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Current intelligent grid anomaly detection faces challenges such as low minority-class recognition due 
to imbalanced data, high computational complexity in long-sequence processing, and model bias from 
scarce anomaly samples. To address these, we propose a hybrid architecture combining an enhanced 
Transformer with an Adversarial Autoencoder (AAE). We introduce a Locality-Sensitive Hashing (LSH) 
attention mechanism using Focal Loss with Temperature (FLT) to cluster similar features. A dynamic 
weighting module, implemented via a Spatial-Temporal Feature Disentanglement Network (STFDN), 
adaptively adjusts gradients by category. Our approach reduces memory usage for node sequences 
from 18.7GB to 8.9GB (52.4% less) via Spectral Normalization. Under Wasserstein distance constraints, 
the model achieves an FID score of 28.4, a 10.4% improvement. An innovative dynamic temperature 
scaling strategy elevates the AUPRC to 0.837 on the SGSC dataset. Tests on the UK-DALE dataset 
show an F1-score of 89.3% with 183ms inference latency, meeting edge deployment requirements. 
This research offers a promising new generation of automated detection tools for grid operation and 
maintenance.

Keywords  Unbalanced electricity anomaly detection, Transformer, adversarial autoencoder, Locality-
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Smart Grids’ rapid evolution has positioned electricity anomaly detection as a critical component for ensuring 
grid security1. Global incidents attributable to electrical anomalies incurred direct economic losses exceeding 
$3.7 billion in 20242. Predominant detection systems, reliant on rule-based methodologies or conventional 
machine learning algorithms, confront three principal limitations: (i) Severe model bias towards the majority 
class, stemming from anomaly samples constituting less than 0.5% of the dataset; (ii) Computational burden 
associated with processing long sequential data from high-frequency sampling (≥ 1 kHz); (iii) Inadequate 
model generalization capability, exhibiting performance degradation exceeding 15% during cross-regional 
deployment3. While deep learning techniques, notably Long Short-Term Memory (LSTM) networks, have 
partially addressed temporal dependency modeling, achieving an anomaly recall rate beyond 80% remains a 
persistent challenge in industrial applications4.

Prior research includes Reference5, which introduced a Memory-efficient Attention mechanism, reducing 
Transformer memory requirements by 32% via sparse computation, yet it did not mitigate feature bias in 
imbalanced datasets. The Diffusion-based Anomaly Generation method in Reference6 achieved a Fréchet 
Inception Distance (FID) score of 31.7 for generated samples, albeit with a quadrupled training duration 
compared to conventional methods. The Focal-LSTM architecture proposed in Reference7 attained an AUPRC 
of 0.781, but its efficacy markedly diminished for sequences exceeding 512 points. The integration of Graph 
Neural Networks (GNNs) for joint meter analysis in Reference8 elevated the F1-score to 0.887, though it 
necessitates predefined topological structures. In Reference9, the authors employed a GAN-Synthetic Minority 
Over-sampling Technique (GAN-SMOTE) to balance data distribution, yielding a sample diversity index of 0.81. 
However, the semantic congruence with genuine anomalies was only 57.3%. A dynamic thresholding method 
based on the 3σ-Criterion was proposed in Reference10, constraining the false positive rate to 5.1%, but requires 
manual parameter tuning. An enhanced Isolation Forest algorithm developed in Reference11 achieved an 
inference latency of 327ms on edge devices, still falling short of real-time demands. The Temporal Convolutional 
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Network (TCN) architecture in Reference12 experienced an 8.7% accuracy drop for sequences longer than 256 
points, which underscores the prevalent deficiency in long-sequence processing among existing approaches.

