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Neutral-atom quantum computing (NAQC) offers distinct advantages such as dynamic qubit 
reconfigurability, long coherence times, and high gate fidelities, making it a promising platform for 
scalable quantum computing. Among existing implementations, the Dynamically Field-Programmable 
Qubit Array (DPQA) architecture has emerged as the most prominent NAQC platform, enabling large-
scale, high-fidelity operations through dynamic atom rearrangement and global Rydberg excitation. 
Despite these strengths, efficiently implementing quantum circuits like the Quantum Fourier 
Transform (QFT) remains a significant challenge due to atom-movement overheads and connectivity 
constraints. This paper introduces optimal compilation strategies tailored to QFT circuits on the DPQA 
architecture, addressing these challenges for both linear and grid-like configurations. By minimizing 
atom movements, the proposed methods achieve theoretical lower bounds in movement counts while 
preserving high circuit fidelity. Comparative evaluations against state-of-the-art DPQA compilers 
demonstrate the superior performance of the proposed methods, which could serve as benchmarks for 
evaluating the performance of future DPQA compilers.

Quantum computing has emerged as a transformative technology capable of solving complex problems in 
cryptography1, database search2, chemical simulations3, and machine learning4. The rapid advancement of 
quantum computing research has led to the development of multiple hardware platforms, each with unique 
strengths and challenges. Among these, superconducting qubits have gained prominence due to their robust 
control schemes and compatibility with conventional microelectronics5. In the past several years, neutral-atom 
quantum computing (NAQC) has attracted significant attention for its inherent advantages, including scalability, 
high qubit connectivity, long coherence times, and superior gate fidelity6–8.

In superconducting quantum processors, such as IBM’s heavy-hex architecture, qubits are sparsely arranged 
to minimize crosstalk. This sparse arrangement, however, requires additional routing steps (mainly through 
inserting SWAP gates) to facilitate operations between distant qubits. In contrast, NAQC processors, often 
arranged on a 2D grid, enable two-qubit gates between any two qubits by shuttling them closer. However, longer 
shuttling distances can increase noise levels. Thus, careful circuit compilation is critical on both platforms to 
achieve high circuit fidelity.

The Quantum Fourier Transform (QFT) is a foundational component in many quantum algorithms, such as 
Shor’s factoring algorithm1, phase estimation9, quantum simulation10, amplitude amplification11, and the HHL 
algorithm for solving systems of linear equations12. Despite its importance, implementing QFT efficiently on 
current quantum hardware represents a significant challenge. The QFT’s all-to-all interaction pattern requires 
careful consideration of hardware-specific constraints, particularly in systems with limited qubit connectivity. 
Due to its core role in quantum computing, QFT optimization has been extensively studied in the literature, 
see13–20.

In the realm of superconducting quantum processors, Maslov13 proposed a linear-depth transformation for 
QFT circuits on the linear nearest-neighbor (LNN) architecture, where qubits lie along a single path. Modern 
superconducting processors often feature more complex connectivity, making it challenging to identify a single 
Hamiltonian path that visits all qubits. Building on this foundational work, Jin et al.17 introduced efficient 
mapping techniques tailored to general 2D grid and IBM heavy-hex layouts. Focused on IBM’s heavy-hex 
architecture, Gao et al.19 proposed specifically optimized linear-depth transformations.
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For NAQC processors, costly SWAP gates can be entirely replaced by atom movements (cf.21). While several 
compilation algorithms have been proposed22–25, none can guarantee optimal transformations. Moreover, there 
is currently no benchmarking framework to quantify how close the compiled results are to the theoretical 
optimum. As a result, existing compiler comparisons have been largely relative rather than absolute. However, 
designing a general-purpose optimal compiler is fundamentally intractable, since optimal quantum circuit 
compilation is an NP-hard problem.

In this work, we address these challenges by introducing optimal compilation strategies specifically designed 
for QFT circuits on the DPQA (Dynamically Field-Programmable Qubit Array) architecture7, which is currently 
the most prominent NAQC platform. Our contributions are threefold:

•	 We propose a Linear Path strategy that achieves the theoretical lower bound in atom-movement count for 
one-dimensional linear DPQA processors.

•	 We extend this approach to two-dimensional (2D) grid-like DPQA processors through a Zigzag Path strate-
gy, which preserves gate parallelism while minimizing movement overhead.

•	 We demonstrate that our methods outperform state-of-the-art DPQA compilers, including Enola22 and 
Atomique23, achieving exponential improvements in movement efficiency and overall circuit fidelity.

Our strategies exploit the unique capabilities of the DPQA architecture, including dynamic qubit reconfigurability 
and global Rydberg excitation, to optimize circuit execution while minimizing atom movements. In particular, 
global Rydberg excitation enables the simultaneous application of multiple CZ  gates across the entire array. Our 
compilation strategies leverage this feature to maximally execute all CZ  gates within each layer in parallel under a 
single global excitation pulse. Furthermore, we extend our methods to MaxCut QAOA circuits26, demonstrating 
their versatility for a broad range of quantum algorithms beyond fully connected QFT circuits. By mitigating the 
inefficiencies associated with atom movement and connectivity constraints, this work advances the realization 
of practical quantum algorithms on the DPQA architecture.

The remainder of this paper is organized as follows. Section 2 reviews NAQC and discusses the challenges 
of compilation in DPQA. Section  3 revisits QFT circuits and their optimal transformation in the linear 
superconducting architecture. Section  4 details our proposed method for the DPQA architecture, including 
strategies for both linear and grid-like processors. Section 5 presents experimental evaluations and comparisons 
with state-of-the-art algorithms. Finally, Sect. 6 concludes with a summary of our findings and their implications 
for scalable quantum computing.

Background
In this section, we provide background on quantum computing and NAQC technology and examine the 
compilation challenges specific to NAQC, especially on the DPQA architecture.

Quantum computing basics
Quantum computing leverages quantum mechanical phenomena such as superposition and entanglement to 
solve problems that are intractable for classical computers. A quantum circuit, the computational model used 
in most quantum algorithms, consists of qubits manipulated by single- and multi-qubit gates. These gates form 
a sequence of unitary operations that evolve the quantum state towards the desired solution. However, the 
efficiency of quantum circuit execution is heavily influenced by the architecture and physical implementation 
of qubits. Hardware constraints such as limited qubit connectivity, short coherence times, and low gate fidelity 
necessitate optimizations tailored to specific platforms.

