
Predicting the mechanical behavior 
of municipal solid waste layers in 
the Barmshour Landfill stability 
analysis
Mohammad Mehdi Mokhtari1, Amin Falamaki2 & Mahmood Vafaeian3

Slope stability is a crucial aspect of geotechnical engineering, particularly for landfills where municipal 
solid waste (MSW) layers are subjected to both static and seismic forces. This study represents the 
first application of hybrid metaheuristic–neural models to the Barmshour Landfill, introducing an 
innovative predictive framework capable of guiding real-world design, stability evaluation, and 
decision-making processes in waste management engineering. Four hybrid models—BBO-MLP, MVO-
MLP, VS-MLP, and BSA-MLP—were developed and evaluated using real data from the Barmshour 
Landfill in Shiraz, Iran. The MVO-MLP model achieved the best performance, with coefficient of 
determination (R2) values of 0.899 (training) and 0.898 (testing), and corresponding RMSEs of 77.60 
and 89.44. The results demonstrate that hybrid metaheuristic–neural models can capture complex 
slope behaviors more effectively than traditional approaches. The primary advancement of this 
research lies in its systematic comparison of multiple hybrid algorithms and their demonstration of 
robustness under variable conditions. Practically, the proposed framework provides engineers with a 
more reliable and adaptive tool for assessing landfill stability and managing geotechnical risks. These 
findings highlight the growing potential of intelligent hybrid systems to support safer and more data-
driven waste management infrastructure.
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Municipal Solid Waste refers to all the discarded materials produced by households, commercial and institutional 
establishments, and other activities within urban limits, which usually include, but are not limited to, food 
waste, paper, plastics, textiles, metals, and glass. MSW is highly heterogeneous, containing biodegradable 
and non-biodegradable components and materials that are either recyclable or reusable. Knowledge of MSW 
composition and properties is crucial to landfill designers who need to plan and design a waste containment 
system that ensures environmental safety and long-term stability. The most important properties include waste 
density, moisture content, decomposition potential, and gas generation, as these characteristics significantly 
affect landfill capacity, leachate management, gas extraction, and long-term settlement. Proper management of 
MSW is crucial for minimizing environmental impacts, including groundwater contamination and greenhouse 
gas emissions, ensuring compliance, and addressing sustainability concerns. It is important to note that burying 
rubbish in a landfill or dump site is the final functional component of MSW management1,2. This is the most 
commonly used technique for disposing of garbage. One of the main concerns in geoenvironmental engineering 
is the planning, construction, and maintenance of a safe landfill3,4. Among these issues are landfill slope collapse, 
excessive settlement, leachate leakage into the environment, improper operation of the leachate collecting 
system, and employee safety5,6. The general stability of the slopes is a key consideration when building an open 
dump site. MSW slope instability may have hazardous effects on the surrounding ecosystem and put nearby 
residents and workers at risk. Zhang et al.7 identified the primary causes of landfill instability by reviewing 
landfill slope instability data from 22 different counties over the past 40 years. High leachate levels, poor MSW 
compaction, limited foundation bearing capacity, low shear strength of the liner–MSW interface, and the rapid 
release and consequent deflagration of landfill gas were among these causes.

Conventional landfill construction methods, in which waste is unloaded and leveled by trucks and 
construction vehicles with minimal supervision, have several significant disadvantages, especially regarding 
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slope stability. One primary concern is the lack of control over the compaction of waste materials. Without 
proper monitoring or compaction techniques, waste may settle unevenly, leading to weak or unstable areas that 
can compromise the landfill’s overall integrity8. Inadequate compaction and poor distribution of waste increase 
the risk of slope failures, which may result in landslides, particularly if the landfill’s slopes exceed critical angles 
or contain organic or liquid-rich materials that weaken the structure9. Additionally, the conventional approach 
often lacks a detailed geotechnical investigation or ongoing monitoring of the landfill’s physical properties. 
This absence of oversight can lead to long-term instability, affecting the surrounding environment and public 
safety. The absence of advanced monitoring also hinders the detection of early signs of potential hazards, such as 
excessive leachate generation or methane emissions, which are critical in preventing further degradation of the 
landfill and surrounding land.

On the other hand, new technologies in landfill construction, such as advanced compaction techniques, 
geotechnical monitoring systems, and engineered slopes, offer numerous benefits over traditional methods. One 
of the primary advantages is the ability to monitor and control waste compaction more precisely10. Techniques such 
as geosynthetics, compaction aids, and real-time monitoring ensure waste is evenly distributed and compacted 
to the required densities, significantly enhancing slope stability and reducing the risk of landslides. This is 
particularly important in sites with challenging geological conditions or high waste volumes. Furthermore, new 
technologies enable better monitoring of landfill behavior over time. Geotechnical sensors, such as piezometers, 
inclinometers, and ground-penetrating radar, can detect potential shifts in the waste mass, subsidence, or slope 
movements before they become critical. This proactive approach enables operators to manage the landfill more 
effectively and prevent hazardous situations. Enhanced data analytics and machine learning can predict long-
term settlement and stability trends, enabling more informed planning for both construction and closure phases. 
Additionally, advanced materials such as geotextiles and geomembranes help contain leachate and methane, 
thereby improving both environmental safety and the landfill’s lifespan.

Landfill slope stability has been commonly examined by combining limit-equilibrium-based techniques, 
numerical methods, and back analysis of failed slopes under static and dynamic loading conditions. Limit 
equilibrium methods are widely used due to their simplicity and the ability to model failure mechanisms 
through a factor-of-safety calculation for assumed failure surfaces11. However, they often rely on simplifying 
assumptions. Numerical techniques, such as the finite element or finite difference methods, can provide much 
more detail by simulating stress-strain behavior and capturing the complex interactions among landfill waste, 
liners, and soil. These are particularly useful in assessing stability under seismic or dynamic conditions. On the 
other hand, a back analysis of failed slopes would allow the exact causes of failure to be ascertained by rebuilding 
up to the point of failure, thereby improving data on parameters and ensuring the validity of the models. These 
techniques, when combined, contribute to a comprehensive approach for ensuring structural stability in landfills 
and slopes2,12. Gunarathne et al.13 categorized landfill failures into two types: uncontrolled/open landfills and 
engineered/sanitary landfills. Jahanfar14 examined failed open dumps and found that the absence of a cover layer 
to prevent rainwater penetration and a lack of compaction led to failure predominantly as flow slides in the MSW 
body. In this regard, the shear behavior of MSW materials is one of the most important issues related to landfill 
site design, as it directly controls slope stability under both static and seismic loading conditions. In addition, the 
critical nature of the heterogeneous MSW composition, which modifies regional waste profiles due to climate 
and operational practices, results in significant variability within the Mohr-Coulomb shear strength parameters: 
cohesion, c, and the internal friction angle, Φ15. These parameters essentially control the shear resistance of 
the material and are a basic input for stability analyses. The presence of multiple testing methodologies further 
adds to the complexity of standardization; thus, a site-specific characterization study becomes imperative for a 
designer to adopt, by realistically applying back analysis to obtain in-situ shear behavior. This variability is of 
special significance in seismic assessments because MSW response to dynamic impulses differs significantly 
from that of conventional soil and may behave differently under earthquake conditions that affect slope 
stability2,16. These differences have prompted researchers to examine the shear strength behavior of MSW 
while considering the following variables: age, composition and breakdown, loading rate, confining pressure, 
stress route, waste temperature, and variations in test technique and equipment. The shear strength behavior of 
municipal solid waste is complicated by its heterogeneity, which is influenced by waste composition, degradation 
stage, and operating conditions. MSW usually exhibits shear strength which can be defined by Mohr-Coulomb 
parameters: cohesion, c, and internal friction angle, Φ17. These parameters are highly variable: Φ typically lies 
between 20° and 40°, while cohesion may range from 5 to 25 kPa depending on waste density, moisture content, 
and compaction. Biodegradation alters the mechanical properties of MSW with time, which may result in a 
loss of shear strength due to settlement and/or changes in material composition18. This non-linear stress-strain 
behavior, combined with time-dependent characteristics, makes MSW particularly challenging for stability 
analysis and is often subjected to dynamic loading during earthquakes. This assessment typically requires site-
specific testing and back analysis to account for localized conditions, ensuring the appropriate design of landfill 
slopes. Notably, the shear strength of MSW varies significantly with age due to various physical, chemical, and 
biological processes, including biodegradation. In younger MSW (less than 5 years old), the material is primarily 
constituted of fresh, undecomposed waste with higher organic content, leading to relatively higher cohesion due 
to binding from fibrous materials and moisture18. The internal friction angle exhibits a similar trend—a medium 
value of around Φ lies between 25° and 30°, depending on its density and particle interlocking. Still, with fast 
settling and particle decomposition, the mechanical behavior undergoes significant changes. In intermediate-
aged MSW (e.g., material in the 5- to 10-year range), active decomposition processes break down organics 
and reduce cohesion as the binding materials decompose. Friction angles may be somewhat higher, typically 
around 30°–35°, reflecting a much larger proportion of inorganic fractions, which consist of plastics and inert 
materials, providing increased resistance to shear. Settlement rates slow but continue to increase significantly, 
and overall, properties have somewhat stabilized relative to the younger MSW. Lastly, most organic matter has 

Scientific Reports |         (2026) 16:3683 2| https://doi.org/10.1038/s41598-025-32644-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


been decomposed in older MSW (over 10 years), and mainly inert materials are left. Cohesion is still very low 
due to the loss of the organic binding agents. Still, the friction angle is increased, often above 35°, because of long-
term densification and compaction effects. Increased stability relates to a decrease in the changes concerning 
decomposition; therefore, this MSW becomes more predictable in shear strength for engineering purposes.

Slope stability analysis is crucial in geotechnical engineering to ensure the safety and functionality of earth 
structures, such as landfills, embankments, dams, and slopes. Catastrophic failures, environmental harm, and 
large financial losses can all result from instability5,19. Material characteristics, geometry, groundwater conditions, 
and seismic activity are some variables that affect slope stability. Even though they are fundamental, traditional 
deterministic techniques sometimes struggle to account for uncertainties in these parameters, particularly 
in complex loading situations such as seismic occurrences20. Previous studies have applied conventional AI/
ML models such as support vector machines, decision trees, and standard neural networks to slope stability 
analysis; however, this work advances the field by integrating metaheuristic–neural network hybrids, which 
offer improved accuracy and robustness in capturing complex geotechnical behaviors21,22. Kumar et al.23 applied 
advanced neural network models (DNN, CNN, and RNN) trained on 3D slope stability data from the Mount 
St. Helens case, demonstrating that DNN achieved the highest predictive accuracy (R2 = 0.999 training; 0.997 
testing) for factor of safety estimation under both seismic and non-seismic conditions. Kumar et al.24 employed 
the generalized Hoek–Brown criterion to develop stability charts for rock slopes (27 m height) under static and 
seismic conditions, revealing that the factor of safety decreases with increasing dimensionless stress parameters 
and that failure mode transitions from base to toe with steeper slope angles. Kumar et al.25 applied advanced 
machine learning models (XGBoost, RF, GBM, and deep learning) to predict the bearing capacity of pre-bored 
grouted planted nodular piles using 81 Vietnamese case histories, showing that XGBoost achieved the highest 
accuracy (R2 = 0.91) and can effectively support safe and economical pile design. Tiwari and Das26 demonstrate 
the use of machine learning and explainable AI techniques to reliably classify soil liquefaction susceptibility 
from field data, with boosting-based ensemble models achieving high accuracy and SHAP/LIME providing 
interpretable insights into key geotechnical factors such as groundwater level and peak ground acceleration. 
Tiwari et al.27 apply ensemble machine learning algorithms, including XGBoost, Bagging, and Random Forest, 
to predict soil liquefaction susceptibility from unbalanced in-situ test datasets, highlighting key soil and seismic 
parameters and providing an interpretable GUI for practical geotechnical applications. The prediction of bearing 
capacity in pile foundations has traditionally relied on empirical methods and geotechnical testing, which 
often lack precision under varying soil conditions. Recent studies have explored deep learning approaches, 
demonstrating improved accuracy by leveraging large datasets and complex nonlinear relationships to model 
pile-soil interactions effectively28.

