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replenishment optimization with
extended (R, s, Q) policy and
probabilistic models
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Effective inventory management is crucial for businesses operating across diverse sales channels,
particularly in the dynamic e-commerce landscape. Balancing the need to minimize inventory

costs while ensuring sufficient stock availability to meet fluctuating demand presents a significant
challenge, further compounded by the complexities of external partnerships and distributed fulfillment
networks. These factors introduce uncertainties in demand, returns, and lead times, impacting overall
profitability. Recent literature has advanced optimization techniques for production and supply chain
systems, often focusing on complex analytical objectives related to imperfect quality, typically solved
using meta-heuristics. However, these sophisticated optimization models often rely on deterministic
or simplified demand assumptions. This study presents a novel approach to replenishment
optimization with a two-fold contribution. First, we aim to bridge the gap through the systematic
integration of probabilistic demand forecasting with advanced inventory policy optimization
techniques, bridging a critical gap between predictive modeling and practical replenishment decisions.
Second, we introduce a significant extension to the classical (R, s, Q) policy framework by Jansen
(1996), adapting it to the specific demands of a distributed fulfillment network and highly seasonal
assortments. Our Zalando E-commerce Operating System (ZEOS) Inventory Optimization Tool unifies
one-shot inventory policy optimization with the predictive power of probabilistic gradient-boosting
models (LightGBM). In a backtest covering the full one-year period, the system achieved an aggregate
in both Gross Merchandise Value (GMV) and GMV after fulfilment costs uplift compared to the human
baseline of ~ 22% and outperformed all classical inventory-theory baselines (Tuned (s, S), periodic
base-stock, and Myopic newsvendor), with average operational availability and demand fill rate
maintained at ~ 86% and ~ 91%, respectively. Ablation analyses show that probabilistic forecasts
with a percentile-based objective yield the most robust performance. Further, horizon sensitivity
analysis identifies a 12-week window as optimal for balancing responsiveness and profit stability. This
research represents a pioneering effort in bridging the gap between probabilistic demand forecasting
and policy optimization techniques, resulting in a practical tool that addresses the challenges of
inventory management in an e-commerce setting, contributing to improved efficiency, reduced costs,
and enhanced profitability.

Keywords Replenishment optimization, Inventory management, Profit contribution, E-commerce supply
chain, Probabilistic forecasting, RsQ policy

Effective inventory management is a critical challenge for businesses operating across diverse sales channels,
particularly in the dynamic landscape of e-commerce!™. Balancing the need to minimize storage costs while
ensuring sufficient stock to meet fluctuating demand requires sophisticated solutions that can accurately predict
future needs and optimize replenishment strategies™S. Recent academic efforts have increasingly focused on
modeling complex constraints within production and supply chains, including integrating issues like imperfect
production, screening errors, item deterioration, carbon emission constraints, and specific absorption rate
(SAR) compliance into optimization models, often solved using optimal control theory and advanced meta-
heuristics such as the Artificial Hummingbird Algorithm (AHA) and Equilibrium Optimiser Algorithm (EOQ)!~*.
The complexity is further amplified in modern e-commerce by features such as highly seasonal assortments,
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distributed fulfillment networks, and rapid product lifecycles’. These challenges highlight the need for data-
driven, risk-aware inventory control methods, especially given the ongoing interest in leveraging advanced
analytics and machine learning in operations!®!%.

While there has been considerable progress in time series forecasting and supply chain optimization fields
respectively, there has historically existed a level of separation between forecasting research and supply chain
optimization research!?!3, a gap the applied practitioner inevitably must bridge in industry applications. Current
practice, as Goltsos extensively discussed, often sees these domains in silos: forecasting teams deliver demand
predictions (often deterministic point forecasts), which are then independently fed into optimization models that
assume these forecasts as given, rather than fully integrating the probabilistic nature of demand. This disconnect
might stem from different factors, including different academic backgrounds of researchers in each field, the
distinct methodologies employed (e.g., statistical/machine learning for forecasting!* vs. operations research
optimization), and the complexity of building models that can effectively bridge probabilistic uncertainties with
prescriptive actions!”. For a deeper discussion on the historical separation and the theoretical underpinnings of
this phenomenon, we refer to'2.

This paper presents the ZEOS Inventory Optimization Tool, which introduces a novel approach to
replenishment optimization with two primary contributions:

1. Bridging the probabilistic forecasting-to-optimization gap: Our work complements the recent focus on
advanced computational techniques in production control systems'™. While these studies often analyze
highly complex physical production phenomena (e.g., rework, SAR, and emission taxation) via analytically
defined objective functions (solved using methods like Extended Pontryagin’s Maximum Principle or AHA),
they typically simplify the demand modeling using deterministic or interval-based functions. We present
a pioneering effort to systematically integrate probabilistic demand forecasting, generated by a Light GBM
model, directly into an inventory policy optimization framework. Unlike approaches that rely solely on point
forecasts, our method explicitly leverages the full distribution of future demand (via quantiles from Confor-
mal Prediction'®!”) as input to a simulation-assisted stochastic optimization engine!®!?. This unique combi-
nation, not commonly found in existing literature or industry practice, offers a practical, end-to-end solution
for optimizing replenishment decisions, particularly within a large-scale e-commerce environment?*2!.

2. Extension of the Classical (R, s, Q) Policy for E-commerce context: The (R, s, Q) policy pioneered by
Jansen?? is widely studied in inventory control literature (e.g.,>°), allowing for a succinct representation of
the decision space to a few key decision variables: review period R (fixed interval of time between successive
inventory level checks), restock threshold s (predetermined inventory level at which falling below triggers
a replenishment order), and restock quantity Q (fixed order size when a replenishment is triggered). In this
work, to accommodate the specific requirements of Zalandos distributed fulfillment network and highly
seasonal assortments, we extend the classical (R, s, Q) policy with additional decision variables: initial re-
plenishment time (¢o) and quantity (Qo), subsequent replenishment quantities (Q), and a termination point
for the policy’s applicability (t1imit). These extensions are crucial for enabling nuanced control over replen-
ishment timing, especially for new articles or those approaching their end-of-season lifecycle?’, allowing the
optimization to focus more on the near future where demand uncertainty is lower and decisions are more
impactful.

The LightGBM gradient boosting framework was utilized due to its known computational efficiency and capacity
for accurate modeling of structured data®, aligning with its empirically strong performance in the forecasting
domain?>?°, We demonstrate a practical union of probabilistic forecasting and supply chain optimization by
showing that a gradient-free black box optimizer on a Monte Carlo simulation of the supply chain, while lacking
theoretical convergence guarantees, works in practice. Finally, we validate the conclusions via backtesting on
Zalando’s vast real-world operational datasets covering more than 2 million articles across a subset of around
800 merchants, along with an ablation study, sensitivity analysis and slice analysis. The ZEOS Inventory
Optimization Tool offers a data-driven approach to optimize replenishment decisions, ultimately contributing
to improved efficiency, reduced costs, and enhanced profitability for businesses operating in the competitive
e-commerce landscape?’.