Neutral-atom quantum computing and the DPQA architecture
Neutral-atom quantum computing (NAQC) has emerged as a promising platform for scalable quantum 
computation. In this paradigm, neutral atoms—typically rubidium or cesium—serve as qubits, trapped and 
manipulated using laser and magnetic-field control. Single-qubit operations are realized via Raman laser 
pulses27–29, while two-qubit gates rely on the Rydberg blockade mechanism30,31, where atoms within an 
interaction radius (rint) acquire a controlled phase through simultaneous excitation to a Rydberg state. This 
interaction enables high-fidelity entangling gates such as the controlled-Z (CZ) gate.

Earlier implementations of neutral-atom processors typically adopted the fixed-array architecture (FAA)27,28, 
in which atomic positions remain static during computation. These designs feature the ability to perform long-
range Rydberg interactions and individually addressable excitation beams to couple distant qubits—requirements 
that increase optical complexity and limit achievable two-qubit fidelities and scalability. In addition, SWAP gates 
are often required to route the qubits for two-qubit gates in FAA.

A distinguishing strength of NAQC is its dynamic qubit reconfigurability, enabled by the physically mobile 
nature of neutral atoms. Using acousto-optic deflectors (AODs) and spatial light modulators (SLMs), atoms can 
be repositioned dynamically within a two-dimensional grid, enabling arbitrary qubit interactions without SWAP 
gates. This flexibility introduces a new optimization challenge: minimizing atom-movement time and distance 
to preserve coherence and fidelity.

The DPQA architecture7,32,33 exemplifies this dynamic paradigm. By integrating coherent atom transport 
with global Rydberg excitation, DPQA supports high-fidelity entangling gates and reconfigurable connectivity 
while maintaining scalability. Consequently, DPQA provides an ideal experimental foundation for developing 
movement-efficient compilation strategies, as explored in this work. In contrast, FAA processors still lag behind 
DPQA in both two-qubit-gate fidelity and scalability28.

On DPQA processors, qubits are held in two types of traps:
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•	 Static traps: Generated by SLMs, these traps provide stable qubit positions spaced (e.g., 2.5 × rint) to min-
imize crosstalk.

•	 Mobile traps: Created by AODs at the intersections of independently controlled rows and columns, each of 
which can be activated, moved, or deactivated to enable arbitrary rearrangements of atoms within the array.

During quantum operations, mobile traps transport atoms to align with the requirements of the circuit, such 
as executing a CZ  gate. See Fig. 1 for an illustration. To achieve high performance, these movements must be 
carefully coordinated to minimize total distance and avoid collisions.

Compilation challenges on the DPQA architecture
Quantum circuit compilation for DPQA processors involves converting high-level quantum algorithms into 
hardware-executable instructions while addressing the platform’s unique characteristics. In superconducting 
and FAA architectures, qubits are fixed, and connectivity limitations are managed through SWAP gates, which 
significantly increase circuit depth and reduce fidelity. DPQA eliminates the need for SWAP gates but shifts the 
focus to optimizing atom movement.

Remark 1  On the DPQA architecture, a SWAP gate can be implemented either

•	 by physically moving atoms to exchange their positions or
•	 by composing three two-qubit entangling gates, such as 

	 SWAP(p, q) = CNOT(p, q); CNOT(q, p); CNOT(p, q).

The latter approach, commonly used in superconducting and FAA architectures (also used by Atomique23 in 
DPQA), incurs significant fidelity loss because each two-qubit operation introduces additional decoherence and 
control error. In contrast, on the DPQA architecture, physical atom movement is a high-fidelity operation: for 
instance, Bluvstein et al.7 demonstrated that an atom can traverse a region spanning over 2,000 qubits with less 
than 0.1% loss in coherence time.

Under practical assumptions (fCZ = 0.995), a gate-based SWAP would yield a combined fidelity of 
f3
CZ ≈ 0.985, whereas the equivalent atom movement introduces negligible infidelity. Therefore, on the 

DPQA architecture, atom movement is considered more efficient because it realizes SWAP functionality with 
substantially higher fidelity and lower coherence-time overhead than its logical, gate-based counterpart.
Key challenges of compilation on the DPQA architecture include:

•	 Minimising movement time and distance: Excessive or poorly optimized movements can lead to decoher-
ence and gate errors.

•	 Maintaining gate parallelism: Leveraging the ability to execute gates simultaneously during global Rydberg 
excitation requires precise scheduling of movements.

Addressing these challenges is essential for realising the full potential of NAQC. By optimizing qubit placement 
and routing strategies, it is possible to achieve high-fidelity circuit execution while minimizing resource 
overheads.
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Fig. 1.  Illustration of atom movement and Rydberg excitation in a 3 × 3 grid DPQA processor: (a) Atoms 
are initially positioned at separate grid points (i.e., sites); (b) during the “meet” step, atoms moves so that each 
interacting pair is co-located at the same grid point; (c) a global Rydberg laser applies CZ  gates simultaneously 
to all co-located atom pairs; (d) in the “separate” step, atom pairs moves apart, ensuring they occupy different 
grid points, though not necessarily their initial positions.
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Compilation procedures in the DPQA architecture
Consider a quantum circuit C  consisting of single- and two-qubit gates that are native to a DPQA processor 
M. In NAQC, single-qubit gates are implemented independently using Raman laser pulses and are therefore 
typically excluded from C  when assessing the cost of atom movement. This simplification allows the problem to 
focus on the native two-qubit gates, which are typically CZ  gates. These CZ  gates are organized into layers, each 
of which can, in principle, be executed in parallel through global Rydberg excitation.

Initially, each logical qubit in C  is mapped to a physical atom in the DPQA processor M. For each layer of 
parallel CZ  gates, any pair of interacting qubits must be co-located at the same site (i.e., grid point) during the 
gate operation and separated afterward. As illustrated in Fig. 2, the execution of any CZ  gate (or several CZ  
gates in parallel) involves the following steps: 

	1.	 Meet: Move one or both atoms to the same site from their previous positions.
	2.	 Interact: Apply a global Rydberg laser to interact the qubits at the same position, executing the correspond-

ing CZ  gates in parallel.
	3.	 Separate: After the interaction, move the atoms apart so that they occupy different sites.

The execution of each CZ  involves at least two atom moves: a “meet” step and a “separate” step. These processes 
can often be parallelized across several or all gates within the same layer. The maximum distance moved during 
these steps determines the optimal distance required. In the DPQA processor M, this maximal distance is at 
least d in each step, where d is the unit distance of the processor. Consequently, a circuit with S layers of CZ gates 
requires at least 2S atom moves, covering a total distance of at least 2Sd.