In contrast, reliability-based design for strip footings under inclined loading has historically depended 
on deterministic methods, often overlooking uncertainties in soil properties and loading conditions. Recent 
research has advanced this field by employing hybrid Least Squares Support Vector Machine (LSSVM) machine 
learning models, which integrate optimization techniques to enhance prediction accuracy and account for 
probabilistic variations in geotechnical design29. In a separate study, fly ash (FA)-based high-strength concrete 
(HSC) offers environmental benefits and improved performance as a substitute for Portland cement, although 
its design is complex due to variables such as fly ash percentage, water content, and superplasticizer dosage. 
This study developed a predictive tool using six AI models, with the Deep Neural Network (DNN) excelling 
(R2 = 0.89, VAF = 88.3%, RMSE = 0.06, RSR = 0.31), providing reliable compressive strength predictions and 
promoting sustainable, cost-efficient mix designs30.

Although they need computationally demanding analysis techniques, probabilistic approaches have improved 
risk quantification. Metaheuristic optimization has become a powerful alternative for addressing complex 
engineering problems31,32. These algorithms effectively search and exploit the solution space by mimicking natural 
processes such as biological evolution, swarm intelligence, or physical phenomena33. Metaheuristics are versatile, 
do not require derivative knowledge, and can efficiently handle nonlinear, multi-modal problems in contrast to 
conventional optimization techniques34. By adjusting crucial factors, metaheuristics in slope stability analysis 
can adjust the Factor of Safety (FS) or settlement, resulting in more accurate and effective forecasts under various 
conditions. Strong tools for investigating global optima in nonlinear, multi-modal FS optimization problems are 
provided by metaheuristic algorithms such as Biogeography-Based Optimization (BBO), Backtracking Search 
Optimization Algorithm (BSA), Multi-verse Optimization (MVO), and Vortex Search Algorithm (VS), which 
improve prediction accuracy. This paper aims to integrate modern metaheuristic optimization techniques to 
improve the efficiency and dependability of slope stability assessments for the Barmshour Landfill. Four cutting-
edge algorithms—Biogeography-Based Optimization (BBO), Backtracking Search Optimization Algorithm 
(BSA), Multi-verse Optimization (MVO), and Vortex Search (VS)—are implemented using data from the 
original study in order to estimate the maximum settlement on landfill slopes. Applying these metaheuristic 
techniques to a real-world geotechnical problem and providing a comparative evaluation of how well they handle 
intricate, probabilistic scenarios is what makes this study innovative. In addition to addressing the drawbacks 
of conventional methods, this novel methodology offers a strong foundation for next slope stability research in 
unpredictable settings.

Methodology
Case study
The Barmshour Landfill, located near Shiraz, Iran, has been the subject of studies examining its environmental 
impacts and slope stability. The landfill’s design incorporates various engineering measures to address the 
concerns of static and seismic slope stability. Research has included probabilistic analyses of the landfill’s 
performance under static conditions and seismic loading. The study emphasizes that an accurate assessment of 
the shear strength characteristics of MSW is critical for evaluating slope stability in such sites. One significant 
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challenge for the landfill is the heterogeneity of MSW, which complicates the determination of accurate strength 
parameters. In 2013, a slope failure occurred in a portion of the landfill35. Recently, a designed cell including 
geosynthetics and a leachate and gas collecting system was added to the landfill.

MSW mechanical properties
The values of E and φ used in the PLAXIS 2D simulations were calibrated based on the reported geomechanical 
properties from Table 1. These MSW properties are adjusted to reflect the actual in-situ conditions of the 
Barmshour Landfill, as previously studied by Falamaki et al.2. Indeed, Table 1 classifies the most common MSW 
material properties according to MSW age, which has been divided into three categories: (i) Young (< 5 years), (ii) 
Intermediate (5–10 years), and (iii) Old (> 10 years). The following mechanical parameters are included: Young’s 
Modulus (E), Cohesion Strength (C), Internal Friction Angle (φ), and Poisson’s Ratio. For the > 10-year-old 
waste, Young’s Modulus increases considerably to 15,000–30,000 kPa, representing increased stiffness compared 
with the young MSW, which has a modulus of only 1000–5000 kPa. Cohesion strength also increased with age, 
from 5 to 10 kPa for young waste to 15–25 kPa for old waste, though 20 kPa is generally assumed. Consequently, 
the internal friction angle varies from 21° to 25° in the case of young waste to 30°–35° in old waste. This suggests 
that MSW shear resistance increases due to decomposition and compaction. Poisson’s ratio measures the lateral 
strain within the range of 0.2–0.3 for the old waste, which is lower than the lateral deformation ranging from 0.3 
to 0.35 for the young waste. These trends indicate the influence of waste age on material behavior, such as greater 
stability and higher mechanical strength for older MSW, resulting from physical and chemical transformations 
over time. The data is paramount for assessing stability in landfills and slope design Table 1). To check the 
validity of the data, several laboratory soil tests (samples taken from Barmshor landfill), along with images of 
sample preparation and laboratory procedures, are provided in Figs. A1 and A2 of the supplementary material 
to give readers the necessary details for reproducibility.

  
In this study, the dataset for the Barmshour Landfill was split into training and testing sets using a 70:30 ratio, 

ensuring robust model evaluation. Before splitting, data normalization was performed using min-max scaling 
to transform values into a [0, 1] range, addressing the varying scales of MSW properties and force-displacement 
data. This standardization enhances model convergence and performance. A 70:30 split was applied randomly to 
maintain representativeness, with 70% used to train models such as MVO-MLP and BSAMLP and 30% reserved 
for unbiased testing to validate predictive accuracy.

During the finite element method (FEM) analysis, the software exhibited numerical instability when 
cohesion (c) values below 20  kPa (approximately 0.2  kg/cm2) were assigned to the MSW material model. 
Below this threshold, the solution process failed to converge under the applied loading conditions required to 
simulate settlement behavior. This limitation is related to the lower bound of shear strength that the solver can 
accommodate while maintaining equilibrium and avoiding singularities in the stiffness matrix. Consequently, a 
cohesion value of 20 kPa was adopted as the minimum feasible value for all numerical simulations. To contextualize 
the magnitude of this cohesion value, it is essential to note that 20 kPa corresponds to approximately 0.2 kg/
cm2, which is remarkably small when compared to typical structural materials. For instance, even low-strength 
concrete exhibits a compressive yield strength (fy) of approximately 210 kg/cm2, while higher-strength concrete 

MSW age Young’s modulus E (kPa) Cohesion strength (C) Internal friction angle (ϕ) Poisson’s ratio

Old (> 10 years) 15,000–30,000 15–25 (taken 20 kPa) 30–35 0.2–0.3

Intermediate (5–10 years) 5000–15,000 10–15 (taken 20 kPa) 25–30 0.3

Young (< 5 years) 1000–5000 5–10 (taken 20 kPa) 21–25 0.3–0.35

Table 1.  Suggested MSW material properties versus MSW age (compiled based on literature and comparative 
modeling studies)36–38.

 

Fig. 1.  The view of the Barmshour Landfill (a) top view taken from Falamaki et al.2, (b) 2025.
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can exceed 1000  kg/cm2. Thus, the chosen cohesion value represents an extremely weak bonding condition 
within the waste mass—several orders of magnitude lower than that of engineered materials—yet sufficient 
to maintain numerical stability in the FEM solver. This comparison highlights that the adopted cohesion does 
not artificially stiffen the model or exaggerate shear resistance; rather, it provides a physically reasonable and 
computationally stable lower bound for the waste material under study. Because the FEM software could not 
stably process lower cohesion values, it was not possible to conduct a meaningful parametric investigation of the 
influence of c within this study. Therefore, c = 20 kPa was treated as a constant throughout all analyses. At the 
same time, other parameters (such as the internal friction angle, unit weight of waste, and geometry) were varied 
to evaluate their relative influence on deformation and stability. Future work could address this limitation by 
employing advanced constitutive models or customized numerical implementations capable of handling lower 
shear-strength thresholds, thereby enabling a more detailed assessment of cohesion variability in heterogeneous 
MSW materials.

Numerical simulation
The finite element method (FEM) simulations for the Barmshour Landfill stability analysis were conducted using 
PLAXIS 2D software (Version 8.5), a robust geotechnical tool for modeling complex soil-structure interactions. 
The model simulates a 2D cross-section of the landfill slope (as depicted in Fig. 2), incorporating the addition of 
two new MSW layers (each 10 m thick) on top of existing waste, under both static and seismic loading conditions. 
The domain spans 180 m horizontally and 60 m vertically, with a slope inclination of 1:3 (vertical: horizontal) to 
replicate the site-specific geometry. The mesh employs a 15-node triangular element type with medium density 
(approximately 5000 elements, refined to 0.5 m near the crest and interfaces) to achieve convergence while 
balancing computational efficiency. A sensitivity analysis confirmed that further refinement beyond this density 
yielded < 1% change in displacement outputs. The constitutive model adopted for MSW layers is the Mohr-
Coulomb (MC) criterion, suitable for granular-like waste behavior under undrained conditions, capturing shear 
strength via cohesion (c), friction angle (φ), and dilation angle (ψ = 0°). This choice aligns with the literature for 
MSW, where hyperbolic models, such as Hardening Soil, were deemed overly complex for preliminary stability 
assessments without extensive triaxial data. Underlying soil layers (assumed to be clayey) also utilize MC, with 
drained parameters derived from site borings. Drainage conditions are modeled as undrained during rapid 
seismic events (total pore pressure buildup) and partially drained for static loading (permeability k = 10−7 m/s 
vertically, 10−8 m/s horizontally). Boundary conditions include fixed horizontal displacements at the base and 
the left/right sides (roller supports), with vertical fixation only at the base to simulate a semi-infinite domain. 
Material properties for MSW layers, categorized by age (Young: < 5 years; Intermediate: 5–10 years; Old: >10 
years), are compiled from literature33–35 and validated via laboratory tests on Barmshour samples (detailed in 
Supplementary Fig. A1). Unit weights (γ) reflect compaction: 12–16 kN/m2 for young waste, increasing with 
age due to decomposition. Cohesion and friction angles increase with age, enhancing shear resistance, while 
Poisson’s ratio (ν) decreases, indicating reduced lateral deformability in older waste. Table 2 summarizes these 
properties, including MC-specific inputs like dilation angle and permeability. Seismic loading applies a pseudo-
static acceleration of 0.3 g (site-specific PGA from Iranian seismic zoning), factored into horizontal forces at the 
crest. Static analysis precedes seismic analysis via a staged construction sequence: excavation, layer placement 

Fig. 2.  Simulation of the Barmshour Landfill section with the addition of two new MSW layers (each load 
10 m).
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(labeled 1–16 in Fig. 2), and loading. Safety factors were computed using the φ-c reduction method, targeting a 
factor of safety (FOS) greater than 1.3 for stability. This setup ensures reproducibility, with input files available 
upon request. The MC model’s simplicity facilitates the integration of hybrid AI for parameter optimization, as 
explored in subsequent sections. The study further explores the impact of two new MSW surcharges, each 10 m 
high, on the landfill’s stability (Fig. 2). PLAXIS 2D excels at modeling such scenarios, offering precise simulation 
of nonlinear material behavior, stress-strain relationships, and layer interactions. Its advanced constitutive 
models accurately represent MSW heterogeneity, enabling a detailed understanding of slope stability under 
dynamic conditions and varying mechanical properties.