Methods and data

The ZEOS Inventory Optimization Tool consists of the replenishment engine as core of the system and supporting
components. The engine involves discrete events simulation, such as realizations of demand and return, and
stochastic optimization to find the optimal replenishment policy. The supporting components involve demand
forecasting, return lead time modeling and replenishment lead time modeling as summarized in Fig. 1. For a
deeper dive into the supporting components, please refer to the Supplementary Material.

Optimization method

We formulate the replenishment problem as a stochastic constrained optimization problem, with the objective
of maximizing overall profit contribution. At its core, an inventory policy defines the rules or strategy governing
when and how much to reorder to manage stock levels. The decision variables extend classical (R, s, Q)
replenishment policy parameters where we optimize five decision parameters: o, Qo, s, Q and tiimiz (Where
R, the review period is fixed based on operational constraints). Crucially, our system is designed for practical
adoption: we only expose the next replenishment variables (£o, Qo) to the user through the ZEOS dashboard,
managing the remaining policy parameters (s, @ and tiimit) internally within the optimization engine. Detailed
description is summarized in Table 1.
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Fig. 1. Component view of the replenishment engine. The ZEOS Inventory Optimization Tool is composed
of the core replenishment engine (involving Discrete Event Simulation and stochastic optimization for policy
finding) and supporting components (demand forecasting, return and replenishment lead time modeling).

Variable

Constraints

Description

to

to > L for end-to-end
replenishment lead time L

The time at which the next replenishment will become offerable and able to satisfy demand. In order for the merchant to be able to act on
this replenishment, it must be at least far enough into the future that it is feasible with respect to the merchant’s replenishment lead time.

Qo

Qo >0

The replenishment quantity of the next replenishment. Kickstart quantity for strategic positioning. Initial order size that provides
inventory buffer before regular periodic policy activates. Enables proactive positioning against anticipated demand patterns.

s>0

The replenish point (sometimes referred to as re-order point in literature). After ¢o, inventory is monitored every R period, and new
= orders of size Q are placed when inventory position falls to or below s.

Q=0

The quantity replenished at each subsequent replenishment (triggered on review points after o for which the stock level is below s).

tlimit

tlimit € [0, T'] for some

Order cutoff time preventing end-of-lifecycle overstock. Beyond this point, no further orders are placed regardless of inventory levels,
sufficiently large horizon T. | protecting against excess inventory as demand declines toward season end.

Table 1. Descriptions and constraints of the decision variables of a replenishment policy. Only two decision

variables are actually shown to the user, the next replenishment (to, Qo).

Decision parameters (s, Q) are necessary to limit the scope of what is addressed by (¢o, Qo). If these variables
are not used, the optimizer will use (to, Qo) to replenish inventory for the whole lifecycle of the article in one go.
Liimit is necessary for an optimizer to respond to the decline of demand at the end of an article’s lifecycle. If ¢iimit
is not used, Q tends to be underdimensioned as the optimizer attempts to reduce the impact of overstock due to
a final replenishment at the end of the season.

Under a setting of complete information, an optimal replenishment policy is defined as one that minimizes
the opportunity cost over the article lifecycle from the perspective of the merchant, shown as Equation (1).
Equivalently, this is framed as maximizing the merchant’s profit contribution, explicitly excluding internal
operational costs such as logistics, operations, and marketing.

0" = argmingee [Cholding(e) ~+ Cinbound (9) + Coutbound(o) + Creturns(e) + Clost_sales (9)] (1)
Where 6 is the decision parameters (to0, Qo, s, Q) that represent the optimal replenishment policy.

e Cholding(0) = fstorage Etlem s¢ is the cost of storage accumulated for storage fee fstorage and stock levels
s¢ within the 12-week simulation horizon where ¢ is on a weekly cadence.
e Cinbound(#) = finbound ZtT:lm 1 is the inbound cost calculated by multiplying the cost finbouna to the

external partner of shipping the replenished goods with the inbound ¢; accumulated over the simulation
horizon T.
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e Coutbound(0) = foutbound Z;‘F::llz o, is the cost of associated sales orders successfully placed where

foutbound is the outbound processing cost per unit and o is the weekly outbound that is then summed over
the horizon T.
o Chreturns(0) = freturn ZtT:llQ r¢ is the cost of returns accumulated over the horizon for returns r; where

freturn is the returns 7processing fee per unit.
o Clost_sales(0) = t;lm(psales,t — Ppurchase) (1 — return rate)dunmet,t is the cost of lost sales derived by

multiplying the difference of price psales,: at time step t by purchase price (cost of goods sold) Ppurchase With
the summation of unmet demand dunmet,: over a 12-week horizon. This is then multiplied with the factor
(1 — return rate) to only factor in lost demand that turned into sales.

However, in real-world scenarios, complete information is unattainable for two primary reasons:

1. Cost components are unknown in advance, being dependent on uncertain and highly variable demand and
return behavior.

2. Cost components are counterfactual, relying on realizations of events (e.g., demand during stock-outs or
returns from unfulfilled orders) that are not directly observable.

To address these challenges, we model the replenishment problem as a simulation-assisted stochastic optimization
problem, as expressed in Eq. (1). This approach is valuable because it allows for robust optimization under
uncertainty, providing solutions that are expected to perform well even in the presence of noise. The stochastic
formulation explicitly accounts for uncertainty by modeling key variables, such as weekly Stock Keeping Unit
(SKU)-level demand (which is probabilistically forecasted using quantiles from Conformal Prediction), return
lead times (sampled from fitted historical return data), and replenishment lead times (modeled using a gamma
distribution to capture inherent variability), as random variables within the optimization framework. A Stock
Keeping Unit (SKU) is a unique identifier for a product and its variants (e.g., size, color, or style) used to track
inventory for sales and replenishment. The policy parameters are therefore determined independently for
each unique product variant, explicitly ignoring dependencies on other SKUs. By representing these uncertain
elements as distributions rather than fixed values, we can capture the inherent variability in the system. Moreover,
the simulation-assisted approach addresses the challenge of counterfactual measurements, where outcomes like
demand during stock-outs or returns on unfulfilled orders cannot be directly observed.

In this study, the optimization framework is designed as a numerical experiment where the Monte Carlo
simulation serves to rigorously evaluate replenishment policies across diverse, probabilistic demand scenarios.
The fundamental structure of the optimization loss function (Eq. 1) is explicitly aligned with critical merchant
financial and operational objectives. By minimizing the total cost, which comprises holding, inbound, outbound,
returns processing, and lost sales costs, the objective function directly proxies the financial success of the
merchant by maximizing their profit contribution, hence minimizing costs. The outcomes of this numerical
evaluation are assessed not just by the cost objective, but by practical, reported business Key Performance
Indicators (KPIs) such as weekly availability rate, demand fill rate, and Gross Merchandise Value (GMV) and
GMYV after fulfillment costs (margin). By simulating stock trajectories and computing associated costs under
uncertainty, the experiments rigorously quantify the trade-offs between the costs (e.g., increased holding cost vs.
reduced lost sales cost). This direct alignment ensures that the optimized policy parameters—which show how to
improve service levels while maintaining or enhancing profitability-provide immediately actionable insights for
e-commerce inventory management.

