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Abstract

The present study explores the mechanical, durability, and environmental
performance of geopolymer concrete (GPC) synthesized using ferrosilicon
slag (FS) and aluminum powder (AP) as sustainable binder constituents.
Eight mixes were prepared by varying FS:AP ratios (100:0, 95:5, 90:10,
85:15) and activating them with 6 M and 9 M sodium hydroxide at a
constant activator-to-binder ratio. Experimental tests included compressive,
flexural, and split tensile strengths, water sorptivity, and rapid chloride
penetration (RCPT). Results showed that increasing AP content improved
workability up to an optimum of 10%, after which excessive porosity
reduced strength. The 90% FS-10% AP mix at 9 M NaOH (M7) achieved the
highest performance, yielding 53.2% higher compressive strength, 23.8%
higher flexural strength, and 24.0% higher split tensile strength than the
corresponding 6 M mix. Durability also improved significantly, with
sorptivity reduced by 25.0% and RCPT charge by 52.9% at higher molarity.
Machine learning (ML) models artificial neural networks (ANN), random
forest (RF), and support vector regression (SVR) were trained to predict
compressive strength, with RF achieving the best accuracy (R? = 0.98). A
cradle-to-gate carbon footprint analysis demonstrated that AP-free mixes
had the lowest embodied CO2, whereas the optimal M7 mix provided the
best balance between performance and sustainability. Overall, the study

highlights the synergistic potential of FS and AP in geopolymer concretes



and provides an integrated experimental-ML-carbon framework for

designing high-performance, low-carbon GPC mixtures.
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Introduction

The construction sector remains one of the world’s most resource-intensive
and carbon-emitting industries, accounting for nearly 39-40% of global
energy use and associated CO: emissions when material production and
building operations are considered jointly ! 2. 3. 4, These environmental
impacts emerge across the entire life cycle of built infrastructure, from raw-
material extraction and high-temperature manufacturing processes to
operational energy use and end-of-life disposal 3 5. As nations pursue
climate-stabilization targets such as restricting global temperature rise
below 1.5 °C and achieving net-zero emissions by 2050, the need to
decarbonize construction materials has become increasingly urgent 67.
Transitioning from traditional, carbon-intensive binders to sustainable
alternatives is one of the most effective pathways toward lowering
embodied carbon, reducing resource extraction, and advancing circular

economy goals in infrastructure development 8 9. 10, 11,

Among construction materials, ordinary Portland cement (OPC) remains the
predominant binder but is also one of the most significant contributors to
global anthropogenic CO: emissions. OPC production alone accounts for
approximately 7-9% of global CO:2 output due to the combined effects of
limestone calcinations, which releases CO: intrinsically and the extreme
thermal energy demand reaching up to 1450 °C during clinker formation 12
13,114,115, 16, On average, 750-850 kg of CO: is emitted for every tonne of

cement produced, contributing to approximately 2.9 billion tonnes of CO:2



released in 202117, 18 19, 20 Beyond carbon emissions, cement production
also generates particulate matter, NOx and SOx emissions, solid waste, and
wastewater discharges, while quarrying operations disrupt natural
ecosystems and degrade landscapes !7- 18, Addressing the environmental
burden of OPC by identifying viable, low-carbon binder systems is therefore

essential for sustainable infrastructure development.

GPC has emerged as a promising alternative to OPC-based systems due to
its potential to significantly reduce embodied carbon while delivering equal
or superior mechanical and durability performance. Geopolymers are
formed through the alkaline activation of aluminosilicate precursors,
commonly industrial by-products such as fly ash, ground-granulated blast
furnace slag (GGBS), or calcined clays, resulting in the formation of a cross-
linked N-A-S-H gel (and C-A-S-H in Ca-rich systems) 21. 22, 23, 24 Because
geopolymer production does not require limestone calcination or high-
temperature kilns, total CO2 emissions can be reduced by 65-80% compared
with OPC concrete 21 22, 23, 24 Additionally, geopolymer binders divert
industrial waste from landfills, support cleaner production cycles, and
advance resource-efficiency goals 25 26, 27. 28 Numerous studies report that
GPC exhibits high compressive, tensile, and flexural strengths; reduced
permeability; improved resistance to acids, sulfates, and high temperatures;
and superior long-term durability in aggressive environments 29. 30, 31, 32,
The densified microstructure of GPC, characterized by refined pore
structures and enhanced gel connectivity, contributes to its excellent
durability performance across a wide range of applications, including
pavements, precast elements, retaining structures, and structural
components in corrosive settings 33 34 35 Despite these advantages,
challenges remain, such as variability in raw-material chemistry, lack of
unified standards, and the need for safe handling of alkaline activators 31,

Addressing these challenges requires developing geopolymer systems that



combine sustainability with consistent performance and practical

implementability.