We note that the “separate” step is highly flexible, a flexibility that plays a crucial role in this paper. Specifically, 
we distinguish between two modes of this step: the “swap” mode exchanges the positions of the two interacting 
atoms, and the “restore” mode, which returns the two interacting atoms to their original positions. See Fig. 2 for 
illustrations of these modes. The moves in the meet and separate steps are called big moves in this paper, which 
involve significant atom movement between different grid point. We also note, for interaction purpose, two 
atoms may locate at each grid point in the same time. To avoid atom collision, we need move one atom a little 
bit away from the grid point. This kind of offset movements are also required when we, for example, swap the 
positions of two atoms (see the right of Fig. 2).

Overview of quantum Fourier transform
QFT is a fundamental component of many important quantum algorithms. Efficiently implementing QFT on 
quantum hardware is crucial for realizing the potential of these algorithms. However, the all-to-all interaction 
pattern of QFT poses significant challenges, especially in layouts with limited qubit connectivity. In this 
section, we review the structure of QFT circuits and discuss the optimal transformation strategies for the 
linear superconducting architecture, which will serve as a foundation for our proposed methods for the DPQA 
architecture.

Structure of the quantum Fourier transform
For an n-qubit system, the QFT circuit consists of n(n − 1)/2 controlled-phase gates, interleaved with single-
qubit Hadamard operations. These gates are arranged in a specific pattern that transforms the input state into its 
transformed state. Figure 3a illustrates a standard QFT circuit with n = 5 qubits.

For circuit transformation purposes, we focus only on two-qubit gates in this paper. By pushing these gates 
as far forward as possible, the QFT circuit consists of 2n − 3 layers of two-qubit gates. Figure 3b illustrates that 
QFT-5 has 2n − 3 = 7 two-qubit gate layers.

Maslov’s optimal transformation for the linear superconducting architecture
The QFT-n circuit, having a complete interaction graph, cannot be directly implemented on linear or other 
practical superconducting processors. In superconducting processors, this necessitates the use of SWAP gates to 
iteratively remap qubits until all two-qubit gates act on adjacent physical qubits.

For the linear superconducting architecture, Maslov13 discovered an optimal transformation for the QFT-n 
circuit (see Fig. 3c). This transformation requires 2n − 3 layers of SWAP gates, resulting in a transformed circuit 
with O(n) depth. The transformation warrants close examination.

Restore mode Swap mode

1. Initial

2. Meet

3. Interact

4. Separate

5. Final

Fig. 2.  The meet-interact-separate steps for executing a CZ gate in a DPQA processor. In the restore mode, 
atoms return to their original positions after interaction, while in the swap mode, their positions are 
exchanged. Offset movements may be required to prevent collisions when two atoms occupy the same site.
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In Maslov’s approach, we consider each layer of two-qubit gates, along with its accompanying SWAP gates, as a 
single mapping stage (m-stage for short). Each m-stage is associated with a mapping. Let τk  denote the mapping 
at the k-th m-stage. Initially, τ0 maps logical qubit qi to physical qubit Qi. We next provide a characterization 
for those SWAPs used in each m-stage.

For m-stages 0 ≤ k ≤ n − 2, define

	 Nk ≡ {j ∈ {k, k − 2, . . . , k (mod 2)} .� (1)

For m-stages n − 1 ≤ k ≤ 2n − 4, define Nk = N2n−4−k .
The following lemma characterizes the inserted SWAP gates at each m-stage.

Lemma 1  At m-stage k, the two-qubit gates to be executed are CP (rj , sj) for j ∈ Nk , where rj  and sj  are the log-
ical qubits in the QFT- n circuit that are mapped to physical qubits  Qj  and Qj+1, respectively, under the mapping 
τk . Thus, under the mapping τk , these two-qubit gates act on physical qubits Qj  and Qj+1 for j ∈ Nk . Moreover, 
SWAP gates are inserted to exchange the states of physical qubits Qj  and Qj+1 for j ∈ Nk .

For convenience, for each 0 ≤ k ≤ 2n − 4, we write

	 Ek ≡ {(j, j + 1) | j ∈ Nk}� (2)

and call edges in Ek  the relevant edges in the k-th m-stage.
Through the SWAP operations corresponding to those relevant edges, the initial trivial mapping τ0 is 

transformed into the final mapping τ2n−3, which maps q0, . . . , qn−1 to Qn−1, . . . , Q0. An illustration is given 
in Fig. 3c.

The following lemma demonstrates that the SWAP gates inserted in consecutive m-stages operate on 
alternating edges in the linear processor.

Lemma 2  For any odd  k and any even  k′, Ek ∩ Ek′ = ∅. In particular, Ek ∩ Ek+1 = ∅ for any 0 ≤ k ≤ 2n − 5.

The lemma will play an important role in our design of optimal transformation for general DPQA processors.

Fig. 3.  (a) Standard QFT-5 circuit, with each P  denoting a controlled-phase gate. (b) Layered partition of 
QFT-5 (with single-qubit gates removed), showing 7 sequential controlled-phase layers. (c) The optimal 
transformation of QFT-5 on the linear superconducting architecture, with each mapping annotated to reflect 
the updated qubit arrangement after applying the necessary SWAP gates. (d) Decomposition of a controlled-
phase gate into single-qubit gates and CZ  gates..
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While Maslov’s transformation is optimal for the linear superconducting architecture, it relies heavily on 
SWAP gates to facilitate interactions between non-adjacent qubits. In NAQC, however, SWAP gates can be 
replaced with atom movements, which offer a more flexible and potentially more efficient alternative. This key 
difference underscores the need for new compilation strategies tailored to the unique capabilities of NAQC 
platforms.

In the next section, we explore how these capabilities can be leveraged to develop efficient compilation 
strategies on the DPQA architecture.

Optimal transformations of QFT circuits on the DPQA architecture
In this section, we present optimal compilation strategies for implementing QFT circuits on the DPQA 
architecture. We begin by estimating the theoretical lower bound on atom movements required for QFT circuits. 
Next, we introduce an optimal transformation for linear DPQA processors, which serves as the foundation 
for our approach. Finally, we extend this transformation to 2D grid-like processors, demonstrating how to 
maintain efficiency while adapting to practical hardware constraints. By leveraging the unique capabilities of the 
DPQA architecture, such as dynamic qubit reconfigurability, our methods achieve theoretical lower bounds in 
movement counts while preserving high circuit fidelity.

Replacing SWAP gates with atom movement
On superconducting and FAA architectures, SWAP gates are commonly used to enable interactions between 
non-adjacent qubits. However, on the DPQA architecture, SWAP gates can be entirely replaced with atom 
movements, which are more efficient and do not require additional gate operations (cf. Remark 1). This is made 
possible by the dynamic reconfigurability of qubits on the DPQA architecture, where atoms can be physically 
moved to facilitate interactions.