Simulation method
We use available observations to construct a Monte Carlo simulation. To evaluate the cost distribution C'(9)

corresponding to a candidate replenishment policy 6, each simulation run samples from estimated distributions
of:

1. Weekly SKU-level demand, based on a probabilistic forecast.
2. Return lead times, drawn from fitted historical return data.
3. Replenishment lead times, parameterized by user-specified base values.

The simulation begins with an initial state defined by the current stock level and unreturned orders within the
return window. A Discrete Event Simulation (DES) then models the week-by-week evolution of inventory over
a 12-week horizon, driven by the following sequence of events and state updates:

« Initial state (start of week): The simulation tracks the current on-hand inventory (physical stock available)
and in-transit inventory (orders placed but not yet received). Potential returns are implicitly modeled based
on historical outbound sales and a return lead time distribution.

« Inbound & return processing (intra-week): To distribute events across the week and simplify the assump-
tion that inbounds can arrive at any point within a week, a portion (half) of the current week’s scheduled
inbound arrivals and expected returns are added to the on-hand inventory before demand fulfillment. The
remaining portion (half) of the current week’s inbounds and returns are added after demand fulfillment.

o Demand realization: A weekly SKU-level demand value is sampled from the probabilistic forecast distribu-
tion, representing the potential customer demand for that week.

« Sales fulfillment: The simulated demand is then fulfilled from the available on-hand inventory. If demand
exceeds available stock, a stock-out occurs, and the unmet demand contributes to lost sales costs.
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« End-of-week stock calculation: All movements (initial stock, intra-week inbounds/returns, sales) are com-

bined to calculate the stock; (stock at time f) representing the end-of-week on-hand inventory.
Replenishment decision & order placement: At predefined review points (every R weeks, or at the optimized
to for the initial order), the replenishment policy is evaluated based on the calculated stock at time f. The
policy parameters include ¢o (next replenishment time index, an optimized initial order time), Qo (Initial
Replenishment Quantity, the quantity ordered at ¢o), s (Reorder Point, where if stock; falls to/below s at a re-
view point and no inbound is in transit, an ongoing order is triggered), Q (Ongoing Order Quantity, the fixed
quantity ordered when ongoing replenishment is triggered), R (Review Period, a fixed frequency for ongoing
reviews), and t1imi¢ (Time Limit for Initial Order, the last index for Qo placement). If triggered, an order for Q
(or Qo) is placed. This order immediately enters the in-transit inventory and is scheduled to arrive in a future
week after its sampled lead time.

Shipment arrival (for future weeks): Orders already in transit from previous weeks are modeled to arrive in
future weeks once their sampled replenishment lead time elapses. (Note: The effect of these arrivals for the
current week is accounted for earlier in the intra-week processing).

State update & cost accumulation: At the end of each simulated week, all inventory levels (on-hand, in-tran-
sit) are updated. Weekly cost components (storage, inbound, outbound, returns, lost sales) are recorded. Total
costs for the entire 12-week horizon are calculated at the simulation’s end, based on these accumulated weekly
components, often applying an exponential decay factor.

A simplified illustration of the DES state evolution is provided in Fig. 2.

This simulation generates a distribution of costs C'(6), incorporating critical trade-offs across components such
as storage, fulfillment, returns, and lost sales. Rather than using the expected value E[C()] as the optimization
objective, we select a robust percentile-based criterion. Specifically, the 75th percentile of the cost distribution.
This conservative approach mitigates risk by reducing sensitivity to extreme but rare events (e.g., unexpected
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are computed and added up, yielding a sample from C(6).
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demand spikes), thus avoiding overly aggressive replenishment decisions. The choice of the 75th percentile
reflects a risk-aware design, aiming for solutions that perform reliably in the presence of noise, and is grounded
in established supply chain risk management principles. Following?®, optimizing higher percentiles provides a
tractable approximation to Conditional Value at Risk (CVaR), particularly appropriate for inventory systems
where tail risks have asymmetric business impact. This choice aligns with industry practice, where inventory
systems typically target 75-95% service levels?, and reflects realistic managerial risk preferences demonstrated
in supply chain decision-making experiments®. The 75th percentile strikes an optimal balance between risk
protection and computational stability for our 500-simulation Monte Carlo framework, as percentiles above
80-85% can lead to optimization instability in finite-sample stochastic programming contexts®!. Although
we have done some initial assessments for a cost percentile of 50% and 90% respectively (see more details in
the Supplementary Material) where we found that performance gains plateau beyond the 75th percentile, this
robustness parameter is tunable and sensitivity analysis across alternative percentiles will be explored in future
work.

Replenishment engine

The Replenishment Engine maps a policy 6 to a distribution over costs, C' : § — P(R) as a function of
replenishment policy 6 to some distribution C(0) € P(R) where P(R) denotes the set of probability
distributions on R. This mapping allows the optimizer to capture the full range of potential outcomes under
uncertainty. Specifically, we use the practical optimization problem represented in Eq. (2), where the goal is to
identify an optimal replenishment policy that minimizes the cost objective while accounting for the stochastic
nature of demand, returns, and shipment lead times.

6" = argming o Qrs[C(0) @
Where 6 € © is a feasible replenishment policy, Q. is the kth percentile function, and C/(6) is the estimated cost
for a given policy.

In practice, to solve for the optimal policy 0, we minimize the 75th percentile of the simulated cost
distribution using a gradient-free black-box constrained optimizer, specifically SHGO (Simplicial Homology
Global Optimization)?2. The optimal policy is solved independently for each simple SKU, under the assumption
of ‘no cannibalization / affinity, meaning the policies for different SKUs do not influence each other. Figure 3
presents a component view of the complete system used to solve for 6.

Baseline comparators and evaluation framework
To evaluate the performance of the proposed machine-learning-enhanced replenishment methodology, we
designed a comprehensive evaluation framework that benchmarks our model against both canonical inventory-
control policies from operations-research theory and human decision-making baselines. This multi-baseline
design isolates the contribution of the machine-learning component by ensuring methodological parity in
optimization procedures, cost structures, and information availability across all approaches.

Classical inventory-theory baselines. Three canonical policies were implemented to span the theoretical
spectrum of inventory-control paradigms:

« Continuous-review (s, .S) policy - provides real-time inventory monitoring with reorder point s and order-
up-to level S, representing the theoretical upper bound for systems with continuous visibility and unlimited
review frequency’.

Merchant Count Distribution of GMV after Fulfillment Costs Uplift Percentages Merchant Count Distribution of GMV Uplift Percentages
for 2 different execution dates for 2 different execution dates
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Fig. 3. Distribution of GMV and GMYV after Fulfillment Costs Uplifts (September 2024 and January 2024).
Histograms illustrate the distribution of uplifts for execution dates corresponding to the least (September 2024)
and most (January 2024) observed uplifts, showing over 70% of merchants with positive uplifts under 100%
model adoption.
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o Periodic base-stock policy - orders up to a fixed target level S at every review period R, regardless of current
stock. It aligns with business environments that operate on fixed review cycles (e.g., supplier or budget-con-
strained B2B settings) rather than continuous triggers®.