In this context, FS has attracted renewed attention as a potential
geopolymer precursor. FS is an aluminosilicate-rich by-product generated
during the production of ferrosilicon alloys in submerged electric arc
furnaces 36 37. 38, The slag forms when silica and iron oxides undergo
reduction reactions at elevated temperatures, producing a molten phase
that cools into a glassy matrix containing significant SiO2, Al2Os3, and Fe-
bearing phases 38 39 40 Given its composition, FS possesses pozzolanic
activity and reactivity under alkaline activation, enabling it to participate in
geopolymer gel formation and contribute to mechanical and durability
improvements 39- 40. 41 Several studies have reported enhanced compressive
strength, improved microstructural density, and reduced permeability when
FS is used as a partial or full precursor in alkali-activated systems 4! 42,
Valorizing FS aligns with circular economy principles by diverting
metallurgical waste, reducing demand for virgin precursor materials, and

lowering the environmental footprint of concrete production.

AP represents another industrial by-product with functional relevance to
cementitious and geopolymer systems. AP is typically produced through
atomization or mechanical milling of aluminum metal and is well known for
its reactivity in alkaline environments, where it releases hydrogen gas that
generates controlled porosity within the matrix 43 44 45 In cementitious
systems, AP has long been used in aerated and lightweight concretes, with
dosage and fineness strongly influencing pore size distribution, density,
workability, and mechanical performance 43 46, 47, 48, 49, 50, 51 Tn geopolymer
systems, AP plays dual roles: (i) generating micro- and mesopores during
hydrogen evolution, thereby adjusting internal curing and density; and (ii)
contributing reactive aluminum species that can influence dissolution rates,
early-age kinetics, and the long-term development of the aluminosilicate

network 52, 53. 54, However, excessive AP can lead to uncontrolled pore



coalescence, reduced mechanical strength, and increased permeability 46. 47,
48, 49, 50, 51 Thus, determining optimal AP dosages in geopolymer binders is

crucial to balance strength, porosity, and durability.

From a sustainability standpoint, jointly valorizing FS and AP embodies a
“waste-treating-waste” strategy in which multiple industrial by-products are
repurposed into high-performance construction materials 55 56, This synergy
conserves natural resources, reduces landfill burdens, and minimizes
environmental risks such as dust generation or leachate contamination.
Prior studies indicate that FS enhances strength and durability up to an
optimal replacement level, while AP can refine pore structures and improve
lightweight performance when applied judiciously 57- 58. 59, 60, 61, 62 Degpite
these insights, existing literature primarily investigates FS or AP separately,
with limited research examining their combined use in a unified geopolymer
binder. Moreover, previous studies rarely explore how FS-AP systems
behave under different alkalinity conditions, particularly regarding

microstructural evolution, transport properties, and long-term durability.

The alkaline activator—typically a combination of NaOH and sodium
silicate—is the third critical component governing geopolymerization. NaOH
provides the high pH necessary for dissolving aluminosilicate species from
the precursor, while sodium silicate supplies soluble silicates that promote
rapid polycondensation and gel formation 63. 64. 65. 66 The molarity of NaOH
strongly influences dissolution kinetics, gel development, and mechanical
performance. Increasing molarity from low to moderate levels enhances
dissolution and accelerates geopolymerization, improving strength and
durability 67- 68. 69, 70, 7, 72 However, excessively high molarity (>12-14 M)
can induce rapid setting, microcracking, and increased porosity due to
thermal effects or excess sodium 73 74 75 76, 77, 78, 79 Studies generally
identify an optimal range around 10-14 M for many precursors, though
materials with high iron or variable amorphous content may require

different activation strategies 80. 81, 82, 83, 84, 85, 86, 87, 88, 89 The present study



therefore evaluates FS-AP geopolymer systems at two practically relevant
molarities 6 M as a moderate activation baseline and 9 M as an enhanced
activation regime balancing reactivity, @workability, and safety

considerations.

Parallel to experimental research, ML has proven to be a powerful tool in
predicting concrete properties and optimizing mix designs. ML techniques
such as artificial ANN, SVR, decision trees, and RF have been widely
applied to estimate compressive strength, tensile strength, flexural
strength, chloride migration, carbonation resistance, and other durability
indicators across various concrete systems 90. 91, 92, 93, 94, 95, 96, 97, 98, 99,
Hybrid and ensemble learning approaches have demonstrated particularly
high predictive capacity (R?> > 0.90) when dealing with nonlinear
interactions among mix variables 100, 101, 102, 103 _MT, models not only reduce
the experimental workload but also help identify the most influential
parameters governing performance 104, 105,106,107 Tpn small to medium-sized
datasets typical of academic materials research, RF, ANN, and SVR
consistently show strong predictive capability and generalization 108. 109, 110,
111,112, 113, 114, 115, 116 Integrating ML with experimental workflows enables
iterative, data-driven optimization of mix designs while reducing cost, time,

and environmental impact 117 118,119,120, 121,122, 123,

Recent investigations have begun exploring FSand aluminum-based
additives in hybrid or lightweight geopolymer systems, yet the findings
remain fragmented. Gharieb and Khater 47 demonstrated that combining
aluminum slag with binary geopolymer blends enhanced porosity control
and thermal insulation but did not examine mechanical-durability coupling.
Similarly, Veliyev and Aliyev %8 reported that gas-forming agents such as
aluminum powders can be effectively integrated into geopolymer matrices,
though their synergistic interaction with FSremains largely unexplored.
Mostafa et al. 9 and Tayeh et al. 42 highlighted improvements in workability

and internal pore uniformity with AP inclusion but did not assess its



compatibility with FS precursors. Therefore, there is a clear gap in
literature regarding the combined FS-AP system, especially its
microstructural evolution, durability performance, and sustainability
potential under varying alkali molarities. This study directly addresses this
gap by systematically evaluating FS-AP GPCthrough both experimental and
machine-learning frameworks. Recent environmental studies have further
emphasized the life-cycle and carbon mitigation potential of geopolymer
binders when industrial by-products are utilized as precursors 124 125, 126,
127 These works collectively highlight that optimizing precursor chemistry
and activator dosage can substantially lower embodied emissions,

supporting the sustainability direction adopted in the present study.