Since the CZ  gate is the native two-qubit gate on the DPQA architecture, we first decompose the controlled-
phase gates CP (λ) in the QFT circuit into CZ  gates. Recall the following single-qubit gate identities:

	
P (λ) =

(1 0
0 eiλ

)
= eiλ/2Rz(λ), HRx(λ)H = Rz(λ), XRz(λ)X = Rz(−λ).

Thus, as shown in Fig. 3d , each controlled-phase gate CP (λ) is decomposed into two CZ  gates. Consequently, 
the QFT-n circuit, which originally consists of 2n − 3 layers of controlled-phase gates, is transformed into 
2(2n − 3) layers of CZ  gates.

Recall from Sect. 2.4 that the execution of a CZ  gate in a DPQA processor involves three steps: 1) moving 
atoms to the same grid point (the meet step), 2) applying a global Rydberg laser to perform the gate (the interact 
step), and 3) separating the atoms (the separate step). Each execution of CZ  gates thus requires at least two 
atom movements: one for the meet step and one for the separate step. Importantly, the “separate” step does not 
require the interacted atoms to be returned to their original positions. Instead, their positions can be exchanged, 
as illustrated in Fig. 2. Shortly, we will see that this flexibility allows us to simulate SWAP operations without 
additional overhead, further optimizing the circuit.

For the QFT-n circuit, which has 2(2n − 3) layers of CZ  gates, the theoretical lower bound on the total 
number of atom moves is 4(2n − 3). Atom movements can potentially be fully parallelized across gates within 
the same layer, minimizing the total distance traveled by the atoms. Achieving this bound requires careful 
scheduling of atom movements to ensure that all gates in a layer are executed with minimal overhead.

Optimal transformation in a linear DPQA processor
In this subsection, we propose an optimal transformation for QFT circuits on a linear layout of the DPQA 
architecture, which can be viewed as a 1 × n grid. Each grid point is represented by its coordinate Pi ≡ (i, 0), 
and the unit distance between consecutive grid points is d.

The transformation builds on Maslov’s approach for linear superconducting processors, where SWAP gates 
are inserted to enable interactions between non-adjacent qubits (see Fig. 3c). In DPQA processors, we replace 
these SWAP gates with atom movements, which are more efficient. Specifically, for each m-stage (mapping stage) 
in Maslov’s transformation, the layer of controlled-phase gates is replaced with two identical layers of CZ gates 
We then perform the following steps for each m-stage: 

	a.	 First CZ-layer:

•	 Move the atoms involved in the gates to the same grid point (meet step).
•	 Apply the gates using a global Rydberg laser (interact step).
•	 Move the atoms back to their original positions (separate step in restore mode).

	b.	 Second CZ-layer:

•	 Move the atoms involved in the gates to the same grid point (meet step).
•	 Apply the gates using a global Rydberg laser (interact step).
•	 Swap the positions of the atoms (separate step in swap mode).

This approach ensures that all CZ  gates are executed with minimal atom movements, achieving the theoretical 
lower bound of 4(2n − 3)d. The transformation is optimal because it parallelizes movements within each 
m-stage and minimizes the total distance traveled by the atoms.
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More precisely, for edges ej = (j, j + 1) with j ∈ Ek  (as defined in (2)), the atom movements are performed 
as follows: in Step a, we move all smaller-indexed atoms towards the larger-indexed atoms and move them back; 
in Step b, we move all smaller-indexed atoms towards the large-indexed atoms and swap their positions.

The movement directions are consistent within each batch of atom movements, and each move covers only a 
unit distance d. This ensures that the total maximal distance traveled by the atoms is 4(2n − 3)d, which matches 
the theoretical lower bound. Therefore, the transformation on the linear DPQA architecture is optimal.

As a consequence, we have the following result:

Theorem 1  Let M  be a linear DPQA processor of n qubits. The transformation described above for QFT-n is an 
optimal transformation on M .

To illustrate the transformation, we revisit the QFT-5 circuit.

Example 1  The QFT-5 circuit consists of 7 m-stages and 14 layers of CZ  gates. Initially, the logical qubits qi are 
mapped to the atoms located at the grid point Pi = (i, 0) for 0 ≤ i ≤ 4 in the linear DPQA processor. Figure 4 
illustrates the mapping stages and movement sequences for QFT-5.

For example, at m-stage 3, the set of edges E3 = {(1, 2), (3, 4)} indicates that atom movements are 
performed along these edges. Specifically:

•	 In the first layer of CZ  gates (Step a), the atoms at P1 and P3 are moved (along the same direction), respec-
tively, to P2 and P4, the CZ  gates are applied, and the atoms are returned to their original positions.

•	 In the second layer of CZ  gates (Step b), the atoms at P1 and P3 are moved (along the same direction), re-
spectively, to P2 and P4, the CZ  gates are applied, and their positions are swapped.

The red edges in Fig.  4 highlight the atom movements along the edges e ∈ Ek  for each m-stage k (where 
0 ≤ k ≤ 6), demonstrating how the transformation achieves the theoretical lower bound on movement counts.

Optimal transformation on a grid DPQA processor
While the linear layout of the DPQA architecture achieves minimal movement cost, it requires qubits to be 
arranged in a one-dimensional array, which becomes impractical for large numbers of qubits. To address this, 
we propose folding the linear layout into a two-dimensional grid while preserving the efficiency of the linear 
transformation. This is achieved through a technique called zigzag folding, which maps the linear arrangement 
of qubits onto a grid in a way that maintains adjacency and enables parallel gate execution.

Definition 1  (Zigzag Folding) Let P be a linear DPQA processor of n qubits q0, q1, . . . , qn−1, and let M be a 
DPQA processor with grid dimensions m1 × m2. A zigzag folding Φ of P into M is an injective mapping that 
assigns a unique grid point (xi, yi) to each qubit qi such that:

•	 Neighboring Placement: Φ(qi) is a neighbor of Φ(qi−1) in M, meaning |xi − xi−1| + |yi − yi−1| = 1.
•	 Alternating Direction: If qi is placed horizontally relative to qi−1, then qi+1 (if i < n − 1) is placed verti-

cally relative to qi, and vice versa.

A zigzag folding ensures that neighboring qubits in the linear arrangement remain adjacent on the grid, enabling 
efficient gate execution. By Lemma 2, the gate operations and atom movements in each m-stage correspond to 
either horizontal or vertical edges in the zigzag folding, allowing for parallel execution.
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Fig. 4.  Mapping stages (m-stages) and movement sequences for QFT-5 in a linear DPQA processor, where the 
x-axis represents the mapping stage and the y-axis indicates the atom locations in the linear processor. The red 
edges at each m-stage x (for 0 ≤ x ≤ 6) highlight atom movements along edges e ∈ Ex.
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Theorem 2  Let Φ be a zigzag folding of a linear DPQA processor of n  qubits into a grid DPQA processor M. Then 
QFT- n has an optimal transformation on M as follows: 

	1.	 Initially, map each qito Φ(qi).
	2.	 For each m-stage k, let Ekbe the set of relevant edges as specified in (2).If the edges in Ekare horizontal (vertical, 

resp.):

•	 For the first layer of CZ gates in the m-stage, move all left (lower, resp.) atoms rightward (upward, resp.), exe-
cute the gates using a global Rydberg laser, and then separate the atoms by moving them back.