« Myopic newsvendor policy - solves a single-period optimization problem at each review epoch, balancing
overage-and-underage costs for the immediate period while ignoring multi-period effects. Although theoreti-
cally suboptimal over multiple periods, it remains empirically competitive due to its simplicity and short-term
adaptability®>3*.

Extended (R, s, @) Policy. Our primary contribution extends classical (R, s, Q) inventory theory through
data-driven parameter optimization. Instead of assuming fixed demand distributions or simplified cost
formulations, the model uses probabilistic demand forecasts and stochastic simulation to optimize the decision
variables (to, Qo, s, @, tiimit )- This formulation explicitly incorporates forecast uncertainty, lead-time variability,
and detailed cost components (holding, stockout, and transaction costs) while satisfying real-world business
constraints such as review frequency and minimum order quantities.

Human-decision benchmark. The human baseline represents merchant-generated replenishment decisions
derived from operational data. Merchants use complete historical and real-time information-inventory
positions, pipeline orders, supplier reliability, seasonal context, promotions, and qualitative market intelligence-
to make judgment-based, adaptive decisions. Review frequency is variable and determined by workload,
supplier constraints, and strategic priorities rather than by fixed cycles. This baseline captures expert intuition
and contextual reasoning unavailable to purely algorithmic policies.

For a summary of the differences in the evaluation framework used, refer to Table 2 in the Supplementary
Material.

The performance of all computational policies (including the classical inventory-theory baselines) was
evaluated using the following key financial and operational metrics, which were then used to quantify the uplift
of each policy relative to the human benchmark decision:

« Gross merchandise value (GMV): The total value of merchandise sold, serving as a primary indicator of
revenue performance.

o GMYV after fulfillment costs: GMV adjusted for operational expenditures (e.g. holding costs, outbound ship-
ping, returns processing, and inbound costs), providing a measure of margin preservation and cost-effective-
ness.

o Weighted weekly availability rate: The percentage of time a product is in stock and available for sale, weight-
ed by the potential revenue of demanded units (calculated as demand X price after discount), reflecting the
system’s ability to prioritize high-value products and minimize stock-outs.

o Weighted demand fill rate: The proportion of customer demand fulfilled from available stock, weighted by
the potential revenue of demanded units (calculated as demand X price after discount), measuring the success
of the replenishment strategy in meeting actual demand for high-value products and minimizing lost sales.

Data

The ZEOS Inventory Optimization Tool leverages a comprehensive multi-source data ecosystem from enterprise-
scale e-commerce infrastructure, including transactional sales records capturing historical demand patterns and
commission structures, enriched product metadata providing SKU hierarchies and categorical attributes, daily
availability and pricing data incorporating promotional campaigns and discount structures, and commercial
calendar information for seasonality modeling.

The Machine Learning Engineering architecture, which facilitates the real-time data ingestion, feature
store management, and deployment of the probabilistic forecasting model, is further detailed in a dedicated
engineering article?’.

The integrated pipeline constructs both static and dynamic feature sets spanning time-invariant product
characteristics (merchant identifiers, product hierarchies, brand classifications) and temporal variations
through pricing histories, availability indicators, and campaign flags. Sophisticated lag features spanning 1-8
weeks complement rolling statistical measures over 4-8 week windows, alongside calendar-based encodings for
seasonality capture. For the demand forecast model, the training/validation employs robust temporal splitting
with 62-week training windows and 132-week feature engineering pipelines, implementing 4-fold cross-
validation with walk forward fashion to prevent temporal contamination. Conformal calibration generates
39 quantile estimates (2.5-97.5%) at 2.5% increments for uncertainty quantification. The optimization engine
employs a two-stage Monte Carlo approach: 500 trajectory samples for SHGO-based parameter optimization
and 5000 trajectory samples for detailed quantile-based performance metrics (fixed random seeds for
reproducibility), incorporating cost components spanning holding, transaction, processing, and penalty costs.
The 75th percentile cost objective guides optimization toward robust solutions that perform well under adverse
demand conditions. Anti-leakage guardrails enforce temporal boundaries ensuring no training data exceeds
freeze dates, with future information validated against cutoff dates and deterministic processing through
environment-controlled parameters and date-based partitioning for reproducible optimization decisions.

Results and discussion

The replenishment engine serves as the central component of an inventory management framework within
Zalando Fulfillment Solutions (ZFS)?’, providing precise, policy-driven replenishment recommendations at the
SKU level. These recommendations, generated daily, assist ZFS partners in optimizing their inventory across
both wholesale and e-commerce platforms.
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To evaluate the effectiveness of the replenishment engine, a backtest analysis was conducted using historical
data. Considering the inherent volatility and seasonality of e-commerce, the backtest spanned a continuous
12-month period (October 2023 to September 2024) to thoroughly assess the system’s month-to-month
consistency. Unless otherwise specified, single-date experiments (ablations, horizon and percentile sensitivity)
were computed at execution date = 2024-09-02, the least-uplift date within the year, to provide a conservative
assessment of robustness. The backtest involved generating model-driven replenishment recommendations and
comparing them against historical human decisions. Also, the backtest assumed demand estimation through
extrapolation from size distribution, serving as a ground truth to evaluate the performance. To avoid sample
selection bias, we incorporated all merchants (approximately 800 merchants) with available articles to evaluate
the backtest. For clarity throughout this article, all references to Weekly Availability Rate and Demand Fill Rate
refer to their weighted counterparts, as defined in the section “Baseline comparators and evaluation framework”

Model performance compared to baseline comparators

Table 2 presents a backtest comparison between our Extended (R, s, Q) policy and three analytical baselines—
tuned (s, S), periodic base-stock, and myopic newsvendor-compared to historical human decisions. Results
were computed utilizing data spanning a full year from October 2023 to September 2024 (corresponding to
12 monthly execution dates). All models were compared with the human baseline and assessed with a 6 weeks
backtest horizon.

Our Extended (R, s, Q) policy achieved a GMV uplift of 22.11%, outperforming the next-best algorithmic
baseline, Tuned (s, S) (13.39%), by 8.72 percentage points (pp). The uplift in GMV after fulfillment costs
(21.95%) mirrored this trend, confirming that financial benefits persist after operational deductions. The
policy maintained the highest weighted weekly availability (86.40%) and weighted demand fill rate (91.14%)
among all algorithms, translating to an uplift of +21.75 pp in availability and +17.42 pp in fill-rate relative
to human operations. This hierarchy of results reinforces the conceptual premise that while classical models are
constrained by their reactive nature and limited optimization dimensions, the strategic positioning capability
of Extended (R, s, Q) allows it to establish superior initial inventory states and utilize more optimization
parameters effectively. All policies operate under identical stochastic conditions (variable lead times, demand
uncertainty, asymmetric costs), but Extended (R, s, Q)’s advantage stems from its ability to proactively optimize
strategic timing (¢o) and initial quantities ((Qo) rather than purely reacting to inventory depletion like classical
approaches.

Overall backtest performance with respect to the human baseline

Table 3 presents a detailed summary of the Replenishment Engine’s performance against benchmarks (“human
decisions”) across varying backtest horizons (4, 6, and 8 weeks), utilizing data spanning a full year from October
2023 to September 2024 (corresponding to 12 monthly execution dates).