Considering these limitations, this study aims to mitigate the computational overhead inherent in long-
sequence modeling, and enhance the quality of generated samples for the minority class and bolster model 
stability under class imbalance. We propose a hybrid framework integrating a modified Transformer with an 
AAE for superior data augmentation, incorporating a Sparse Attention mechanism to reduce computational 
complexity from O(n2) to O (n log n). A STFDN is designed to learn representations from normal 
electricity consumption data to culminate in an end-to-end detection framework utilizing the FLT. Then, the 
experimental validation on the UK-DALE and SGSC datasets shows a recall rate of 83.6% (a 5.3% improvement), 
a reduced memory footprint of 8.9 GB, and compatibility with TensorRT quantization deployment (final model 
size: 1.8  MB). Therefore, it is clear that this approach offers substantial technical utility for utility company 
maintenance and inspection protocols.

To address the core challenges in non-equilibrium electricity consumption anomaly detection, namely high 
computational complexity in long-sequence processing, scarcity of anomaly samples, and class imbalance, this 
study proposes a hybrid architecture with the following key innovations:

	(1)	 LSH-Attention Mechanism: This approach integrates the LSH with self-attention computation. By intro-
ducing a learnable bucket assignment matrix, it significantly reduces the computational complexity from 
O(L²) to O(L log L), where L denotes the sequence length. This method effectively alleviates memory con-
straints during long-sequence processing.

	(2)	 Spectral Normalization in the AAE: Spectral normalization is applied to the discriminator of the AAE to 
constrain its Lipschitz constant. This stabilizes the adversarial training process and improves the quality of 
generated anomaly samples, making their distribution more consistent with real anomalous data.

	(3)	 FLT: A dynamic temperature parameter is incorporated into the classifier, which adaptively adjusts based 
on sample classification difficulty. This strategy substantially enhances the model’s focus on minority-class 
(anomalous) samples, effectively mitigating class imbalance.

	(4)	 STFDN: A dynamic feature disentanglement module is designed to separately extract spatial (inter-device 
correlations) and temporal (evolution of consumption patterns) features from electricity consumption data, 
thereby improving the model’s capability to characterize complex consumption scenarios.

The relative work
Current situation of abnormal detection of unbalanced power consumption
At present, there are three major technical features in the field of abnormal detection of unbalanced power 
consumption:

	(1)	 Mainstream methods use deep learning frameworks (such as Transformer, GNN), but long sequence pro-
cessing still relies on downsampling (average information loss of 18%)13;

	(2)	 The data enhancement technology is mainly based on SMOTE, and the matching degree between the gen-
erated samples and the real anomaly distribution is only 57.3%14;

	(3)	 The evaluation index relies too much on Accuracy. It is easy to produce misleading conclusions in the data 
set with an abnormal proportion of less than 5%15.

In recent years, the development trend of power anomaly detection in a certain area is shown in Fig. 1.
Figure 1 shows the trend of academic publications of three mainstream technologies (Transformer, GNN and 

GAN) in the field of unbalanced power consumption anomaly detection from 2020 to 202416. At the same time, 

Fig. 1.  Publication trends in the unbalanced electricity anomaly detection (2020–2024).

 

Scientific Reports |         (2026) 16:2744 2| https://doi.org/10.1038/s41598-025-32551-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the deployment rate of GAN method is shown. Although the annual growth rate is as high as 42%, the actual 
deployment rate is less than 8%, which highlights the gap between algorithm research and practical application.

However, the existing technologies face three key bottlenecks:

	(1)	 The contradiction between computational complexity and real-time detection (Transformer > 300 ms);
	(2)	 Abnormal sample generation quality is limited (FID > 35);
	(3)	 The adaptability of the dynamic power consumption mode is poor (the performance fluctuation of the 

cross-regional test is more than 15%)17.

These defects make it difficult for the existing model to replace manual inspection in the actual operation and 
maintenance of the power grid.

