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Because a high signal-to-noise ratio (SNR) is critical in enhancing the accuracy of subsequent 
processing, noise reduction remains a pivotal challenge in seismic signal processing, especially for 
complex noise interference scenarios. To address this, we propose a novel network termed MSARDNet 
for seismic signal denoising, with its novelty in a multi-level feature processing architecture integrating 
innovative modules. Specifically, the architecture comprises an encoder module, a ResDC module, 
and a decoder module. The encoder integrates depthwise separable convolution to efficiently extract 
local features with reduced parameters and improved computational efficiency. Prior to pooling, an 
enhanced channel attention mechanism is incorporated to adaptively emphasize critical features and 
suppress noise based on their importance, further boosting denoising efficacy. The ResDC module 
combines dilated convolutions for multi-scale receptive field expansion and residual connections 
for gradient optimization, ensuring feature integrity and facilitating joint extraction of multi-scale 
features and global context. This design effectively mitigates information loss, preserves useful signals, 
and enhances SNR by filtering complex noise. Through comparative experiments on synthetic and field 
data using denoising methods such as U-Net, DnCNN, and DeepDenoiser, MSARDNet achieved signal-
to-noise ratio improvements of + 15.94 dB, + 12.03 dB, and + 4.83 dB over these methods, respectively. 
The results demonstrate that MSARDNet outperforms existing methods in eliminating complex 
background noise and holds broad application prospects in seismic data processing.
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Earthquakes directly destroy infrastructure, causing heavy casualties and economic losses, and trigger secondary 
disasters like landslides and disease outbreaks1,2, making loss mitigation a key research focus. They also offer a 
critical window to study Earth’s internal structure and dynamics: seismic signal analysis helps unravel subsurface 
structures3–6, tectonic movements, and related phenomena7. However, seismic signals are often contaminated 
during propagation by noise from complex geological conditions (e.g., inhomogeneous formations) and external 
interference (e.g., human activities), significantly reducing SNR and data quality8–10. This hinders subsequent 
processing11, so effective denoising and SNR enhancement are pivotal for reliable downstream analyses.

Seismic data acquisition suffers from diverse noise, including broadband Gaussian noise (e.g., ambient noise), 
impulsive transient noise (e.g., equipment vibration), and low-frequency drift noise (e.g., sensor drift)12,13. Their 
time-frequency aliasing severely degrades signal quality, posing challenges to traditional denoising methods—
especially in high-noise environments where signal-noise discrimination is difficult14. Time-frequency filtering 
methods (e.g., bandpass15,16, median17,18, Wiener19, time-frequency peak filtering20–22 leverage time-frequency 
differences between signals and noise. They perform well when frequency bands are distinct but cause artifacts 
or detail loss with overlapping bands. Time-frequency transformation methods (wavelet23–25, STFT26,27, 
curvelet28,29, shearlet30–32 decompose signals via sparse representation and thresholding. Effective for non-
stationary signals, they are sensitive to decomposition scales and thresholds, with improper settings leading 
to distortion. Modal decomposition techniques (EMD33–35, CEEMDAN36, VMD37–39 decompose complex 
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signals into simpler components, adapting well to nonlinear/non-stationary data and mitigating low-frequency 
drift. However, they are sensitive to mode mixing and parameter selection, with improper handling causing 
distortion. Rank reduction methods (e.g., SVD40, MSSA41 separate signals from noise by extracting matrix 
principal components via low-rank decomposition. They exhibit significant advantages in multichannel data 
processing, yet their performance is to some extent dependent on parameter selection (e.g., rank value, window 
size). Additionally, their adaptability to areas with complex geological conditions is limited.

In recent years, deep learning—based on artificial neural networks—has advanced significantly42, with 
remarkable progress in seismic signal denoising. End-to-end feature learning enables it to separate complex 
noise components, introducing a new paradigm. Si et al.43 applied DnCNN to attenuate random seismic noise; 
using residual learning in deep convolutional networks, it recovers clearer signals but is limited to Gaussian/
random noise, performing poorly on non-Gaussian or coherent noise. Zhao et al.44 improved DnCNN to 
suppress low-frequency noise in desert seismic data (where signals and random noise overlap severely) but still 
struggles with non-Gaussian noise. Zhu et al.45 developed DeepDenoiser, which constructs nonlinear mappings 
between noisy and denoised data to eliminate complex noise, yet has limitations in accuracy and generalization. 
Zhang et al.46 combined DnCNN’s residual learning with U-Net, enhancing generalization (especially for 
low-frequency bloating noise) but with limited effectiveness across diverse regional seismic data. Saad et al.47 
proposed an unsupervised method for single-channel denoising, removing random noise via STFT feature 
learning and signal mask construction, but it performs inadequately in complex non-Gaussian noise. Wang 
et al.48 presented RTDenoiser, a real-time method that effectively removes various noises and improves small 
earthquake detection, though its performance degrades in noise-dominated scenarios. Cui et al.49 proposed 
a ground-truth-free method for 3D seismic denoising and reconstruction, eliminating the need for paired 
clean/noisy data. With channel attention to enhance key feature focus, this method shows strong robustness 
in both synthetic and real seismic data. Yu et al.’s MAE-GAN50 achieves simultaneous super-resolution and 
denoising of post-stack seismic profiles via multi-scale residual modules, dual attention mechanisms, and an 
adversarial network, effectively recovering weak signals. Zhu et al.51 applied diffusion models to DAS-VSP data 
denoising to suppress complex noise, while Cui et al.52 further proposed an unsupervised diffusion framework, 
showing advantages in weak signal preservation on field data. Saad et al.53 proposed an unsupervised DAS 
denoising method with CWT guidance and self-attention. It attenuates complex noises without labeled data, 
overcoming traditional methods’ signal leakage and supervised learning’s label dependence. Liu et al.54 proposed 
a C-DDPM-based zero-shot method and introduced an adaptive FK-domain condition. It solves label scarcity 
and balances detail preservation/SNR improvement in multi-noise scenarios. Ding et al.55 proposed HMR-
Net (Hybrid Multi-Resolution Network), optimizing multi-scale feature extraction/sampling on U-Net, and it 
performs well in suppressing complex background noise and recovering weak signals. Qiao et al.56 proposed the 
Multi-Scale Residual Attention Network (MRANet) for fading noise and step-like signals in DAS-VSP data. The 
network improves data quality by capturing global structure and preserving local details, but it has limitations 
in its sensitivity to noise intensity and its ability to handle untrained noise. Li et al.’s57 Swin Transformer boosts 
cross-region information interaction via local and shifted window self-attention, outperforming wavelet 
denoising in Peak Signal-to-Noise Ratio (PSNR). However, it has limitations (e.g., small dataset size, undisclosed 
geological diversity), with its generalization ability yet to be verified. Chen et al.58,59 proposed an unsupervised 
Kolmogorov-Arnold Network (KAN)-based method, modeling nonlinear mapping via learnable spline basis 
functions. Compared with traditional Multi-Layer Perceptrons (MLPs), it enhances model interpretability and 
alleviates deep learning’s “black-box” problem. Sheng et al.60 pre-trained a Transformer via self-supervised 
Masked Autoencoder (MAE) to learn seismic data’s universal features; this pre-trained encoder serves as a 
general feature extractor for downstream tasks (including denoising) and exhibits some advantages compared 
to scratch-trained models (e.g., U-Net) when fine-tuned or with frozen features, showing decent generalization. 
However, in terms of capturing edge details of low-signal-to-noise seismic data, it still has a slight improvement 
space compared to small models specifically optimized for such scenarios.