•	  For the second layer of CZ gates in the m-stage, move all left (lower, resp.) atoms rightward (upward, resp.), 
execute the gates, and then separate the atoms by exchanging their positions.

Proof  Without loss of generality, assume that q1 is placed as the right neighbor of q0 in the zigzag folding Φ. By 
the definition of zigzag folding, the placement of qubits alternates between horizontal and vertical directions. 
Consequently:

•	 For even k, all edges in Ek  are horizontal.
•	 For odd k, all edges in Ek  are vertical.

For each m-stage k, the transformation involves four batches of atom movements:

•	 Two batches for the first layer of CZ  gates (Step a).
•	 Two batches for the second layer of CZ  gates (Step b).

Since all movements within a batch occur in the same direction (either horizontal or vertical), they can be 
performed in parallel. Furthermore, each movement covers a unit distance d, ensuring that the total distance 
traveled by the atoms is minimized.

The maximal movement distance for the entire transformation is 4(2n − 3)d, which matches the theoretical 
lower bound. This is achieved because:

•	 Each of the 2(2n − 3) layers of CZ  gates requires two atom movements (one for the meet step and one for 
the separate step).

•	 Each movement covers a unit distance d.
•	 Movements are parallelized within each m-stage, ensuring no unnecessary overhead.

Neglecting offset movements, the transformation is optimal in terms of both the big-move count and the total 
distance traveled. □
This transformation achieves the same theoretical lower bound on movement counts as linear processors while 
adapting to the practical constraints of 2D grid processors.

Consider, for example, the two zigzag embeddings shown in Fig. 5a for a linear processor of five qubits. At 
m-stage 3, the set of relevant edges E3 = {(1, 2), (3, 4)} defines the required interactions between qubits. In the 

Q0

Q1 Q2

Q3 Q4 Q0 Q1

Q2 Q3

Q4

(a)

(b) (c) (d) (e)

Fig. 5.  (a) Two zigzag foldings of the same five-qubit linear DPQA processor into a 3 × 3 grid layout. At 
m-stage 3, the relevant edges {(1, 2), (3, 4)} run horizontally in the left folding and vertically in the right one. 
In both cases, movements along these edges can occur in parallel, preserving the optimal total big moves. (b) 
Illustrates Φ1, while (c) depicts Φ2. (d) Presents the zigzag path Φ5 within a 10 × 10 grid, where the red and 
blue boxes highlight the configurations of Φ3 and Φ1, respectively. Similarly, (e) showcases the zigzag path Φ6 
in a 12 × 12 grid, with the red and blue boxes highlighting the configurations of Φ4 and Φ2, respectively. The 
unvisited (or “wasted”) grid points are highlighted.
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left zigzag folding, both edges are horizontal, while in the right zigzag folding, both are vertical. This alignment 
ensures that the atom movements in m-stage 3 can be performed in parallel in both foldings. This parallelization 
of atom movements within each m-stage ensures that the transformation achieves the theoretical lower bound 
on movement counts while maintaining high circuit fidelity.

Space-efficient zigzag foldings
While the zigzag folding approach guarantees optimal transformations for QFT circuits on grid processors, it is 
also important to ensure that the folding is space-efficient. Specifically, we aim to implement QFT-n compactly 
on a (w × w)-grid with w = O(

√
n). In this subsection, we demonstrate how to construct such space-efficient 

zigzag foldings.

Construction of space-efficient zigzag foldings
For each integer w, we construct a zigzag folding Φw  in a (2w × 2w)-grid. The construction proceeds as follows:

•	 For w = 1, the zigzag folding Φ1 occupies 4 grid points in a 2 × 2 grid. The path starts at P0 = (0, 0), moves 
up to P1 = (0, 1), then right to P2 = (1, 1), and finally down to P3 = (1, 0). See Fig. 5c for an illustration.

•	 For w = 2, the zigzag folding Φ2 occupies 12 grid points in a 4 × 4 grid. See Fig. 5c for an illustration, where 
only two grid points are wasted.

•	 For w ≥ 3, the zigzag folding Φw  is constructed by extending Φw−2 from a (2w − 4) × (2w − 4) grid to a 
(2w × 2w) grid. The path alternates between horizontal and vertical movements, ensuring that neighboring 
qubits in the linear arrangement remain adjacent on the grid. See Fig. 5d,e for illustrations of Φ5 and Φ6, 
respectively.

We note that the location does not matter and a configuration can be translated or properly rotated in the plane.

Space efficiency analysis
Let ϕ(m) denote the number of empty grid points (i.e., grid points not visited by the path Φm) in a (2m × 2m) 
grid. We observe that:

•	 ϕ(1) = 0 (all grid points are occupied).
•	 ϕ(2) = 2 (two grid points are empty).
•	 For m ≥ 1, ϕ(m + 2) = ϕ(m) + 4.

By induction, it follows that ϕ(m) ≤ 2m. This implies that the number of wasted grid points grows linearly with 
m, while the total number of grid points grows quadratically. As a result, the space efficiency of the zigzag folding 
improves as n increases.

Lemma 3  For any n, we can construct a zigzag folding path of n atoms in a  (2m + 2) × (2m + 2) grid such that 
the spatial efficiency approaches 1 as n increases, where  m = O(

√
n).

Proof  Let m = ⌈
√

n/2⌉. The zigzag folding Φm+1 in a (2m + 2) × (2m + 2) grid has at most 2m + 2 wasted 
grid points. Since 4m2 ≥ n, the total number of grid points is at least n. The space efficiency is given by:

	

n

4(m + 1)2 ≥ n

4(2 +
√

n/2)2 = 1
1 + 8√

n
+ 16

n

,

which approaches 1 as n increases. □

Practical implications
By compactly folding the linear processor into a grid, we adapt the efficient movement strategies for linear 
DPQA layouts to a practical two-dimensional layout suitable for the DPQA architecture. This ensures that the 
transformation remains optimal in terms of movement counts while minimizing the physical space required for 
qubit placement.