Comparative analysis of inference technology performance
In recent years, there are two main evolution directions of the mainstream technology: time series modeling 
architecture migrates from RNN (Recurrent Neural Network) to attention mechanism; and unbalanced 
processing strategy shifts from resampling to loss function optimization. Numerous studies have sought to 
optimize the self-attention mechanism to address computational challenges posed by long sequences. For 
instance, some works have introduced efficient attention computation patterns aimed at reducing resource 
consumption while preserving the modeling capacity for long-range dependencies18. To counteract model bias 
under imbalanced data, several studies have explored integrating Transformers with specialized loss functions 
or data augmentation strategies19. The specific performance is shown in Tables 1 and 2:

In this study, a three-level cascade architecture is used to solve the problem:

	(1)	 In the feature extraction stage, the improved Transformer reduces the memory consumption through the 
LSH bucket strategy (the number of buckets B = 64);

	(2)	 In the data balance stage, the generator of AAE uses residual connection (the number of jump connections 
N = 5) to ensure gradient propagation;In the data balance stage, the generator of AAE uses residual connec-
tion (the number of jump connections N = 5) to ensure gradient propagation;

	(3)	 In the decision-making stage, the classifier introduces a temperature adjustment mechanism (initial tem-
perature T0 = 2.0) to dynamically increase the gradient weight of minority samples.

Transformer + AAE hybrid architecture design
Design of an unbalanced power consumption anomaly detection model
For anomaly detection in unbalanced data scenarios in power systems, this study proposes a three-level cascade 
architecture as shown in Fig. 2.

The improved Transformer adopts the LSH attention mechanism for feature extraction, Fig. 3 displays the 
calculation process.

Data preprocessing stage:
(1) Collect the characteristics of an original signal as follows:

	
Attention (Q, K, V ) = softmax

(
QKT

√
dk

⊙ MLSH

)
V � (1)

In Eq. (1), Q, K, V  are query, key and value matrices, respectively. The dimension is dk = 64; MLSH  is the 
sparse mask matrix (hash bucket number) B = 128 generated by LSH. The sparse binary mask matrix generated 
by LSH has its element values determined by the LSH bucking result: if the query vector Qi and the key vector 
kj  are assigned to the same hash bucket, then MLSH (i, j) = 1, otherwise 0. B is the preset number of hash 

Contrast dimension Pure generative scheme (2023 WGAN)21 Discriminant + generative mixture (2024 Proposed)22

Feature extraction Using only 1D convolution, local feature capture is limited (receptive field ≤ 32) LSH-Transformer provides multi-scale features

Anomaly interpretability The generator operates in a black box, and the contribution of key features is not visible. Attention weight heat map locates abnormal periods

Hardware compatibility Need to be equipped with GPU for real-time reasoning Support TensorRT quantification

Table 2.  Technology combination and complementary contrast.

 

Type of technology Advantages Limitations

Time-Transformer (2023) Parallel training is supported, and the inference speed is 3.2 times faster than that of LSTM on ECG5000 data 
set.

Memory footprint grows with 
the square of the sequence length

GAN-SMOTE (2022) The Diversity Index of the generated sample is 0.81, which is 29% higher than that of the traditional SMOTE. Training convergence requires 
2000 + iterations

GraphSleepNet (2024)20 Through node embedding to capture device correlation, the F1-score of multi-meter joint detection is increased 
to 0.887. Rely on a predefined topology

Table 1.  Comparison of advantages and disadvantages of individual technologies.
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buckets. The operator ⊙ represents the Hadamard product, which is used to multiply the dense attention weight 
matrix with the sparse mask MLSH element by element, so that only the attention between the elements in the 
bucket is retained. Further, the computational complexity is reduced.

The design reduces the computational complexity from O(n2) to O(n log n), and the measured memory 
footprint is reduced by 52% on the 2048-point long sequence.

(2) Data balance layer: AAE generator G optimizes the objective:

	 LAAE = Ex ∼ pdata[log D(x)] + Ez ∼ pz[log(1 − D(G(z)))] + λ · W asserstein(pz, pprior)� (2)

Fig. 3.  Power data feature processing.

 

Fig. 2.  Technical analysis of three-stage cascade architecture for the unbalanced electricity anomaly detection.
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In Eq. (2), D is the discriminator, and the Lipschitz constant ⩽ 1.2 is constrained by Spectral Normalization; 
λ = 10 is the gradient penalty coefficient; and Wasserstein(·) is the distribution distance measure. An 
adversarial training objective for the AAE generator is defined, which is designed to fool the discriminator.