Seismic signal denoising algorithms face two primary challenges:

	1.	 Seismic signals are inherently nonlinear and non-stationary, comprising diverse frequency and time-domain 
components shaped by propagation paths and subsurface medium interactions. Traditional convolutional 
methods—limited by small receptive fields—struggle to capture spatiotemporal and multi-scale features, 
particularly when signal and noise spectra overlap, hindering accurate separation. Furthermore, these meth-
ods tend to be computationally inefficient.

	2.	 Natural seismic signals are susceptible to diverse noise sources, including periodic industrial noise, impul-
sive noise, and irregular background noise. The spatiotemporal variability of such noise complicates its dis-
crimination from target signals. Existing algorithms often fail to robustly extract seismic signal features and 
cope with complex noise, resulting in suboptimal denoising performance and limited SNR enhancement.

Motivated by the aforementioned challenges, this study aims to address the inability of existing seismic signal 
denoising methods to effectively mitigate complex noise interference. To this end, we have developed a novel 
denoising framework termed MSARDNet. It innovatively leverages depthwise separable convolution (DSConv) 
for a lightweight encoder (balancing local feature extraction and parameter reduction), embeds an enhanced 
channel attention mechanism into pooling, and designs a ResDC module (integrating residual connections 
and dilated convolutions to expand multi-scale receptive fields and optimize gradient transfer). This design 
refines existing seismic denoising methods in model efficiency, noise discrimination, and multi-scale feature 
integration, serving as a useful technical support for related research. The three key innovations of MSARDNet 
are specifically implemented as follows:
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	1.	 In the encoder, traditional convolutions are replaced with depthwise separable convolutions. Despite involv-
ing more modular operations, this design reduces computational load and parameter count while maintain-
ing robust feature extraction capability—enhancing model efficiency and mitigating overfitting risks, which 
is critical for handling large-scale seismic datasets.

	2.	 An innovatively improved channel attention mechanism is integrated with multi-scale convolutional oper-
ations, enabling the model to more precisely focus on effective signals and suppress noise. When combined 
with pooling operations, this design further optimizes feature preservation and denoising efficacy, thereby 
facilitating efficient execution of seismic signal denoising tasks.

	3.	 Guided by residual learning, we design the ResDC module by incorporating dilated convolutions. This mod-
ule overcomes limitations of conventional convolutions in seismic signal processing—such as restricted re-
ceptive fields, discontinuous information extraction, and suboptimal denoising performance—by effectively 
capturing multi-scale contextual information, expanding the receptive field, and minimizing information 
loss.

The remainder of this paper is structured as follows: “Method” elaborates on the MSARDNet architecture, 
including its overall structure and core modules. “Experiments” describes the dataset, preprocessing procedures, 
and evaluation metrics, followed by an analysis of experimental results. “Field seismic data application” validates 
the model on field seismic signals and discusses its performance. Finally, “Conclusion” concludes the paper.

Method
Denoising theory
Seismic signal contains both effective signal and noise components, denoising is to realize the separation of the 
two, and as far as possible to make the denoising results closer to the original seismic information. The seismic 
signal can be viewed as the sum of the effective signal and the noise, which can be expressed as:

	 X = S + N � (1)

Where X  = {x1, x2, …, xm} is a seismic signal; S= {s1, s2, …, sm} is an effective signal; N= {n1, n2, …, nm} is noise.
In this study, we designed a network fθ(·), whose purpose is to directly predict the noise component N in 

the input signal X. The network fθ(·) processes the seismic signal and outputs predicted noise component. The 
equations can be expressed as:

	 S̄ = X − N̄ = X − fθ (X)� (2)

Where S̄ is the denoised signal; N̄  is the predicted noise component; fθ (X) is a network.
In the denoising process, our goal is to make S̄ closely approximate the original valid signal  S, so as to ensure 

effective noise removal and high-fidelity signal recovery.

Architecture of U-Net
U-Net was initially proposed for semantic segmentation, characterized by a symmetric U-shaped encoder-
decoder architecture (Fig.  1). Specifically, the encoder extracts features through two consecutive standard 
convolution operations followed by ReLU activation; downsampling is achieved via max-pooling, which halves 

Fig. 1.  Architecture of U-Net.
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the feature map resolution while doubling the channel count. In the decoder, transposed convolution is used for 
upsampling to gradually restore resolution, and skip connections integrate shallow features from the encoder 
with deep features from the decoder (via concatenation), thereby enhancing detail preservation. The network 
concludes with a final convolution layer that maps the processed features to the output, enabling end-to-end 
input-output mapping for pixel-level prediction.