The finite element modeling (FEM) of the Barmshour Landfill was conducted using PLAXIS 2D (Version 
8.5) to simulate the mechanical behavior of MSW layers under surcharge loading, providing the foundation for 
our hybrid AI predictive framework. A total of 58 distinct slope configurations were modeled, each reflecting 
variations in MSW layer properties based on age categories outlined in Table 1 (e.g., Young: < 5 years, E = 
1000–5000 kPa, φ = 21–25°; Intermediate: 5–10 years, E = 5000–15000 kPa, φ = 25°–30°; Old: >10 years, E 
= 15,000–30,000 kPa, φ = 30°–35°). These properties, including Young’s Modulus (E), cohesion (c), friction 
angle (φ), Poisson’s ratio (ν), and permeability, were calibrated using a combination of empirical data from 
borehole samples and laboratory tests (Supplementary Fig. A1) and theoretical ranges from literature33–35. Each 
simulation incorporated the Mohr-Coulomb criterion, with a 15-node triangular mesh (medium density, ~ 
5000 elements) and undrained drainage conditions to capture pre-failure settlement under new surcharge loads 
applied to two 10 m MSW layers (Fig. 2). Boundary conditions included fixed horizontal displacements at the 
base and roller supports on vertical sides, with seismic loading simulated at 0.3 g. The input variables for each 
of the 58 slopes included layer thickness (10 m), unit weight (12–16 kN/m2), and geomechanical parameters, 
as listed in Table 1, with surcharge loads incrementally applied to record settlement responses. Settlement data, 
collected at points A, B, and C (shown in Fig. 2), were recorded after the surcharge application, ensuring that 
measurements reflected high displacement scenarios just before failure—a critical focus of this study. This 
process generated a comprehensive database that aggregated settlement outcomes across all configurations. The 
sampling method systematically varied MSW properties within defined ranges, with field observations used to 
validate representativeness. For model training and testing, the dataset was split at a fixed 70:30 ratio, with 70% 
allocated to the training set and 30% to the testing set. This split was applied after min-max normalization to 
a [0, 1] range, enhancing model convergence. The training set informed the optimization of hybrid AI models 
(e.g., MVO-MLP, BSAMLP), while the testing set validated performance (e.g., R2 = 0.899, RMSE = 77.60 mm), as 
detailed later in Figs. 15 and 18. This methodology aligns with our objective of predicting pre-failure settlement, 
supported by an extensive simulation framework.

Artificial intelligence computation
The goal of combining machine learning methods, such as the Multilayer Perceptron (MLP), with algorithms 
inspired by nature is to optimize the model’s parameters for the best possible performance on the provided 
dataset. In machine learning, selecting the appropriate hyperparameters (such as the learning rate, number of 
neurons, and number of hidden layers in neural networks) significantly influences a model’s performance. Nature-
inspired algorithms simulate biological development, swarm behavior, or natural phenomena to solve complex 
optimization problems. Algorithms inspired by nature effectively search the hyperparameter space to find 
optimal configurations that reduce errors and increase accuracy. However, issues require further investigation, 
such as computational demand and sensitivity to algorithmic factors. Nature-inspired algorithms offer a more 
effective and insightful search method. Biogeography-Based Optimization (BBO), Multiverse Optimizer (MVO), 
Vortex Search (VS), and Backtracking Search Optimization Algorithm (BSA) are examples of nature-inspired 

Algorithm Hyperparameter Value/range Description/reference

BBO-MLP

Habitat size 50–500 Population size (common in BBO literature)

Mutation probability 0.01 Typical value from BBO optimization studies

Migration probability 0.7 Standard exploration–exploitation balance

Number of generations 1000 Sufficient for convergence in preliminary tests

MVO-MLP

Universe size 50–500 Population size

Wormhole existence probability (WEP) 0.8 Controls exploitation intensity

Traveling distance rate (TDR) 1 Standard recommended value

Number of iterations 1000 Ensures convergence

VS-MLP

Swarm size 50–500 Population size for the algorithm

Social coefficient (c1) 1.5 Guides individual versus social learning

Cognitive coefficient (c2) 1.5 Standard for VS optimization

Max iterations 1000 Convergence criteria

BSA-MLP

Population size 50–500 Standard value in BSA applications

Step size 0.1 Controls search granularity

Visual parameter 0.2 Determines neighborhood visibility

Iterations 1000 Ensures convergence of the search

Table 2.  Hyperparameter settings for hybrid metaheuristic–MLP models.
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algorithms that help machine learning models, particularly complex ones such as neural networks, avoid being 
trapped in local minima during training. These algorithms incorporate stochastic features that direct the search 
process towards better solutions. One of the main advantages of nature-inspired algorithms is their ability to 
balance exploration (searching through a wide range of feasible responses) and exploitation (fine-tuning the 
best-recognized solutions). This is particularly helpful for improving machine learning models, as excessive 
exploration can result in poor generalization, while excessive exploitation can lead to overfitting. To ensure that 
only the most important characteristics are included in the machine learning model, feature selection can also be 
performed using techniques inspired by nature. They can also change the weights of neural networks and other 
machine learning models to enhance model performance. The cutting-edge field of machine learning in artificial 
intelligence focuses on developing models and techniques that enable computers to learn from data and perform 
better without explicit programming39. The foundation of machine learning is a system’s ability to recognize 
patterns, predict outcomes, and extract knowledge from vast and complex datasets. This interdisciplinary area 
combines concepts from mathematics, statistics, and computer science to develop self-learning algorithms that 
are responsive to new data. While unsupervised learning seeks patterns in unlabeled data, supervised learning 
utilizes annotated datasets to train models. Reinforcement learning emphasizes trial-and-error learning for 
dynamic decision-making. Numerous sectors utilize machine learning, including banking, natural language 
processing, image and video recognition, medical diagnostics, and predictive analytics.

Multilayer perceptron (MLP)
The prediction of slope behavior in this study was evaluated using a single-layered feedforward neural network 
from the Matlab ANN Toolbox. The Levenberg-Marquardt method from the Matlab ANN Toolbox was used 
to train the ANN network. An artificial neural network (ANN) consists of an input layer, a hidden layer with 
a sigmoid activation function, and an output layer with a linear output function. Using random initialization 
improved the accuracy. The sigmoid transfer function of the buried layer can be used to handle nonlinear 
data. The outcome is between 0 and 1 after the input, which spans from plus to negative infinity, has been 
compressed40. Equation (1) displays the sigmoid’s activation function:

	 f (x) = 1/(1 + exp−x)� (1)

While the input neurons monitored the data as it changed, the output neurons computed the energy consumed. 
The optimal model structure was obtained by increasing the number of hidden neurons from 1 to 10. 30% or 
70% of the entire data set was used to produce training and test data sets. The network determines the most cost-
effective weights during training. The model iteration that best fit the data was identified using a cost function 
method. The training was stopped after the error reduction failed six times to avoid overfitting. McCulloch 
and Pitts41 were the first to propose the concept of an ANN. Because ANNs may map parameters nonlinearly, 
researchers have proposed a variety of architectures for different application scenarios. The Multilayer Perceptron 
(MLP) is the most commonly used form of the artificial neural network due to its high representational capacity, 
flexible construction, and ability to handle large datasets42. MLPs are often referred to as feedforward neural 
networks or generic approximators because they are trained using backpropagation43. They can anticipate almost 
any input-output method thanks to their “neurons,” which serve as processing units. The full MLP structure 
used in this study is illustrated in Fig. 3a, comprising three distinct layers: an input layer, a hidden layer, and 
an output layer. Strong neural connections exist between adjacent layers44. For the current study, the optimized 
MLP structure was found to be 10 × 4 × 1 (Fig. 3a). The prediction performance (output) of the proposed 
optimized MLP structure and the best validation performance for the proposed MLP (5402.86 at epoch 18) are 
also illustrated in Fig. 3b and c, repectively.

Development of hybrid metaheuristic algorithms (training MLP)
The hybridization of metaheuristic algorithms for training MLPs enables combining the strengths of multiple 
optimization techniques to overcome drawbacks, including entrapment in local optima, slow convergence, 
and high computational costs. Genetic algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony 
Optimization (ACO) are often hybridized with other methods, such as SA or DE, to exploit their complementary 
strengths. These hybrids enable better exploration and exploitation of the search space, resulting in improved 
weight and bias optimization in MLPs. For instance, the fast convergence of PSO can be combined with DE’s 
robustness against stagnation to ensure that global optima are reached efficiently. By embedding metaheuristics 
with gradient-based fine-tuning, such as backpropagation, hybrid methods precisely make adjustments after 
global exploration, thereby combining global search efficiency with local refinement.

Additionally, such algorithms can adaptively adjust learning parameters and scale to complex, high-
dimensional data, thereby improving the MLP’s performance in both classification and regression tasks. Their 
parallelizability further accelerates convergence, making hybrid metaheuristics especially well-suited for large 
datasets and real-time applications. Thus, hybrid metaheuristics represent a powerful and flexible framework for 
optimizing MLPs and effectively addressing computational and accuracy-related challenges in diverse machine-
learning contexts.

In this sense, since metaheuristic algorithms effectively enhance traditional predictive models, five recently 
developed algorithms are utilized for MLP. To find the best answer to a specific problem, various search algorithms, 
including Biogeography-Based Optimization (BBO), Multiverse Optimizer (MVO), Vortex Search (VS), and 
Backtracking Search Optimization Algorithm (BSA), are investigated. The methods aim to determine the optimal 
weights and biases for the network using a cost function, given a typical multilayer parity problem. Standard 
deviations, mean square error, R2, and mean absolute error are the loss functions used to evaluate prediction 
accuracy. In constructing the hybrid metaheuristic–MLP models (BBO-MLP, MVO-MLP, VS-MLP, and BSA-
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MLP), a consistent network architecture was employed, consisting of a single hidden layer with six neurons and 
a Sigmoid activation function. Each model was trained for 1000 iterations to ensure stable convergence. The 
metaheuristic algorithms controlled the optimization of MLP weights and biases, with population sizes ranging 
from 50 to 500, depending on the specific algorithm and experiment. For example, the MVO-MLP achieved 
its best performance at a population size of 350, while other models showed comparable stability at slightly 
different population settings. Other hyperparameters, such as the learning rate and stopping criteria, were kept 
constant across models to maintain comparability. These settings were selected based on preliminary tuning 
and prior experience reported in related studies, providing a balance between computational efficiency and 
prediction accuracy. The overall methodological framework adopted in this study is summarized in Fig. 4. The 
workflow begins with the collection and organization of input parameters representing the mechanical behavior 
of MSW layers, including age, Young’s modulus, cohesion, internal friction angle, and Poisson’s ratio. These 
parameters were compiled into a structured dataset through field data and simulation results. The prepared 
data were divided into training and testing subsets and subsequently processed using a hybrid modeling 
approach. The Artificial Neural Network (ANN) served as the base model, which was optimized through four 
metaheuristic algorithms—Biogeography-Based Optimization (BBO), Backtracking Search Optimization 
(BSA), Multi-Verse Optimization (MVO), and Vortex Search (VS)—resulting in four hybrid models (BBO-MLP, 
BSA-MLP, MVO-MLP, and VSA-MLP). The performance of each model was rigorously assessed using statistical 
accuracy indicators, including the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient 

Fig. 3.  An example showing how the MLP algorithm works.
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of determination (R2), and Mean Squared Error (MSE). This comprehensive framework ensures a transparent 
workflow from data preparation to model validation, highlighting the systematic integration of metaheuristic 
optimization in slope stability prediction.