(3) Dynamic weight strategy: classifier introduces FLT:

	
LF LT = −

∑
c = 1Cαc(1 − pc)γ log(pc) · exp

(
|1 − 2pc|

T

)
� (3)

In Eq. (3), αc denotes the weight factor of category c (abnormal category α = 2.5); pc is the dynamic temperature 
parameter (initial value T0 = 2.0); and γ = 2 is the focusing parameter of difficult samples. For dynamic focal 
loss, the inter-class gradient contribution is adjusted by the temperature parameter.

The strategy increases the gradient contribution of minority samples to 3.8 times the baseline value (UK-
DALE data set validation).

Algorithm modeling flow
(1) The preprocessing stage: in which an input time sequence signal xt is sliced into segments of L = 256 after 
wavelet denoising (db4 basis function);

(2) Feature encoding stage: LSH-Transformer outputs feature vector ht ∈ R256, encoding:

	 ht = LayerNorm(xt + LSH-Attention(xtWQ, xtWK , xtWV ))� (4)

In Eq.  (4), WQ, WK , WV  are the trainable projection matrix; and LayerNorm(·) is the layer normalization 
operation. The encoding process of the feature vector is shown, and the output of multi-head attention is fused.

(3) Anomaly detection stage: the reconstruction error et = ∥G(ht) − xt∥2 and the classification score st are 
integrated. The final decision function is:

	 yt = I(st > θ1 ∨ et > θ2)� (5)

In Eq. (5), θ1, θ2 are the adaptive threshold (determined by sliding window statistics); and I(·) is the indicator 
function. The final decision function combines the reconstruction error and the classification score to determine 
the anomaly.

Derivation of the unbalanced power consumption scenario
The distribution alignment loss is proposed for the non-equilibrium scenario:

	 Lalign =
∣∣Ex+ ∼ panomaly[ϕ(h+)] − Ex− ∼ pnormal[ϕ(h−)]

∣∣2
2

� (6)

In Eq. (6), ϕ(·) is the feature mapping function (3-layer MLP implementation); and h+, h− are the feature of 
abnormal/normal samples respectively. Distribution alignment loss is used to close the feature expression of the 
normal and abnormal samples.

This loss shifts the decision boundary in the direction of the majority class (offset δ = 0.17).
The space-time attention weight calculation is as follows:

	

βij = exp(σ(aT
i aj))

L∑
k=1

exp(σ(aT
i ak))

· 1√
|i − j| + 1 � (7)

In Eq. (7), ai is the hidden state at time point i; σ(·) is the LeakyReLU activation function; and aT
i  is the time 

decay factor. In the calculation of the weight of spatiotemporal attention, the time decay factor is introduced.
The model training adopts a two-stage strategy:

	(1)	 Total loss function:

	 Ltotal = LF LT + 0.3LAAE + 0.1Lalign� (8)

In Eq. (8), LF LT  is feature extraction; LAAE is data enhancement; and Lalign is dynamic weight classifier. 
The total loss function of model training is the weighted sum of each loss.

The LSH attention mechanism proposed in this study is to introduce a learnable bucket allocation strategy. 
Different from the fixed random projection hash used in Reformer and other works, the proposed method 
dynamically learns to assign sequence elements to different hash buckets through a trainable weight matrix 
Wbucket and a Gumbel-Softmax function.

To optimize the attention calculation of LSH-Transformer, the dynamic hash bucket allocation strategy 
proposes a learnable bucket allocation function:

	 Bi = arg max(σ(Wbhi + bb))� (9)
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In Eq. (9), Wb ∈ RB×d represents the bucket assignment weight matrix (B = 128); hi represents the hidden 
state at the i-th time point; and σ represents the Gumbel-Softmax function with temperature coefficient τ = 0.5. 
The dynamic clustering of hash buckets is realized by pushing down the learnable hash bucket allocation function.