Architecture of MSARDNet
U-Net’s skip connections effectively integrate multi-level features and preserve details, while its symmetric 
encoder-decoder structure enables robust training with limited data. However, its reliance on standard 
convolutions—with restricted receptive fields focused on local features—limits handling of complex multi-scale 
noise in seismic signals (which exhibit long-range spatial correlations and diverse frequencies). Additionally, 
shallow encoder features in skip connections often retain substantial noise (e.g., high-frequency random noise) 
that propagates through concatenation, causing residual noise in denoised outputs.

To address seismic denoising under complex noise, we propose MSARDNet (Fig. 2), which retains U-Net’s 
symmetric encoder-decoder structure and comprises an encoder, ResDC module, and decoder. The encoder 
uses depthwise separable convolutions for efficient local feature extraction and integrates an enhanced 
channel attention mechanism (MS-CAM); via dynamic weight allocation, MS-CAM adaptively emphasizes 
noise characteristics to strengthen extraction of critical signal features. The ResDC module combines residual 
connections and multi-scale dilated convolutions to explore global features and local details, improving noise 
separation precision and reducing residual noise. The decoder employs transposed convolutions to reconstruct 
temporal resolution, merging multi-level features via skip connections to eliminate noise while preserving subtle 
signal details. Detailed specifications are provided in Table 1.

To verify the rationality of the MSARDNet structure design and clarify its denoising mechanism, we analyzed 
the feature map visualization results of key modules (see Supplementary Fig. S1 and Fig. S2 online). Figure S1 
shows the 64-channel feature maps of the first layer of the encoder, and Fig. 2 further presents the model’s feature 
evolution process.

Encoder module
Traditional convolutional neural networks extract seismic signal features via standard convolutions. However, 
due to the extended duration and complex noise patterns of seismic signals, traditional convolutions alone 
struggle to balance processing speed with effective extraction of multi-scale, dynamically varying features. 
To address this, our research integrates depthwise separable convolutions and an enhanced channel attention 
mechanism (MS-CAM) into the encoder (Fig.  3), which comprises four encoding layers. The seismic signal 
first undergoes two depthwise separable convolutions with ReLU activation for local feature extraction. An 
MS-CAM then dynamically adjusts channel weights, enabling the network to focus on critical seismic features. 
Finally, pooling completes downsampling to further compress feature map spatial dimensions.

Assuming one-dimensional input data with C channels, each of size W, zero-padded and with a stride of 1. 
For standard convolution using F convolutional filters of size 1×K applied to the C×W input data, producing F 
feature maps of size W. The number of parameters Psc and the computational cost Csc required for standard 
convolution are as follows:

Fig. 2.  Architecture of MSARDNet.
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	 Psc = F × K × C � (3)

	 Csc = K × W × C × F � (4)

Unlike standard convolution, depthwise separable convolution comprises depthwise and pointwise convolutions. 
Depthwise convolution applies a 1×K filter to each input channel, generating C feature maps of size W. Pointwise 
convolution then uses F 1 × 1 filters on these maps to produce F feature maps of size W. The parameter count 
(Pdc) and computational cost (Cdc) of standard convolution are as follows:

	 Pdc = C × K + F × C � (5)

	 Cdc = W × C × K + W × F × C � (6)

Here, C denotes input channels, W the width of each channel, F the number of convolutional filters, and K 
the kernel size. Unlike standard convolution, depthwise separable convolution reduces parameters and 
computational cost while capturing local features.

To enhance feature representation, this study improves the channel attention mechanism by incorporating 
multi-scale convolution. This allows convolutional kernels with different receptive fields to capture richer 
multi-scale information. As shown in Fig.  3c, the input feature X first undergoes four one-dimensional 
convolutions with different kernel sizes (k = 1, 3, 5, 7), generating multi-scale features: X1 = ReLU(Conv1d1(X)), 
X2 = ReLU(Conv1d3(X)), X3 = ReLU(Conv1d5(X)), X4 = ReLU(Conv1d7(X)), where Conv1dk denotes a one-
dimensional convolution operation with a convolution kernel size of 1xk. Subsequently, these feature maps are 

Fig. 3.  Complete structure of encoder. a Structure of the encoder module;  b  structure of each layer in the 
encoder;  c detailed structure of DSConv;  d  detailed structure of MS-CAM.

 

Name Details Channels Size

Input Conv1 × 3 Str.1 3 6000

Enc1 [DSConv1 × 3  Str.1] × 2;  [Maxpooling1 × 2 Str.2] 64 6000

Enc2 [DSConv1 × 3   Str.1] × 2; [Maxpooling1 × 2 Str.2] 128 3000

Enc3 [DSConv1 × 3 Str.1]  ×  2; [Maxpooling1 × 2 Str.2] 256 1500

Enc4 [DSConv1 × 3 Str.1]  × 2;  [Maxpooling1 × 2 Str.2] 512 750

ResDC Conv1 × 3 (dilated = 1,6,12,18); Global Pooling 1 × 1 512 375

Center Layer [Conv1 × 3 Str.1] × 2 1024 375

Dec1 Conv.Trans1 × 2 Str.2 512 750

Dec2 Conv.Trans1 × 2 Str.2 256 1500

Dec3 Conv.Trans1 × 2 Str.2 128 3000

Dec4 Conv.Trans1 × 2 Str.2 64 6000

Output Conv1 × 1 Str.1 3 6000

Table 1.  The details of the MSARDNet denoising model.
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spliced in the channel dimension to form a feature map Xconcat that fuses features of different scales; then, a global 
average pooling operation is performed on Xconcat to obtain a global feature vector, denoted as:

	
g = 1

L

L∑
i=1

Xconcat (i)� (7)

where L is the length of the feature map, and Xconcat(i) is the value at the i-th position in the feature map. Then, g 
is input into a shared two-layer fully connected network and the weight w is obtained by the activation function, 
denoted as:

	 w = σ (W2 · LeakyReLU (W1 · g))� (8)

where W1 and W2 are the weights of the fully connected layers, and σ denotes the Sigmoid activation function, 
and finally Xconcat and w are multiplied together to obtain the output Y.