Although FS has been explored in geopolymer systems, there is limited
research on its combined use with AP as a synergistic binder system for
both strength enhancement and durability improvement. Moreover, existing
studies on GPC rarely integrate experimental data with ML models to
establish a predictive framework capable of guiding mix design
optimization. Therefore, this study aims to bridge this gap by developing
FS-AP-based geopolymer concretes activated with 6M and 9M NaOH and
by integrating experimental evaluation, MLprediction, and carbon footprint
assessment into a unified framework. This integrated approach enables
simultaneous optimization of mechanical performance, durability, and
environmental sustainability, providing both mechanistic insight and
practical guidance for the use of FS and AP in sustainable concrete

technology.

2. Materials and Methods
2.1. Raw Materials

Ferrosilicon Slag (FS): FS was sourced from National Thermal Power
Corporation at Vijayawada, which is located in the state of Andhra Pradesh

in India. The material was oven-dried at 105 = 5 °C for 24 h to remove



moisture and then ground to a particle size passing a 75 pm sieve. FS was
rich in SiO2 and Al20s, with minor amounts of Fe20s3, CaO, and MgO,
confirming its suitability as a geopolymer precursor. X-ray diffraction (XRD)
analyzed with Rietveld quantification and the diffraction peaks were
matched using the ICDD PDF database [Forsterite (34-0189), Magnetite
(19-0629), Spinel (21-1152)], and Scanning Electron Microscopy (SEM)

analysis of the FS sample is shown in Fig. 1.

Aluminum Powder (AP): Commercial-grade AP, a by-product of secondary
aluminum processing, was procured from a local supplier Doondi Vinayaka
merchants, Vijayawada, Andhra Pradesh, India. The powder had an average
particle size of ~45 pm. Its primary role in the mix was to influence
microstructure by generating fine pores and promoting reaction kinetics.
XRD were matched using the ICDD PDF database [Aluminium (04-0787)]
and SEM analysis of the AP sample is shown in Fig. 2.

Alkaline Activators: A combination of sodium hydroxide (NaOH) and
sodium silicate (Na2SiOs) solutions was used as the activator. NaOH flakes
of >97% purity were dissolved in distilled water to prepare 6 M and 9 M
solutions, which were allowed to cool to ambient temperature before
mixing. The Na2SiOs solution had a modulus ratio (SiO2/Na20) of 3.2 and

was sourced commercially.

Fine and Coarse Aggregates: Locally available river sand (specific gravity
2.65, fineness modulus 2.6) and crushed granite coarse aggregates
(maximum size 12 mm) were used. Both conformed to ASTM C33 grading

requirements.
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Fig. 2 (A) XRD pattern of AP and (B) SEM micrograph of AP
2.2. Mix Proportions
The selected mix proportions (FS:AP = 100:0, 95:5, 90:10, and 85:15) were

based on preliminary optimization trials and previous literature indicating
that APadditions of 5-15% enhance internal reactivity and microstructural
refinement without causing excessive porosity. The incremental variation
allowed the identification of the optimum AP dosage providing a balance
between aeration and strength development. Two levels of NaOH molarity
(6M and 9M) were adopted to examine the effect of alkali concentration on
geopolymerization kinetics, with 6M representing moderate activation and

9M corresponding to high reactivity conditions that accelerate precursor



dissolution and N-A-S-H gel formation. This selection ensured that both
low- and high-alkalinity regimes were represented for comparative
evaluation. Table 1 represents the mix proportions, resulting in a total of
eight distinct formulations. The Na:SiO3/NaOH mass ratio was fixed at 2.5
for all mixes, and the binder-to-aggregate ratio was maintained at 1:3. The
water content in the activator solution was adjusted to ensure consistent
workability across mixes. Both fine and coarse aggregates used in this study
were sourced locally and prepared according to IS 383:2016. The coarse
aggregate was crushed granite with a nominal size of 20 mm, while the fine
aggregate was river sand passing through a 4.75 mm sieve with a fineness
modulus of 2.6. The water-to-binder ratio was maintained at 0.45 for all
mixes to ensure uniform workability. The cast specimens included 100 mm
cubes for compressive strength, 100 x 100 x 500 mm prisms for flexural
strength, 100 mm diameter x 200 mm height cylinders for split tensile
strength, and 100 mm diameter x 50 mm discs for sorptivity and RCPT
testing. All specimens were demolded after 24 h and cured at ambient

conditions prior to testing.