Evaluation and comparison
In this section, we evaluate the performance of our proposed methods (called Linear and Zigzag Paths, 
respectively) for transforming QFT circuits on the DPQA architecture. We compare our approaches with two 
state-of-the-art DPQA compilers, viz. Enola22 and Atomique23, focusing on movement counts, cumulative 
movement distances, and overall fidelity. Our evaluation aims to demonstrate the effectiveness of our methods 
in minimizing resource overheads while maintaining high-fidelity quantum operations. In addition, we also 
compare our approaches with DasAtom34, a state-of-the-art NAQC compiler for non-DPQA architectures, to 
unveil the significant differences among NAQC architectures.

We implement Linear and Zigzag Paths in Python and employ Enola’s CodeGen framework22 to generate 
gate execution and schedule movements. All experiments were conducted on a system running Ubuntu 22.04, 
equipped with a 40-core Intel Xeon Gold 5215 processor at 2.50 GHz and 512 GB of RAM.

The compared state-of-the-art compilers
We compare our methods with the following state-of-the-art compilers for NAQC:
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•	 Enola22: A leading compiler for the DPQA architecture. Enola dynamically reconfigures qubit placements 
between consecutive Rydberg stages and schedules circuits using the minimal number of global-excitation 
stages, where all CZ  gates in a stage are executed in parallel. This strategy minimizes the number of Rydberg 
stages but requires complete atom reconfiguration after each stage, resulting in a large number of atom move-
ments and long cumulative movement distances. [GitHub Repository: https://github.com/UCLA-VAST/Eno-
la]

•	 Atomique23: A leading compiler for the DPQA architecture that uses multiple AOD arrays to enable parallel 
atom movements and enhance movement efficiency. By mapping qubits across arrays and scheduling gate ex-
ecution to maximize inter-array interactions, Atomique can eliminate many atom transfers. Nevertheless, this 
approach comes with trade-offs: because qubits that end up in the same array must often interact via SWAP 
gates, Atomique incurs extra SWAP overhead; additionally, although atom transfers are largely avoided, the 
increased number of Rydberg stages and resultant decreased parallelism limit its overall fidelity advantage. 
Our setup for Atomique uses two AOD arrays. [Zenodo record: https://zenodo.org/records/10995324]

•	 DasAtom34: A state-of-the-art NAQC compiler in which CZ  gates are scheduled individually using locally 
addressable Rydberg lasers. DasAtom leverages long-range interactions to dramatically reduce atom move-
ment, achieving significantly improved overall fidelity compared to move- or SWAP-based compilers. How-
ever, this performance depends on a hardware architecture that supports high-fidelity long-range coupling 
and fine-grained laser control—features that are not part of the DPQA architecture. As a result, while DasA-
tom excels under its target hardware model, its assumptions diverge from DPQA constraints, limiting direct 
applicability in the DPQA compilation context. Our setup for DasAtom assumes an atom distance of 3 µm 
and an interaction radius of 6 µm. [GitHub Repository: https://github.com/Huangyunqi/DasAtom]

Key performance metrics
We evaluate these methods based on four critical metrics: 

	(1)	 big-move counts: The number of significant positional shifts of qubits during circuit execution. Minimiz-
ing this reduces operational overhead and potential errors.

	(2)	 Cumulative Movement Distances: The total distance qubits travel, including both big moves and short 
offsets executed to resolve placement conflicts (i.e., preventing qubits from occupying the same physical 
location). Compilation Time: The total end-to-end wall-clock time of the compilation process, including 
front-end parsing, qubit placement, gate scheduling and routing, and code generation.

	(3)	 Overall Fidelity: Calculated based on errors from two-qubit gate error, global Rydberg excitation error, 
atom transfer error, and decoherence error, following the fidelity model outlined in22: 

	

f = (f2)g2

︸ ︷︷ ︸
two-qubit gate

× (fexc)|Q|S−2g2

︸ ︷︷ ︸
Rydberg excitation

× (ftrans)Ntrans

︸ ︷︷ ︸
atom transfer

×
∏
q∈Q

(
1 − Tq

T2

)

︸ ︷︷ ︸
decoherence

,
� (3)

	 where:

•	 f2 is the two-qubit gate fidelity.
•	 g2 is the number of CZ  gates in the compiled circuit. Atomique may insert SWAP gates and each SWAP 

gate incurs three CZ gates.
•	 Q is the qubit set in the compiled circuit. Atomique may use ancilla qubits.
•	 S is the number of Rydberg stages. Atomique may use more stages than the other compilers, which all use 

a minimal number of stages.
•	 fexc is the fidelity of an isolated (i.e., not interacting with another qubit) qubit in a Rydberg stage. For Da-

sAtom, fexc = 1 as it employs individually addressable Rydberg lasers.
•	 ftrans measures fidelity losses from atom transfers.
•	 Ntrans is the number of atom transfers. Atomique uses no atom transfers.
•	 Tq  is the idling time for qubit q.
•	 T2 is the coherence time.

Table 1 lists the key parameters adopted in our experiments, which are also assumed in22.
Theoretical Lower Bounds (TLBs) for movement counts serve as a baseline metric for optimal performance 

and are calculated as 4(2n − 3). Note that the “meet-interact-separate” action of the last CZ layer (corresponding 
to the last SWAP gate in Fig. 3c) does not need to swap the two atoms in practice, which could reduce the TLB 
by 1.

Parameter f2 fexc ftrans T2 Ttrans d a

Value 99.5% 99.75% 99.9% 1.5 s 1.5 µs 15 µm 2750 m/s2

Table 1.  Key DPQA/NAQC parameters, where d represents the default spacing (i.e., unit distance) in the SLM 
array, and a denotes the acceleration of qubit movement.
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Evaluations on QFT circuits
We focus on QFT circuits as the primary workload, which exhibit dense connectivity. Later, we extend the 
analysis to sparser circuits (QAOA MaxCut).

Big-move counts
Figure 6a illustrates the big-move counts for each compiler on QFT circuits of increasing qubit sizes.

•	 Linear & Zigzag Paths achieve TLB for big-move counts, demonstrating their effectiveness in minimizing 
major atom movements.

•	 Enola’s compilation strategy results in exponentially higher big-move counts than the other methods, due to 
its necessity to update atom placement after each Rydberg stage.

•	 Atomique uses SWAP gates to reduce atom movements, but its overall big-move counts are higher than Lin-
ear and Zigzag Paths when n ≥ 15.

•	 DasAtom achieves fewer big moves than the TLB by leveraging long-range interactions, which eliminate the 
need for certain atom movements. This is contingent upon the processor supporting individually addressable 
Rydberg lasers.