Biogeography-based optimization (BBO)
Biogeography-based Optimization (BBO)45 is a recently developed evolutionary algorithm inspired by the natural 
migration and distribution of species across different habitats. In BBO, each habitat is treated as a solution to an 
optimization problem and has a *habitat suitability index* (HSI) that represents the quality of that solution. The 
high-HSI habitats share their good features, akin to genes, with low-HSI ones through a migration mechanism. 
The low HSI habitats are more likely to accept features of immigration, while the high HSI habitats are more 
likely to exhibit features of emigration. Mutation introduces diversity into the solutions by randomly changing 
them, preventing early convergence. The balance between migration and mutation enables the algorithm to 
explore and exploit the search space efficiently. Combined with multilayer perceptrons, BBO can optimize the 
network’s weights and biases to overcome the well-known drawbacks of traditional gradient-based methods, 
such as entrapment in local optima and slow convergence. This is due to the migration mechanism, which allows 
the algorithm to explore the weight space more efficiently and find a better global optimum for the MLP.

Additionally, the mutation operator enhances solution diversity and prevents overfitting, thereby making 
the model less sensitive to noisy and complex datasets. This hybridization goes further by incorporating 
backpropagation for fine-tuning after BBO optimization. While BBO focuses on global exploration, 
backpropagation refines the solution locally by minimizing the gradient of the error. The synergy of BBO with 
gradient-based learning combines global search with precise local adjustments, making it highly effective for 
training MLPs. In particular, this combination exhibits excellent performance in applications involving high-
dimensional, nonlinear data, for which most conventional training methods have failed. Additionally, due to 
BBO’s parallelizable structure, computation is accelerated, enabling efficient training of large-scale MLPs. Thus, 
BBO offers a powerful and flexible methodology that can enhance the overall performance of MLPs across a 
wide range of machine-learning applications.

Multiverse optimizer (MVO)
The Multiverse Optimizer (MVO), presented by Mirjalili et al.46, is a recently developed metaheuristic algorithm 
inspired by cosmology, particularly multiverse theory. In the universe of MVO, the candidate solution is a 
universe, and its quality corresponds to its inflation rate. Higher-quality universes attract resources from lower-
quality ones. MVO uses mechanisms such as white holes, black holes, and wormholes to balance exploration 
and exploitation. White holes enable high-quality universes to share their features, whereas black holes eliminate 
poor features, while wormholes introduce random changes, thereby boosting diversity and avoiding local 
optima. MVO, coupled with MLP, optimizes the weights and biases by effectively exploring the weight space 
and overcoming local minima during training. The randomness in the wormhole provides immunity against 
overfitting and improves results for nonlinear datasets. Hybridizing MVO with a backpropagation algorithm 
enables MVO to find a near-optimal setting globally, while backpropagation fine-tunes that solution locally 
for better accuracy and convergence speed. Optimally performing MVOs serve admirably for a wide range 
of large-scale, high-dimensional tasks, such as classification and time series prediction. Inherently, MVO’s 

Fig. 4.  Research workflow for the Barmshour Landfill slope stability prediction framework.
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parallelizability makes it well-suited for resource-intensive application areas. This combination of exploration, 
exploitation, and fine-graining brings more effective training of multilayer perceptron models.

The multiverse hypothesis posits that multiple Big Bangs have created the universe. The wheel mechanism 
for transporting universe products and the wormhole (white/black) tunnels connecting two universes are 
mathematically modeled. A roulette wheel selects the universe with the greatest inflation rate to have a white 
hole after each repeat, after which the inflation rates of the universes are evaluated. The MVO model may be 
described mathematically as follows:

Think about the following:

	

u =




x1
1 x2

1 · · · xd
1

x1
2 x2
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If n is the total number of universes (possible solutions) and n is the total number of parameters (variables), then:

	
xj
k =

{
xj
k r1 < NI (ui)

xj
i r1 ≥ NI (ui)

� (3)

If r1 consists of an integer from 0 to 1, then ui is the i-th universe NI (ui)is the i-th universe’s normalized 
inflation rate, and xj

i  is the i-th world’s j-th parameter.
If one world is connected to the best universe via a wormhole tunnel, the way to get there is as follows:

	
xj
i =

{ {
xj + TDR + ((ubj − lbj) ∗ r4 + lbj) if r3 < 0.5
xj − TDR + ((ubj − lbj) ∗ r4 + lbj) if r3 ≥ 0.5 r2 < WEP

xj
i r2 ≥ WEP

� (4)

The lower and upper bounds of the j-th variable are represented by lbj, and the j-th parameter of the best 
universe by xj. TDR and WEP stand for the worm existence probability and traveling distance rate, respectively, 
and r2, r3, and r4 are random values between [0, 1]. The WEP and TDR formulae are as follows:

	
WEP = MIN + l ×

(max − min
L

)
� (5)

	
TDR = 1 − l1/p

L1/p
� (6)

The lowest and highest values are represented by min and max, which are set at 0.2 and 1, respectively; the 
maximum number of iterations that may be carried out is indicated by L; and the exploitation accuracy over 
iterations is shown by p, which is set at 6. In this case, l represents the iteration that is now being carried out. The 
research has a maximum of 500 iterations with 30 universes.

Vortex search (VS)
Based on a single solution, Doğan and Ölmez48 developed Visual Studio. The variable interval (step) size 
phenomenon, which significantly enhances the efficacy of the search mechanism, distinguishes the VS 
algorithm. The VS algorithm software considers both weak and strong localities within a neighborhood for the 
best outcome. Additionally, the algorithm nearly reaches the optimal point when it reacts to the revised solution 
in an exploitative (strong locality) way to get the best outcome. Therefore, the necessary radius decreases as 
the number of iterations increases. The VS approach deterministically produces a solution that converges to 
the global optimization point within the given lower and higher restrictions. The best design for the analog 
filter group delay and an analog active filter component has been chosen after performance evaluation using 
the VS technique47. When employing the Vortex Search Optimization (VSO) technique, strong and weak areas 
substantially impact the effectiveness and usefulness of optimal solutions. Weak and strong locations indicate 
little and significant modifications to the present response. In contrast, a strong locality is required after the 
optimization technique effectively converges on the most optimal solution; a weak locality is needed at the start 
of the search process. The key phases of the VS algorithm search are the radius reduction strategy, candidate 
solutions, current solution substitution, and primary estimation (VS initialization).
Primary Estimation: The search strategy for the layered vortex pattern is described for the method in 
question. A two-dimensional nested circle is shown in Fig. 5 to demonstrate the VS approach. Given the initial 
circumstances, the diameter of the outermost circle serves as the pivot point for the search. Equation 14 may 
be used to determine the rivet or starting center (,µ − 0.) as follows.

	
µ0 = upper bound + lower bound

2
� (7)

  
Candidate solutions: According to Eq. 8, following an evaluation of the original answer, neighbor solutions, 
Ci (X) = {x1, x2, x3, . . . , xk} , k = 1, 2, . . . , n are found using a Gaussian distribution.
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p (ξ|µ, v) = 1√

(2π)d |v|
exp

(
−1

2
(ξ − µ)T (ξ − µ)

v

)
� (8)

where d is the dimension number, i is the count, and n is the number of local optimal points of candidates; ξ and 
µ are the vectors for a randomly generated variable and the sample mean (selected as the center), respectively. 
Furthermore, v stands for the covariance matrix that Eq. 16 provides in the way:

	 v = s2 [I] , dimension: d × d� (9)

where I is the identity matrix and s2 is the variance distribution. Equation 10 provides the standard deviation, s2, 
for the initial conditions as follows:

	
s0 (= r0) = max (upper bound) − min (lower bound)

2
� (10)

At the beginning step, s0 The start radius (r0 for a weak locality) is considered to fully cover the weak proximity 
in the neighborhood search region.
Current results substitution: When the solution X′ ∈ C0 (X) , (i = 0) from C0 (X) where the current circle 
center µ0 fits inside the search space constraints, the current solution is substituted for the closest candidate 
result in the replacement phase. The candidate solutions are shifted within the designated borders, as shown by 
Eq. 11, in the following manner if the new solutions are beyond the search space boundaries.

	 (lower bound)d ≤ sdk ≤ (upper bound)d� (11)

where k is an integer between 1 and n, and d is the bound boundary dimension. The acquired ideal solution, X′, 
indicates the circle’s center in the next iteration. In the second stage of the coeval phase, the active radius of the 
circle (r1) decreases, and a new set of vectors, C1 (X) is generated over the new center. In the second step of the 
selection procedure, the new solution set, C1 (X), is assessed using X′C1 (X). The selected response is kept if it 
advances to the more difficult ones.

Similarly, the third-step designated center in Fig. 6 is artificially maintained as the new advanced/optimal 
solution. The phenomenon continues until the completion conditions are fulfilled.

  

Backtracking search optimization algorithm (BSA)
2013 Civicioglu49 introduced the BSA method for resolving numerical problems. The commencement, 
selection-I, mutation, crossover, and selection-II stages are represented by these five groups using a uniform 
distribution function (12); at the first stage, the population is dispersed over the region:

	 Pi,j ∼ G (lowj, upj), i = 1, 2, . . . , N, j = 1, 2, . . . , D� (12)

where D and N are the population size and problem dimension, respectively. The uniform distribution function 
is denoted by G, and the position of the itching person is symbolized by Pi,j. Furthermore, the upper and lower 
problem space limitations are shown by upj.

The following formula, which also determines the search direction, is used to produce historical individuals 
in the first selection step:

	 oldPi,j ∼ U(lowj, upj),� (13)

Additionally, the BSA offers the following options for updating the oldP:

	 if a < b, then oldP := P|a, b ∼ U(0, 1),� (14)

Fig. 5.  Illustrating the operational search process with the VS’s two-dimensional nested circle model (after 
Doğan and Ölmez48.
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where homogeneous real numbers between 0 and 1 stand in for a and b. The characters are then flipped using 
the permuting() technique as follows:

	 oldP := permuting(oldP).� (15)

The following operators are created to perform the mutation:

	 Mu tan t = P + F · (oldP − P).� (16)

To determine the population agents’ search orientation, the BSA considers previous data, whereas F controls the 
amplification of the search direction’s step size.

Model evaluation and presentation
Total ranking systems (TRS) are based on statistical measures such as mean squared error (MSE) and R2. The 
results of each model were assessed, and the ANN was developed using the prediction network. A range of 
statistical indicators (BBO-MLP, MVO-MLP, VS-MLP, and BSA-MLP) was used to score the results and assess 
the effectiveness of each technique.