To quantify uncertainty, 95% confidence intervals were computed for all aggregated metrics in Table 3. For
ratio- and mean-based indicators (e.g., GMV uplift, GMV after fulfilment costs uplift, weekly availability rate,
and demand fill rate), confidence intervals were estimated using nonparametric merchant-level bootstrapping
with 2,000 resamples. In this procedure, merchants were treated as independent observational units, resampled
with replacement, and the relevant metric was recalculated for each bootstrap sample; the 2.5th and 97.5th

Uplift of GMV
After % Merchants with Weighted Demand
GMYV Uplift Fulfillment costs | Positive GMV Weighted Weekly | Weighted Demand | Weighted Weekly Availability | fill rate uplift wrt
Policy wrt Human wrt Human Uplifts Availability Rate | Fill Rate rate uplift wrt Human Human
Our +33.63% +23.63%
Extended 22.11% 21.95% 75.36% 86.40 91.14 [+32.70, +-34.59] [+22.99, 4-24.26]
R s Q) [20.44,23.92] | [20.03%, 24.03%] | [74.34, 76.34] [86.18, 86.63] (91.00, 91.28] +21.75pp +17.42pp
> [+21.29, +22.19] [+17.05, +17.78]
13.39% +18.65% +14.35%
Tuned (s,S) | [11.91% 14.80% 63.35% 77.80 85.31 [+17.83%, +19.48%) [+13.81%, +14.92%)]
unecs, 14 éw(])’ [13.13%, 16.54%] | [62.21%, 64.48%) | [77.45, 78.16] (85.04, 85.55] +12.23pp +10.71pp
o0 [+11.76, +12.69] [+10.34, +11.08]
12.50% +17.99% +14.19%
Base-Stock m 1% 13.89% 63.34% 77.32 85.11 [+17.18%, +18.85%] [4+13.67%, +14.74%]
ase-stoc 14 {w(])’ [12.29%, 15.65%] | [62.20%, 64.47%] | [76.95, 77.70] (84.85, 85.37) +11.79pp +10.57pp
il [+11.35, +12.2] [+10.21, +10.92]
+11.61% +8.10%
Myopic 5.07% 5.60% 54.98% 73.07 80.48 [+10.84%, +12.37%) [+7.56%, +8.61%)]
Newsvendor | [3.33%, 6.78%] | [3.84%,7.36%] | [53.81%, 56.15%)] | [72.66, 73.49] [80.16, 80.78] +7.60pp +6.03pp
[+7.16, +8.05] [+5.66, +6.38]

Table 2. Comparative Performance of Baseline Replenishment Policies. Evaluation of the Extended (R, s, Q)
policy against tuned (s, S), periodic base-stock, myopic newsvendor, and historical human decisions under
identical data, cost, and stochastic simulation settings. All results are reported covering 1 full year, from
October 2023 to September 2024, with a 6-week backtest horizon. Metrics include GMV uplift, GMV after
fulfillment costs uplift, proportion of merchants with positive GMV uplifts, weighted weekly availability,
weighted demand fill rate, and uplifts with respect to the human benchmarks (pp = percentage points).
Bracketed values denote 95% confidence intervals.
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Uplift of GMV
After % Merchants with Weighted Demand
Backtest | GMV Uplift Fulfillment costs Positive GMV Weighted Weekly | Weighted Demand | Weighted Weekly Availability | fill rate uplift wrt
horizon | wrt Human wrt Human Uplifts Availability Rate | Fill Rate rate uplift wrt Human Human
+31.51% +21.31%
dweeks | 19:45% 19.66% 73.43% 82.85 88.14 [4+30.55, +32.51] [4+20.68, +21.93]
[17.97%, 21.09%) | [17.90%, 21.47%)] | [72.40%, 74.44%) | [82.60,83.11] [87.97, 88.30] +19.85pp +15.48pp
[4+19.38, +20.29] [4+15.12, +15.85]
+33.63% +23.63%
6weeks | 22.11% 21.95% 75.36% 86.40 91.14 [4+32.70, +34.59] [+22.99, +24.26]
[20.44, 23.92] [20.03%, 24.03%)] | [74.34, 76.34] [86.18, 86.63] [91.00, 91.28] +21.75pp +17.42pp
[+21.29, +22.19] [4+17.05, +17.78]
+32.58% +23.54%
8 weeks | 21:90% 21.46% 75.38% 87.62 92.27 [+31.70, +33.52] [+22.93, +24.16]
[20.19%, 23.83%)] | [19.47%, 23.63%)] | [74.37%, 76.37%] | [87.39, 87.85] [92.13, 92.40] +21.53pp +17.58pp
[+21.07, +21.98] [+17.22, +17.94]

Table 3. Summary of the Extended (R, s, Q) Policy’s Performance by Backtest Horizon. The metrics are
derived from backtest runs covering a full year (October 2023 to September 2024) and are presented as
uplift relative to the human benchmark decision. Values in brackets denote 95% confidence intervals. pp is
percentage points.

percentiles of the resulting distribution defined the interval bounds. For proportion-based measures (e.g.,
percentage of merchants with positive GMV uplift), Wilson score intervals were used to obtain statistically
robust bounds even for finite merchant counts. This approach ensures that the reported uncertainty reflects
cross-merchant variability and provides a conservative estimate of the model’s performance stability across the
tested backtest horizons.

As Table 3 is shown, the model consistently generated positive GMV uplifts, with a median ranging from
19.45% to 22.11% across the assessed backtest horizons. Importantly, GMV after fulfillment costs also
exhibited substantial positive uplifts (19.66% to 21.95%). This indicates that revenue gains were not negated by
disproportionate operational expenditures, demonstrating the algorithm’s effectiveness in mitigating overstock
scenarios through the strategic integration of fulfillment costs into its optimization objective function. A
significant majority of all backtested merchants (73.43% to 75.38%) experienced positive GMV uplifts in the
span of 1 year.

The replenishment engine shows an improvement from a computational backtest strategy over the human
benchmark from October 2023 to September 2024. While the replenishment engine’s prediction horizon spans
12 weeks, its performance metrics were evaluated over a 4, 6 and 8-week horizons. This design inherently places
the backtest at a disadvantage compared to human decision-making, as human operators can dynamically
adjust replenishment strategies on a weekly basis, a flexibility not available to the recommendation engine’s one-
shot optimization. The evaluation indicates a projected positive uplift in Gross Merchandise Value (GMV) for
approximately 75% of our ZFS (Zalando Fulfillment Solutions) merchants, encompassing over 800 individual
entities. Operationally, the recommender achieved average weekly availability rates of approximately 80% and
demand fill rates exceeding 85% during backtesting, reflecting a performance improvement of approximately
30% relative to “human decisions” These findings strongly support the hypothesis that the proposed algorithm
can substantially improve business performance for ZFS merchants, underscoring the potential for considerable
financial gains and enhanced operational efficiency.