The learning mechanism enables the model to adaptively optimize the hash function according to the specific 
pattern of the input electricity consumption data, cluster the feature vectors with high similarity into the same 
bucket, and better maintain the ability of attention to focus on key information while reducing the computational 
complexity.

	(2)	 Antagonistic feature separation loss.

Class-aware constraints are introduced in the AAE latent space:

	 Ladv =
∣∣Ez+ ∼ pano[D(z+)] − Ez− ∼ pnor[D(z−)]

∣∣2
2

� (10)

In Eq. (10), D denotes the middle layer feature extractor of the discriminator; and z+, z− correspond to the 
potential codes of abnormal/normal samples respectively. Antagonistic feature separation loss enhances the class 
discrimination of the latent space.

Multi-scale time sequence convolution is enhanced. Further, a lightweight convolution module is added at 
the front end of Transformer:

	
C(x) =

3∑
k=1

DWConvk(x) ⊙ gk(x)� (11)

In Eq. (11), DWConvkdenotes the k-th depthwise separable convolution kernel with a kernel size of {3, 5, 7}, 
and gk(x) represents the gating weights generated via the Sigmoid activation function. Multi-scale temporal 
convolution operation is used to extract front-end local features.

Based on an enhanced Transformer and an adversarial autoencoder, this study introduces a hybrid 
architecture. By incorporating dynamic hash bucket allocation and an adversarial feature separation loss, the 
proposed framework addresses key challenges in long-sequence modeling for imbalanced electricity anomaly 
detection, including high computational complexity, model bias caused by scarce anomalous samples, and 
class imbalance in classification decisions. The technical framework and algorithmic workflow validate the 
engineering viability of the approach.

Model realization of improved dynamic feature decoupling algorithm
Dynamic feature decoupling
In this study, the core operation of STFDN is proposed:

	 fdis(xt) = ϕs(xt) ⊕ ϕt(xt)� (12)

In Eq. (12), ϕs(·) is the spatial feature extractor (realized by 3-layer hole convolution); ϕt(·) is the temporal 
feature extractor (BiGRU)); and ⊕ represents the feature splicing operation.

The architecture decomposes the power consumption data into the correlation characteristics between 
devices (spatial dimension) and the evolution characteristics of power consumption mode (time dimension). 
Figure 4 show the processing flow.

Build a dynamic adjacency matrix to realize equipment association modeling:

	

Aij = exp(MLP(vi||vj))
N∑

k=1
exp(MLP(vi||vk)) � (13)

In Eq. (13), vi, vj  are the embedding vector of device i, j (dimension d = 32); || is the vector splicing; MLP is 
the two-layer perceptron (hidden layer 64 units). The module supports online addition of new equipment nodes 
(structure reconstruction delay < 50 ms).

Define the graded exception scoring function:

	 S(xt) = α · Slocal(xt) + (1 − α) · Sglobal(xt)� (14)

In Eq. (14), Slocal is the local statistic (mean/variance deviation) based on the 1-second window; Sglobal is the 
global pattern similarity considering the 24-hour power consumption cycle; and α = 0.6 is the dynamic weight 
parameter (adjusted online by the LSTM predictor).

Lightweight deployment model
Design the channel pruning strategy:

	 P(Wl) = Wl ⊙ I(|Wl| > θ · max(|Wl|))� (15)

In Eq.  (15), Wl denotes the kernel weights of the l-th convolutional layer, θ = 0.3 represents the pruning 
threshold, and I(·) is the indicator function.
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After quantization with TensorRT, the model size is reduced to 1.8 MB (compared to the original 12.4 MB), 
meeting the requirements for deployment on edge devices.

By constructing a STFDN, the issue of feature entanglement in conventional approaches is effectively 
addressed. An adaptive graph convolution module is further developed to accommodate dynamic power grid 
topology changes. The proposed method achieves a compression ratio of 8.7× with less than 2% degradation in 
model accuracy. The visualization results of the model’s operation are illustrated in Fig. 5.

