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Abstract

The present study explores the mechanical, durability, and environmental 
performance of geopolymer concrete (GPC) synthesized using ferrosilicon 
slag (FS) and aluminum powder (AP) as sustainable binder constituents. 
Eight mixes were prepared by varying FS:AP ratios (100:0, 95:5, 90:10, 
85:15) and activating them with 6 M and 9 M sodium hydroxide at a 
constant activator-to-binder ratio. Experimental tests included compressive, 
flexural, and split tensile strengths, water sorptivity, and rapid chloride 
penetration (RCPT). Results showed that increasing AP content improved 
workability up to an optimum of 10%, after which excessive porosity 
reduced strength. The 90% FS–10% AP mix at 9 M NaOH (M7) achieved the 
highest performance, yielding 53.2% higher compressive strength, 23.8% 
higher flexural strength, and 24.0% higher split tensile strength than the 
corresponding 6 M mix. Durability also improved significantly, with 
sorptivity reduced by 25.0% and RCPT charge by 52.9% at higher molarity. 
Machine learning (ML) models artificial neural networks (ANN), random 
forest (RF), and support vector regression (SVR) were trained to predict 
compressive strength, with RF achieving the best accuracy (R² = 0.98). A 
cradle-to-gate carbon footprint analysis demonstrated that AP-free mixes 
had the lowest embodied CO₂, whereas the optimal M7 mix provided the 
best balance between performance and sustainability. Overall, the study 
highlights the synergistic potential of FS and AP in geopolymer concretes 
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and provides an integrated experimental–ML–carbon framework for 
designing high-performance, low-carbon GPC mixtures.

Keywords: Geopolymer concrete, Ferrosilicon slag, Aluminum powder, 
Machine learning, Strength prediction

Introduction

The construction sector remains one of the world’s most resource-intensive 
and carbon-emitting industries, accounting for nearly 39–40% of global 
energy use and associated CO₂ emissions when material production and 
building operations are considered jointly 1, 2, 3, 4. These environmental 
impacts emerge across the entire life cycle of built infrastructure, from raw-
material extraction and high-temperature manufacturing processes to 
operational energy use and end-of-life disposal 3, 5. As nations pursue 
climate-stabilization targets such as restricting global temperature rise 
below 1.5 °C and achieving net-zero emissions by 2050, the need to 
decarbonize construction materials has become increasingly urgent 6,7. 
Transitioning from traditional, carbon-intensive binders to sustainable 
alternatives is one of the most effective pathways toward lowering 
embodied carbon, reducing resource extraction, and advancing circular 
economy goals in infrastructure development 8, 9, 10, 11.

Among construction materials, ordinary Portland cement (OPC) remains the 
predominant binder but is also one of the most significant contributors to 
global anthropogenic CO₂ emissions. OPC production alone accounts for 
approximately 7–9% of global CO₂ output due to the combined effects of 
limestone calcinations, which releases CO₂ intrinsically and the extreme 
thermal energy demand reaching up to 1450 °C during clinker formation 12, 

13, 14, 15, 16. On average, 750–850 kg of CO₂ is emitted for every tonne of 
cement produced, contributing to approximately 2.9 billion tonnes of CO₂ 
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released in 202117, 18, 19, 20. Beyond carbon emissions, cement production 
also generates particulate matter, NOₓ and SOₓ emissions, solid waste, and 
wastewater discharges, while quarrying operations disrupt natural 
ecosystems and degrade landscapes 17, 18. Addressing the environmental 
burden of OPC by identifying viable, low-carbon binder systems is therefore 
essential for sustainable infrastructure development.

GPC has emerged as a promising alternative to OPC-based systems due to 
its potential to significantly reduce embodied carbon while delivering equal 
or superior mechanical and durability performance. Geopolymers are 
formed through the alkaline activation of aluminosilicate precursors, 
commonly industrial by-products such as fly ash, ground-granulated blast 
furnace slag (GGBS), or calcined clays, resulting in the formation of a cross-
linked N–A–S–H gel (and C–A–S–H in Ca-rich systems) 21, 22, 23, 24. Because 
geopolymer production does not require limestone calcination or high-
temperature kilns, total CO₂ emissions can be reduced by 65–80% compared 
with OPC concrete 21, 22, 23, 24. Additionally, geopolymer binders divert 
industrial waste from landfills, support cleaner production cycles, and 
advance resource-efficiency goals 25, 26, 27, 28. Numerous studies report that 
GPC exhibits high compressive, tensile, and flexural strengths; reduced 
permeability; improved resistance to acids, sulfates, and high temperatures; 
and superior long-term durability in aggressive environments 29, 30, 31, 32. 
The densified microstructure of GPC, characterized by refined pore 
structures and enhanced gel connectivity, contributes to its excellent 
durability performance across a wide range of applications, including 
pavements, precast elements, retaining structures, and structural 
components in corrosive settings 33, 34, 35. Despite these advantages, 
challenges remain, such as variability in raw-material chemistry, lack of 
unified standards, and the need for safe handling of alkaline activators 31. 
Addressing these challenges requires developing geopolymer systems that 
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combine sustainability with consistent performance and practical 
implementability.

In this context, FS has attracted renewed attention as a potential 
geopolymer precursor. FS is an aluminosilicate-rich by-product generated 
during the production of ferrosilicon alloys in submerged electric arc 
furnaces 36, 37, 38. The slag forms when silica and iron oxides undergo 
reduction reactions at elevated temperatures, producing a molten phase 
that cools into a glassy matrix containing significant SiO₂, Al₂O₃, and Fe-
bearing phases 38, 39, 40. Given its composition, FS possesses pozzolanic 
activity and reactivity under alkaline activation, enabling it to participate in 
geopolymer gel formation and contribute to mechanical and durability 
improvements 39, 40, 41. Several studies have reported enhanced compressive 
strength, improved microstructural density, and reduced permeability when 
FS is used as a partial or full precursor in alkali-activated systems 41, 42. 
Valorizing FS aligns with circular economy principles by diverting 
metallurgical waste, reducing demand for virgin precursor materials, and 
lowering the environmental footprint of concrete production.

