 
every new city, an existing labeled dataset from one region can be reused as a source domain and its knowledge 
transferred to a new, sparsely labeled target region. The experiments therefore employ comparable source and 
target dataset sizes to control for sample-size effects and to focus on how domain adaptation can mitigate 
regional shifts in image appearance, while conceptually reflecting the practical need to reduce labeling effort in 
future deployments.

A random sample of 3000 buildings was taken from each of two UK regions—the North-West (NW) and 
the Eastern (E)—as shown in Fig. 9. The sampling process was carried out via the national mapping agency’s 
website (https://osdatahub.os.uk/). The corresponding addresses were then used to query the GSV Application 
Programming Interface (API), allowing the retrieval and download of building images.

Various GSV parameters were manually tuned to improve the visual identification of exterior cladding 
materials. The field of view (FoV), which controls the zoom level or scope of the scene, was set between 10 
and 50. The pitch, representing the camera’s vertical angle relative to the street-view vehicle, ranged from 25 to 
30. Meanwhile, the heading, which specifies the camera’s horizontal orientation, varied between 33 and 55. All 
images were captured at 640 × 640 pixels—the maximum resolution currently provided by GSV. Figures 10 and 
11 present representative examples of images taken in London and Scotland, respectively, illustrating typical 
exterior cladding.

However, many GSV images did not offer a sufficiently clear view for accurate identification. Some showed 
no building at all, while others were partially obscured by trees or fences, and certain images displayed interiors 
rather than façades. In some cases, no GSV images were available at the address, only an error message. Figure 12 
shows examples of images deemed unusable for this study. These images were discarded through manual review. 
Of the original 3000 addresses, 1,604 images (53.47%) were deemed usable in London and 1,017 images (53.02%) 
in Scotland.

Application of image augmentation techniques
Image augmentation parameters directly affect image quality and, consequently, model performance55,56. These 
parameters were selected through a trial-and-error process aimed at generating realistic augmented images, as 
summarized in Table 1. Brightness was adjusted by randomly shifting pixel intensities (β) between − 30 and + 
30, whereas contrast was adjusted by randomly varying α between 0.5 and 2.0. For scale augmentation, images 
were independently resized along the x- and y-axes to 80–120% of their original size to account for potential 
differences in building features. Perspective transformations were applied by modifying the homography matrix 
elements a31​and a32​, randomly assigning values between 0.01 and 0.15. Rotation was performed within a range 

Fig. 9.  The geographic scope of the dataset.
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of − 25° to + 25° using the rotation parameter θ, and shearing ranged from − 15° to + 15°, introducing skew via 
shx​ and shy .

These geometric operations—scaling, rotation, perspective shifting, translation, and shearing—can move 
parts of an image beyond its original boundaries, creating voids or overlapping pixels. Because deep learning 
models typically require inputs of fixed dimensions, any empty areas were filled with a pixel value of 255 (white), 
ensuring that all augmented images had uniform size57. The original training sets of 928 images for London 
and 608 images for Scotland were expanded through these augmentation techniques to 5568 and 3648 images, 
respectively. Including the original (non-augmented) images, the final training sets comprised 6496 images 

Fig. 11.  Examples images in Scotland.

 

Fig. 10.  Examples images in London.

 

Scientific Reports |         (2026) 16:2696 11| https://doi.org/10.1038/s41598-025-32524-7

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


for London and 4256 images for Scotland. To demonstrate the effectiveness of the augmented datasets, model 
accuracy was compared between training with only the original data and training with the augmented data.

Annotation
In image classification, “annotation” (or labeling) refers to assigning each image in the ground truth dataset to a 
specific category. In this work, images were examined for visual cues indicating the cladding material, and each 
image was placed into a separate folder—Brick, Concrete, Glass, Stone, Mixed, or Others—corresponding to the 
relevant cladding class.