	
R2 = 1 −

∑n
i=0 (yi − ŷi)

2

∑n
i=0(yi − yi)2

� (17)

, yi, ŷi,and ȳi  ̩ which includes the mean, expected, and actual values. The number n denotes the population size. 
More accuracy is suggested by quantities that are close to 1 but not equal.

The difference between the actual and anticipated numbers is used to calculate the mean square error. The 
closer the numbers are to zero, the more accurate the model’s forecast. This parameter can be obtained using the 
function below:

	
MSE = 1

n

n∑
i=0

(yi − ŷi)
2� (18)

Hyperparameter selection
Hyperparameter selection plays a critical role in the performance and reliability of hybrid metaheuristic–neural 
network models. In this study, while the majority of hyperparameters for the four hybrid models (BBO-MLP, 
MVO-MLP, VS-MLP, and BSA-MLP) were selected based on well-established values reported in the literature, 
the population size was explicitly varied and tuned to observe its influence on model behavior. Population size, 
representing the number of candidate solutions explored simultaneously by the algorithm, directly impacts the 
balance between exploration and exploitation in the search space. Smaller population sizes may converge faster 
but risk premature convergence to suboptimal solutions, potentially missing global optima. Conversely, larger 
population sizes enhance the algorithm’s ability to explore diverse regions of the solution space, improving the 
robustness of the model at the expense of computational effort.

In geotechnical applications, such as landfill slope stability assessment, capturing subtle interactions among 
municipal solid waste layers is essential for reliable predictions. The choice of population size therefore has 
practical consequences: insufficient exploration could lead to misleading interpretations of slope stability under 
static or seismic loading, while excessive exploration may increase computational costs without proportional 
gains. By carefully adjusting the population size within ranges commonly reported in prior optimization studies, 

Fig. 6.  The VS algorithm’s vortex pattern-searching section (after48.
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we ensured that the models achieved a stable balance between convergence efficiency and solution quality. This 
approach allows the models to effectively capture the complex, nonlinear behavior of landfill MSW layers while 
remaining computationally tractable. By transparently reporting all hyperparameter values in tabular form, we 
provide a clear framework for reproducibility and allow future researchers to further fine-tune these models 
for specific landfill conditions. Ultimately, thoughtful hyperparameter selection—particularly the tuning of 
population size—enhances both the predictive power and practical applicability of hybrid metaheuristic–neural 
systems in geotechnical engineering (Table 2).

Results and discussion
The results of this study demonstrate a comprehensive approach to evaluating the stability of the Barmshour 
Landfill slope through a combination of finite element modeling (FEM) using PLAXIS 2D and advanced artificial 
neural network (ANN) optimization techniques. Data from PLAXIS 2D simulations showed that changes in the 
mechanical properties of municipal solid waste (MSW) layers stratified by age influence the landfill’s stability. 
Specifically, the impact of internal friction angle and modulus of elasticity on maximum settlement was assessed, 
highlighting the significant role these parameters play in overall slope deformation. The variation in applied 
force on the landfill crest with displacement was also examined, revealing a nonlinear relationship and its 
implications for slope safety under increased loading conditions (Fig. 7). The graphs illustrate the relationship 
between maximum settlement and two key mechanical parameters—Young’s modulus and internal friction 
angle—across three distinct MSW layers in the Barmshour Landfill. The layers are categorized by age: Layer 1 
(over 10 years old), Layer 2 (5–10 years old), and Layer 3 (less than 5 years old). Each graph illustrates settlement 
behavior under three scenarios: no surcharge, a 10-meter surcharge, and a 20-meter surcharge, providing a 
detailed understanding of how surcharging and material properties affect landfill slope stability. A clear inverse 
relationship is observed for Young’s modulus: as stiffness (Young’s modulus) increases, the maximum settlement 
decreases for all layers. This behavior is consistent across all surcharge conditions, with older layers (Layer 
1) exhibiting higher settlements due to their lower stiffness and more advanced decomposition compared to 
younger layers.

Similarly, the graphs of internal friction angle show a similar trend: higher friction angles correlate with reduced 
settlement, reflecting improved shear strength in the MSW layers. The distinction between layers highlights the 
heterogeneity of MSW, with older, more degraded waste in deeper layers contributing to higher settlements. In 
contrast, younger layers exhibit greater resistance due to lower levels of decomposition. Surcharging intensifies 
settlement across all layers, as evidenced by higher displacements under 10-meter and 20-meter surcharges 
compared to the no-surcharge condition. This demonstrates the critical role of loading in influencing landfill 
slope behavior. These results highlight the importance of considering material properties and surcharge effects 
in landfill stability analyses. The data align with PLAXIS 2D simulation findings and underscore its ability to 
model nonlinear behavior in MSW layers effectively. The analysis provides a basis for improving landfill design 
and slope stability management by quantifying the impacts of Young’s modulus and internal friction angle.

The results presented in Fig. 7a–f illustrate how the mechanical parameters of MSW, particularly Young’s 
modulus (E) and internal friction angle (φ), influence the maximum settlement response under varying 
surcharge loads. As expected, a higher Young’s modulus results in a significant reduction in settlement due to 
the increased stiffness and reduced compressibility of the aged waste material. Older MSW layers (> 10 years) 
exhibit smaller settlements than intermediate layers (5–10 years), confirming the time-dependent improvement 
in waste mechanical properties through biodegradation and densification. Similarly, the internal friction angle 
shows a nonlinear relationship with settlement behavior. An increase in φ enhances shear resistance, resulting 
in improved stability and reduced deformation magnitudes. The effect is more pronounced at lower surcharge 
levels, where frictional resistance dominates the response. However, under higher surcharges (10 m and 20 m), 
the rate of settlement reduction diminishes, indicating that beyond a certain stress threshold, the waste material 
reaches a quasi-plastic state. From an engineering perspective, these findings underscore the importance of 
accurately estimating stiffness and friction parameters for reliable landfill design. The variation across MSW ages 
underscores the importance of accounting for material heterogeneity in stability analyses, particularly in older 
landfills, where layer-specific properties can significantly affect performance. Overall, the results offer practical 
insights into how the mechanical evolution of MSW affects long-term deformation and slope stability.

Figure 8 illustrates the variation of applied force on the landfill crest with displacement at three distinct 
points (A, B, and C), as detailed in Fig. 2. The graphs compare the performance of six models, each represented 
by a distinct colored line, to assess their accuracy in predicting force-displacement relationships. At Point A, the 
force decreases sharply with initial displacement, stabilizing at approximately 0.06 m. Model 1 (blue) and Model 
5 (red) exhibit the most significant drop, indicating higher initial stiffness. Models 2, 3, and 4 (green, cyan, 
and black) exhibit a more gradual decline, suggesting varying material properties or boundary conditions. At 
Point B, the force-displacement curves display a similar initial decline, but the curves diverge more noticeably 
beyond 0.2 m displacement. Model 6 (yellow) and Model 5 (red) show a pronounced upward trend, implying 
a potential increase in resistance or material strengthening at larger deformations. This contrasts with Model 1 
(blue), which maintains a relatively flat response, indicating possible limitations in its predictive capability under 
these conditions. Point C exhibits distinct behavior: all models show a consistent force reduction up to 0.1 m, 
followed by a plateau. Model 5 (red) again stands out with a steeper initial drop and a subsequent rise, suggesting 
it may account for nonlinear material behavior or reinforcement effects better than others. The variability among 
models highlights the influence of different assumptions or input parameters, such as soil properties or loading 
rates, on the simulated response. Overall, the results suggest that Model 5 consistently captures the complex 
force-displacement behavior across all points, potentially making it the most reliable for this landfill scenario. 
However, further analysis, including validation with field data, is recommended to confirm these findings and 
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Fig. 7.  The impact of internal friction angle and modulus of elasticity on maximum settlement on landfill 
slope.
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Fig. 8.  The variation of the applied force on the landfill crest with displacement. *Note: the location of points 
A, B, and C is mentioned in Fig. 2.
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refine the models. The observed differences underscore the need for tailored modeling approaches based on 
specific landfill conditions.

Figure 9 shows the performance results for a range of NPOP and acceleration constants (50, 100, 150, 200, 250, 
300, 350, 400, 450, and 500). These results indicate that the BBO-MLP algorithm (NPOP =450) (Fig. 6a), the MVO-
MLP algorithm (NPOP =350) (Fig. 6b), the VS-MLP algorithm (NPOP =150) (Fig. 6c), and the BS-MLP algorithm 
(NPOP =500) (Fig. 6d) are the algorithms that most accurately predict the output. The results were gathered from 
extensive laboratory research and forecasted using the suggested AI models to determine the ultimate carrying 
capacity. The hybrid MVO-MLP and BBO-MLP models may be regarded as an extraordinary prediction 
network (with greater accuracy than the traditional ANN model) for predicting strength, even though all of the 
suggested models produced respectable estimates. The learning approach is appropriate for all prediction models 
examined, including those with high R2 or low MSE; this must be emphasized. Based on statistical metrics, the 
BBO-MLP prediction networks also performed better overall (MSE, R2). The results indicate that increasing 
population size improves convergence rate and reduces MSE, with MVO and BBO outperforming the other 
algorithms in terms of faster convergence. However, VS and BSA still offer competitive performance, especially 
with larger populations. Figure 9 presents the convergence behavior of different optimization techniques (BBO, 
MVO, VS, and BSA) combined with MLP for training, measured by Mean Squared Error (MSE) over iterations. 
Each plot compares the performance of these methods with varying population sizes (50, 100, 150, 200, 250, 350, 
400, and 500) over a maximum of 1000 iterations. BBO-MLP: This plot shows the convergence of BBO combined 
with MLP. The MSE decreases steadily as the number of iterations increases, with larger populations (e.g., 500) 
leading to faster convergence and lower MSE. Smaller populations (e.g., 50) converge more slowly and achieve 
higher MSE values (as shown in Fig. 9a). This plot illustrates the MVO optimization in conjunction with MLP. 
Like BBO, larger population sizes lead to faster convergence and better results, with the MSE dropping rapidly 
in the initial iterations and stabilizing as the number of iterations increases. Again, the performance improves as 
the population size increases (as shown in Fig. 9b). When the VS optimization algorithm is combined with MLP, 
the MSE drops more slowly than BBO and MVO, indicating a slower convergence rate. However, like the other 
methods, increasing population size improves performance, resulting in a quicker reduction in MSE over time 
(as shown in Fig. 9c). In the case of BSA-MLP, the convergence pattern is similar to that of MVO, with larger 
populations showing a more rapid decline in MSE. While BSA shows a slower initial decrease in error compared 
to MVO, it ultimately achieves competitive performance with larger populations (as shown in Fig. 9d).

Figures 10, 11, 12 and 13  show the training and test results for the BBO-MLP, MVO-MLP, VS-MLP, and 
BSA-MLP prediction models. The model’s prediction will be more accurate if the data are more concentrated 

Fig. 8.  (continued)
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around the regression line. Regression diagrams for the five optimization methods used in this study—BBO-
MLP, MVO-MLP, VS-MLP, and BSA-MLP—are also shown.