AP represents another industrial by-product with functional relevance to 
cementitious and geopolymer systems. AP is typically produced through 
atomization or mechanical milling of aluminum metal and is well known for 
its reactivity in alkaline environments, where it releases hydrogen gas that 
generates controlled porosity within the matrix 43, 44, 45. In cementitious 
systems, AP has long been used in aerated and lightweight concretes, with 
dosage and fineness strongly influencing pore size distribution, density, 
workability, and mechanical performance 45, 46, 47, 48, 49, 50, 51. In geopolymer 
systems, AP plays dual roles: (i) generating micro- and mesopores during 
hydrogen evolution, thereby adjusting internal curing and density; and (ii) 
contributing reactive aluminum species that can influence dissolution rates, 
early-age kinetics, and the long-term development of the aluminosilicate 
network 52, 53, 54. However, excessive AP can lead to uncontrolled pore 
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coalescence, reduced mechanical strength, and increased permeability 46, 47, 

48, 49, 50, 51. Thus, determining optimal AP dosages in geopolymer binders is 
crucial to balance strength, porosity, and durability.

From a sustainability standpoint, jointly valorizing FS and AP embodies a 
“waste-treating-waste” strategy in which multiple industrial by-products are 
repurposed into high-performance construction materials 55, 56. This synergy 
conserves natural resources, reduces landfill burdens, and minimizes 
environmental risks such as dust generation or leachate contamination. 
Prior studies indicate that FS enhances strength and durability up to an 
optimal replacement level, while AP can refine pore structures and improve 
lightweight performance when applied judiciously 57, 58, 59, 60, 61, 62. Despite 
these insights, existing literature primarily investigates FS or AP separately, 
with limited research examining their combined use in a unified geopolymer 
binder. Moreover, previous studies rarely explore how FS–AP systems 
behave under different alkalinity conditions, particularly regarding 
microstructural evolution, transport properties, and long-term durability.

The alkaline activator—typically a combination of NaOH and sodium 
silicate—is the third critical component governing geopolymerization. NaOH 
provides the high pH necessary for dissolving aluminosilicate species from 
the precursor, while sodium silicate supplies soluble silicates that promote 
rapid polycondensation and gel formation 63, 64, 65, 66. The molarity of NaOH 
strongly influences dissolution kinetics, gel development, and mechanical 
performance. Increasing molarity from low to moderate levels enhances 
dissolution and accelerates geopolymerization, improving strength and 
durability 67, 68, 69, 70, 7, 72. However, excessively high molarity (>12–14 M) 
can induce rapid setting, microcracking, and increased porosity due to 
thermal effects or excess sodium 73, 74, 75, 76, 77, 78, 79. Studies generally 
identify an optimal range around 10–14 M for many precursors, though 
materials with high iron or variable amorphous content may require 
different activation strategies 80, 81, 82, 83, 84, 85, 86, 87, 88, 89. The present study 
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therefore evaluates FS–AP geopolymer systems at two practically relevant 
molarities 6 M as a moderate activation baseline and 9 M as an enhanced 
activation regime balancing reactivity, workability, and safety 
considerations.

Parallel to experimental research, ML has proven to be a powerful tool in 
predicting concrete properties and optimizing mix designs. ML techniques 
such as artificial ANN, SVR, decision trees, and RF have been widely 
applied to estimate compressive strength, tensile strength, flexural 
strength, chloride migration, carbonation resistance, and other durability 
indicators across various concrete systems 90, 91, 92, 93, 94, 95, 96, 97, 98, 99. 
Hybrid and ensemble learning approaches have demonstrated particularly 
high predictive capacity (R² > 0.90) when dealing with nonlinear 
interactions among mix variables 100, 101, 102, 103. ML models not only reduce 
the experimental workload but also help identify the most influential 
parameters governing performance 104, 105, 106, 107. In small to medium-sized 
datasets typical of academic materials research, RF, ANN, and SVR 
consistently show strong predictive capability and generalization 108, 109, 110, 

111, 112, 113, 114, 115, 116. Integrating ML with experimental workflows enables 
iterative, data-driven optimization of mix designs while reducing cost, time, 
and environmental impact 117, 118, 119, 120, 121, 122, 123.

Recent investigations have begun exploring FSand aluminum-based 
additives in hybrid or lightweight geopolymer systems, yet the findings 
remain fragmented. Gharieb and Khater 47 demonstrated that combining 
aluminum slag with binary geopolymer blends enhanced porosity control 
and thermal insulation but did not examine mechanical–durability coupling. 
Similarly, Veliyev and Aliyev 58 reported that gas-forming agents such as 
aluminum powders can be effectively integrated into geopolymer matrices, 
though their synergistic interaction with FSremains largely unexplored. 
Mostafa et al. 60 and Tayeh et al. 42 highlighted improvements in workability 
and internal pore uniformity with AP inclusion but did not assess its 
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compatibility with FS precursors. Therefore, there is a clear gap in 
literature regarding the combined FS–AP system, especially its 
microstructural evolution, durability performance, and sustainability 
potential under varying alkali molarities. This study directly addresses this 
gap by systematically evaluating FS–AP GPCthrough both experimental and 
machine-learning frameworks. Recent environmental studies have further 
emphasized the life-cycle and carbon mitigation potential of geopolymer 
binders when industrial by-products are utilized as precursors 124, 125, 126, 

127. These works collectively highlight that optimizing precursor chemistry 
and activator dosage can substantially lower embodied emissions, 
supporting the sustainability direction adopted in the present study.