Table 1 Mix proportions of different GPC mixes

Molarity | Ferro Aluminium Fine Coarse Water/
AAS/ silicon NaOH | NaySiO3 Geopolymer
Binder slag | Towder | .m3)| (kg/m3) |Agdregate | Aggregate | g 1iq T
(kg/m?) (kg/m3) (kg/m3) (kg/m3)
0.45 6 M 355.56 0 45.71 114.29 793 1252.57 0.26
0.45 6 M 337.79 17.78 45.71 114.29 792.23 1251.36 0.26
0.45 6 M 320.01 35.55 45.71 114.29 791.46 1250.15 0.26
0.45 6 M 302.23 53.33 45.71 114.29 790.69 1248.93 0.26
0.45 9 M 355.56 0 45.71 114.29 793 1252.57 0.19
0.45 9 M 337.79 17.78 45.71 114.29 792.23 1251.36 0.19
0.45 9 M 320.01 35.55 45.71 114.29 791.46 1250.15 0.19
0.45 9 M 302.23 53.33 45.71 114.29 790.69 1248.93 0.19

2.3. Mixing and Casting Procedure



The mixing of GPC was carried out in a pan mixer with a capacity of 40
liters to ensure consistent blending of materials. Initially, the dry
components FS, AP, and fine aggregates were measured according to the
mix design and blended for approximately 2 minutes to achieve uniform
distribution. Subsequently, the coarse aggregates were introduced into the
mixture, and dry mixing continued for an additional minute to ensure even
coating of aggregate particles with the binder. The alkaline activator
solution, consisting of pre-prepared sodium hydroxide (NaOH) and sodium
silicate (Na2SiOs) solutions, was then added gradually over the course of
one minute while the mixer operated at medium speed. To prevent thermal
shock and premature reaction, the NaOH solution was prepared at least 24
hours prior to mixing and allowed to cool to ambient temperature before
blending with sodium silicate. Once the activator was added, mixing
continued for an additional three minutes to ensure complete wetting and
homogeneity. The fresh GPC was then placed into molds for cubes (100 x
100 x 100 mm), cylinders (100 x 200 mm), and prisms (100 x 100 x 500
mm) depending on the intended test. Compaction was achieved using a
vibrating table to eliminate entrapped air and ensure a dense
microstructure. After casting, all specimens were covered with polyethylene
sheets to prevent moisture loss during the initial 24-hour setting period

before demolding.

2.4. Curing Regime

After demolding at 24 hours, all specimens were cured under ambient
laboratory conditions (27 = 2 °C temperature and 65 *= 5 % relative
humidity) until the designated testing ages of 7, 28, and 90 days. The curing
environment was chosen to replicate realistic field conditions for low-heat
geopolymer systems. Mechanical properties were determined as per IS 516
(Part 1/Sec 1): 2018 for compressive and flexural strength and IS 5816:1999
for split tensile strength. Water sorptivity was evaluated following ASTM

C1585-13, while chloride ion penetration was assessed according to ASTM



C1202-19. Each test result represents the mean of three replicate

specimens (n = 3), and the variation among readings was within +5%.

2.5. Experimental Testing

The experimental program was designed to evaluate both the mechanical
and durability properties of the prepared GPC mixes. Compressive strength
was determined according to ASTM C109 using cube specimens (100 mm).
Testing was carried out at 7 and 28 days using a compression testing
machine with a loading rate of 2.4 kN/s. The split tensile strength was
measured following ASTM C496 on cylindrical specimens (100 x 200 mm)
to assess the material’s resistance to indirect tension, with loading applied
along the vertical diameter at a controlled rate. Flexural strength was
evaluated in accordance with ASTM C78 using prism specimens (100 x 100
x 500 mm) subjected to third-point loading, allowing determination of the

modulus of rupture.

Durability performance was assessed through two standard methods. The
sorptivity test, conducted in accordance with ASTM C1585, measured the
rate of capillary water absorption by partially immersing the specimens in
water and recording mass gain at predetermined time intervals. This test
provided insights into the pore connectivity and surface transport
properties of the GPC. Chloride ion penetration resistance was evaluated
using the Rapid Chloride Penetration Test (RCPT) in accordance with ASTM
C1202. In this method, a 60 V DC potential was applied across 50 mm thick
disc specimens, with one face exposed to a sodium chloride solution and the
other to a sodium hydroxide solution. The total charge passed over a six-
hour period was recorded in coulombs, with lower values indicating
superior resistance to chloride ingress. All tests were performed in
triplicate for each mix, and average values were reported to ensure

statistical reliability.

2.6. Machine Learning Modeling



To complement the experimental investigations and enable predictive
modeling of GPC performance, ML techniques were employed. The
compiled dataset consisted of the experimental results for all eight mix
variations, with input variables including FS content (%), AP content (%),
NaOH molarity (6 M or 9 M), and curing age (days). Output variables
corresponded to the experimentally measured performance indices:
compressive strength, split tensile strength, flexural strength, sorptivity,
and RCPT charge passed. The selection of ANN, RF, and SVR was guided by
the relatively limited dataset size and the static nature of the experimental
variables. Deep learning architectures such as Long Short-Term Memory
(LSTM) networks, although powerful, typically require large sequential
datasets and are most effective for time-series prediction. Since the current
study focuses on mix-proportion-property relationships rather than
temporal trends, these three conventional ML models were considered more
appropriate. Moreover, ANN, RF, and SVR have demonstrated high
predictive accuracy and generalizability for similar-scale GPC datasets

reported in recent literature.