The hybrid predictive models, which combined MLPs with nature-inspired optimization algorithms, were 
assessed using training and test datasets with varying population sizes. Tables  3, 4, 5, 6 and 7 summarize 
the performance of each hybrid model, including metrics such as mean square error (MSE) and coefficient 
of determination (R2). In conjunction with MLP, the BBO, MVO, VS, and BSA models are compared. The 
outcomes of the hybrid network-based BBO-MLP prediction model demonstrate how population size affects 
the model’s functionality. With the highest overall score of 38, a population size of 450 was the best-performing 
configuration among those evaluated. This setup achieved the best R2 values (Train = 0.8964, Test = 0.89594) and 

Fig. 9.  Shows the results of best-fit modeling for the BBO-MLP, MVO-MLP, VS-MLP, and BSA-MLP.
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the lowest MSE for both the training (78.72298) and testing (90.60456) phases, indicating greater predictive 
accuracy. With a total score of 36, the population size of 500 performed second best, exhibiting outcomes that 
were just as good but marginally worse than the 450 size.

On the other hand, the design with a population size of 100 earned the lowest overall score, at 4. Its inferior 
prediction ability was reflected in the lowest R2 scores (Train = 0.8776, Test = 0.8708) and the highest MSE values 
(Train = 85.13856, Test = 100.286). This outcome highlights the drawbacks of smaller population sizes, which 
are likely unable to explore the hybrid network adequately to optimize it. With total scores of 34, 26, and 20, 
respectively, population sizes of 50, 350, and 300 offered the best trade-off between accuracy and computing 

Fig. 9.  (continued)
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efficiency. With respectable MSE and R2 values for both the training and testing stages, these setups demonstrated 
consistent performance across measures.

Interestingly, population size 50 was third overall, showing a decent balance between simplicity and model 
performance. Although they may require more processing power, larger population sizes—especially those of 

Fig. 10.  Accuracy test and training dataset results for several proposed BBO-MLP structures.
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450 and 500—improve the model’s convergence and resilience, which enhances its capacity to make accurate 
predictions. On the other hand, mid-range designs (such as 300) balance computational expense with predictive 
power, whereas smaller sizes (such as 100) exhibit notable limitations. These results underscore the importance 
of selecting a suitable population size to optimize the effectiveness of hybrid models, such as BBO-MLP (Table 3).

The findings of the MVO-MLP prediction model highlight the significant impact of population size 
on performance, as measured by R2 and MSE. The configuration with a population size of 350 achieved the 
best overall performance with a total score of 40, demonstrating exceptional prediction accuracy. It recorded 
the lowest MSE values (Train = 77.60, Test = 89.45) and the highest R2 values (Train = 0.90, Test = 0.90). The 
population size of 300 ranked second with a total score of 34, maintaining strong predictive performance 
despite slightly higher MSE values (Train = 78.22, Test = 91.52) and marginally lower R2 values (Train = 0.90, 
Test = 0.89) compared to the 350 configuration. The 250-person population placed third with a total score of 
32, demonstrating a good balance between training and testing metrics. In contrast, populations of 50 and 
500 performed poorly, both scoring 6, the lowest overall score. The population of 50 had the lowest R2 values 
(Train = 0.88, Test = 0.87) and the highest MSE values (Train = 85.28, Test = 99.33), indicating limited predictive 
capability. Similarly, the 500-person population struggled, with low R2 values (Train = 0.88, Test = 0.87) and high 
MSE values (Train = 84.86, Test = 100.75), reflecting inefficient optimization. Populations of 100, 150, and 450 
each scored 18, representing moderate performance, although the 300 and 350 configurations still outperformed 
them. These results underscore the importance of selecting an optimal population size. Configurations with 350 
and 300 individuals demonstrated superior accuracy and reliability, while excessively small or large population 
sizes, such as 50 and 500, exhibited significant drawbacks. This highlights the need to achieve a balance in 
optimization to maximize the efficiency and effectiveness of the MVO-MLP model (Table 4).

The findings of the hybrid network-based VS-MLP prediction model demonstrate the significant influence 
of population size on performance, as reflected in MSE and R2 values. The configuration with a population size 
of 150 achieved the best overall performance, earning a total score of 36. It exhibited the lowest MSE values 

Fig. 10.  (continued)
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(Train = 79.99, Test = 93.45) and the highest R2 values (Train = 0.89, Test = 0.89), making it the most accurate 
in both training and testing. The 450-person configuration ranked second with a total score of 34, showing 
comparable accuracy with slightly higher MSE values (Train = 79.69, Test = 95.08) and marginally lower R2 
values (Train = 0.89, Test = 0.88). This indicates that, while both setups were robust, the 150-size population 

Fig. 11.  Accuracy test and training dataset results for several proposed MVO-MLP structures.
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slightly outperformed the 450-size configuration in terms of predictive accuracy. The 250-size population 
secured third place with a total score of 32, striking a good balance between training and testing metrics, 
with R2 values of 0.89 (Training) and 0.88 (Testing), and MSE values of 79.64 (Training) and 95.80 (Testing). 
The 350-person setup, with a score of 30, performed well but was outpaced by the top three configurations, 
suggesting diminishing returns for larger populations beyond 150 and 250. Lower-performing setups included 
populations of 50 and 100, which scored 4 and 8, respectively. These configurations had the lowest R2 values 
and the highest MSE values, reflecting poor optimization and limited ability to capture complex data patterns. 
The results emphasize that intermediate population sizes, particularly 150 and 450, strike the best balance 
between predictive accuracy and computational efficiency. While larger setups, such as 500, provided reasonable 
results, they did not outperform mid-range configurations. Conversely, smaller populations, such as 50 and 
100, struggled significantly. These findings highlight the importance of selecting an optimal population size to 
maximize the predictive performance of the VS-MLP model (Table 5).

The outcomes of the hybrid network-based BSA-MLP prediction model demonstrate the impact of population 
size on performance metrics, including R2 and MSE. The configuration with a population size of 500 achieved 
the best performance, earning the highest total score of 38. It demonstrated exceptional predictive accuracy 
and robustness, with the lowest MSE values (Train = 83.69, Test = 91.12) and the highest R2 values (Train = 0.88, 
Test = 0.89). The population size of 450 ranked second with a total score of 32. Although slightly less accurate 
than the 500-size setup, it achieved reliable results with MSE values (Train = 84.19, Test = 95.72) and R2 values 
(Train = 0.88, Test = 0.88), which strike a strong balance between predictive accuracy and computational 
efficiency. The configurations with population sizes of 100 and 300 tied for third place, each scoring 28. While 
their performance was comparable, the 100-size setup slightly outperformed the 300-size configuration during 
testing, with MSE values (Train = 85.20, Test = 94.92) and R2 values (Train = 0.88, Test = 0.89). These setups are 
viable options for predictive modeling but fall short in accuracy compared to larger populations. Lower-ranking 
configurations included populations of 50 and 350, which scored 6 and 12, respectively. The 50-size setup exhibited 

Fig. 11.  (continued)
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the weakest optimization capacity, with the highest MSE values (Train = 87.34, Test = 110.40) and the lowest R2 
values (Train = 0.87, Test = 0.84). Although slightly better, the 350-size configuration struggled compared to mid-
range and larger populations. The findings suggest that the BSA-MLP model performs optimally with larger 
population sizes, particularly 450 and 500, which yield the highest accuracy and reliability. Mid-range sizes, such 

Fig. 12.  Accuracy test and training dataset results for several proposed VS-MLP structures.
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as 100 and 300, provide decent results and are good alternatives with limited computational resources, whereas 
smaller configurations, such as 50, are ineffective for accurate predictions (Table 6).

The overall ranking of the five hybrid models reveals distinct performance patterns in managing both 
deterministic and probabilistic trends in slope stability analysis. The MVO-MLP model, with a population size of 
350, achieved the highest overall score (16) by effectively balancing test and training outcomes. Its performance, 
reflected in both deterministic results (low RMSE) and probabilistic resilience (high R2), demonstrates superior 
prediction accuracy (Train RMSE = 77.60, Test RMSE = 89.45; Train R2 = 0.90, Test R2 = 0.90). The BBO-MLP 
model, with a population size of 450, ranked second, with slightly lower predictive accuracy than MVO-MLP 
(Train RMSE = 78.72, Test RMSE = 90.60; Train R2 = 0.90, Test R2 = 0.90). However, it demonstrated consistent 
performance across both the training and test stages, indicating its ability to manage parameter fluctuations and 
uncertainties reliably. The VS-MLP and BSA-MLP models tied for third place, with population sizes of 150 and 
500, respectively. The VS-MLP model achieved the lowest testing RMSE (93.45) but displayed slightly weaker 
resilience in capturing probabilistic patterns, as reflected in its lower R2 values (Train = 0.89, Test = 0.89). In 
contrast, the BSA-MLP model demonstrated a better balance between RMSE and R2 (Train RMSE = 83.69, Test 
R2 = 0.89), but its overall ranking suffered due to relatively lower scores in certain parameters (Table 7).

The findings demonstrate the high efficacy of hybrid metaheuristic-neural network models for slope stability 
analysis, offering greater accuracy and reliability than conventional techniques. These models are especially well-
suited for geotechnical applications where uncertainty is common due to their high R2 values, which enable 
them to incorporate probabilistic patterns. But certain restrictions still exist. Significant computing resources 
are needed for larger population sizes, such as those in MVO-MLP and BBO-MLP, which might be a deterrent 
for real-time applications. Variability in outcomes may arise from the hybrid models’ sensitivity to algorithmic 
settings and initial circumstances. Although these techniques work well for the dataset in question, further 
research is needed to determine whether they can be applied to larger datasets or more complex situations.

Fig. 12.  (continued)
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Error analysis
The error analysis in this study focuses on assessing the predictive reliability and stability of the four hybrid 
models developed for the Barmshour Landfill dataset. Rather than describing error metrics in general terms, this 
section evaluates how the Mean Absolute Error (MAE) and Standard Deviation (Std. D.) reflect the consistency 
and precision of each model’s predictions.

Fig. 13.  Accuracy test and training dataset results for several proposed BSA-MLP structures.
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Fig. 13.  (continued)

Population size

Network result Scoring

Total score Rank

Train Test Train Test

MSE R2 MSE R2 MSE R2 MSE R2

50 78.93709 0.8958 92.87184 0.89034 8 8 9 9 34 3

100 85.13856 0.8776 100.286 0.8708 1 1 1 1 4 10

150 80.84621 0.8904 97.41412 0.8786 4 4 2 2 12 8

200 80.82461 0.8905 94.53456 0.88613 5 5 5 5 20 5

250 79.43014 0.8944 95.79333 0.88287 6 6 4 4 20 5

300 81.47628 0.8886 93.49612 0.88877 3 3 7 7 20 5

350 79.36544 0.8946 93.5168 0.88872 7 7 6 6 26 4

400 81.65822 0.8881 96.94637 0.87984 2 2 3 3 10 9

450 78.72298 0.8964 90.60456 0.89594 9 9 10 10 38 1

500 78.39368 0.8973 93.46891 0.88884 10 10 8 8 36 2

Table 3.  Results for the BBO-MLP prediction model using hybrid networks.
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The Mean Absolute Error (MAE) was calculated as:

	
MAE = 1

n

n∑
i=0

|yi − ŷi|� (19)

where n, ŷi, and yi Stand for population size, actual values, and expected values, respectively; the greater the 
difference between the two, the higher the MAE. Consequently, accuracy increases as MAE decreases. The 

Population size

Network result Scoring

Total score Rank

Train Test Train Test

MSE R2 MSE R2 MSE R2 MSE R2

50 87.33536 0.8708 110.4034 0.84087 2 2 1 1 6 10

100 85.19528 0.8775 94.91727 0.88514 5 5 9 9 28 3

150 86.06158 0.8748 96.39847 0.88129 3 3 7 7 20 6

200 84.6554 0.8791 104.9746 0.85741 6 6 3 3 18 7

250 84.28953 0.8802 100.1484 0.87118 7 7 5 5 24 5

300 82.71534 0.8849 100.4637 0.87031 10 10 4 4 28 3

350 85.26893 0.8772 106.2802 0.85354 4 4 2 2 12 9

400 87.67715 0.8697 99.98983 0.87162 1 1 6 6 14 8

450 84.1902 0.8805 95.72051 0.88306 8 8 8 8 32 2

500 83.68723 0.8820 91.1209 0.89468 9 9 10 10 38 1

Table 6.  Results for the BSA-MLP prediction model using hybrid networks.