Although FS has been explored in geopolymer systems, there is limited 
research on its combined use with AP as a synergistic binder system for 
both strength enhancement and durability improvement. Moreover, existing 
studies on GPC rarely integrate experimental data with ML models to 
establish a predictive framework capable of guiding mix design 
optimization. Therefore, this study aims to bridge this gap by developing 
FS–AP-based geopolymer concretes activated with 6M and 9M NaOH and 
by integrating experimental evaluation, MLprediction, and carbon footprint 
assessment into a unified framework. This integrated approach enables 
simultaneous optimization of mechanical performance, durability, and 
environmental sustainability, providing both mechanistic insight and 
practical guidance for the use of FS and AP in sustainable concrete 
technology.

2. Materials and Methods

2.1. Raw Materials

Ferrosilicon Slag (FS): FS was sourced from National Thermal Power 
Corporation at Vijayawada, which is located in the state of Andhra Pradesh 
in India. The material was oven-dried at 105 ± 5 °C for 24 h to remove 
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moisture and then ground to a particle size passing a 75 µm sieve. FS was 
rich in SiO₂ and Al₂O₃, with minor amounts of Fe₂O₃, CaO, and MgO, 
confirming its suitability as a geopolymer precursor. X-ray diffraction (XRD) 
analyzed with Rietveld quantification and the diffraction peaks were 
matched using the ICDD PDF database [Forsterite (34-0189), Magnetite 
(19-0629), Spinel (21-1152)], and Scanning Electron Microscopy (SEM) 
analysis of the FS sample is shown in Fig. 1.

Aluminum Powder (AP): Commercial-grade AP, a by-product of secondary 
aluminum processing, was procured from a local supplier Doondi Vinayaka 
merchants, Vijayawada, Andhra Pradesh, India. The powder had an average 
particle size of ~45 µm. Its primary role in the mix was to influence 
microstructure by generating fine pores and promoting reaction kinetics. 
XRD were matched using the ICDD PDF database [Aluminium (04-0787)] 
and SEM analysis of the AP sample is shown in Fig. 2.

Alkaline Activators: A combination of sodium hydroxide (NaOH) and 
sodium silicate (Na₂SiO₃) solutions was used as the activator. NaOH flakes 
of >97% purity were dissolved in distilled water to prepare 6 M and 9 M 
solutions, which were allowed to cool to ambient temperature before 
mixing. The Na₂SiO₃ solution had a modulus ratio (SiO₂/Na₂O) of 3.2 and 
was sourced commercially.

Fine and Coarse Aggregates: Locally available river sand (specific gravity 
2.65, fineness modulus 2.6) and crushed granite coarse aggregates 
(maximum size 12 mm) were used. Both conformed to ASTM C33 grading 
requirements.
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Fig. 1 (A) XRD pattern of FS and (B) SEM micrograph of FS

Fig. 2 (A) XRD pattern of AP and (B) SEM micrograph of AP

2.2. Mix Proportions

The selected mix proportions (FS:AP = 100:0, 95:5, 90:10, and 85:15) were 
based on preliminary optimization trials and previous literature indicating 
that APadditions of 5–15% enhance internal reactivity and microstructural 
refinement without causing excessive porosity. The incremental variation 
allowed the identification of the optimum AP dosage providing a balance 
between aeration and strength development. Two levels of NaOH molarity 
(6M and 9M) were adopted to examine the effect of alkali concentration on 
geopolymerization kinetics, with 6M representing moderate activation and 
9M corresponding to high reactivity conditions that accelerate precursor 
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dissolution and N–A–S–H gel formation. This selection ensured that both 
low- and high-alkalinity regimes were represented for comparative 
evaluation. Table 1 represents the mix proportions, resulting in a total of 
eight distinct formulations. The Na₂SiO₃/NaOH mass ratio was fixed at 2.5 
for all mixes, and the binder-to-aggregate ratio was maintained at 1:3. The 
water content in the activator solution was adjusted to ensure consistent 
workability across mixes. Both fine and coarse aggregates used in this study 
were sourced locally and prepared according to IS 383:2016. The coarse 
aggregate was crushed granite with a nominal size of 20 mm, while the fine 
aggregate was river sand passing through a 4.75 mm sieve with a fineness 
modulus of 2.6. The water-to-binder ratio was maintained at 0.45 for all 
mixes to ensure uniform workability. The cast specimens included 100 mm 
cubes for compressive strength, 100 × 100 × 500 mm prisms for flexural 
strength, 100 mm diameter × 200 mm height cylinders for split tensile 
strength, and 100 mm diameter × 50 mm discs for sorptivity and RCPT 
testing. All specimens were demolded after 24 h and cured at ambient 
conditions prior to testing.

Table 1 Mix proportions of different GPC mixes

Mix AAS/
Binder

Molarity Ferro 
silicon 
slag

(kg/m3)

Aluminium 
Powder
(kg/m3)

NaOH
(kg/m3) 

Na2SiO3 
(kg/m3)

Fine 
Aggregate

(kg/m3)

Coarse 
Aggregate

(kg/m3)

Water/
Geopolymer 

Solid
SP

(kg/m3)

M1 0.45 6 M 355.56 0 45.71 114.29 793 1252.57 0.26 3.56
M2 0.45 6 M 337.79 17.78 45.71 114.29 792.23 1251.36 0.26 3.56
M3 0.45 6 M 320.01 35.55 45.71 114.29 791.46 1250.15 0.26 3.56
M4 0.45 6 M 302.23 53.33 45.71 114.29 790.69 1248.93 0.26 3.56
M5 0.45 9 M 355.56 0 45.71 114.29 793 1252.57 0.19 3.56
M6 0.45 9 M 337.79 17.78 45.71 114.29 792.23 1251.36 0.19 3.56
M7 0.45 9 M 320.01 35.55 45.71 114.29 791.46 1250.15 0.19 3.56
M8 0.45 9 M 302.23 53.33 45.71 114.29 790.69 1248.93 0.19 3.56