Three ML models ANN, RF, and SVR were developed and optimized. The
dataset used for ML modeling consisted of 24 data samples, corresponding
to eight GPC mixes (M1-M8) evaluated at three curing ages (7, 28, and 90
days). The input parameters included FS content (%), AP content (%), NaOH
molarity (6M or 9M), and curing age (days). The output parameter was
compressive strength. The dataset was divided into 70% for training and
30% for testing, and a five-fold cross-validation approach was used to
ensure model generalization and prevent overfitting. The ANN model
employed a multi-layer perceptron architecture with one input layer, two
hidden layers, and one output layer. The number of neurons in each hidden
layer was determined through hyperparameter tuning, and the ReLU
activation function was used to enhance non-linear learning capability. The

Adam optimizer was employed for weight updates, and the mean squared



error (MSE) loss function was minimized during training. The RF model, an
ensemble-based algorithm, constructed multiple decision trees using
bootstrap sampling and random feature selection at each split, thus
enhancing generalization and reducing overfitting. Hyperparameters such
as the number of trees, maximum depth, and minimum samples per split
were optimized using grid search. The SVR model was implemented with a
radial basis function (RBF) kernel to capture non-linear relationships
between input and output variables. Parameters such as the regularization
constant (C), epsilon (g¢), and kernel coefficient (y) were fine-tuned for
optimal predictive performance. All models were trained and evaluated
using a five-fold cross-validation approach to ensure robustness. Model
accuracy was quantified using the coefficient of determination (R2), root
mean square error (RMSE), and mean absolute error (MAE). Comparative
analysis of the models enabled the identification of the most suitable ML

algorithm for predicting GPC mechanical and durability performance.

2 (yi- vi)?
2 (yi-Y)?

1
MAE = HZWi - ¥il

RZ=1

Where y; are actual values, y; are predicted values, Y is the mean of actual
values, and n the total number of data points.

3. Results and Discussions
3.1 Workability

The slump test results for the eight GPC mixes show a distinct trend
influenced by the proportion of FS, AP, and the molarity of the sodium
hydroxide activator (Fig. 3). The baseline mix, M1 (100% FS, 0% AP, 6M



NaOH), recorded the lowest slump value of 80 mm, representing the least
workability among all mixes. Increasing AP content at the same molarity
(M2-M4) generally improved slump, with M3 (90% FS, 10% AP) achieving
the highest value of 95 mm within the 6M group an 18.75% improvement
over M1. This enhancement can be attributed to the finer particle size and
spherical morphology of AP, which may act as micro-ball bearings,
improving the mix’s flow characteristics. However, at 15% AP (M4), a slight
reduction in slump to 92 mm was observed (a 3.16% drop compared to M3),
possibly due to excessive gas release from the reaction of aluminum in an
alkaline medium, which increases internal voids and slightly disrupts

cohesion.

A notable increase in workability is evident when molarity is raised from 6M
to 9M for corresponding FS-AP ratios (M1-M5, M2-M6, M3-M7, and
M4-M8). For instance, M5 (9M, 100% FS) achieved a 26.25% higher slump
than M1, indicating that a higher concentration of NaOH promotes better
dissolution of alumino silicate species, reducing paste viscosity and allowing
greater particle mobility. Within the 9M group, M7 (90% FS, 10% AP)
recorded the highest slump of 110 mm an improvement of 37.5% over M1
and 15% over its 6M counterpart (M3). This suggests that the combined
effect of moderate AP content and higher activator molarity synergistically
enhances workability. In contrast, M8 (85% FS, 15% AP) showed a slight
slump reduction (108 mm, 1.82% lower than M?7), mirroring the trend

observed in the 6M series.

Overall, M7 (90% FS, 10% AP, 9M NaOH) emerged as the best-performing
mix in terms of slump, striking an optimal balance between particle
packing, internal lubrication from AP, and enhanced dissolution due to high
molarity. Excessive AP beyond 10% appears to marginally reduce
workability, possibly from overproduction of hydrogen gas, which

destabilizes the fresh mix structure.
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Fig. 3 Slump results for different GPC mixes
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3.2 Compressive Strength

Fig. 4 shows the compressive strength values across all mixes and ages
which show a clear dependency on both sodium hydroxide molarity and AP
content. At 7 days, the baseline mix M1 (100% FS, 0% AP, 6M NaOH)
recorded the lowest strength of 26.36 MPa. Compared to this, mixes M2-M4
(6M series with varying AP) showed moderate improvements ranging from
12.6% to 19.0%, with M3 (90% FS, 10% AP) achieving the highest strength
in the 6M group (31.38 MPa). This improvement is attributed to the micro-
filling effect and particle packing optimization from moderate AP addition,

which enhances the geopolymer matrix density.