The operational metrics, specifically weekly availability rates (82.85-87.62%) and demand fill rates (88.14-
92.27%), underscore robust performance. Weekly availability rate directly reflects how consistently products
are in stock and ready to be sold. A higher availability rate means fewer instances of a product being out of
stock. Demand fill rate on the other hand is a direct measure of how well the replenishment strategy is meeting
actual customer demand. A high demand fill rate indicates that the replenishment system is successfully
ensuring that products are available when customers want them, minimizing lost sales due to stockouts. These
figures represent significant improvements over human benchmarks, with availability rate uplifts of 19.85-
21.75 percentage points and demand fill rate uplifts of 15.48-17.58 percentage points (or 21.31%-23.63% in
percentage terms). The backtesting result consistently showed GMV and GMYV after fulfillment costs uplifts
exceeding 5% on average, with over 70% of merchants experiencing positive uplifts. The demand fill rate and
weekly availability rate targets of > 80% and > 75%, and the consistent positive GMV uplifts observed across
the 12-month backtest horizon directly confirm its temporal stability. Representative histograms, as shown in
Fig. 3, illustrate GMV and GMYV after Fulfillment Costs uplifts for the least (September 2024) and most (January
2024) observed uplifts dates. Both histograms show distributions primarily to the right of zero, indicating that
over 75% of merchants experience positive uplifts in both periods: month with the least vs that of the most
uplifts. Comparison between the least uplifts date and most uplifts date (PC uplifts of 75.3% versus 75.8%)
clearly shows that the replenishment engine is robust to drive positive uplift for merchants across the whole year.

The percentage of merchants with positive GMV and PC uplifts remains stable over time and this is shown in
Fig. 4. Over a 6-week backtest horizon, from October 2023 to September 2024, the analysis reveals consistently
positive Gross Merchandise Value (GMV) and GMV after fulfillment costs, exhibiting a peak in January and a
trough in September. Furthermore, the percentage of merchants experiencing positive GMV uplifts remained
robust, ranging between 70% and 80% throughout the period, suggesting a generally effective strategy with
potential seasonal influences.
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Fig. 4. Temporal Stability of GMV and GMV After Fulfillment Costs Uplifts. There is a consistent positive
trend in Gross Merchandise Value (GMV) and GMYV after fulfillment costs over a 6-week backtest horizon
(October 2023-September 2024). A peak in uplifts is shown during January and a trough in September, with
70% to 80% of merchants consistently experiencing positive GMV uplifts throughout the period.
100 Weekly Availability Rate Over Time 100 Demand Fill Rate Over Time
-@- model_weekly_availability_rate ~@- model_demand_fill_rate
~@- human_weekly_availability_rate -@- human_demand_fill_rate
90 1 90 10— 0—=cg=mo=c g~ = —g—O—g—— OO |
3
2 80 g 804
> ©
2 o«
: =
2 70 5 70
> c
< ©
5 :
3 60+ 0 60
=
50 50
40 1 ) I T I I 40 I I I 1 I I
2023-10-02 2023-12-04 2024-02-05 2024-04-01 2024-06-03 2024-08-05 2023-10-02 2023-12-04 2024-02-05 2024-04-01 2024-06-03 2024-08-05
Execution Date Execution Date

Fig. 5. Operational Performance of the Replenishment Recommender Versus Human Benchmarks. This plot
illustrates the consistent outperformance of the model over human capabilities in key operational metrics,
maintaining a stable weekly availability rate of 85% and a demand fill rate of 90%, thereby exceeding human
performance in both areas.

The model consistently outperforms human capabilities in terms of operational metrics. Figure 5
demonstrates a higher availability rate and demand fill rate. Specifically, the model maintains a relatively stable
weekly availability rate of 85% and a demand fill rate of 90%, exceeding human performance.

The efficacy of probabilistic forecasting integration

Our results, particularly the enhanced gross merchandise value and improved service level metrics, underscore
the theoretical and practical value of leveraging full demand distributions (via Conformal Prediction quantiles
from the LightGBM model) rather than relying solely on deterministic point forecasts. Unlike traditional
approaches where forecast errors propagate directly into suboptimal inventory decisions, our method’s ability
to sample from the estimated demand distribution within the Monte Carlo simulation allows the optimization
engine to proactively account for demand variability. This enables the policy to be robust against unexpected
demand fluctuations, minimizing both stock-out costs and overstocking risks, which is crucial in highly
uncertain dynamic retail environments.

A key observation from our work concerns the complex relationship between demand forecast accuracy and
system performance. We observe a strong negative correlation (p = —0.85) between demand forecast WAPE
and profit contribution percentage uplift (see Fig. 6), indicating that higher WAPE is associated with lower profit
contribution. This aligns with intuitive expectations regarding forecast precision and financial outcomes.

Similarly, when examining operational metrics (see Figs. 7 and 8), our analysis revealed a strong negative
correlation (p = —0.81) between WAPE and service level uplifts (specifically, for both availability rate and
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Fig. 6. PC % Uplift and WAPE Correlation. We saw a strong negative correlation between PC% Uplift and
WAPE, where higher WAPE is associated with low PC uplift.
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Fig. 7. WAPE and Weekly Availability Rate Uplift Correlation. We observe a strong negative correlation
between WAPE and availability rate uplift, where higher WAPE is associated with lower uplift in availability.

demand fill rate). This indicates that lower WAPE (more accurate demand forecasts) generally leads to higher
uplifts in these service levels.

However, our findings emphasize that even with higher WAPE, the system can still achieve positive uplifts
in availability and demand fill rates, albeit potentially lower than those achieved with highly accurate forecasts.

A plausible explanation for this resilience lies in the stochasticity inherent in our approach. Probabilistic
forecasting, coupled with Monte Carlo simulations, effectively captures demand variability. This allows the robust
optimization strategy (e.g., using a percentile of the cost distribution) to stabilize results, leading to significant
performance enhancements even when individual point forecasts are moderately erroneous. By prioritizing
resilience to demand volatility, such a system can ensure high availability and fill rates, with observed ranges
consistently above 85% for both metrics, potentially at the expense of optimal profit contribution in scenarios
of high WAPE.

Ablation study

To quantify the contribution of key design choices in the ZEOS Inventory Optimization Tool, we performed
an ablation study focusing on two main components of the optimization framework: probabilistic demand
forecasting versus deterministic point forecasts, and percentile-based robust objective versus a traditional mean-
based objective. Three variants were evaluated as shown in Table 4:
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Fig. 8. WAPE and Demand Fill Rate Uplift Correlation. We observe a strong negative correlation between
WAPE and demand fill rate uplift, where higher WAPE is associated with lower uplift in demand fill rate.
Config Forecast Type | Cost Objective | Description
Q-PCTL (ours) | Probabilistic | Percentile Full model - stochastic forecast with percentile-based objective (baseline minimizing 75th percentile of cost).
P-PCTL Point Percentile Deterministic forecast with objective minimizing the 75th percentile of cost.
Q-MEAN Probabilistic | Mean Probabilistic forecast using demand quantiles but optimizing the mean cost.

Table 4. Ablation Study: Impact of Forecast Type and Objective Function. This table provides the definition
and description of the three policy variants used in the study: (i) P-PCTL (point forecast + percentile
objective), (ii) Q-MEAN (probabilistic forecast + mean objective), and (iii) Q-PCTL (probabilistic forecast +
percentile objective, ours).