By adjusting the feature channels, the MS-CAM effectively enhances the ability of the network to extract 
useful information and refines the feature representation, which makes the network as a whole more suitable for 
processing complex signals, especially seismic signals with multi-scale features.

ResDC module
Standard convolution’s limited sampling of dilated regions causes discontinuous seismic information extraction 
and suboptimal denoising. To address this, a Residual Dilated Convolution (ResDC) module is designed, 
combining dilated convolution and residual connections. Using dilated convolutions with multiple dilation 
rates, it captures multi-scale signal context (structure in Fig.  4). Dilated convolution adds a dilation rate to 
standard convolution, expanding the receptive field and capturing multi-scale information but introducing 
residual noise due to redundancy between adjacent data. Additionally, its reliance on independent subsets for 
neighboring data leads to insufficient long-range correlation. Thus, prior to each dilated convolution, features 
are fused with previous ones, and residual connections reduce information loss. The post-convolution feature 
map is calculated as follows:

	
X = i + 2p − k − (k − 1)(d − 1)

s
+ 1� (9)

In the formula, X is the length of the output feature map, i is the length of the input feature map, p is the number 
of zeros padded during the convolution process, k is the size of the convolution kernel, d is the dilation rate, and 
s is the stride.

Subsequently, the convolution results with different dilation rates and the global pooling results are 
concatenated. The concatenated feature vector is then further processed through a 1 × 1 convolution for 
additional fusion.

	 XConv1d = [X1 ∥ X2 ∥ X3 ∥ Conv(GlobalP ooling (X)]� (10)

Here, ∥ denotes concatenation along the channel dimension. Finally, through residual connections, the input 
signal X is added element-wise to XConv1d to obtain the output Y.

Decoder module
The decoder employs layer-by-layer transposed and standard convolutions to gradually restore feature map 
dimensions to the original signal size. As shown in Fig.  5’s dashed box, each decoding block—consisting of 
transposed convolution, standard convolution, and ReLU activation—progressively recovers time resolution. 
Post-upsampling, it concatenates current output with the encoder’s corresponding feature map for fusion: 

Fig. 4.  structure of the ResDC module.
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transposed convolution expands spatial dimensions, while convolution refines features to preserve channel 
count and structure. A final 1 × 1 convolution maps the feature map to a denoised signal of original dimensions.

In 1-D transposed convolution, upsampling of the feature map is achieved by applying a transposed operation, 
and the process can be formulated as follows:

	 Y = ConvT rans(X, K, S, P )� (11)

The output feature map size H′ of the transposed convolution is calculated using the following formula:

	 H ′ = (H − 1) × S − 2P + K � (12)

where X is the input feature map, K is the convolution kernel, S is the stride, and P is the padding, H represents 
the length of the input feature map.

Experiments
All experiments were conducted in Python using PyTorch on a PC with an Intel Core i7-14700KF CPU 
(4.88 GHz), 32 GB RAM, and an NVIDIA GeForce RTX 4080 SUPER GPU. GPU parallel computing accelerated 
gradient calculations and model training by reducing computational burden, enhancing processing efficiency—
valuable for seismic analysis to enable efficient model training and testing.

Dataset and preprocessing
The Stanford Earthquake Dataset (STEAD61—comprising over 1.2 million seismic waveforms and 450,000 
events—served as the training dataset. We selected high-quality 100 Hz seismic signals (SNR > 50 dB, P/S-
wave annotation weights > 0.8), yielding 24,041 clean signals and 105,800 non-seismic noise samples. Due to 
unreliable absolute amplitudes (from original signal variations) and to prevent data overflow/accuracy issues, 
sample data underwent Z-score normalization to accelerate convergence and enhance numerical stability during 
training, with the formula:

	
z = x − µ

σ
� (13)

Here, z represents the normalized value, x is the original data, µ is the mean of the data, and σ is the standard 
deviation of the data.

Evaluation metrics
To quantitatively evaluate the denoising performance of the MSARDNet model, three evaluation metrics—
Signal-to-Noise Ratio (SNR), Root Mean Square Error (RMSE), and correlation coefficient (r)—were employed. 
These metrics provide an objective assessment of the denoising effect. The calculation methods for these metrics 
are given by the following formulas:

	
SNR = 10log10

[
N∑

i=1

y2
i

(zi − yi)2

]
� (14)

	

RMSE = 1
N

√√√√
N∑

N=1

|yi − zi|2� (15)

Fig. 5.  Structure of the decoder module.
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r?z?y? = Cov?z?y?√

V ar [z] V ar [y] � (16)

Here, yi​ and y represent the original signal, zi​ and z represent the denoised signal, and N denotes the total 
number of samples in the seismic signal.

A higher SNR indicates more effective signal information and better denoising performance. RMSE measures 
the error between output and label signals at each sampling point, with values closer to 0 indicating better results. 
A correlation coefficient closer to 1 reflects stronger similarity between denoised and true signals, preserving 
nearly all location information. Together, these three metrics comprehensively evaluate denoising effects from 
multiple perspectives.

Ablation experiment
The evaluation metrics of the experiments in this section are all calculated based on the validation set used 
during the training process.

To verify the impact of depthwise separable convolution, the improved channel attention mechanism, 
and the ResDC module on MSARDNet performance, we conducted ablation experiments with the following 
configurations: all ablation models were trained using the Adam optimizer to ensure unified optimization 
conditions; original U-Net (Ablation Model U-Net); model retaining ResDC and MS-CAM (ResDC-MS-
CAM); model retaining depthwise separable convolution (EncDep) and MS-CAM (EncDep-MS-CAM); model 
retaining EncDep and ResDC (EncDep-ResDC); and model retaining all three components (MSARDNet). 
Results are shown in Table 2.