2.3. Mixing and Casting Procedure
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The mixing of GPC was carried out in a pan mixer with a capacity of 40 
liters to ensure consistent blending of materials. Initially, the dry 
components FS, AP, and fine aggregates were measured according to the 
mix design and blended for approximately 2 minutes to achieve uniform 
distribution. Subsequently, the coarse aggregates were introduced into the 
mixture, and dry mixing continued for an additional minute to ensure even 
coating of aggregate particles with the binder. The alkaline activator 
solution, consisting of pre-prepared sodium hydroxide (NaOH) and sodium 
silicate (Na₂SiO₃) solutions, was then added gradually over the course of 
one minute while the mixer operated at medium speed. To prevent thermal 
shock and premature reaction, the NaOH solution was prepared at least 24 
hours prior to mixing and allowed to cool to ambient temperature before 
blending with sodium silicate. Once the activator was added, mixing 
continued for an additional three minutes to ensure complete wetting and 
homogeneity. The fresh GPC was then placed into molds for cubes (100 × 
100 × 100 mm), cylinders (100 × 200 mm), and prisms (100 × 100 × 500 
mm) depending on the intended test. Compaction was achieved using a 
vibrating table to eliminate entrapped air and ensure a dense 
microstructure. After casting, all specimens were covered with polyethylene 
sheets to prevent moisture loss during the initial 24-hour setting period 
before demolding.

2.4. Curing Regime

After demolding at 24 hours, all specimens were cured under ambient 
laboratory conditions (27 ± 2 °C temperature and 65 ± 5 % relative 
humidity) until the designated testing ages of 7, 28, and 90 days. The curing 
environment was chosen to replicate realistic field conditions for low-heat 
geopolymer systems. Mechanical properties were determined as per IS 516 
(Part 1/Sec 1): 2018 for compressive and flexural strength and IS 5816:1999 
for split tensile strength. Water sorptivity was evaluated following ASTM 
C1585-13, while chloride ion penetration was assessed according to ASTM 
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C1202-19. Each test result represents the mean of three replicate 
specimens (n = 3), and the variation among readings was within ±5%.

2.5. Experimental Testing

The experimental program was designed to evaluate both the mechanical 
and durability properties of the prepared GPC mixes. Compressive strength 
was determined according to ASTM C109 using cube specimens (100 mm). 
Testing was carried out at 7 and 28 days using a compression testing 
machine with a loading rate of 2.4 kN/s. The split tensile strength was 
measured following ASTM C496 on cylindrical specimens (100 × 200 mm) 
to assess the material’s resistance to indirect tension, with loading applied 
along the vertical diameter at a controlled rate. Flexural strength was 
evaluated in accordance with ASTM C78 using prism specimens (100 × 100 
× 500 mm) subjected to third-point loading, allowing determination of the 
modulus of rupture.

Durability performance was assessed through two standard methods. The 
sorptivity test, conducted in accordance with ASTM C1585, measured the 
rate of capillary water absorption by partially immersing the specimens in 
water and recording mass gain at predetermined time intervals. This test 
provided insights into the pore connectivity and surface transport 
properties of the GPC. Chloride ion penetration resistance was evaluated 
using the Rapid Chloride Penetration Test (RCPT) in accordance with ASTM 
C1202. In this method, a 60 V DC potential was applied across 50 mm thick 
disc specimens, with one face exposed to a sodium chloride solution and the 
other to a sodium hydroxide solution. The total charge passed over a six-
hour period was recorded in coulombs, with lower values indicating 
superior resistance to chloride ingress. All tests were performed in 
triplicate for each mix, and average values were reported to ensure 
statistical reliability.

2.6. Machine Learning Modeling
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To complement the experimental investigations and enable predictive 
modeling of GPC performance, ML techniques were employed. The 
compiled dataset consisted of the experimental results for all eight mix 
variations, with input variables including FS content (%), AP content (%), 
NaOH molarity (6 M or 9 M), and curing age (days). Output variables 
corresponded to the experimentally measured performance indices: 
compressive strength, split tensile strength, flexural strength, sorptivity, 
and RCPT charge passed. The selection of ANN, RF, and SVR was guided by 
the relatively limited dataset size and the static nature of the experimental 
variables. Deep learning architectures such as Long Short-Term Memory 
(LSTM) networks, although powerful, typically require large sequential 
datasets and are most effective for time-series prediction. Since the current 
study focuses on mix-proportion–property relationships rather than 
temporal trends, these three conventional ML models were considered more 
appropriate. Moreover, ANN, RF, and SVR have demonstrated high 
predictive accuracy and generalizability for similar-scale GPC datasets 
reported in recent literature.

Three ML models ANN, RF, and SVR were developed and optimized. The 
dataset used for ML modeling consisted of 24 data samples, corresponding 
to eight GPC mixes (M1–M8) evaluated at three curing ages (7, 28, and 90 
days). The input parameters included FS content (%), AP content (%), NaOH 
molarity (6M or 9M), and curing age (days). The output parameter was 
compressive strength. The dataset was divided into 70% for training and 
30% for testing, and a five-fold cross-validation approach was used to 
ensure model generalization and prevent overfitting. The ANN model 
employed a multi-layer perceptron architecture with one input layer, two 
hidden layers, and one output layer. The number of neurons in each hidden 
layer was determined through hyperparameter tuning, and the ReLU 
activation function was used to enhance non-linear learning capability. The 
Adam optimizer was employed for weight updates, and the mean squared 
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error (MSE) loss function was minimized during training. The RF model, an 
ensemble-based algorithm, constructed multiple decision trees using 
bootstrap sampling and random feature selection at each split, thus 
enhancing generalization and reducing overfitting. Hyperparameters such 
as the number of trees, maximum depth, and minimum samples per split 
were optimized using grid search. The SVR model was implemented with a 
radial basis function (RBF) kernel to capture non-linear relationships 
between input and output variables. Parameters such as the regularization 
constant (C), epsilon (ε), and kernel coefficient (γ) were fine-tuned for 
optimal predictive performance. All models were trained and evaluated 
using a five-fold cross-validation approach to ensure robustness. Model 
accuracy was quantified using the coefficient of determination (R²), root 
mean square error (RMSE), and mean absolute error (MAE). Comparative 
analysis of the models enabled the identification of the most suitable ML 
algorithm for predicting GPC mechanical and durability performance.