All model configurations were rigorously backtested using identical Monte Carlo settings and cost
formulations. Performance metrics were evaluated against a human baseline over a 6-week backtest horizon,
utilizing a full year of data from October 2023 to September 2024 (12 monthly execution dates). Statistical
rigor was maintained by deriving 95% confidence intervals using a merchant-level bootstrap (B = 2000) and
calculating proportions (such as the percentage of merchants with positive GMV uplift) with Wilson score
intervals.

The ablation study in Table 5 confirms that both components—probabilistic forecasting and robust objective
optimization—contribute meaningfully to overall performance. The shift from P-PCTL (point forecast +
percentile objective, showing a GMV uplift of 6.37% and GMYV after fulfilment costs uplift of 5.98% compared
to the human baseline) to Q-MEAN (probabilistic forecast + mean objective) raises the GMV uplift to 19.02%
and the GMYV after fulfilment costs uplift to 20.16%, validating the theoretical expectation that incorporating
uncertainty distributions is crucial. Comparing Q-MEAN to Q-PCTL (our full model) shows a significant
numerical improvement in GMV uplift (from 19.02% to 22.11%). Furthermore, the uplift in GMV after
fulfillment costs for Q-PCTL (21.95%) is also higher than for Q-MEAN (20.16%). The percentile-based
criterion provides crucial resilience to stochastic demand shocks, resulting in more consistent and robust
outcomes across heterogeneous portfolios.

Sensitivity analysis
To validate our core design choices, sensitivity analyses were conducted on execution date 2024-09-02,
corresponding to the least-uplift date within the year to provide a conservative assessment of robustness. Two
critical parameters were systematically evaluated: simulation horizon length and cost percentile objective.
Simulation-Horizon Sensitivity confirmed the superiority of our 12-week simulation horizon across all key
metrics. The 12-week configuration achieved GMV uplifts of 14.11% and GMV after fulfillment costs uplifts
of 13.23%, substantially outperforming 8-week (11.85% GMYV, 11.85% after costs) and 6-week (6.68% GMYV,
6.73% after costs) configurations, with the highest merchant success rate (73.61% experiencing positive GMV
uplifts). Notably, the sustained uplift after accounting for fulfillment costs validates the 12-week horizon’s cost-
effectiveness and capital efficiency. This extended horizon enables comprehensive lifecycle planning, capturing
delayed effects such as product returns and seasonal demand shifts that shorter horizons miss. The exponential
cost decay weighting amplifies this advantage by discounting late-period volatility, allowing longer horizons to
optimize for both immediate responsiveness and long-term cost stability.
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Uplift of GMV
After % Merchants with Weighted Weekly
GMYV Uplift Fulfillment costs Positive GMV Weighted Weekly | Weighted Demand | Availability rate uplift | Weighted Demand fill
Configuration | wrt Human wrt Human Uplifts Availability Rate | Fill Rate wrt Human rate uplift wrt Human
+33.63% +23.63%
Q-PCTL (ours) 22.11% 21.95% 75.36% 86.40 91.14 [+32.70, +34.59] [+22.99, +24.26]
[20.44, 23.92] [20.03%, 24.03%] | [74.34, 76.34] [86.18, 86.63] [91.00, 91.28] +21.75pp +17.42pp
[+21.29, +22.19] [+17.05, +17.78]
+18.60% +13.68%
P-PCTL 6.37% 5.98% 63.20% 77.76 84.95 [+17.74%, +19.45%] | [+13.12%, +14.28%)]
[4.77%, 8.05%)] [4.20%, 7.88%] (62.03%, 64.35%] | [77.41, 78.14] [84.68, 85.21] +12.19pp +10.22pp
[+11.73, +12.67] [+9.84, +10.59]
+24.35% +18.40%
Q-MEAN 19.02% 20.16% 69.19% 81.27 87.98 [+23.48%, +25.24%)] | [+17.80%, +18.99%)]
[17.53%, 20.54%] | [18.49%,22.01%)] | [68.09%, 70.28%)] | [80.94, 81.59] [87.77, 88.19] +15.92pp +13.67pp
[+15.43, +16.37] [+13.30, +14.05]

Table 5. Ablation Study: Impact of Forecast Type and Objective Function. Comparison of (i) P-PCTL (point
forecast + percentile objective), (ii) Q-MEAN (probabilistic forecast + mean objective), and (iii) Q-PCTL
(probabilistic forecast + percentile objective, ours), using identical data, cost, and simulation settings. All
results are reported covering 1 full year, from October 2023 to September 2024, with a 6-week backtest
horizon. Metrics include GMV uplift, GMV after fulfillment costs uplift, proportion of merchants with
positive GMV uplifts, weighted weekly availability, weighted demand fill rate, and corresponding uplifts versus
human benchmarks (pp = percentage points). Confidence intervals (95%) are obtained via merchant-level
bootstrapping and Wilson score methods.

Cost Percentile Sensitivity validated our 75" percentile objective as optimal for balancing profitability with
operational reliability. While the 90th percentile achieved slightly higher GMV uplifts (16.06% GMV, 16.98%
after costs), the 75" percentile (14.11% GMYV, 13.23% after costs) demonstrated superior service performance
with the highest availability uplifts (+21.08pp) and fill rate improvements (+17.71pp), alongside the greatest
proportion of merchants experiencing positive outcomes (73.61%). The consistent performance across both
GMYV and post-fulfillment metrics confirms that financial benefits persist after operational deductions. This
threshold approximates Conditional Value-at-Risk (CVaR) principles while maintaining computational stability
within our Monte Carlo framework, consistent with industry-standard service levels (75-95%) and empirically
observed managerial risk preferences.

Together, these analyses confirm that our 12-week, 75" percentile configuration achieves the optimal balance
between financial performance, operational excellence, and robustness under uncertainty. Full sensitivity
analysis data and methodology are detailed in the Supplementary Material.

Backtest performance with uncertainty and informative slices

The model’s backtest performance was rigorously evaluated using paired permutation tests, nonparametric
bootstrapping, and aggregate-ratio metrics across the full 12 runs spanning the year (October 2023 to September
2024), merchant, month, and segmented operational levels. Paired tests confirmed statistically significant
improvements in operational metrics, showing an availability uplift of +19.9 percentage points (pp) and a fill-
rate uplift of +16.3 pp. Mean per-merchant GMV uplift was also strongly significant at +34.6%. Although the
mean per-merchant Profit Contribution (PC) uplift was non-significant (pperm = 0.4951) due to high cross-
merchant heterogeneity, this outcome is not surprising; it reflects that certain merchants are fundamentally
unprofitable or exhibit high cost-to-serve ratios due to inherent inventory challenges, low sales volume leading
to statistical instability, or difficult-to-forecast product profiles.