Table 2 indicates Ablation Model U-Net achieved the lowest average SNR, confirming the significant role 
of EncDep, ResDC, and MS-CAM in MSARDNet’s denoising performance. Compared to MSARDNet, average 
SNR decreased by 3.15 dB for EncDep-MS-CAM (lacking ResDC), 2.89 dB for EncDep-ResDC (lacking MS-
CAM), and 1.77 dB for ResDC-MS-CAM (lacking EncDep). These results demonstrate that removing any single 
module significantly degrades network performance.

To verify the efficiency of depthwise separable convolutions(EncDep) in MSARDNet, we designed a 
single-variable controlled experiment: only the encoder’s convolution type differed (baseline with traditional 
convolutions, MSARDNet with depthwise separable ones), with other modules, parameters, and experimental 
conditions unchanged. Experiments showed the baseline had 12.498  M parameters, 237.823 GFLOPs, and 
33.91ms per-batch inference time; MSARDNet reduced these to 10.032 M (19.7% less), 190.151 GFLOPs (20% 
less), and 26.88ms (20.7% efficiency gain). Overall improvement was limited, as depthwise separable convolutions 
only applied to the encoder (≈ 1/3 of the model). A standalone encoder experiment more intuitively showed 
advantages: the traditional convolution encoder had 1.563 M parameters, 52.015 GFLOPs, and 7.12ms inference 
time for 32 samples; the depthwise separable one reduced these to 458 K (70.7% less), 16.543 GFLOPs (68.2% 
less), and 4.05ms (43.1% efficiency gain).For practical seismic data processing, even a ~ 20% overall efficiency 
improvement reduces hardware consumption in large-scale data batch inference.

We further optimized key hyperparameters by testing three parameter sets, keeping all variables constant 
except the target parameter:

	1.	 Learning rate (LR): Critical for convergence. Testing LR = 0.01, 0.001, 0.0001, and 0.00001 (Table 3) showed 
LR = 0.0001 yielded the best SNR and correlation coefficient (r), with the lowest RMSE. Excessively high LR 
impaired convergence, while overly low LR slowed training, so LR = 0.0001 was selected.

LR SNR RMSE r

LR = 0.01 20.83 0.3652 0.932

LR = 0.001 21.75 0.3483 0.947

LR = 0.0001 25.62 0.2049 0.985

LR = 0.00001 20.96 0.3726 0.941

Table 3.  Influence of learning rates.

 

Model EncDep ResDC MS-CAM SNR/dB RMSE r

U-Net × × × 19.13 ± 0.10 0.4620 ± 0.0051 0.891 ± 0.004

EncDep-MS-CAM √ × √ 22.47 ± 0.09 0.3188 ± 0.0023 0.947 ± 0.003

EncDep-ResDC √ √ × 22.73 ± 0.06 0.3021 ± 0.0020 0.953 ± 0.002

ResDC-MS-CAM × √ √ 23.85 ± 0.05 0.2543 ± 0.0015 0.966 ± 0.002

MSARDNet √ √ √ 25.62 ± 0.05 0.2049 ± 0.0015 0.985 ± 0.001

Table 2.  Ablation experiment results of the MSARDNet denoising model. Bold data indicates the performance 
metrics (SNR, RMSE, r) of the proposed MSARDNet model.
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	2.	 Batch_size: Influential for optimization and speed. Testing powers of 2 (16, 32, 64, 128; Table 4) revealed 
Batch Size = 32 maximized SNR. Larger sizes reduced accuracy, while very small batches slowed training, so 
32 was chosen.

	3.	 Training epochs: Determined by evaluating 100, 200, and 300 epochs (Table 5). Epoch = 200 achieved the 
highest SNR and r, with the lowest RMSE. Epoch = 100 led to insufficient training, while epoch = 300 caused 
overfitting, so 200 was selected.

Comparative experiment
One-dimensional seismic data denoising
To compare MSARDNet with three deep learning denoising methods (U-Net, DnCNN, DeepDenoiser), 4,808 
test signals were used. Meanwhile, to verify the robustness of the results, we calculated the mean and standard 
deviation of each performance metric on the test set through five independent repeated experiments, with the 
relevant results presented in Table 6. This indicates that MSARDNet exhibits the optimal stability in terms of 
SNR, RMSE, and r metrics. Four randomly selected signals were visualized in Fig. 6 for intuitive evaluation. 
U-Net, DnCNN, and DeepDenoiser were reconstructed in PyTorch, trained on the dataset in “Dataset and 
preprocessing”, and all methods were assessed using the same test dataset.

Figure 6. illustrates clear differences in denoising performance among the four methods. In subplot (a), the 
original signal has distinct peaks and a stable baseline, while the noisy version (SNR = 7.26 dB) is chaotic with 
high noise. Post-denoising, MSARDNet achieves the highest SNR (23.68 dB, + 18.42 dB), closely matching the 
original with restored peaks and baseline. U-Net (19.71 dB) removes some noise but yields less smooth waveforms; 
DnCNN (18.12 dB) and DeepDenoiser (20.35 dB) weaken useful components, resulting in blunted peaks and 
lower restoration. Subplot (b) shows a noisy signal (SNR = 2.23 dB) with intense interference. MSARDNet 
outperforms others (24.93 dB vs. U-Net 21.42 dB, DnCNN 18.59 dB, DeepDenoiser 21.86 dB), restoring most 
features while maintaining low noise. In subplot (c), the noisy signal (SNR = 1.57 dB) is heavily interfered. 
MSARDNet achieves 18.72 dB, surpassing U-Net (12.53 dB), DnCNN (13.45 dB), and DeepDenoiser (16.44 
dB), with waveforms highly similar to the original and intact signal integrity. In subplot (d), despite the noisy 
signal having an SNR of -2.82 dB and severe noise interference, MSARDNet still demonstrates strong denoising 
ability with an SNR of 13.67 dB, outperforming U-Net’s 8.75 dB, DnCNN’s 8.41 dB, and DeepDenoiser’s 9.26 
dB. MSARDNet can effectively restore the main features of the signal in strong noise, significantly improving 
signal quality.