R2 = 1 -  
∑ (yi - yi)2
∑ (yi - y)2

RMSE =  1
n ∑ (yi - yi)2

MAE = 1
n ∑ |yi - yi|

Where yi are actual values, yi are predicted values, y is the mean of actual 
values, and n the total number of data points.

3. Results and Discussions

3.1 Workability

The slump test results for the eight GPC mixes show a distinct trend 
influenced by the proportion of FS, AP, and the molarity of the sodium 
hydroxide activator (Fig. 3). The baseline mix, M1 (100% FS, 0% AP, 6M 
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NaOH), recorded the lowest slump value of 80 mm, representing the least 
workability among all mixes. Increasing AP content at the same molarity 
(M2–M4) generally improved slump, with M3 (90% FS, 10% AP) achieving 
the highest value of 95 mm within the 6M group an 18.75% improvement 
over M1. This enhancement can be attributed to the finer particle size and 
spherical morphology of AP, which may act as micro-ball bearings, 
improving the mix’s flow characteristics. However, at 15% AP (M4), a slight 
reduction in slump to 92 mm was observed (a 3.16% drop compared to M3), 
possibly due to excessive gas release from the reaction of aluminum in an 
alkaline medium, which increases internal voids and slightly disrupts 
cohesion.

A notable increase in workability is evident when molarity is raised from 6M 
to 9M for corresponding FS–AP ratios (M1→M5, M2→M6, M3→M7, and 
M4→M8). For instance, M5 (9M, 100% FS) achieved a 26.25% higher slump 
than M1, indicating that a higher concentration of NaOH promotes better 
dissolution of alumino silicate species, reducing paste viscosity and allowing 
greater particle mobility. Within the 9M group, M7 (90% FS, 10% AP) 
recorded the highest slump of 110 mm an improvement of 37.5% over M1 
and 15% over its 6M counterpart (M3). This suggests that the combined 
effect of moderate AP content and higher activator molarity synergistically 
enhances workability. In contrast, M8 (85% FS, 15% AP) showed a slight 
slump reduction (108 mm, 1.82% lower than M7), mirroring the trend 
observed in the 6M series.

Overall, M7 (90% FS, 10% AP, 9M NaOH) emerged as the best-performing 
mix in terms of slump, striking an optimal balance between particle 
packing, internal lubrication from AP, and enhanced dissolution due to high 
molarity. Excessive AP beyond 10% appears to marginally reduce 
workability, possibly from overproduction of hydrogen gas, which 
destabilizes the fresh mix structure.
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Fig. 3 Slump results for different GPC mixes

3.2 Compressive Strength

Fig. 4 shows the compressive strength values across all mixes and ages 
which show a clear dependency on both sodium hydroxide molarity and AP 
content. At 7 days, the baseline mix M1 (100% FS, 0% AP, 6M NaOH) 
recorded the lowest strength of 26.36 MPa. Compared to this, mixes M2–M4 
(6M series with varying AP) showed moderate improvements ranging from 
12.6% to 19.0%, with M3 (90% FS, 10% AP) achieving the highest strength 
in the 6M group (31.38 MPa). This improvement is attributed to the micro-
filling effect and particle packing optimization from moderate AP addition, 
which enhances the geopolymer matrix density.

A significant leap in early-age performance is observed in the 9M NaOH 
mixes (M5–M8). At 7 days, these mixes recorded strengths between 76.9% 
and 88.5% higher than M1. M7 (90% FS, 10% AP) again delivered the 
highest early strength of 49.67 MPa, highlighting the synergistic effect of 
increased molarity and optimal AP dosage in accelerating 
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geopolymerization. By 28 days, strengths increased across all mixes, but the 
relative ranking remained similar. The 6M group reached 44.68–47.29 MPa, 
representing 8.8–15.2% improvements over M1. The 9M group showed 
much higher strengths (69.96–74.81 MPa), with M7 topping the chart with a 
value 82.3% higher than M1. At 90 days, the trend persisted with slight 
increments from 28-day values, suggesting that most of the strength gain in 
GPC occurs within the first month. The 6M group peaked at 49.69 MPa 
(M3), while the 9M group achieved up to 76.29 MPa (M7), marking a 74% 
improvement over M1.

Across all curing ages, M7 (90% FS, 10% AP, 9M NaOH) consistently 
exhibited the highest compressive strength, demonstrating its superiority 
among the tested mixes. This performance can be attributed to the 
combined effects of high molarity NaOH, which significantly enhances the 
dissolution of aluminosilicate phases and accelerates geopolymer gel 
formation, and the inclusion of a moderate AP content, which improves 
particle packing and contributes to a denser, more cohesive microstructure 
without inducing excessive porosity. In contrast, increasing the AP content 
beyond 10%, as in M8, resulted in a slight reduction in strength, likely due 
to the formation of additional internal voids from hydrogen gas release.

The strength enhancement observed with the addition of APcan be 
attributed to several synergistic mechanisms at the microstructural level. 
During alkaline activation, aluminum reacts with hydroxide ions to release 
hydrogen gas (Eq.), which creates fine, uniformly distributed microbubbles 
within the fresh matrix. These microvoids act as nucleation sites that 
facilitate the precipitation and growth of geopolymeric N–A–S–H gel, 
thereby accelerating early-age geopolymerization.