A significant leap in early-age performance is observed in the 9M NaOH
mixes (M5-M8). At 7 days, these mixes recorded strengths between 76.9%
and 88.5% higher than M1. M7 (90% FS, 10% AP) again delivered the
highest early strength of 49.67 MPa, highlighting the synergistic effect of

increased molarity and optimal AP dosage in accelerating



geopolymerization. By 28 days, strengths increased across all mixes, but the
relative ranking remained similar. The 6M group reached 44.68-47.29 MPa,
representing 8.8-15.2% improvements over M1. The 9M group showed
much higher strengths (69.96-74.81 MPa), with M7 topping the chart with a
value 82.3% higher than M1. At 90 days, the trend persisted with slight
increments from 28-day values, suggesting that most of the strength gain in
GPC occurs within the first month. The 6M group peaked at 49.69 MPa
(M3), while the 9M group achieved up to 76.29 MPa (M7), marking a 74%

improvement over M1.

Across all curing ages, M7 (90% FS, 10% AP, 9M NaOH) consistently
exhibited the highest compressive strength, demonstrating its superiority
among the tested mixes. This performance can be attributed to the
combined effects of high molarity NaOH, which significantly enhances the
dissolution of aluminosilicate phases and accelerates geopolymer gel
formation, and the inclusion of a moderate AP content, which improves
particle packing and contributes to a denser, more cohesive microstructure
without inducing excessive porosity. In contrast, increasing the AP content
beyond 10%, as in M8, resulted in a slight reduction in strength, likely due

to the formation of additional internal voids from hydrogen gas release.

The strength enhancement observed with the addition of APcan be
attributed to several synergistic mechanisms at the microstructural level.
During alkaline activation, aluminum reacts with hydroxide ions to release
hydrogen gas (Eq.), which creates fine, uniformly distributed microbubbles
within the fresh matrix. These microvoids act as nucleation sites that
facilitate the precipitation and growth of geopolymeric N-A-S-H gel,

thereby accelerating early-age geopolymerization.
2Al + 2NaOH + 6H,0 - 2Na[Al(OH)4] + 3H2 1

At moderate AP content (=10%), the generated microvoids are limited in

size and uniformly distributed, promoting improved particle packing and gel



continuity. Additionally, the formation of sodium aluminate intermediates
enhances the overall Si/Al reactivity, leading to a denser and more cohesive
N-A-S-H gel network, which directly translates into higher compressive,
flexural, and tensile strengths. However, excessive AP content (=15%)
increases hydrogen evolution, creating interconnected pores that offset
these benefits, explaining the strength decline in higher AP mixes (M4 and
MS8). These findings confirm that the 90% FS-10% AP ratio activated with
9M NaOH is the most effective mix design for achieving maximum

compressive strength in GPC incorporating FS and AP.
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Fig. 4 Compressive strength results for different GPC mixes.
3.3 Flexural Strength

The flexural strength results (Fig. 5) show a consistent pattern across all
ages, influenced by sodium hydroxide molarity and AP content. At 7 days,
the baseline mix M1 (100% FS, 0% AP, 6M NaOH) recorded the lowest
strength of 3.59 MPa. Within the 6M group (M1-M4), flexural strength
improved with AP addition, peaking at M3 (3.92 MPa, an increase of 9.2%
over M1). However, at 15% AP (M4), strength slightly declined, indicating

that excessive AP can reduce bending capacity due to increased porosity.



The 9M mixes (M5-M8) achieved substantially higher early strengths,
ranging from 4.78 to 4.93 MPa, representing improvements of 33% to 37%
over M1. M7 (90% FS, 10% AP) again delivered the highest value at 4.93
MPa, confirming the positive synergy between higher molarity and
moderate AP dosage in enhancing matrix bonding and load distribution
under flexural stress. At 28 days, all mixes improved in strength, but the 9M
series continued to outperform the 6M series. M7 reached 6.05 MPa, 35%
higher than M1 (4.48 MPa). The strength gain from 28 to 90 days was
relatively small for all mixes, indicating that the majority of flexural capacity
develops early in the curing process. At 90 days, M7 retained the lead with
6.11 MPa, while M8 showed a marginal decline, consistent with the adverse

effects of excessive AP observed in other mechanical properties.

Across all curing ages, M7 (90% FS, 10% AP, 9M NaOH) exhibited the
highest flexural strength, benefiting from enhanced aluminosilicate
dissolution and optimal particle packing, which together improve matrix
cohesion and crack resistance. Excess AP slightly reduced performance due
to pore formation, reinforcing that a 10% AP dosage is optimal for

maximizing flexural capacity in geopolymer concrete.
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Fig.5 Flexural strength results for different GPC mixes
3.4 Split Tensile Strength

The split tensile strength results (Fig. 6) display trends consistent with
those observed in compressive and flexural strengths, highlighting the
influence of sodium hydroxide molarity and AP dosage. At 7 days, M1 (100%
FS, 0% AP, 6M NaOH) had the lowest tensile strength of 2.37 MPa. Within
the 6M group (M1-M4), strength improved modestly with AP addition,
peaking at M3 (2.59 MPa, 9.3% higher than M1). The increase is attributed
to the refinement of pore structure and improved particle packing from
moderate AP levels. However, a slight decrease at 15% AP (M4) indicates
potential adverse effects of excess AP, such as hydrogen gas-induced

microvoids.