Cumulative movement distances
The Cumulative Movement Distance metric quantifies the total distance travelled by atoms during the execution 
of QFT circuits. Figure  6b illustrates the cumulative movement distances, measured in grid units, for each 
method as a function of the number of qubits. Notably, each big move in the TLB covers a unit distance. In our 
methods, big moves also approximates a unit distance, accounting for offset moves. However, in the compared 
compilers, a single big move may cover much larger distance. It is worth stressing that DasAtom uses a much 
smaller unit distance (3µm instead of 15µm).

•	 Linear & Zigzag Paths maintain minimal cumulative movement distances, closely approximating the TLB. 
While generally efficient, the Zigzag path shows a slight increase in cumulative movement distance as the 
qubit count grows, due to the need for additional offsets in the grid layout.

•	 Enola exhibits the highest cumulative movement distances among all methods, like big-move counts.
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Fig. 6.  Comparison of different compilation methods for QFT circuits as a function of qubit count n. 
Theoretical lower bounds (TLBs) for movement count and distance are given by 4(2n − 3) and 4(2n − 3)d, 
respectively. (a) Big-move counts. (b) Cumulative atom-movement distances. (c) Total circuit fidelity. (d) Total 
compilation time.
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•	 Atomique demonstrates efficiency for smaller circuits (less than 10 qubits) but experiences an exponential 
decrease in performance with increasing qubit count.

•	 DasAtom achieves moderate cumulative movement distances and outperforms TLB for QFT circuits with up 
to approximately 20 qubits.

Compilation time
Figure  6d illustrates the compilation time of different compilers as a function of the qubit number in QFT 
circuits. The results show that both the Linear and Zigzag Path strategies exhibit excellent scalability, with 
compilation time increasing smoothly and remaining below 10 s even for 50-qubit circuits. In contrast, Enola 
exhibits an exponential growth in runtime, exceeding 104 s for large circuits. DasAtom and Atomique achieve 
moderate performance but still incur noticeably higher compilation overhead compared to our methods. These 
results demonstrate that the proposed path-based strategies significantly enhance compilation efficiency while 
maintaining stable performance as the qubit number increases.

Overall fidelity analysis
Figure 6c compares the overall fidelity achieved by each method, where the TLB is calculated based on four atom 
transfers per CZ  gate.

•	 Linear & Zigzag Paths achieve the highest fidelity, as their movement efficiency minimizes errors from atom 
transfers and decoherence.

•	 Enola’s methods show exponentially lower fidelity, reflecting their higher movement counts and distances.
•	 Atomique experiences fidelity degradation as circuit size increases, primarily due to its reliance on SWAP 

gates and ancilla qubits.
•	 DasAtom achieves higher overall fidelity than the TLB by leveraging individually addressable Rydberg lasers 

and long-range interactions. Since it employs local two-qubit operations without requiring global Rydberg 
excitation, it avoids global Rydberg excitation error. Effectively, this is equivalent to setting fexc = 1 for Da-
sAtom in Eq. (3).Quantifying Fidelity Gaps via Eq. (3):   Table 2 highlights the stark fidelity gaps in larger 
QFT circuits. For n = 30, Enola’s fidelity is more than 180× lower than Linear Path, while Atomique’s is over 
1018× lower. At n = 50, these gaps widen dramatically to factors of 1015 and 1094, respectively, emphasizing 
the critical role of movement minimization in large-scale circuits.

Meanwhile, the table suggests that with individually addressable Rydberg lasers, DasAtom’s fidelity could surpass 
the TLB by more than 64× for QFT-30 and 106× for QFT-50. This advantage persists even when excitation 
error is ignored for the TLB, where DasAtom’s fidelity remains nearly 10× higher for QFT-30 and over 200× 
higher for QFT-50. This improvement stems from DasAtom’s use of long-range interactions and local Rydberg 
excitation. However, we note that current state-of-the-art NAQC with individually addressed Rydberg lasers 
faces limitations in two-qubit gate fidelity28.

Finally, the table reveals that Enola and Atomique exhibit different performance behaviours depending on 
whether fexc = 0.9975 or fexc = 1. In the first case, Enola outperforms Atomique by factors of 1016× for QFT-
30 and 1078× for QFT-50. However, when fexc = 1, Atomique surpasses Enola by 18.9× for QFT-30 and 109× 
for QFT-50, which is consistent with the experimental findings reported in34.

Circuit Method g2 |Q| S Ntrans

Big move Offset move Overall fidelity Compilation time

Count Distance Count Distance fexc = 0.9975 fexc = 1

QFT-30

TLB 870 30 114 3478 227 227 0 0 5.7 × 10−5 3.8 × 10−4 –

Linear 870 30 114 3478 227 226.84 681 83.53 2.1 × 10−6 1.4 × 10−5 0.49

Zigzag 870 30 114 3478 227 226.84 1413 178.47 1.7 × 10−6 1.1 × 10−5 0.66

Enola 870 30 114 3478 813 1253.37 4681 669.84 1.2 × 10−8 7.9 × 10−7 8368.2

Atomique 954 43 466 0 237 805.45 229 – 2.9 × 10−25 1.5 × 10−5 1.67

DasAtom 870 30 786 460 106 243.21 640 68.42 3.7 × 10−3 3.7 × 10−3 0.90

QFT-50

TLB 2450 50 194 9798 387 387 0 0 1.4 × 10−15 2.4 × 10−10 –

Linear 2450 50 194 9798 387 386.84 1161 142.47 8.3 × 10−17 1.4 × 10−11 3.90

Zigzag 2450 50 194 9798 387 386.84 3501 452.58 2.9 × 10−18 5.0 × 10−13 5.35

Enola 2450 50 194 9798 1922 4050.79 13318 1910.84 1.1 × 10−31 1.8 × 10−26 47843.84

Atomique 2669 79 1145 0 819 4000.29 326 – 6.6 × 10−110 2.2 × 10−17 10.85

DasAtom 2450 50 1554 1264 221 567.16 1701 182.05 5.2 × 10−8 5.2 × 10−8 15.15

Table 2.  Comparison on QFT-30 and QFT-50, where distances are measured in unit grid distance (d = 3µ
m for DasAtom and d = 15µm for all the other compilers). In Atomique, this distance is not computed by the 
code. Note that excitation error does not impact DasAtom’s fidelity, as it utilizes local Rydberg lasers
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Remark 2  Linear and Zigzag Path strategies, as well as Enola, share the same numbers of two-qubit gates, Ryd-
berg stages, and atom transfers as the theoretical lower bound (TLB). Consequently, the first three terms in 
Eq. (3) are identical for these compilers, and their overall fidelities are primarily determined by big-move counts 
and cumulative movement distances. As shown in Fig. 6a,b, and Table 2, Enola incurs exponentially higher big-
move counts and movement distances because it performs complete atom reconfiguration between consecutive 
Rydberg stages. This design minimizes the number of Rydberg stages but results in extensive atom movement.