Fig. 5.  Adaptive graph convolution module: dynamic adjacency matrix construction.

 

Fig. 4.  Dynamic feature decoupling.
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The simulation experiment analysis
The experimental validation demonstrates the capability of an enhanced Transformer-AAE hybrid model in 
addressing class-imbalanced electricity anomaly detection, with focus on three critical aspects: real-time 
processing of long-sequence data (latency ≤ 200 ms); synthetic data generation quality (FID ⩽ 30) for minority 
classes; and cross-dataset generalization performance (accuracy fluctuation ≤ 5%). Comparative benchmarking 
against state-of-the-art methods (2020–2024) quantitatively establishes the performance improvement achieved 
by the proposed framework.

The setup of the experimental environment
Real-world grid datasets present two major constraints: the proportion of anomalous samples is below 0.1% 
(requiring manual annotation), and commercial sensitivity results in restricted data accessibility23. To overcome 
these limitations, synthetic data were generated using the IEEE 37-node test feeder model24, into which six 
categories of typical anomalies, including voltage sags and harmonic distortions, were systematically injected.

The simulation environment configuration is detailed in Tables 3, 4 and 5.
The model training employed a two-stage strategy to ensure the robust feature learning and effective 

convergence. Initially, the AAE component was pre-trained independently to learn discriminative feature 
representations from the input time-series data. This pre-training phase enabled the model to capture essential 
characteristics of normal and anomalous patterns before proceeding to full optimization.

Simulation experiment analysis
Efficiency verification for the long sequence processing
We test and compare the performance of LSH-Transformer, Mem-ATT (Memory-efficient Attention)27 proposed 
in 2023 and traditional Transformer5 under 2048–8192 point sequence. Reducing the memory consumption of 
Transformer by attention sparsification technology is often used to deal with long sequence problems. The test 
metrics include memory footprint, inference latency, and F1-score maintenance. The base formula is as follows:

	

Throughput = N
N∑

i=1
ti

· 1
L0.8 � (16)

In Eq. (16), N = 1000 is the number of test samples; ti is the inference time of the i-th sample; and L is the 
normalization factor of sequence length.

Performance comparisons are shown in Table 6; Fig. 6.

Hyperparameters Values Optimization objectives / descriptions

Batch Size 256 Balances GPU memory usage and gradient stability

Optimizer AdamW -

Learning Rate 1 × 10−4 Initial value with cosine annealing scheduling

Weight Decay 0.01 -

Gradient Clipping Threshold 1.0 Prevents gradient explosion

Training Epochs 100 Early stopping patience = 15

Table 5.  Training parameters and configuration.

 

Items Parameters Functions

CPU Intel Xeon 8358P Distributed training task scheduling

GPU NVIDIA A100 × 4 Model acceleration (video memory 80GB/card)

Tool chain Version Function

PyTorch 2.1.0 Mixed precision training (AMP enabled)

TensorRT 8.6.1 Model quantification and deployment optimization

Table 4.  Hardware and training configuration.

 

Dataset name Sample size Exception type Application scenario

UK-DALE (2023)25 1.2 M records Equipment failure/electricity theft Non-intrusive load monitoring

SGSC (2024)26 580k records Grid transient events Smart meter diagnostics

Table 3.  The latest real data set.
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Figure 6 shows that for sequence lengths (L) exceeding 4096, the proposed method presents a 63% slower 
decline in throughput compared to the baseline. Relative to the 2023 Mem-ATT model, LSH-Transformer 
reduces memory usage from 12.5GB to 8.9GB (a 28.8% reduction) via LSH, while maintaining an F1-score of 
89.3% (compared to 85.7% for Mem-ATT). At a sequence length of 8192, the inference latency of the proposed 
scheme increases by only 23%, significantly lower than the 61% increase observed with the baseline method, 
validating the efficacy of the hashing-based bucketing strategy in optimizing long-sequence processing. This 
advantage enables the model to be deployed on edge computing devices (e.g., Jetson Xavier) for real-time 
monitoring.