Synthesis of final dataset
To validate the proposed methods, four distinct datasets were generated and divided into training, validation, 
and test sets. Each image was then labeled based on the cladding material category it represented. Table  3 
summarizes the annotated distributions for each of these datasets.

Experimental settings
All experiments were performed on a Windows 10 (64-bit) machine equipped with an Intel® Core™ i9-12900 K 
CPU (5.20 GHz, 16 cores), 64 GB of DDR5 RAM, and an NVIDIA GeForce RTX 3090 GPU featuring 24 GB of 
GDDR6X VRAM.

Results and discussion
In this study, 640 models were trained, spanning five transformer architectures, four dataset configurations, 
and 32 hyperparameter settings. For each architecture (ViT, Swin Transformer, PVT, MobileViT, and Axial 
Transformer) and each dataset configuration (raw source + raw target, augmented source + raw target, raw 
source + augmented target, and augmented source + augmented Target), all 32 combinations of batch size, 
learning rate, weight decay, momentum, and number of iterations listed in Table  2 were explored, yielding 
5 × 4 × 32 = 640 models.

Underfitting and overfitting
Although the training and validation loss graphs for all these models are omitted here due to space constraints, 
they can be accessed via a link provided in the “Data Availability” section. Figure  13 shows representative 
training and validation losses for models trained using augmented source and target datasets. All models 

Fig. 12.  Examples of unusable images.
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exhibited a steady reduction in both training and validation losses as training progressed, with occasional 
fluctuations between epochs rather than a perfectly smooth decline. This behavior indicates that the models 
effectively learned from the training data, improving validation performance and converging toward an optimal 
loss value. The consistent drop in training loss across iterations rules out underfitting concerns. Similarly, the 
parallel decrease and close alignment of training and validation losses suggest that overfitting was not an issue, 
so no models were excluded on those grounds.

Effectiveness of hyperparameter on model performance
The impact of various hyperparameters on model performance was assessed by clustering results according to 
each hyperparameter configuration. The datasets considered were Raw Source (RS), Augmented Source (AS), 
Raw Target (RT), and Augmented Target (AT).

Analysis of the mean variation values in Table 4 shows that the number of training iterations is the most 
influential hyperparameter in most scenarios. For example, for the Swin Transformer under the “RS + AT” 

Fig. 13.  Training and validation loss graphs.

 

Country Purpose Number of images

Class

Brick Concrete Glass Stone Mixed Others Total

London

Training 928 265 137 43 24 357 102 928

Augmentation 5568 1590 822 258 144 2142 612 5568

Validation 311 91 45 14 8 119 34 311

Test 311 86 47 15 9 120 34 311

Total 7118 2032 1051 330 185 2738 782 7118

Scotland

Training 608 46 80 9 174 241 58 608

Augmentation 3648 276 480 54 1044 1446 348 3648

Validation 204 15 26 3 61 80 19 204

Test 205 16 28 4 56 81 20 205

Total 4665 353 614 70 1335 1848 445 4665

Table 3.  Comprehensive dataset distribution in London and Scotland.
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setting, increasing iterations improves the average F1 score by 1.91 points, clearly exceeding the effects of 
learning rate (0.18), weight decay (0.30), batch size (0.52), and momentum (0.22). Similar behaviour appears 
for PVT and MobileViT in the “AS + AT” configuration (1.92 and 2.13 points, respectively) and for the axial 
transformer in “AS + RT” (2.62 points). ViT shows a more nuanced pattern. Although iterations dominate in 
“AS + RT” (1.96) and “AS + AT” (1.83), weight decay and learning rate become more important in “RS + AT” and 
“RS + RT,” where their variations exceed those of iterations.