To better evaluate denoising models under complex noise, synthetic seismic signals with varying SNRs were 
used to compare MSARDNet, U-Net, DnCNN, and DeepDenoiser. The experimental results are presented in 
Fig. 7, which provides a detailed comparison of these methods in terms of signal-to- noise ratio (SNR), root 
mean square error (RMSE), and correlation coefficient (r).

Figure  7 shows that across all initial SNRs, MSARDNet consistently outperforms others, achieving the 
highest SNR, lowest RMSE, and r closest to 1. This indicates significant SNR improvement, reduced RMSE, and 

Model SNR RMSE r

Noisy − 1.00 ± 0.00 0.910 ± 0.000 0.744 ± 0.000

U-Net 9.10 ± 0.15 0.460 ± 0.006 0.829 ± 0.003

DnCNN 9.13 ± 0.12 0.410 ± 0.005 0.835 ± 0.003

DeepDenoiser 11.69 ± 0.08 0.253 ± 0.003 0.865 ± 0.002

MSARDNet 14.94 ± 0.03 0.220 ± 0.002 0.918 ± 0.001

Table 6.  Performance stability results for different denoising Models.

 

Epoch SNR RMSE r

epoch = 100 20.43 0.3258 0.936

epoch = 200 25.62 0.2049 0.985

epoch = 300 22.37 0.3123 0.942

Table 5.  Influence of epoch.

 

Batch_size SNR RMSE r

Batch_size = 16 20.58 0.3603 0.937

Batch_size = 32 25.62 0.2049 0.985

Batch_size = 64 22.25 0.3215 0.942

Batch_size = 128 20.82 0.3526 0.943

Table 4.  Influence of batch_size.
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stronger correlation, demonstrating its ability to suppress background noise and restore signals highly similar 
to the original.

In contrast, U-Net, DnCNN, and DeepDenoiser are less effective in selective noise suppression, as they 
struggle to enhance seismic signal features, hindering background noise removal. MSARDNet’s superiority 
stems from its improved channel attention module, which focuses on key signal information, yielding better 
denoising results.

Multi-channel seismic profile data denoising
To further enhance the model’s universality for seismic data denoising tasks, this section reconstructs it into a 
processing framework suitable for 2D multi-channel profile seismic data, and systematically evaluates the model 
performance using synthetic seismic records. The simulated record used in the experiment is shown in Fig. 8a: 
Noisy data with a signal-to-noise ratio (SNR) of 8.26 dB was generated by adding random Gaussian noise to the 
synthetic seismic data created through forward modeling using Ricker wavelets (Fig. 8b). At this point, effective 
signals are masked by strong background noise, and the continuity of reflection events is severely disrupted.

Figures 8c–f show the denoising results of U-Net, DnCNN, DeepDenoiser, and MSARDNet, respectively. 
Among them, MSARDNet achieves the optimal SNR improvement, increasing by 10.71 dB compared to the 
original noisy data (with an overall SNR reaching 18.97 dB), which is substantially superior to U-Net (2.59 
dB), DnCNN (3.18 dB), and DeepDenoiser (6.59 dB). The results demonstrate that MSARDNet can effectively 
recover clear reflection events from noise, and its denoising performance is significantly better than that of the 
comparative models, providing reliable data support for subsequent seismic interpretation and analysis.

Fig. 6.  Comparison of the four methods in the test dataset: a–d show four denoising examples. In each 
subfigure: (i) noisy signal; (ii) U-Net result; (iii) DnCNN result; (iv) DeepDenoiser result; (v) MSARDNet 
result.
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Different noise types experiment
To verify the proposed method’s effectiveness across noise environments, we compared how four noise types 
affect seismic signals and evaluated MSARDNet against U-Net, DnCNN, and DeepDenoiser.

Figure 9a shows that wideband Gaussian noise obscures waveforms and hides details. U-Net removes some 
noise to reveal a faint signal outline but leaves residual fine noise. DnCNN reduces more noise, improving 
continuity and recognizability. DeepDenoiser further reduces noise for a smoother curve but retains slight 
traces. In contrast, MSARDNet nearly eliminates noise, producing smooth fluctuations that accurately restore 
the signal’s true characteristics, aiding subsequent analysis.

Figure  9b illustrates low-frequency baseline drift noise shifts and distorts the signal baseline. U-Net 
partially restores the signal but leaves noticeable low-frequency drift, with the baseline not fully normalized 
and suboptimal stability. DnCNN better corrects the baseline, reducing low-frequency interference. However, 
DnCNN’s baseline remains unstable in some regions. DeepDenoiser effectively eliminates low-frequency drift, 
stabilizing the baseline to reveal the signal’s true form. MSARDNet further refines correction: it precisely 
stabilizes the baseline, yielding a smooth, undistorted curve that maximally restores the original signal, strongly 
supporting accurate analysis.

Figure  9c shows impulsive noise as random high-amplitude spikes, disrupting signal continuity. U-Net 
removes some but leaves residual pulses with visible sharp peaks. DnCNN suppresses most pulses to enhance 
continuity but retains faint traces. DeepDenoiser nearly smooths the signal but risks losing minor details 
misclassified as noise. In contrast, MSARDNet accurately distinguishes noise from details, fully eliminating 

Fig. 7.  Performance comparison between U-Net, DnCNN, DeepDenoiser and MSARDNet. a Variation in 
SNR; b variation in RMSE; c variation in r.
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pulses while preserving subtle features—ensuring waveform precision and aiding in-depth seismic property 
studies.

Figure 9d illustrates highly complex non-stationary mixed noise, severely distorting signals and obscuring 
effective information. U-Net denoising results in blurry signals with incomplete information (noise masking 
key features). DnCNN and DeepDenoiser improve slightly but suffer significant detail loss and distortion under 
complex noise. MSARDNet, with strong adaptability, extracts signal features from chaotic noise, removing 
interference to produce clear, amplitude-accurate waveforms closely matching the true signal. This reliably 
supports analysis in complex environments, demonstrating notable advantages.