The 9M NaOH mixes (M5-M8) demonstrated markedly higher early
strengths, ranging from 3.16 to 3.26 MPa improvements of 33.3% to 37.6%
compared to M1. M7 (90% FS, 10% AP) recorded the highest value at 3.26
MPa, indicating that the combination of higher activator molarity and
balanced AP dosage enhances tensile load-bearing capacity through
improved gel formation and interparticle bonding. At 28 days, M7 achieved
4.00 MPa, which is 35.1% higher than M1 (2.96 MPa). The relative ranking



among mixes remained consistent, with 9M mixes outperforming 6M mixes
and M7 maintaining its lead. By 90 days, M7 registered a marginal increase
to 4.04 MPa, suggesting that most of the tensile strength gain occurred
before 28 days, aligning with the early stabilization of the geopolymer

matrix.

At all ages, M7 (90% FS, 10% AP, 9M NaOH) exhibited the highest split
tensile strength. This performance is driven by enhanced aluminosilicate
dissolution at higher molarity and optimal AP content, which together
improve matrix cohesion, reduce microcracking, and distribute tensile
stresses more effectively. Excess AP slightly reduces tensile strength,
reinforcing that 10% AP is the optimal dosage for balancing strength and

microstructural integrity in geopolymer concrete.
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Fig. 6 Split tensile strength results for different GPC mixes
3.5 Water sorptivity

The water sorptivity results (Fig. 7) reveal clear trends related to sodium
hydroxide molarity and AP content. The baseline mix M1 (100% FS, 0% AP,
6M NaOH) recorded the highest sorptivity value of 0.205 mm/vVmin,
indicating the greatest susceptibility to capillary water absorption. Within
the 6M series (M1-M4), gradual AP addition up to 10% reduced sorptivity



significantly, with M3 achieving 0.180 mm/vmin a 12.20% improvement
over M1 due to better particle packing and a more refined pore structure.
However, further increasing AP to 15% (M4) slightly increased sorptivity to
0.184 mm/vmin, confirming that excessive AP leads to microvoid formation

from hydrogen gas release, which increases permeability.

A substantial reduction in sorptivity was observed in the 9M mixes (M5-
M8), with values ranging from 0.150 to 0.135 mm/vmin, representing
26.83% to 34.15% reductions compared to M1. The improvement is
attributed to enhanced dissolution of aluminosilicate phases and the
formation of a denser geopolymer gel network at higher molarity. Among all
mixes, M7 (90% FS, 10% AP, 9M NaOH) exhibited the lowest sorptivity
value of 0.135 mm/vmin, corresponding to a 34.15% reduction compared to
M1 and a 25.0% reduction relative to its 6M counterpart (M3).
The results confirm that M7 (90% FS, 10% AP, 9M NaOH) offers the best
resistance to water ingress among all tested mixes. This is due to the
synergistic effect of high molarity NaOH, which promotes denser gel
formation, and the optimal AP content of 10%, which maximizes
microstructural packing without introducing excessive porosity. Increasing
AP beyond this threshold (as in MS8) slightly increases sorptivity,
highlighting the importance of balanced mix design for durability

optimization.
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Fig. 7 Water Sorptivity results for different GPC mixes
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3.6 Rapid Chloride Penetration Test

The RCPT results (Fig.8) illustrate a clear improvement in chloride ion
resistance with both increased sodium hydroxide molarity and optimized AP
content. According to ASTM C1202 classification, charge passed values of
>4000 indicate high permeability, 2000-4000 indicate moderate
permeability, 1000-2000 indicate low permeability, 100-1000 indicate very

low permeability, and values below 100 are negligible.

At 7 days, the baseline mix M1 (100% FS, 0% AP, 6M NaOH) recorded
3600, placing it in the moderate permeability range. In the 6M series, AP
addition reduced permeability up to 10% dosage (M3: 3200, moderate,
11.1% lower than M1). However, 15% AP (M4: 3300) slightly increased
permeability, likely due to microvoids from hydrogen gas generation. The
9M mixes showed much lower charges, all within the low permeability
range (2200-1900), with M7 performing best at 1900 a 47.2% reduction
from M1. At 28 days, all mixes improved. The 6M group ranged between
2500-2100 (moderate), with M3 again being the lowest. The 9M group
ranged from 1400-1100 (very low), with M7 leading at 1100, marking a
56.0% reduction from M1 and nearing the lower limit of the low band. By 90



days, M1 (2100) and the rest of the 6M group remained in the moderate
band, while all 9M mixes entered the very low band (1000-800). M7 again
showed the best performance with 800, a 61.9% reduction from M1 and the
lowest chloride permeability observed in this study. The results suggest that
most chloride resistance gains occur within the first 28 days, with marginal

but valuable improvements continuing to 90 days.