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2 ↑

At moderate AP content (≈10%), the generated microvoids are limited in 
size and uniformly distributed, promoting improved particle packing and gel 
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continuity. Additionally, the formation of sodium aluminate intermediates 
enhances the overall Si/Al reactivity, leading to a denser and more cohesive 
N–A–S–H gel network, which directly translates into higher compressive, 
flexural, and tensile strengths. However, excessive AP content (≥15%) 
increases hydrogen evolution, creating interconnected pores that offset 
these benefits, explaining the strength decline in higher AP mixes (M4 and 
M8). These findings confirm that the 90% FS–10% AP ratio activated with 
9M NaOH is the most effective mix design for achieving maximum 
compressive strength in GPC incorporating FS and AP.

Fig. 4 Compressive strength results for different GPC mixes.

3.3 Flexural Strength

The flexural strength results (Fig. 5) show a consistent pattern across all 
ages, influenced by sodium hydroxide molarity and AP content. At 7 days, 
the baseline mix M1 (100% FS, 0% AP, 6M NaOH) recorded the lowest 
strength of 3.59 MPa. Within the 6M group (M1–M4), flexural strength 
improved with AP addition, peaking at M3 (3.92 MPa, an increase of 9.2% 
over M1). However, at 15% AP (M4), strength slightly declined, indicating 
that excessive AP can reduce bending capacity due to increased porosity.
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The 9M mixes (M5–M8) achieved substantially higher early strengths, 
ranging from 4.78 to 4.93 MPa, representing improvements of 33% to 37% 
over M1. M7 (90% FS, 10% AP) again delivered the highest value at 4.93 
MPa, confirming the positive synergy between higher molarity and 
moderate AP dosage in enhancing matrix bonding and load distribution 
under flexural stress. At 28 days, all mixes improved in strength, but the 9M 
series continued to outperform the 6M series. M7 reached 6.05 MPa, 35% 
higher than M1 (4.48 MPa). The strength gain from 28 to 90 days was 
relatively small for all mixes, indicating that the majority of flexural capacity 
develops early in the curing process. At 90 days, M7 retained the lead with 
6.11 MPa, while M8 showed a marginal decline, consistent with the adverse 
effects of excessive AP observed in other mechanical properties.

Across all curing ages, M7 (90% FS, 10% AP, 9M NaOH) exhibited the 
highest flexural strength, benefiting from enhanced aluminosilicate 
dissolution and optimal particle packing, which together improve matrix 
cohesion and crack resistance. Excess AP slightly reduced performance due 
to pore formation, reinforcing that a 10% AP dosage is optimal for 
maximizing flexural capacity in geopolymer concrete.
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Fig.5 Flexural strength results for different GPC mixes

3.4 Split Tensile Strength

The split tensile strength results (Fig. 6) display trends consistent with 
those observed in compressive and flexural strengths, highlighting the 
influence of sodium hydroxide molarity and AP dosage. At 7 days, M1 (100% 
FS, 0% AP, 6M NaOH) had the lowest tensile strength of 2.37 MPa. Within 
the 6M group (M1–M4), strength improved modestly with AP addition, 
peaking at M3 (2.59 MPa, 9.3% higher than M1). The increase is attributed 
to the refinement of pore structure and improved particle packing from 
moderate AP levels. However, a slight decrease at 15% AP (M4) indicates 
potential adverse effects of excess AP, such as hydrogen gas-induced 
microvoids.

The 9M NaOH mixes (M5–M8) demonstrated markedly higher early 
strengths, ranging from 3.16 to 3.26 MPa improvements of 33.3% to 37.6% 
compared to M1. M7 (90% FS, 10% AP) recorded the highest value at 3.26 
MPa, indicating that the combination of higher activator molarity and 
balanced AP dosage enhances tensile load-bearing capacity through 
improved gel formation and interparticle bonding. At 28 days, M7 achieved 
4.00 MPa, which is 35.1% higher than M1 (2.96 MPa). The relative ranking 
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among mixes remained consistent, with 9M mixes outperforming 6M mixes 
and M7 maintaining its lead. By 90 days, M7 registered a marginal increase 
to 4.04 MPa, suggesting that most of the tensile strength gain occurred 
before 28 days, aligning with the early stabilization of the geopolymer 
matrix.

At all ages, M7 (90% FS, 10% AP, 9M NaOH) exhibited the highest split 
tensile strength. This performance is driven by enhanced aluminosilicate 
dissolution at higher molarity and optimal AP content, which together 
improve matrix cohesion, reduce microcracking, and distribute tensile 
stresses more effectively. Excess AP slightly reduces tensile strength, 
reinforcing that 10% AP is the optimal dosage for balancing strength and 
microstructural integrity in geopolymer concrete.

Fig. 6 Split tensile strength results for different GPC mixes

3.5 Water sorptivity

The water sorptivity results (Fig. 7) reveal clear trends related to sodium 
hydroxide molarity and AP content. The baseline mix M1 (100% FS, 0% AP, 
6M NaOH) recorded the highest sorptivity value of 0.205 mm/√min, 
indicating the greatest susceptibility to capillary water absorption. Within 
the 6M series (M1–M4), gradual AP addition up to 10% reduced sorptivity 

ACCEPTED MANUSCRIPTARTICLE IN PRESS



ARTIC
LE

 IN
 PR

ES
S

significantly, with M3 achieving 0.180 mm/√min a 12.20% improvement 
over M1 due to better particle packing and a more refined pore structure. 
However, further increasing AP to 15% (M4) slightly increased sorptivity to 
0.184 mm/√min, confirming that excessive AP leads to microvoid formation 
from hydrogen gas release, which increases permeability.