Analysis of best performing model in each architecture and dataset
Table 5 reports, for each architecture (ViT, Swin Transformer, PVT, MobileViT, and Axial Transformer) and 
each source/target configuration, the best model selected from the 32 hyperparameter settings. A clear pattern 
emerges when comparing configurations that use only raw data with those that include augmented images. 
Across all architectures, incorporating augmented source and target data consistently increases the average 
F1-score. For example, the ViT architecture attains an average F1-score of 74.18 in the raw-only setting (608 
raw source images and 928 raw target images), but this improves to 81.89 when both source and target sets 
are augmented (928 raw + 3648 augmented source images and 928 raw + 5568 augmented target images). Swin 
Transformer, PVT, MobileViT, and Axial Transformer exhibit similar gains when moving from raw-only to 
augmented conditions.

Beyond the overall performance boost, the per-class results indicate that augmentation particularly benefits 
more challenging cladding types such as Glass and Stone, which show larger improvements than Brick and 
Concrete. These findings support the view that domain-adaptation techniques, when combined with augmented 
training data, help mitigate shifts in data distributions and enhance model robustness and generalization.

Table 6 summarizes the training times for two iteration counts (3000 and 5000) and the detection speeds of the 
five architectures. As expected, increasing the number of iterations leads to longer training times, while detection 
speeds remain similar across iteration counts. MobileViT achieves the highest detection speed (approximately 
33 FPS), indicating strong potential for real-time or low-latency applications. ViT, Swin Transformer, PVT, and 
Axial Transformer operate at around 20–25 FPS, which is still adequate for many façade-analysis scenarios.

Model test in unseen dataset
Among the 640 trained models, selection of the final model for evaluation on the unseen London dataset 
followed a two-stage procedure. First, for each architecture and each of the four dataset configurations, all 32 
hyperparameter combinations were trained and evaluated on the validation set. The configuration with the 
highest validation macro F1-score was chosen as the best model for that architecture–dataset pair.

Second, these 20 best models were compared in terms of both validation macro F1-score and detection 
speed. Priority was given to higher validation F1-score, while detection speed was used to ensure that the final 
model remained suitable for practical deployment (i.e., at least 20 FPS).

Based on this procedure, the axial transformer architecture with the configuration corresponding to Case 
20—batch size 1, learning rate 0.00025, weight decay 0.0005, momentum 0.9, and 5000 training iterations, 
trained on augmented source and target datasets—was selected as the final model. As shown in Fig. 14, this 

Architecture Dataset

Hyperparameter

Batch size Learning rate Weight decay Momentum Iteration

ViT

RS + RT 0.17 0.23 0.09 0.11 0.15

AS + RT 0.39 0.35 0.87 0.05 1.96

RS + AT 0.15 0.57 1.07 0.05 0.37

AS + AT 0.12 0.30 0.06 0.36 1.83

Swin transformer

RS + RT 0.43 0.74 0.02 0.22 0.86

AS + RT 0.20 0.52 0.13 0.82 0.92

RS + AT 0.52 0.18 0.30 0.22 1.91

AS + AT 0.12 0.62 0.26 0.28 1.64

PVT

RS + RT 0.57 0.17 0.18 0.26 0.98

AS + RT 0.14 0.13 0.25 0.32 1.46

RS + AT 0.47 0.02 0.24 0.13 0.53

AS + AT 0.23 0.41 0.27 0.35 1.92

MobileViT

RS + RT 0.01 0.06 0.13 0.19 0.30

AS + RT 0.13 0.48 0.12 0.28 1.13

RS + AT 0.05 0.57 0.67 0.22 1.05

AS + AT 0.23 0.07 0.03 0.21 2.13

Axial transformer

RS + RT 0.01 0.13 0.16 0.07 0.19

AS + RT 0.22 0.06 0.16 0.14 2.62

RS + AT 0.16 0.14 0.62 0.52 1.94

AS + AT 0.01 0.01 0.17 0.23 2.11

Table 4.  Mean variations of F1-score by each dataset and architecture.
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model achieved an average F1-score of 82.04% on the unseen London test set, comparable to its validation 
performance. With a detection speed of approximately 20 FPS (Table 6), this configuration offers a favorable 
balance between accuracy and efficiency.