However, the overall aggregate-ratio uplifts—which correctly account for operational scale-were highly
stable and significant, confirming robust, system-wide financial gains of approximately +22% in both PC and
GMYV over the 12-month period. Analysis by informative slices further demonstrated the robustness of these
gains: performance was strongest for high-volume SKU demand categories (Category A: +22% uplift) and
was consistently positive across all merchant scales (ranging from 19% to 33% gains). Furthermore, the model
exhibited reliable performance across all seasons (ranging from 20% to 28% uplift), with the strongest gains
occurring during the high-demand Winter cycle, confirming its dependable functionality under diverse market
conditions. Full data on these analyses are detailed in the Supplementary Material.

Adaptability of the extended (R, s, Q) policy

The extension of the classical policy to include o, Qo, and t1imit proved instrumental in optimizing replenishment
strategies for the operational context of large-scale retail. The introduction of tg and Qo enables a precisely timed
and sized initial replenishment, crucial for optimizing for initial demand capture or aligning with market events,
a characteristic particularly salient in seasonal retail due to short product lifecycles and pronounced seasonality.
The t1imis parameter facilitates proactive inventory divestment, thereby mitigating costly end-of-season overstock
scenarios. This flexibility contrasts with rigid classical policies that might struggle to adapt to the nuanced
lifecycle of seasonal articles, highlighting the operational relevance of a tailored decision space. While increasing
decision variables expands the search space and allows for greater optimization, it also increases computational
complexity. Our use of SHGO, a gradient-free black-box optimizer, mitigated this challenge, demonstrating
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that practical solutions can be achieved even when analytical gradients are intractable. The literature suggests
incorporating learning approaches for sequence optimization may offer future improvements®>-3’.

Conclusion
Research contribution and methodology
This study introduced the ZEOS Inventory Optimization Tool, a novel system designed to bridge the
methodological gap between probabilistic forecasting and prescriptive policy optimization in dynamic
e-commerce.

The ZEOS Inventory Optimization Tool establishes three core methodological innovations:

1. Probabilistic Optimization Architecture: It institutes an end-to-end architecture where demand forecast
uncertainty (from a Light GBM/Conformal Prediction model) is propagated via Monte Carlo-based simula-
tions, allowing the system to anticipate demand variability rather than react to point forecasts. This approach
explicitly leverages methods for rigorous uncertainty quantification!’.

2. Extended (R, s,Q) Formulation: It significantly extends the classical (R, s, Q) policy (Jansen, 1996) by
jointly optimizing five decision variables-including initial replenishment time (o), initial quantity (Qo), and
a termination time (t1imit)-to capture the entire product lifecycle from launch to withdrawal. The incorpo-
ration of fulfillment-time decision-making aligns with complex modern online retail environments?.

3. Risk-Aware Objective: The model employs a percentile-based objective function, minimizing the 75 per-
centile of total cost, which is analogous to a Conditional Value-at-Risk (CVaR) criterion. This approach mit-
igates tail-risk scenarios and explicitly balances profitability with service-level stability, informed by robust
optimization theory>!.

The practical deployment of this approach requires integrating the Probabilistic Forecasting Engine, a Discrete-
Event Simulation (DES) module, and a Black-Box Optimization Engine (e.g., SHGO).

Empirical findings and resilience
The system delivers substantial and statistically robust performance improvements validated across a
comprehensive 12-month backtest (October 2023 - September 2024) covering over 800 merchants:

« Financial Uplift: Based on our evaluation methodology, portfolio-level performance relative to human
benchmarks showed gains of approximately 22% in GMV and GMYV after fulfilment costs uplifts, with me-
dian uplifts between 19.45% and 22.11%. The sustained uplift after accounting for fulfillment costs validates
the strategy’s cost-effectiveness and capital efficiency.

« Operational Excellence: The model consistently outperformed human decisions, maintaining weekly avail-
ability above 85% and fill rates exceeding 90%, corresponding to average uplifts of +-19.9 percentage points
(pp) and +16.3 pp, respectively.

« Validation of Core Design: Ablation analysis (Table 5) confirms the strength of the full model (probabilis-
tic-percentile), achieving a superior GMV uplift of 22.11% and GMYV after fulfilment costs uplift of 21.95%
compare to the probabilistic-mean configuration, which achieved a 19.02% GMYV uplift and 20.16% GMV
after fulfilment costs uplift, and the point-percentile configuration, which achieved a 6.37% GMV uplift and
5.98% GMYV after fulfilment costs uplift.

« Resilience under Noise: The backtest revealed a strong negative correlation (p ~ —0.85) between forecast
error (WAPE) and financial performance. Crucially, the system’s stochastic and robust design successfully sta-
bilized outcomes, consistently producing positive KPI gains even under high forecast uncertainty. Specifically,
the model can still achieve positive uplifts in availability and demand fill rates (observed ranges consistently
above 85% for both metrics) even with higher WAPE, prioritizing resilience and service levels at the expense
of potentially optimal profit contribution.

Practical adoption of the method
To operationalize this approach, businesses must integrate three core components: probabilistic forecasting,
stochastic simulation, and black-box optimization.

« Probabilistic Forecasting Engine — A model such as LightGBM should be trained on rich temporal, prod-
uct, and merchant-level features to produce predictive distributions (quantiles or intervals) rather than sin-
gle-point forecasts, enabling uncertainty-aware planning. This acknowledges recent advances in forecasting
for complex retail contexts'?.

o Discrete-Event Simulation (DES) - The DES module replicates supply chain dynamics under uncertainty,
using Monte Carlo sampling to estimate a cost distribution C(8) for each replenishment policy 6.

o Black-Box Optimization Engine - A global optimizer (e.g., SHGO) searches the parameter space
{to, Qo, s, Q, tiimit } to minimize a robust percentile (e.g., 7 5'1) of the simulated cost distribution, identify-
ing policies that perform reliably across stochastic demand scenarios.

Together, these components transform inventory control from a reactive, rule-based process into a proactive,
data-driven system that explicitly models uncertainty, enhancing both profitability and service stability.

Limitations and future work
While the ZEOS Inventory Optimization Tool provides a scalable, data-driven solution, its current tailoring
to Zalando Fulfillment Solutions (ZFS) restricts immediate cross-industry generalizability, necessitating
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broader validation. Additionally, the model assumes high accuracy in input data (e.g., demand forecasts,
return estimations, and inbound reports), which may not consistently reflect real-world noisy or incomplete
data, potentially impacting robustness. First, this assumption may introduce a systemic bias in our evaluation,
potentially overstating performance in an ideal environment. Second, it suggests that the model’s robustness and
performance may be highly sensitive to differences in data noise and incompleteness levels across alternative
organizational settings, posing a challenge for implementation in other contexts.

Future work will focus on expanding applicability to diverse industries, encompassing cross-business model
optimization beyond ZFS. Methodologically, we plan to explore more sophisticated policies not yet fully addressed
by the current framework, such as integrating dynamic programming approaches or Reinforcement Learning
(RL) for sequence optimization, which may offer improvements over the current one-shot policy optimization
solved by the SHGO algorithm?®>-%7. Further research will also include the exploration of how incorporating
lead time and return variance affects overall performance, integrating external events (e.g., major promotions),
enhancing risk management for end-of-season overstock, and optimizing policies for low-performing articles.
These enhancements aim to further strengthen the tool’s practical utility and adaptability.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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