 

Population size

Network result Scoring

Total score Rank

Train Test Train Test

MSE R2 MSE R2 MSE R2 MSE R2

50 89.4236 0.8640 112.1085 0.83543 1 1 1 1 4 10

100 84.19213 0.8805 98.9575 0.87444 2 2 2 2 8 9

150 79.98922 0.8929 93.44794 0.88889 8 8 10 10 36 1

200 83.61371 0.8823 96.44298 0.88117 4 4 4 4 16 7

250 79.63566 0.8939 95.80274 0.88285 10 10 6 6 32 3

300 83.39725 0.8829 95.41871 0.88384 5 5 7 7 24 5

350 82.72082 0.8849 94.81451 0.88541 6 6 9 9 30 4

400 81.11519 0.8896 98.36788 0.87604 7 7 3 3 20 6

450 79.68688 0.8937 95.07941 0.88472 9 9 8 8 34 2

500 83.71071 0.8820 96.13409 0.88198 3 3 5 5 16 7

Table 5.  Results for the VS-MLP prediction model using hybrid networks.

 

Population size

Network result Scoring

Total score Rank

Train Test Train Test

MSE R2 MSE R2 MSE R2 MSE R2

50 85.27935 0.8772 99.33291 0.87342 1 1 2 2 6 9

100 82.84342 0.8846 94.9457 0.88507 4 4 5 5 18 6

150 81.89533 0.8874 95.1096 0.88465 5 5 4 4 18 6

200 81.77495 0.8877 93.96114 0.88759 6 6 7 7 26 4

250 79.05312 0.8955 90.86067 0.89531 7 7 9 9 32 3

300 78.22137 0.8978 91.52227 0.89369 9 9 8 8 34 2

350 77.60197 0.8995 89.44992 0.89872 10 10 10 10 40 1

400 78.88766 0.8960 95.6715 0.88319 8 8 3 3 22 5

450 83.47023 0.8827 94.69355 0.88572 3 3 6 6 18 6

500 84.85674 0.8785 100.7527 0.8695 2 2 1 1 6 9

Table 4.  Results for the MVO-MLP prediction model using hybrid networks.
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accompanying data show that all MAE values for each best-fit model are less than 1, indicating correctness. Here 
is the standard deviation:

	
σ =

√∑n
i=0(yi − µ)2

n
� (20)

Where the remaining parameters are the same as the top function, and µ is the population mean. This function 
examines the relationships between the dataset’s mean and each data point. This criterion assesses the models’ 
correctness by controlling the skewness of the graph. The accuracy of the distribution chart increases with its 
regularity. This holds for any model, as the accompanying data demonstrates. Figures 14, 15, 16 and 17 illustrate 
the suggested best-fit error graph for the selected structures: BBO-MLP 350, MVO-MLP 350, VS-MLP 150, and 
BSA-MLP 500.

The MVO-MLP model again recorded the lowest standard deviation, signifying its robustness and 
consistency across both training and testing data. Figures 14, 15, 16 and 17 illustrate the residual distributions 
for the four models, with narrower, more symmetric error distributions corresponding to higher predictive 
reliability. These results collectively confirm that the proposed hybrid models, particularly MVO-MLP, can 
accurately and consistently capture nonlinear relationships in MSW mechanical behavior, providing dependable 
outcomes for slope stability assessment.The error analysis for the MVO-MLP models, as presented in Fig. 15, 
provides critical insights into the predictive accuracy of the hybrid framework applied to the Barmshour Landfill 
dataset in Shiraz, Iran. This study leverages the MVO-MLP model, identified as the best performer in the slope 
stability analysis of municipal solid waste (MSW) layers under static and seismic forces, with two configurations: 
MVO-MLP 200 (training dataset Np350) and MVO-MLP 350 (testing dataset Np350). The analysis focuses 
on the discrepancy between predicted outputs and target values, offering study-specific insights into model 
reliability. For the MVO-MLP 200 training case (Fig.  15a), the target (red) and output (blue) values across 
45 samples show a generally close alignment, with notable deviations around samples 5–10 and 35–40. The 
mean absolute error (MAE) of 59.367 and the mean squared error (MSE) of 6049.74 indicate a reasonable fit; 
however, peaks in the error plot suggest challenges in capturing extreme MSW behavior under variable loading. 
The error histogram, with a mean of 0.10139 and standard deviation (STD) of 78.7463, reveals a distribution 
skewed toward small errors, but with occasional large deviations, reflecting the model’s struggle with highly 
heterogeneous waste layers at specific points.In the MVO-MLP 350 testing case (Fig. 15b), the analysis spans 
18 samples, where a significant outlier at sample 11 (target: 418.404, output: 11) drives a higher MAE of 63.698 
and MSE of 8224.5455. This discrepancy highlights the model’s sensitivity to unseen data, particularly where 
MSW composition or seismic impact varies sharply. The error histogram, with a mean of 12.3463 and a standard 
deviation of 92.61, shows a broader distribution, indicating greater uncertainty in predictive performance under 
test conditions. The large error at sample 11 suggests that the model may underpredict high-force scenarios, 
a critical consideration for landfill stability under extreme events. These findings underscore the MVO-MLP 
model’s strengths in handling the complex, non-linear behavior of MSW layers, as validated by its R2 values of 
0.899 (training) and 0.898 (testing). However, the error spikes, particularly during testing, indicate limitations 
in generalizing across the Barmshour Landfill’s diverse conditions. This necessitates further refinement, possibly 
through enhanced data preprocessing or adaptive tuning of metaheuristic parameters, to improve robustness. 
The analysis offers actionable insights for engineers, highlighting the importance of site-specific validation to 
mitigate geotechnical design risks.

Figure 16 presents the error analysis for the VS-MLP 150 model applied to the Barmshour Landfill dataset, 
evaluating its performance in predicting MSW layer behavior under both static and seismic loading. For the 
training phase (Np150, Fig. 16a), the target (red) and output (blue) values across 45 samples show a close match, 
with an MAE of 60.042 and MSE of 6416.903, indicating a solid fit. However, error spikes around samples 5–10 
and 30–35 suggest challenges in capturing the extreme heterogeneity of MSW. The error histogram, with a mean 
of 0.3029 and a standard deviation of 81.1002, shows a distribution centered near zero but with occasional large 
deviations, reflecting the model’s sensitivity to variable waste properties. In the testing phase (Np150, Fig. 16b), 
the analysis covers 18 samples, revealing a higher MAE of 67.2363 and MSE of 9268.341, suggesting increased 
predictive uncertainty. A notable deviation at sample 6 underscores the model’s struggle with unseen data, likely 
due to abrupt changes in MSW composition or loading. The error histogram, with a mean of 18.6594 and a 
standard deviation of 97.354, indicates a wider error spread, highlighting limitations in generalizing across the 
landfill’s diverse conditions. These insights highlight the need for enhanced data preprocessing or parameter 
tuning to improve the robustness of VS-MLP 150 for geotechnical stability assessments at Barmshour.

used Method Population size

Network result Score

Total score Rank

Train Test Train Test

RMSE R2 RMSE R2 RMSE R2 RMSE R2

BBO-MLP 450 78.722 0.8964 90.604 0.895 3 3 3 3 12 2

MVO-MLP 350 77.601 0.8995 89.449 0.898 4 4 4 4 16 1

VS-MLP 150 79.989 0.8929 93.447 0.888 2 2 1 1 6 3

BSA-MLP 500 83.687 0.882 91.12 0.894 1 1 2 2 6 3

Table 7.  Total ranking of the best-fitted model for the four employed hybrid methods.
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Taylor diagrams
A Taylor diagram is a graphical representation that provides a concise statistical summary of how well patterns 
or expectations align with data50. Three important statistics are shown simultaneously: the root mean square 
error (RMSE), the correlation coefficient, and the standard deviation. This technique is often used to evaluate 
model performance, as it enables the visual comparison of differences between multiple models in a single 
graphic. The approximate correlation value for these three techniques (BBO-MLP, MVO-MLP, VS-MLP, and 
BSA-MLP) is 0.9. A Taylor diagram would provide useful information on how well each method performs with 
real data. A Taylor diagram shows the correlation coefficient as the angle along the curved axis. When the model 
and data match precisely, the correlation is 1.0; when they don’t, it is zero. There is a significant correlation 
between the model predictions and the actual findings, as indicated by correlation coefficients of 0.9 across the 
three approaches. This implies that although the techniques detect the general trend in the data, they could still 
spot additional specific information or anomalies. The distance between the origin and the radial lines is known 

Fig. 14.  For the suggested best-fit structures of (a) the BBO-MLP 350 train and (b) the BBO-MLP 350 test, 
error frequency, and MAE variance.
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as the standard deviation. It displays the magnitude of the discrepancy between the observed and expected 
values. Assume that the standard deviation of a model is, in theory, quite similar to the standard deviation of 
the observed data. It is considered to have caught the data’s variability and dispersion in that instance. The BBO-
MLP, MVO-MLP, VS-MLP, and BSA-MLP models should all exhibit high correlation coefficients (around 0.9), 
as indicated by a Taylor diagram (Fig. 18), suggesting that they effectively capture the overall trend. BBO-MLP 
has the greatest correlation coefficient and is in the center, whereas MVO-MLP performs the best despite having 
varying correlation coefficient values. The standard deviations of each model should be similar to those of the 
actual data, indicating a good ability to reflect the dataset’s general variability. According to this study, MVO-
MLP and BBO-MLP are the best-balanced models for pattern recognition and error reduction.

Noting that the Taylor diagram presented above visually evaluates the performance of four machine learning 
models—BBOMLP, MVOMLP, VSMLP, and BSAMLP—in predicting settlement (in mm) in a municipal 
solid waste (MSW) landfill slope in Barmshour. These diagrams, split into training (a) and testing (b) phases, 

Fig. 15.  For the suggested best-fit structures of (a) MVO-MLP 200 train and (b) MVO-MLP 200 test, error 
frequency and MAE variance.
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provide a comparative assessment based on three statistical metrics: standard deviation, correlation coefficient, 
and centered RMSE. The green marker (“Obs”) represents the observed values as a reference point. In both 
panels, the proximity of a model marker to “Obs” indicates its accuracy. The correlation coefficient (measured 
as arcs from the origin) indicates how closely the predictions align with observed trends, with higher values 
indicating better alignment. The standard deviation (radial distance) indicates the model’s ability to capture 
variability, while the RMSE is indirectly reflected in the distance of a model marker from “Obs.” For training, 
the BSAMLP model exhibits higher correlation and lower deviation than others, indicating strong predictive 
capability. Similar behavior is observed during testing, where BSAMLP maintains superior performance. This 
demonstrates the Taylor diagram’s utility in identifying models that balance precision and variability, thereby 
aiding in the selection of the most reliable model for settlement prediction in landfill slope stability analysis.