Figure 15 presents a subset of images from the London dataset, illustrating both successful and erroneous 
detections. A more extensive collection of detection outcomes is available at the following link: ​h​t​t​p​s​:​​/​/​f​i​g​s​​h​a​r​e​.​c​​
o​m​/​a​r​t​​i​c​l​e​s​​/​d​a​t​a​s​​e​t​/​D​a​t​​a​s​e​t​_​o​​f​_​b​u​i​​l​d​i​n​g​_​​c​h​a​r​a​c​​t​e​r​i​s​t​​i​c​s​_​f​​r​o​m​_​b​u​​i​l​d​i​n​g​​_​f​a​_​a​d​​e​_​i​m​a​g​e​s​/​2​5​9​3​1​9​4​1.

Feature-space analysis of source–target alignment
To provide mechanistic evidence of how the proposed framework aligns source and target representations, the 
penultimate-layer features of validation images from Scotland (source) and London (target) were visualized 
using t-SNE (Fig.  16). Each point represents a single validation image, with color indicating one of the six 
cladding classes and the legend identifying the domain. Under raw training without DA, source and target 
samples of the same class form clearly separated clusters, indicating a pronounced domain shift. When DA is 

Iteration

Training time (min)

Mean Std Min 25% 50% 75% Max

3000 75.64 2.97 73.71 73.87 75.05 77.21 79.82

5000 105.84 0.83 74.32 75.13 75.92 76.44 76.93

Architecture
Detection speed (FPS)

Mean Std Min 25% 50% 75% Max

ViT 25 0 20 25 25 25 25

Swin transformer 20 0 16.67 20 20 20 20

PVT 20 0 16.67 20 20 20 20

MobileViT 33.33 0 33.33 33.33 33.33 33.33 33.33

Axial transformer 20 0 16.67 20 20 20 20

Table 6.  Training time by iterations, and detection speed by architectures.

 