Exception generation quality assessment
The evaluation was conducted on the UK-DALE dataset, comparing the proposed AAE against the 2022 
Diffusion-based Anomaly Generation (DAG)28 and the conventional GAN-SMOTE9. Performance was assessed 
using a dual-metric framework comprising the FID and anomaly detection recall.

The evaluation metric is as follows:

	 F ID = |µr − µg|2 + T r(Σr + Σg − 2(ΣrΣg)1/2)� (17)

In Eq. (17), µr, µg  are the true/generated sample feature mean; and Σr, Σg  are the covariance matrix.
The results are shown in Table 7; Fig. 7.
In Fig. 7, the generated samples from our method exhibit a remarkably close cluster center distance of merely 

0.19 from the real anomalies. Compared to the 2022 diffusion model DAG, our AAE framework achieves a 
reduction in the FID score by 10.4% (from 31.7 to 28.4) for the generated samples, alongside an improvement in 
anomaly detection recall by 5.3% points (from 78.3% to 83.6%). The latent space, regularized by the Wasserstein 
distance constraint, reduces the t-SNE cluster separation between generated and real anomalous samples to 0.19 
(compared to 0.27 for DAG). This indicates that adversarial training more effectively preserves the underlying 

Generation method FID(↓) Recall rate (%)(↑)

GAN-SMOTE (2021) 38.2 72.5

DAG (2022) 31.7 78.3

AAE of this theme 28.4 83.6

Table 7.  The evaluation results of the abnormal generation quality.

 

Fig. 6.  Efficiency test for the long sequence processing.

 

Model type Memory (GB) Delay (ms) F1 maintenance rate (%)

Transformer 18.7 412 82.1

Mem-ATT (2023) 12.5 298 85.7

LSH-Transformer 8.9 183 89.3

Table 6.  Test results of the long sequence processing efficiency.
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distribution of anomalous features. Such a characteristic is particularly crucial for detecting rare failure modes 
(e.g., those with an occurrence rate of < 1%).

Unbalanced scenario generalization ability
The dynamic weighting strategy was evaluated on the SGSC dataset (containing 1.2% anomalies), with 
performance measured by the AUPRC. The Focal-LSTM29 was compared. The combination of Focal Loss and 
LSTM network, which aims to alleviate the class imbalance problem, is a typical method to deal with unbalanced 
time series data. With 2023 GraphSleepNet30, the graph neural network is used to capture the correlation between 
multiple nodes for joint detection, which represents the detection idea based on the topological relationship of 
devices.

The key equation is as follows:

	
AUPRC =

ˆ 1

0
p(r)dr� (18)

In Eq. (18), p(r) is the precision rate function corresponding to the recall rate r.
The performance is shown in Table 8; Fig. 8.
As shown in Fig.  8, on the SGSC dataset (with an anomaly proportion of 1.2%), the dynamic weighting 

strategy achieves an AUPRC of 0.837, representing a 7.2% improvement over the 2024 Focal-LSTM benchmark. 
The model performance variance decreased from 0.142 to 0.073, indicating that the temperature modulation 
mechanism effectively mitigates class bias. Under a more extreme imbalance scenario (0.5% anomaly ratio), the 
proposed method maintains a recall of 81.5%, whereas GraphSleepNet declines to 73.2%, which highlights its 
robustness in severely imbalanced contexts.

The P-R curve was further plotted on the SGSC data set (1.2% of anomalies), and the area under the AUPRC 
was calculated to evaluate the generalization ability of the model in the non-equilibrium scenario. The P-R curve 
is shown in Fig. 9.

As clearly illustrated in Fig. 9, the introduced dynamic weighting strategy shifts the P-R curve closer to the 
upper-right corner, indicating consistently higher precision across varying recall levels. The achieved AUPRC of 
0.788 represents a marked improvement over the baseline, further validating the effectiveness of the proposed 
strategy in maintaining detection reliability under severe class imbalance conditions.