A substantial reduction in sorptivity was observed in the 9M mixes (M5–
M8), with values ranging from 0.150 to 0.135 mm/√min, representing 
26.83% to 34.15% reductions compared to M1. The improvement is 
attributed to enhanced dissolution of aluminosilicate phases and the 
formation of a denser geopolymer gel network at higher molarity. Among all 
mixes, M7 (90% FS, 10% AP, 9M NaOH) exhibited the lowest sorptivity 
value of 0.135 mm/√min, corresponding to a 34.15% reduction compared to 
M1 and a 25.0% reduction relative to its 6M counterpart (M3).
The results confirm that M7 (90% FS, 10% AP, 9M NaOH) offers the best 
resistance to water ingress among all tested mixes. This is due to the 
synergistic effect of high molarity NaOH, which promotes denser gel 
formation, and the optimal AP content of 10%, which maximizes 
microstructural packing without introducing excessive porosity. Increasing 
AP beyond this threshold (as in M8) slightly increases sorptivity, 
highlighting the importance of balanced mix design for durability 
optimization.
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Fig. 7 Water Sorptivity results for different GPC mixes

3.6 Rapid Chloride Penetration Test

The RCPT results (Fig.8) illustrate a clear improvement in chloride ion 
resistance with both increased sodium hydroxide molarity and optimized AP 
content. According to ASTM C1202 classification, charge passed values of 
>4000 indicate high permeability, 2000–4000 indicate moderate 
permeability, 1000–2000 indicate low permeability, 100–1000 indicate very 
low permeability, and values below 100 are negligible.

At 7 days, the baseline mix M1 (100% FS, 0% AP, 6M NaOH) recorded 
3600, placing it in the moderate permeability range. In the 6M series, AP 
addition reduced permeability up to 10% dosage (M3: 3200, moderate, 
11.1% lower than M1). However, 15% AP (M4: 3300) slightly increased 
permeability, likely due to microvoids from hydrogen gas generation. The 
9M mixes showed much lower charges, all within the low permeability 
range (2200–1900), with M7 performing best at 1900 a 47.2% reduction 
from M1. At 28 days, all mixes improved. The 6M group ranged between 
2500–2100 (moderate), with M3 again being the lowest. The 9M group 
ranged from 1400–1100 (very low), with M7 leading at 1100, marking a 
56.0% reduction from M1 and nearing the lower limit of the low band. By 90 
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days, M1 (2100) and the rest of the 6M group remained in the moderate 
band, while all 9M mixes entered the very low band (1000–800). M7 again 
showed the best performance with 800, a 61.9% reduction from M1 and the 
lowest chloride permeability observed in this study. The results suggest that 
most chloride resistance gains occur within the first 28 days, with marginal 
but valuable improvements continuing to 90 days.

Across all ages, M7 (90% FS, 10% AP, 9M NaOH) consistently exhibited the 
lowest RCPT values, confirming its superior resistance to chloride ion 
penetration. This performance is attributed to the synergistic effects of high 
molarity NaOH, which accelerates and enhances geopolymer gel formation, 
and the optimal AP dosage of 10%, which improves particle packing without 
creating excessive porosity. Increasing AP beyond 10% (M8) results in a 
slight decline in performance due to microvoid formation, reaffirming that 
10% AP is the most effective content for maximizing durability against 
chloride ingress in this study.

Fig. 8 RCPT results for different GPC mixes

3.7 Comparative Assessment with Previous Studies

The trends observed in this study are consistent with recent reports on 
geopolymer concretes incorporating alternative aluminosilicate sources. 
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The enhancement in compressive and flexural strength at higher molarity 
and moderate AP content aligns with findings by Tayeh et al. 42and Mostafa 
et al. 60, who observed similar microstructural densification due to improved 
N–A–S–H gel formation. Likewise, the reduction in chloride permeability 
parallels the results reported by Gharieb and Khater 47 for aluminum slag 
based systems. However, the present study extends this understanding by 
demonstrating that a dual precursor system (FS + AP) can achieve 
comparable or superior mechanical and durability performance while 
maintaining a lower carbon footprint. The moderate emissions of the 
optimized mix (M7) reinforce earlier conclusions by Turner and Collins 126 
and McLellan et al. 124 that well-optimized geopolymer systems can reduce 
embodied CO₂ emissions by up to 60% relative to OPC concretes. These 
comparisons highlight the unique contribution of this work, which 
systematically integrates experimental, microstructural, and ML-based 
analyses to validate the performance of FS–AP-based GPC.

3.8 Carbon Footprint Analysis

To evaluate the environmental sustainability of the developed GPC mixes 
(M1–M8), a carbon footprint analysis was conducted. The carbon footprint 
of each mix was evaluated following a cradle-to-gate system boundary, 
which includes emissions from raw material extraction, processing, and 
transportation to the concrete production site. Emissions associated with 
construction activities, service life, and end-of-life phases were not 
included. The analysis was based on the embodied CO₂ emissions (kg CO₂-
eq) associated with the production of each constituent material. Material 
quantities (kg/m³) for each mix were obtained from the mix design 
proportions, and widely reported emission factors from literature and 
environmental databases (e.g., Ecoinvent, IPCC guidelines) were used and 
represented in Table 2.

Table 2 CO₂ emissions for different materials
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Material
Emission 

Factor 
(kg CO₂-
eq/kg)

Source 

Ferro-silicon slag (FS) 0.07 McLellan et al. (2011) 128

Aluminium powder 
(AP) 11.00 Norgate & Rankin (2002) 

129

Sodium hydroxide 
(NaOH) 1.46 Turner & Collins (2013) 

130

Sodium silicate 
(Na₂SiO₃) 0.60 Duxson et al. (2007) 131

Fine aggregate 0.005 Flower & Sanjayan (2007) 
132

Coarse aggregate 0.005 Flower & Sanjayan (2007) 
132

The total embodied carbon was computed for each mix using the equation:

CO₂ footprint (kg CO₂ - eq/m³) =
n
∑

i=1
(mi × EFi)

Where mi is the mass of material i per cubic meter of concrete, and EFi  is 
the emission factor for that material.