Out-of-distribution experiment
To verify MSARDNet’s out-of-distribution generalization, robustness, a comparative experiment was conducted 
on the TXED dataset (Chen et al.62)—distinct from STEAD in geography/noise/events, with 321 Texas stations 
(2017–2023), 21,767 events, and 312,231 1D three-component waveforms (SNR: −11 to 97 dB)—alongside 
U-Net, DnCNN, and DeepDenoiser. Experimental rigor was ensured by selecting 4,808 1D samples (matching 
STEAD’s test scale) paired with independent noise (no replacement), applying consistent Z-score normalization, 
and using STEAD-pre-trained weights (no fine-tuning).

Quantitative results are shown in Table  7. MSARDNet significantly outperformed U-Net, DnCNN, and 
DeepDenoiser. It achieved a denoised SNR of 21.32 dB (a 15.9 dB gain), surpassing U-Net (12.64 dB), DnCNN 
(15.28 dB), and DeepDenoiser (17.56 dB). The RMSE was reduced to 0.2286, a substantial decrease from the 
original 0.4825, representing 31.9%,

21.1%, and 18.7% lower errors than U-Net, DnCNN, and DeepDenoiser, respectively, with the smallest 
fluctuations across stations. The waveform correlation coefficient (r) reached 0.978, also superior to U-Net 
(0.893), DnCNN (0.926), and DeepDenoiser (0.937).

Qualitative results are shown in the Fig. 10. In the time domain, MSARDNet effectively suppressed strong 
noise while retaining key seismic features (P/S-wave onsets, amplitude variation patterns, waveform continuity)—
unlike U-Net (significant noise residue), DnCNN (local noise fluctuations), and DeepDenoiser (suboptimal 
balance between detail preservation and denoising). In the frequency domain, it maximally suppressed wide-
band noise, making the characteristic frequency peaks of valid 1D signals clearly distinguishable while fully 
preserving feature-band energy, outperforming benchmarks that suffered from clutter residue or indistinct 
peaks.

These results collectively confirm MSARDNet’s superior out-of-distribution generalization, robustness, and 
cross-station adaptability—holding vital value for practical seismic signal processing tasks involving distribution 
shifts or diverse station deployments.

Fig. 8.  Comparison results between different methods.  a Clean data;  b Noisy data (− 8.26 dB);  c Denoising 
result by U-Net(4.59dB);  d denoising result by DnCNN(5.18 dB);  e denoising result by DeepDenoiser (8.59 
dB);  f denoising result by MSARDNet (12.71 dB).
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Field seismic data application
One-dimensional seismic data denoising
To further verify MSARDNet’s practicality and versatility, we applied it to real seismic event data from the China 
Earthquake Networks Center (2013–2020, Diting dataset), which includes diverse signals from earthquakes of 
varying magnitudes, depths, and geological conditions.

We randomly selected 1,056 waveform samples; Table 8 shows MSARDNet improved average SNR from 8.98 
dB to 31.58 dB (71.56% enhancement). It outperformed U-Net, DnCNN, and DeepDenoiser by 15.94 dB, 12.03 
dB, and 4.83 dB respectively, confirming superior denoising performance.

Furthermore, Fig. 11 shows the original seismic signal has significant fluctuations and chaotic waveforms 
due to interference. U-Net denoising smooths it somewhat but leaves fluctuations and irregularities, suggesting 
potential detail loss. DnCNN reduces fluctuations and smoothens the waveform but retains some noise, with 
room to improve detail preservation. DeepDenoiser suppresses noise well but has irregular fluctuations and 
lost components in peak-trough transitions, which may affect precise analysis. In contrast, MSARDNet excels 
in both smoothness and detail preservation, effectively retaining valid features—critical for identifying key 
attributes like P-wave arrival times and amplitude changes. Visual comparison of denoised waveforms confirms 

Method SNR RMSE r

Noisy 5.42 0.4825 0.764

U-Net 12.64 0.3359 0.893

DnCNN 15.28 0.2897 0.926

DeepDenoiser 17.56 0.2812 0.937

MSARDNet 21.32 0.2286 0.978

Table 7.  Comparison of performance metrics across different methods on Txed Data.

 

Fig. 9.  Denoising results for different noise types:  a broadband Gaussian noise;  b baseline-drift noise;  c 
impulsive noise;  d non-stationary mixed noise. In each subfigure: (i) noisy signal; (ii)–(v) results of U-Net, 
DnCNN, DeepDenoiser, MSARDNet.
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MSARDNet’s advantages: it effectively removes complex background noise while preserving key signal features, 
with significant practical value for earthquake monitoring and analysis. Additionally, as seen in the enlarged 
view, the initial vibration direction of the P-wave processed by each denoising model is consistent with that of 
the original noisy signal, with no polarity reversal. The original signal exhibits severe fluctuations due to noise: 
U-Net leaves obvious residual fluctuations, DnCNN fails to completely suppress noise, and DeepDenoiser shows 
irregular fluctuations in the peak-trough transition regions and even suffers from partial signal loss. In contrast, 
MSARDNet can smooth out noise fluctuations while fully preserving the amplitude variation patterns and phase 
continuity of the P-wave.

Multi-channel seismic profile data denoising
To comprehensively evaluate the proposed method, this study selected a set of two-dimensional field seismic 
data for in-depth analysis to further validate the performance of MSARDNet. The dataset comprises 184 seismic 
traces, each with 500 sampling points (Fig. 12a). Figure 12b–e illustrate the denoising effects of U-Net, DnCNN, 
DeepDenoiser, and MSARDNet, respectively.

The experimental results demonstrate that MSARDNet significantly outperforms other methods in two-
dimensional seismic data denoising: its denoising results (Fig. 12e) not only markedly reduce noise interference 
compared to the original data (Fig. 12a) but also effectively preserve key seismic waveform features, whereas 
U-Net (Fig.  12b) reduces noise but still exhibits considerable residuals and less clear waveform features, 
DnCNN (Fig. 12c) shows better noise reduction in some areas but suffers from residual noise and compromised 
waveform continuity, and DeepDenoiser (Fig. 12d) improves upon U-Net and DnCNN but still has residual 

Model SNR (dB) Time (ms)

Seismic signal 8.98

U-Net 15.64 24

DnCNN 19.55 18

DeepDenoiser 26.75 9

MSARDNet 31.58 2

Table 8.  Average SNR of the four methods.