Atomique, in contrast, employs multiple AOD arrays and SWAP operations to reduce physical atom 
movements. While this approach effectively lowers the big-move count compared to Enola, it requires 
substantially more Rydberg stages, meaning that fewer CZ  gates can be executed in parallel during each stage. 
Although the use of multiple AOD arrays eliminates the need for atom transfers, under the high atom-transfer 
fidelity assumption (ftrans = 99.9%), this advantage has limited influence on the overall circuit fidelity.

Distinct from these DPQA-based compilers, DasAtom targets a different NAQC architecture featuring 
individually addressable Rydberg lasers and long-range interactions. These hardware capabilities enable it to 
achieve lower big-move counts than the TLB and comparable cumulative movement distances. However, its 
performance depends on hardware assumptions that extend beyond the DPQA architecture, and thus its results 
are not directly comparable to DPQA compilers.

Extension to QAOA circuits
While the QFT circuit is characterized by a fully connected interaction graph, many practical quantum circuits 
do not require full connectivity. To evaluate the adaptability of our methods, we extend our analysis to MaxCut 
QAOA circuits26 with reduced connectivity.

Procedure for generating random MaxCut QAOA circuits
Let θ ∈ [0, 100] denote the edge retention percentage, a parameter controlling the density of qubit interactions 
in randomly generated MaxCut QAOA circuits. To construct a random n-qubit MaxCut QAOA circuit C  with 
edge retention percentage θ, we proceed as follows: 

	1.	 Initialization: Define a complete graph G = (V, E), where V = {0, 1, . . . , n − 1} represents the qubits 
and E = {(i, j) | 0 ≤ i < j < n} is the set of edges connecting all qubit pairs.

	2.	 Edge Sampling: For each edge (i, j) ∈ E, include it in a subset Eθ ⊆ E with probability θ%. This yields a 
random subgraph representing the retained interactions. Note that Eθ  may not contain exactly |E| × θ% 
edges, but this value holds in expectation.

	3.	 Insertion of CZ Gates: Initialize an empty circuit C . For each edge (i, j) ∈ Eθ , insert a CZ(i, j) gate into 
C .

This procedure systematically generates random MaxCut QAOA circuits whose CZ-gate density is determined 
by the parameter θ. The randomness in edge selection enables exploration of circuit performance across different 
levels of connectivity and sparsity.

To compile any such random circuit C , we first consider the n-qubit circuit CQF T , which is a simplified 
version of the QFT-n circuit (cf. Fig. 3b) obtained by replacing all CP  gates directly with CZ  gates. Our Linear 
and Zigzag Path strategies can be directly applied to CQF T . To adapt these methods for C, we exploit the fact 
that the order of CZ  gates in C is unimportant. We arrange the CZ gates of C into layers matching those of 
CQFT, though some CZ  gates potentially missing in certain layers. The compilation of C  then proceeds by 
simulating the compilation of CQFT, but with a modified meet-interact-swap operation. Specifically, for each 
m-stage k: (1) we apply the meet and interact steps to the CZ gates in Ck  (the subset of CZ gates in C that appear 
in the k-th m-stage of CQFT, denoted by C′

k); (2) we apply the meet step to the CZ gates present in the C′
k  but 

not in Ck ; and (3) we perform the swap step for all CZ gates in C′
k . This effectively splits each parallel atom 

“meet” move from the CQFT compilation into two “meet” moves for C, ensuring consistent qubit mapping 
transitions with QFT-n (cf. Fig. 4).

As summarized in Fig.  7, we evaluate the proposed strategies against Enola on random MaxCut QAOA 
circuits. Figure 7a shows the total circuit fidelity as a function of the edge-retention percentage θ. When θ ≥ 70%, 
our methods achieve higher total fidelity than Enola, even though Enola also leverages gate commutativity. This 
advantage arises from the reduced atom movements and simplified routing in our strategies. As shown in 
Fig. 7b, the Linear and Zigzag Path strategies yield identical big-move counts, resulting in overlapping curves. 
The cumulative movement distances in Fig. 7c remain nearly constant across varying θ, whereas Enola shows 
a roughly linear decrease as the circuit connectivity becomes sparser. Finally, Fig.  7d demonstrates that the 
compilation time of our methods is almost constant and one to two orders of magnitude faster than Enola, 
highlighting their superior scalability and efficiency.

Conclusion
This work introduced optimal compilation strategies for QFT circuits on the DPQA architecture–currently the 
most prominent platform for neutral-atom quantum computing (NAQC). The proposed Linear and Zigzag Path 
strategies achieve the theoretical lower bounds in atom-movement counts while maintaining high circuit fidelity. 
Comprehensive evaluations demonstrate that these methods exponentially outperform state-of-the-art DPQA 
compilers, including Enola and Atomique, in both movement efficiency and total fidelity. This exponential 
fidelity advantage underscores the crucial role of minimizing atom movements and optimizing qubit routing to 
preserve coherence and scalability in DPQA processors. In addition, our Path strategies can serve as benchmark 
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compilers for evaluating future DPQA compilation frameworks, providing a concrete reference for assessing 
movement efficiency and fidelity trade-offs.

While initially designed for structured circuits such as QFT, our Path strategies extend naturally to more 
general quantum circuits. In particular, they can efficiently handle dense circuits like QAOA and variational 
quantum algorithms (VQAs), where the execution order of two-qubit CZ  gates is flexible. For these applications, 
our movement-aware routing approach offers a practical pathway toward high-fidelity execution on the DPQA 
architecture.

Moreover, comparative evaluations against DasAtom highlight the inherent limitations of the current DPQA 
architecture. DasAtom’s ability to surpass even theoretical lower bounds indicates that architectural advances—
such as individually addressable Rydberg lasers or zoned architectures32—are essential to fully exploit the 
potential of NAQC. We hope these findings encourage experimental researchers to explore novel architectural 
designs that complement compiler-level innovations.

Data availability
The datasets generated and analyzed during this study are available in the repository on GitHub: ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​
o​m​/​g​c​c​-​b​u​g​/​q​f​t​_​a​t​o​m​​​​​. The final processed data used in this study are included in the data directory.
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Fig. 7.  Performance of different compilation strategies for random MaxCut QAOA circuits as a function of the 
edge-retention percentage θ. For each value of θ, ten random circuit instances were generated and evaluated; 
reported values are averaged over these instances. (a) Total circuit fidelity. (b) Big-move counts. The Linear 
and Zigzag Path strategies yield identical results, and their curves completely overlap. (c) Cumulative atom-
movement distances. (d) Compilation time.
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