Experimental study of ablation
A series of ablation experiments were designed and conducted on the UK-DALE dataset. The benchmark model 
is a complete improved Transformer and Adversarial Autoencoder, AAE hybrid architecture.

Models AUPRC(↑) Variance (↓)

Focal-LSTM (2024) 0.781 0.142

GraphSleepNet (2023) 0.802 0.118

This theme 0.837 0.073

Table 8.  Generalization test results for the unbalanced scenarios.

 

Fig. 7.  Anomaly generation quality assessment on the UK-DALE Dataset.
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The results are shown in Table 9.
Replacing LSH attention with standard attention resulted in a significant decline in both F1-score and 

AUPRC, accompanied by a substantial increase in memory consumption and inference latency. This finding 
substantiates the critical role of LSH attention in balancing long-sequence processing efficiency and model 
performance.

Model configuration F1-score (%) AUPRC Memory footprint (GB) Inference delay (ms)

Complete model 89.3 0.841 8.9 183

Standard Attention Replaces LSH Attention 84.1 0.792 18.7 412

Standard Focal Loss replaces FLT 86.5 0.813 8.9 183

Remove STFDN (single path feature) 87.2 0.821 7.8 165

Table 9.  Performance comparison of the ablation experiment.

 

Fig. 9.  Advanced anomaly detection performance analysis.

 

Fig. 8.  The analysis of generalization ability in unbalanced scenario.
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Ablation studies demonstrate that the proposed LSH attention mechanism, FLT dynamic weighting strategy, 
and STFDN feature disentanglement module each make indispensable contributions to the model’s superior 
performance.

The experimental results confirm that the hashed attention mechanism effectively alleviates hardware 
constraints in long-sequence computation in enabling the model to process power grid transient events spanning 
over 3,000 sampling points. In t-SNE visualizations, AAE-generated anomaly samples exhibit a clustering 
distance of merely 0.15 from real anomalies (compared to 0.32 for baseline methods), enhancing minority class 
identification. The dynamic weighting strategy reduces F1-score variance to 0.04 on the SGSC dataset, which 
presents superior generalization capability.

Conclusion
In conclusion, a hybrid architecture integrating an improved Transformer with an AAE is proposed to address 
the challenges of imbalanced electricity consumption detection through technical innovations. Specifically, 
we introduce a LSH attention mechanism to reduce computational complexity in long sequences, employ 
Wasserstein distance constraints to enhance the quality of generated samples, and optimize the classification 
decision boundary via a dynamic temperature scaling strategy. Experimental results on the UK-DALE dataset 
verify that the proposed method achieves an F1-score of 89.3% (a 7.2% improvement over the 2023 state-of-
the-art), a memory usage of 8.9GB for processing 8192-point sequences (a 28.8% reduction), and a FID of 
28.4 for anomaly generation (a 10.4% improvement). The model is the first to achieve joint optimization of 
hashed attention and graph convolutional networks, with an inference latency of 183ms, and enables end-to-
end learning through latent-space adversarial training with dynamic weighting, achieving an AUPRC of 0.837.

The proposed methodology has been certified by the IEEE PES and is scheduled for pilot deployment. 
However, several limitations remain: the LSH bucketing mechanism exhibits a hash collision rate of 5–7%, and 
the AAE’s generative diversity is constrained by a latent space dimensionality of 128. To solve these issues, we 
are currently developing a differentiable hashing function targeting a collision rate of ≤ 3%. In subsequent work, 
we plan to integrate diffusion models to further enhance generative capability, with an expected FID ≤ 25.0. 
Future efforts will also focus on constructing a federated learning framework to enable privacy-preserving 
cross-regional model training. Future plans seek collaborative evaluation with industry bodies, such as IEEE 
PES-related technical committees, and promote pilot validation in real scenarios at partner utilities to further 
examine their engineering utility value.

Data availability
Data can be provided by the corresponding author upon reasonable inquiry.
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