 

Fig. 10.  Results comparison of different denoising methods on seismic signals on Txed dataset.  a Time-
domain denoised signals;  b spectral results of denoised signals. In each subfigure: (i) noisy signal; (ii) U-Net; 
(iii) DnCNN; (iv) DeepDenoiser; (v) MSARDNet.
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noise in certain regions. Compared to these methods, MSARDNet efficiently separates seismic signals from 
background noise, minimizing interference while retaining important geological information. Additionally, the 
noise profile separated by MSARDNet (Fig. 12i) exhibits no strip-like or phase-continuous structural features, 
indicating that the model does not misclassify valid seismic signals as noise for filtering, in contrast to U-Net 
(Fig. 12f) and DnCNN (Fig. 12g), whose noise profiles still retain obvious event structures; while DeepDenoiser 
(Fig. 12h) visually preserves amplitude characteristics relatively well, it leaves a higher amount of residual noise.

Application in phase picking
To verify the practical value of MSARDNet-denoised data in downstream earthquake monitoring, we focused 
on phase picking (P-wave/S-wave onset phase picking, which serves as the foundation for earthquake location 
and magnitude calculation) and conducted systematic comparative experiments involving noisy signals, 
signals denoised by MSARDNet, and two current mainstream phase identification models—PhaseNet and 
EqTransformer. The experimental data consisted of the 1056 noisy signals and MSARDNet-denoised signals 
used in “Field seismic data application”. Both tools adopted pre-trained models publicly released by their 
development teams, with unified hyperparameter settings: the picking threshold was set to 0.3, and the picking 
time window was limited to ± 0.5 s. Supplementary Fig. S3 intuitively demonstrates the improvement effect of 
MSARDNet denoising on phase picking accuracy.

We used RMSE (temporal accuracy), Precision (anti-false picking), Recall (anti-missed picking), and F1-
score (comprehensive reliability) as core evaluation metrics. Results (Table 9) showed significant improvements 
in all metrics for both tools after MSARDNet denoising. For P-waves, PhaseNet’s RMSE decreased by 25.8% 
(0.31→0.23 s) and EqTransformer’s by 34.5% (0.29→0.19 s), with both reaching an F1-score of 0.94. For S-waves 

Fig. 11.  Results comparison of different denoising methods on seismic signals from the China Earthquake 
Networks Center.  a Time-domain denoised signals;  b spectral results of denoised signals. In each subfigure: 
(i) noisy signal; (ii) U-Net; (iii) DnCNN; (iv) DeepDenoiser; (v) MSARDNet.
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Model Signal type Phase RMSE(s) Precision Recall F1-score

PhaseNet
Noisy p 0.31 0.87 0.91 0.89

MSARDNet p 0.23 0.93 0.94 0.94

EqTransformer
Noisy p 0.29 0.91 0.92 0.92

MSARDNet p 0.19 0.95 0.94 0.94

PhaseNet
Noisy s 0.56 0.79 0.84 0.81

MSARDNet s 0.41 0.86 0.88 0.87

EqTransformer
Noisy s 0.52 0.84 0.85 0.84

MSARDNet s 0.36 0.88 0.89 0.89

Table 9.  Performance comparison of different signals on various phase picking tools.

 

Fig. 12.  Comparison results between different methods.  a Field data;  b denoising result by U-Net;  c 
denoising result by DnCNN;  d denoising result by DeepDenoiser;  e denoising result by MSARDNet; f–i 
represent the noise profiles corresponding to U-net, DnCNN, DeepDenoiser, and MSARDNet, respectively.
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(more noise-susceptible), PhaseNet’s RMSE dropped by 26.8% (0.56→0.41  s) and EqTransformer’s by 30.8% 
(0.52→0.36 s), alongside notable gains in Precision and Recall. The EqTransformer-MSARDNet combination 
achieved the best performance.

These findings confirm that MSARDNet’s denoising stably enhances phase picking performance for both 
tools and both P/S-waves, and its signal-quality optimization translates to downstream picking gains—providing 
critical support for the reliability of earthquake location and magnitude calculation.

Conclusion
The MSARDNet denoising model effectively removes diverse noise (broadband Gaussian, low-frequency 
baseline drift, impulsive, and non-stationary mixed noise) from seismic signals. Validated across multiple 
experiments and datasets, it shows strong robustness and denoising capabilities in complex environments—
excelling in improving SNR, reducing RMSE, and enhancing correlation coefficients. Its integration of depthwise 
separable convolutions, an improved channel attention mechanism, and the ResDC module gives it significant 
advantages in seismic denoising.

In practice, MSARDNet significantly enhances seismic signal quality by preserving valid components and 
minimizing noise interference, offering broad application prospects and practical value in seismic processing, 
with strong support for related research and practices. MSARDNet can be flexibly extended to 3D seismic data 
processing scenarios: upgrading the depthwise separable convolutions and ResDC modules to 3D structures or 
adopting a 3D patch block processing strategy enables adaptation to the spatial features of 3D data; in addition, 
the transfer learning mode based on pre-trained weights allows it to quickly adapt to new tasks such as time-
series signal denoising through small-sample fine-tuning, reducing the cost of scenario transfer.

Data availability
The Stanford Earthquake Dataset (STEAD) is a publicly available dataset that can be downloaded from the 
official website of the Stanford Earthquake Dataset. This dataset is a global seismic signal dataset specifically de-
signed for artificial intelligence. The Diting-data set is provided by China Earthquake Networks Center, National 
Earthquake Data Center. (http://data.earthquake.cn). Other relevant data can be obtained from the ​c​o​r​r​e​s​p​o​n​d​
i​n​g author upon reasonable request.
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