Architecture

Source 
data Target data Class

Raw Aug Raw Aug Brick Concrete Glass Stone Mixed Others Average

ViT

608 – 928 – 79.34 71.52 58.23 57.34 91.89 86.77 74.18

608 3648 928 – 83.59 78.45 63.51 67.65 96.95 86.80 79.49

928 – 928 5568 82.85 77.02 65.23 65.34 95.89 81.77 78.02

928 3648 928 5568 87.73 73.29 73.75 77.91 91.89 86.77 81.89

Average 83.38 75.07 65.18 67.06 94.16 85.53 78.40

Swin transformer

608 – 928 – 80.53 75.05 59.78 59.42 92.83 87.35 75.83

608 3648 928 – 85.87 72.37 65.32 64.55 98.93 79.41 77.74

928 – 928 5568 83.83 78.81 66.54 62.14 96.62 85.29 78.87

928 3648 928 5568 88.21 83.58 69.31 70.24 92.03 85.71 81.51

Average 84.61 77.45 65.24 64.09 95.10 84.44 78.49

PVT

608 – 928 – 79.48 74.45 58.48 58.31 91.66 76.71 73.18

608 3648 928 – 83.22 78.53 63.76 62.20 95.53 77.67 76.82

928 – 928 5568 82.59 77.56 65.85 61.53 94.42 73.92 75.98

928 3648 928 5568 88.31 83.72 69.42 68.51 91.57 85.22 81.13

Average 83.40 78.57 64.38 62.64 93.30 78.38 76.78

MobileViT

608 – 928 – 80.53 74.33 58.77 58.42 92.22 77.15 73.57

608 3648 928 – 84.27 79.45 64.16 63.31 96.93 78.18 77.72

928 – 928 5568 83.33 78.12 65.53 62.15 95.76 74.83 76.62

928 3648 928 5568 88.15 83.98 73.15 69.43 91.33 85.52 81.93

Average 84.07 78.97 65.40 63.33 94.06 78.92 77.46

Axial transformer

608 – 928 – 79.63 74.14 58.53 58.41 91.87 76.65 73.21

608 3648 928 – 82.93 78.76 63.98 62.34 96.13 77.50 76.94

928 – 928 5568 83.12 78.97 65.15 62.95 96.20 74.43 76.80

928 3648 928 5568 88.51 84.24 72.64 69.14 92.38 86.29 82.20

Average 83.55 79.03 65.08 63.21 94.15 78.72 77.29

Table 5.  Model performance by each dataset and architecture.
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applied to models trained only on raw data, the distance between these clusters is reduced, although the feature 
space remains relatively diffuse.

Comparison with different baseline model
To examine the effectiveness of both supervised learning and domain adaptation under domain shift, experiments 
were carried out using an axial transformer-based architecture across various training and testing scenarios 

Fig. 15.  Examples of correct and incorrect results in test data.

 

Fig. 14.  Best model performance on test data.
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involving data from London and Scotland. Table 7 presents a comparison of the results for each dataset under 
both methods.

Under supervised learning, models trained and tested within the same domain performed reasonably well 
(e.g., London→London: 72.75%, Scotland→Scotland: 77.10%), indicating that the model effectively learned 
domain-specific features. However, in cross-domain scenarios without adaptation (e.g., London→Scotland 
or Scotland→London), the average scores consistently dropped to the mid- to high-60% range. Even when 
combining training data from both London and Scotland, the improvements remained modest, suggesting that 
simple data diversification is insufficient to fully overcome the domain shift.

In contrast, applying domain adaptation techniques substantially improved cross-domain generalization. 
For instance, configurations like AS (Scotland) + AT (London) and AS (London) + AT (Scotland) resulted in 
the average gains surpassing those achieved in the best supervised scenarios, frequently exceeding 80%. These 
domain-adapted models also demonstrated more balanced performance across challenging classes, such as 
Glass and Stone, which are prone to variability in appearance.

Conclusions
This study introduced DA framework designed to address the challenges of exterior cladding material 
classification in SVI. The proposed method leverages a DANN alongside advanced transformer-based backbones 
(ViT, Swin Transformer, PVT, MobileViT, and Axial Transformer) and several image augmentation techniques. 
The following key conclusions can be drawn:

	1.	 Experiments confirmed that DA significantly enhances classification performance in cross-domain scenarios 
(e.g., London→Scotland or Scotland→London). In many cases, domain-adapted models achieved average 
scores exceeding 80%, surpassing those trained using conventional supervised learning alone.

Fig. 16.  Visualization of T-SNE using the best model.
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	2.	 Evaluations of five transformer architectures underlined the versatility and potential of vision transformers 
for building façade analysis. Among these, the axial transformer often displayed a competitive balance of 
accuracy and computational efficiency.

	3.	 Data augmentation substantially improved classification accuracy, particularly when addressing material 
classes with limited examples in raw training sets (e.g., “Glass” or “Stone”). By producing synthetic samples 
under diverse brightness, scale, and perspective parameters, the model more effectively generalized to re-
al-world conditions.

	4.	 Tuning of hyperparameters showed that the number of training iterations often exerted the largest influence 
on model performance—sometimes improving average score by more than two percentage points. However, 
depending on the architecture, other hyperparameters (like weight decay in ViT) could also introduce nota-
ble gains.

	5.	 Despite the computational overhead typically associated with transformers, the tested models maintained 
practical detection speeds, with MobileViT in particular achieving real-time or near-real-time inference.

However, this research is limited by geographic scope, labeling costs, and the complexity of transformer-based 
architectures. Future studies could broaden datasets across more regions, explore advanced or multi-step domain 
adaptation strategies, and investigate lightweight solutions for on-device deployment. Integrating synthetic data 
may further enhance performance and generalization across a wider variety of building facades.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Code availability
The code developed for this study is available at the Figshare repository58.
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