Fig. 16.  MAE variance and error frequency for the suggested best-fit structures of the VS-MLP 500 test and 
train.
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As stated, Taylor diagrams were used in this study to evaluate the performance of four machine learning 
models—BBOMLP, MVOMLP, VSMMLP, and BSAMLP—in predicting settlement in the MSW landfill slope 
at Barmshour, Shiraz, Iran, during both the training and testing phases. The diagrams plot standard deviation, 
correlation coefficient, and centered root-mean-square difference (RMSD) against observed values (Obs). In the 
training phase (Fig. 18a), all models exhibit high correlation coefficients (0.95–0.99), with MVOMLP closest to 
the observed standard deviation (around 150), indicating superior alignment with actual settlement patterns. 
BSAMLP and VSMMLP exhibit slightly lower RMSDs, suggesting better precision in capturing the training 
data’s variability. In the testing phase (Fig. 18b), MVOMLP aligns most closely with observed values (standard 
deviation ~ 200), maintaining a correlation coefficient of nearly 0.99, while BSAMLP and VSMMLP exhibit 

Fig. 17.  For the suggested best-fit structures of (a) the BSA-MLP 500 train and (b) the BSA-MLP 500 test, 
error frequency and MAE variance.
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marginally higher RMSDs. This consistency across phases highlights MVOMLP’s robustness in predicting 
settlement under diverse MSW conditions. For landfill engineering practitioners, these results offer a practical 
takeaway: MVOMLP provides the most reliable settlement predictions, crucial for designing stable slopes and 
mitigating geotechnical risks. Its superior performance suggests it should be prioritized for site-specific stability 
assessments at Barmshour, guiding decisions on reinforcement or monitoring strategies. However, the slight 
increase in RMSD during testing underscores the need for ongoing model validation with field data to ensure 
long-term applicability.

Discussion
This study presents a novel approach to predicting landfill slope stability by integrating metaheuristic 
optimization algorithms with neural networks. The MVO-MLP model demonstrated superior performance, 
achieving R2 values of 0.899 (training set) and 0.898 (test set), with RMSEs of 77.60 and 89.44, respectively. These 
results underscore the efficacy of combining metaheuristic optimization with machine learning techniques in 
geotechnical engineering applications. Recent studies have explored similar hybrid approaches. For instance, 
Hoang and Pham51 proposed a hybrid artificial intelligence model combining metaheuristic algorithms with 
machine learning for slope stability assessment, highlighting the potential of such integrations. Similarly, Kardani 
et al.52 developed a hybrid stacking ensemble approach to enhance slope stability prediction, demonstrating the 
advantages of ensemble methods in this domain. However, while these studies provide valuable insights, they 
often focus on specific regions or datasets. Our research contributes to the field by applying these hybrid models 
to the Barmshour Landfill in Shiraz, Iran, providing a broader perspective on their applicability. The consistent 
outperformance of hybrid models over conventional methods in our study aligns with the findings of Yadav et 
al.53, who emphasized the importance of advanced machine learning techniques for improving slope stability 
predictions. Despite the promising results, certain limitations warrant consideration. The computational demand 
of hybrid models can be significant, necessitating efficient algorithms for real-time applications.

Additionally, the model’s sensitivity to parameter selection underscores the need for adaptive tuning 
mechanisms. Future research could explore integrating real-time monitoring data to enhance model robustness 
and accuracy. While this study demonstrates the potential of hybrid metaheuristic–neural network models 
for improving landfill slope stability predictions, it is essential to acknowledge inherent limitations, such as 
computational intensity and sensitivity to parameter selection.

Although this study focuses on the Barmshour Landfill in Shiraz, the proposed hybrid modeling framework 
has strong potential for application to other landfill sites. The modeling approach is data-driven and relies on 
fundamental mechanical parameters—such as MSW stiffness, cohesion, and frictional resistance—that are 
common to most engineered waste disposal systems. Therefore, by recalibrating the model with site-specific 
datasets, the same framework can be effectively employed to assess stability in other climatic and geotechnical 
contexts. In particular, regions with different waste compositions or decomposition rates could benefit from 
the adaptive learning capability of the hybrid models, which capture nonlinear and probabilistic relationships 
between input parameters and slope response. However, to ensure reliable transferability, further research should 
integrate diverse field datasets and incorporate local calibration of mechanical properties. This adaptability 
demonstrates the broader value of the developed hybrid methodology for enhancing landfill stability assessment 
worldwide.

The observed differences in model performance when varying population size (NPOP) or other 
hyperparameters arise because these settings fundamentally alter the balance between exploration and 

Fig. 18.  Taylor diagram evaluating the performance of four machine learning models—BBOMLP, MVOMLP, 
VSMLP, and BSAMLP—in predicting settlement in the MSW landfill slope in Barmshour.
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exploitation, the stochastic search dynamics, and the effective sample of candidate solutions the optimizer can 
evaluate, so a smaller population (e.g., NPOP = 350) may by chance maintain higher selective pressure and faster 
local search—leading to quicker convergence on promising basins—whereas a larger population (e.g., NPOP = 
500) increases diversity and exploration but can dilute selective pressure and slow convergence per iteration 
while also increasing computational cost per generation; moreover, because metaheuristic algorithms like 
MVO are inherently stochastic, different population sizes change the variance of outcomes across runs (larger 
populations often reduce variance but can increase the time required to refine solutions), affect the optimizer’s 
ability to escape local optima (higher diversity helps escape, but only if the algorithm’s update rules leverage 
that diversity effectively), and interact with other hyperparameters (mutation/perturbation scales, number of 
generations, replacement strategies, and stopping criteria) so that the same NPOP may behave very differently 
depending on generation budget and operator settings; additionally, problem characteristics—including 
dimensionality, multimodality, ruggedness of the fitness landscape, and the scale and conditioning of decision 
variables—determine whether extra population members yield net benefit or merely redundant sampling, 
and practical considerations such as parallelism, evaluation noise, and overfitting to training data influence 
generalization: a configuration that converges very tightly on training loss might overfit and perform worse on 
unseen data, whereas a more exploratory configuration may generalize better; therefore, reported differences 
should be interpreted as emergent properties of (i) exploration–exploitation tradeoffs, (ii) stochastic variability 
and sampling error, (iii) interactions among hyperparameters and computational budget, and (iv) problem-
specific landscape features, motivating repeated runs, statistical testing, and sensitivity or adaptive tuning (e.g., 
population annealing or adaptive population control) to robustly identify optimal settings.

While the hybrid metaheuristic–neural network models demonstrated high predictive accuracy, their 
computational demands are non-negligible, particularly for models such as MVO-MLP that require iterative 
optimization over large parameter spaces. Training times can increase significantly with larger datasets or more 
complex architectures, potentially limiting the feasibility of real-time or large-scale applications. Practitioners 
should weigh the trade-off between prediction accuracy and computational resources. Future work could 
explore model simplification, parallel processing, or adaptive optimization strategies to reduce computation 
time while maintaining reliability, making these models more practical for routine geotechnical assessments. It 
should focus on refining these models through adaptive tuning, incorporating real-time monitoring data, and 
exploring integration with other geotechnical assessment tools. By addressing these challenges, we can move 
closer to more reliable, practical, and efficient solutions for managing the complex behavior of MSW layers, 
ultimately supporting safer landfill design and more informed decision-making in geotechnical engineering 
practice. Noting that these include the constrained dataset size, which may restrict model generalization; the 
inherent simplifications adopted in the PLAXIS 2D modeling framework, such as plane strain approximation 
and material homogeneity assumptions; and the considerable computational resources required for iterative 
metaheuristic optimization. Future research should address these aspects by incorporating larger datasets, 3D 
modeling, and optimized training strategies to improve scalability and efficiency.

Future directions for probabilistic assessments
The current study has successfully employed hybrid artificial intelligence models, such as MVO-MLP and 
BSAMLP, integrated with PLAXIS 2D simulations, to predict the mechanical behavior and settlement of MSW 
layers at the Barmshour Landfill with high accuracy (e.g., R2 = 0.899, RMSE = 77.60  mm). However, as the 
reviewer highlights, the framework remains deterministic, relying on calibrated geomechanical parameters 
(e.g., φ and E) derived from site-specific data and the literature (Table 2) without incorporating probabilistic 
assessments. This deterministic approach has enabled robust analysis of force-displacement relationships 
(Fig. 8) and settlement predictions (Fig. 18), aligning with the study’s primary objective of enhancing predictive 
tools for landfill stability under surcharge loading. Nonetheless, the reviewer’s suggestion to explore probabilistic 
extensions offers a valuable avenue for future research, addressing uncertainties inherent in MSW heterogeneity 
and loading conditions. One promising direction is integrating Monte Carlo simulations to enable probabilistic 
assessments. This method would involve assigning probability distributions (e.g., normal or lognormal) to key 
parameters such as the friction angle (φ) and Young’s Modulus (E), which vary with MSW age (e.g., 21–35° for 
φ and 1000–30000 kPa for E across young to old waste). By running thousands of simulations, this approach 
could generate confidence intervals and probability density functions for predicted displacements and stability 
metrics, providing a more comprehensive risk assessment. For instance, the current dataset, derived from a 70:30 
train-test split and over 40,000 iterations, could serve as a foundation, with parameter distributions informed by 
laboratory tests (Supplementary Figure A1) and sensitivity analyses. Such an extension would require significant 
computational resources and a restructured FEM setup, potentially doubling the figure count (e.g., by adding 
probability plots and histograms) and necessitating new tables for statistical outputs.

Conclusions
This study advances the state of the art in landfill slope stability analysis by systematically evaluating and 
comparing four hybrid metaheuristic–neural network models—BBO-MLP, MVO-MLP, VS-MLP, and BSA-
MLP—using real data from the Barmshour Landfill in Shiraz, Iran. Unlike conventional AI/ML approaches 
previously applied to geotechnical problems, our work demonstrates that coupling metaheuristic optimizers with 
multilayer perceptrons provides a more reliable framework for capturing both deterministic and probabilistic 
behavior in municipal solid waste (MSW) slopes. Among the models tested, the MVO-MLP showed the best 
performance, achieving high predictive accuracy (R2 ≈ 0.90) with balanced robustness across both training 
and testing. In contrast, the BBO-MLP, VS-MLP, and BSA-MLP offered competitive but slightly less consistent 
results. The key advancement of this research lies not only in benchmarking these hybrid methods against each 
other but also in showing their ability to generalize probabilistic patterns that traditional approaches often 
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overlook. The MVO-MLP model, achieving an R2 of 0.898, can serve as a rapid, accurate decision-support tool 
for preliminary slope stability assessment during the design phase of new landfills in heterogeneous geotechnical 
environments, such as those in Shiraz. This approach potentially reduces design time and cost compared to 
conventional numerical modeling workflows. This provides engineers with a more dependable decision-support 
tool for assessing landfill stability under both static and seismic loading conditions. Furthermore, the study 
identifies practical limitations—such as computational demands and sensitivity to parameter settings—and 
outlines pathways for improvement, including adaptive parameter tuning, integration of real-time sensor data, 
and ensemble frameworks combining multiple metaheuristics, by highlighting both the strengths and challenges 
of these hybrid approaches, this work positions metaheuristic–neural models as a transformative step forward 
for geotechnical engineering, offering a scalable and future-ready solution to the persistent uncertainty in slope 
stability assessment.

Data availability
The data supporting this study’s findings are available from the corresponding author upon reasonable request.
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