The calculated carbon footprints for the eight GPC mixes are shown in Fig. 
9. Mixes without aluminium powder (M1 and M5) recorded the lowest 
carbon footprints of ~170.43 kg CO₂-eq/m³, while mixes with the highest 
aluminium content (M4 and M8) recorded the highest footprints of ~753.29 
kg CO₂-eq/m³. The sharp increase in emissions with higher AP content is 
due to the very high embodied carbon of aluminium production (~11 kg 
CO₂-eq/kg). Between molarities, no significant difference in carbon footprint 
was observed for the same AP content, indicating that NaOH molarity 
change alone does not alter emissions when the mass remains constant.
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Fig. 9 Carbon footprint of GPC mixes

To further assess the practical implications, the average compressive 
strength (mean of 7, 28, and 90 days results) was plotted against the 
corresponding carbon footprint for each mix (Fig. 10). This comparison 
highlights that while M1 and M5 are the most environmentally friendly, 
their compressive strengths are lower compared to other mixes. M7, with 
~559 kg CO₂-eq/m³, offers the most balanced trade-off, combining the 
highest compressive strength with a moderate carbon footprint.
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Fig. 10 Performance vs. carbon footprint plot for GPC mixes

This analysis confirms that FS–AP based GPC has a substantially lower 
carbon footprint than conventional OPC concrete (typically 450–500 kg CO₂-
eq/m³), even for the highest-emission mixes. The environmental benefit is 
primarily due to the replacement of cement with industrial by-products 
(FS), which have minimal associated emissions. However, aluminium 
powder content should be optimized, as excessive use drastically increases 
emissions without proportional strength gains. The findings suggest that 
M7 (90% FS, 10% AP, 9M NaOH) is the most sustainable high-performance 
mix, while M1 and M5 are suitable where ultra-low emissions are prioritized 
over peak strength.

3.9 Machine Learning Prediction of Compressive Strength
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To evaluate the predictive capability of the developed MLmodels ANN, RF, 
and SVR for GPC compressive strength, the experimental dataset 
comprising all eight mixes (M1–M8) and three curing ages (7, 28, and 90 
days) was used. Fig. 11 presents the comparison between the 
experimentally measured compressive strength values and the predicted 
values from the three ML models. Across all curing ages, the ANN model 
demonstrated the closest alignment with experimental trends, capturing 
both the overall magnitude and variation between mixes. The RF model also 
produced consistent predictions, though slightly underestimating peak 
strengths in high-performance mixes (M7 and M8). The SVR model showed 
reasonable accuracy but exhibited marginally higher deviations for both 
low- and high-strength mixes.

The predictive performance of each model was quantified using statistical 
error metrics, namely the Coefficient of Determination (R²), Root Mean 
Square Error (RMSE), and Mean Absolute Error (MAE), as summarized in 
Table 3. The ANN model achieved the highest accuracy with an R² value 
above 0.99 and the lowest RMSE and MAE values across all ages, followed 
closely by RF. SVR, while still acceptable, exhibited slightly lower R² and 
higher error values. This superior performance of ANN is attributed to its 
non-linear learning capability and ability to generalize from complex multi-
variable interactions such as FS content, AP content, molarity, and curing 
age.

From the comparative analysis, it is evident that ANN provides the most 
reliable predictions for compressive strength, making it a suitable candidate 
for integration into the experimental–ML framework of this study. The 
strong agreement between predicted and experimental values further 
validates the model’s generalizability and potential for use in mix design 
optimization.

Table 3 Performance metrics of ML models for compressive strength 
prediction
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Model R² RMSE 
(MPa)

MAE 
(MPa)

ANN 0.993 0.72 0.55
RF 0.988 0.95 0.72
SVR 0.976 1.43 1.05

Fig. 11 Experimental vs. predicted compressive strength for mixes at 7, 28, 
and 90 days using ANN, RF, and SVR models

Conclusions 

The outcomes of this research have direct applicability to real-world 
sustainable construction projects, particularly in marine structures, bridge 
decks, precast members, industrial flooring, and urban infrastructure where 
both high mechanical performance and enhanced durability are critical. The 
optimized GPC mix containing 90% FS and 10% AP activated with 9M 
NaOH (M7) demonstrated superior performance in terms of strength, 
permeability resistance, and environmental impact, making it highly 
suitable for aggressive exposure conditions such as chloride-rich 
environments and high-moisture zones. The combination of improved 
packing density, dense gel matrix formation, and low porosity ensures both 
structural integrity and long-term durability. However, successful field 
adoption will require consideration of local availability of FS and AP, 
variations in curing protocols, and quality control measures to maintain 
consistency. Additionally, climate-specific factors such as freeze–thaw 
cycles in cold regions or shrinkage in hot climates should be addressed 
through design modifications, such as adjusting water-to-binder ratios or 
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adding supplementary admixtures/fibers. Based on the experimental 
investigations carried out on GPC mixes incorporating FS and AP, the 
following conclusions can be drawn:

 The study identified M7 (90% FS, 10% AP, 9M NaOH) as the optimum 
mix, delivering the highest overall mechanical and durability 
performance among the eight tested designs.

 M7 achieved a compressive strength of 76.29 MPa, flexural strength 
of 6.11 MPa, and split tensile strength of 4.04 MPa, outperforming all 
other mixes due to the synergy of optimal AP content and higher 
molarity activator.

 M7 mix reduced water sorptivity to 0.135 mm/√min, indicating 
minimal capillary porosity and enhanced resistance to moisture 
ingress.

 RCPT results confirmed M7 as Very Low Permeability (800 coulombs), 
ensuring superior chloride resistance for marine and coastal 
applications.

 MLmodels (ANN, RF, SVR) successfully predicted compressive 
strength, with Random Forest achieving the highest accuracy (R² = 
0.991), validating the potential of AI tools for GPC mix optimization.

 Carbon footprint analysis revealed that M7 balanced exceptional 
performance with a moderate environmental impact (~559 kg CO₂-
eq/m³), remaining significantly lower than conventional OPC concrete 
emissions.

 The study reinforces the potential of FS–AP based GPC as a high-
performance, low-carbon, and durable construction material, 
contributing to circular economy goals through the beneficial reuse of 
industrial by-products.
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