Across all ages, M7 (90% FS, 10% AP, 9M NaOH) consistently exhibited the
lowest RCPT values, confirming its superior resistance to chloride ion
penetration. This performance is attributed to the synergistic effects of high
molarity NaOH, which accelerates and enhances geopolymer gel formation,
and the optimal AP dosage of 10%, which improves particle packing without
creating excessive porosity. Increasing AP beyond 10% (M8) results in a
slight decline in performance due to microvoid formation, reaffirming that
10% AP is the most effective content for maximizing durability against

chloride ingress in this study.
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Fig. 8 RCPT results for different GPC mixes

3.7 Comparative Assessment with Previous Studies

The trends observed in this study are consistent with recent reports on

geopolymer concretes incorporating alternative aluminosilicate sources.



The enhancement in compressive and flexural strength at higher molarity
and moderate AP content aligns with findings by Tayeh et al. “2and Mostafa
et al. 69, who observed similar microstructural densification due to improved
N-A-S-H gel formation. Likewise, the reduction in chloride permeability
parallels the results reported by Gharieb and Khater 47 for aluminum slag
based systems. However, the present study extends this understanding by
demonstrating that a dual precursor system (FS + AP) can achieve
comparable or superior mechanical and durability performance while
maintaining a lower carbon footprint. The moderate emissions of the
optimized mix (M7) reinforce earlier conclusions by Turner and Collins 126
and McLellan et al. 124 that well-optimized geopolymer systems can reduce
embodied CO:2 emissions by up to 60% relative to OPC concretes. These
comparisons highlight the unique contribution of this work, which
systematically integrates experimental, microstructural, and ML-based

analyses to validate the performance of FS-AP-based GPC.
3.8 Carbon Footprint Analysis

To evaluate the environmental sustainability of the developed GPC mixes
(M1-M8), a carbon footprint analysis was conducted. The carbon footprint
of each mix was evaluated following a cradle-to-gate system boundary,
which includes emissions from raw material extraction, processing, and
transportation to the concrete production site. Emissions associated with
construction activities, service life, and end-of-life phases were not
included. The analysis was based on the embodied CO2 emissions (kg COa2-
eq) associated with the production of each constituent material. Material
quantities (kg/m3) for each mix were obtained from the mix design
proportions, and widely reported emission factors from literature and
environmental databases (e.g., Ecoinvent, IPCC guidelines) were used and

represented in Table 2.

Table 2 CO:2 emissions for different materials



Emission

. Factor

Material (kg COo- Source
eq/kqg)

Ferro-silicon slag (FS) 0.07 McLellan et al. (2011) 128
Aluminium powder Norgate & Rankin (2002)
Sodium hydroxide 1.46 Turner & Collins (2013)
(NaOH) ) 130
Sodium silicate 131
(Na2SiOs) 0.60 Duxson et al. (2007)
Fine aggregate 0.005 i,lzo wer & Sanjayan (2007)
Coarse aggregate 0.005 Elzpwer & Sanjayan (2007)

The total embodied carbon was computed for each mix using the equation:
n
CO: footprint (kg CO2 - eq/m3) = 3 (m; x EF;)
i=1

Where m; is the mass of material 7 per cubic meter of concrete, and EF; is

the emission factor for that material.

The calculated carbon footprints for the eight GPC mixes are shown in Fig.
9. Mixes without aluminium powder (M1 and MJ5) recorded the lowest
carbon footprints of ~170.43 kg COz-eq/m3, while mixes with the highest
aluminium content (M4 and M8) recorded the highest footprints of ~753.29
kg CO2-eq/m3. The sharp increase in emissions with higher AP content is
due to the very high embodied carbon of aluminium production (~11 kg
COz2-eq/kg). Between molarities, no significant difference in carbon footprint
was observed for the same AP content, indicating that NaOH molarity

change alone does not alter emissions when the mass remains constant.
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Fig. 9 Carbon footprint of GPC mixes

To further assess the practical implications, the average compressive
strength (mean of 7, 28, and 90 days results) was plotted against the
corresponding carbon footprint for each mix (Fig. 10). This comparison
highlights that while M1 and M5 are the most environmentally friendly,
their compressive strengths are lower compared to other mixes. M7, with
~559 kg COz2-eq/m3, offers the most balanced trade-off, combining the

highest compressive strength with a moderate carbon footprint.
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Fig. 10 Performance vs. carbon footprint plot for GPC mixes

This analysis confirms that FS-AP based GPC has a substantially lower
carbon footprint than conventional OPC concrete (typically 450-500 kg CO2-
eq/m3), even for the highest-emission mixes. The environmental benefit is
primarily due to the replacement of cement with industrial by-products
(FS), which have minimal associated emissions. However, aluminium
powder content should be optimized, as excessive use drastically increases
emissions without proportional strength gains. The findings suggest that
M7 (90% FS, 10% AP, 9M NaOH) is the most sustainable high-performance
mix, while M1 and M5 are suitable where ultra-low emissions are prioritized

over peak strength.

3.9 Machine Learning Prediction of Compressive Strength



To evaluate the predictive capability of the developed MLmodels ANN, RF,
and SVR for GPC compressive strength, the experimental dataset
comprising all eight mixes (M1-M8) and three curing ages (7, 28, and 90
days) was wused. Fig. 11 presents the comparison between the
experimentally measured compressive strength values and the predicted
values from the three ML models. Across all curing ages, the ANN model
demonstrated the closest alignment with experimental trends, capturing
both the overall magnitude and variation between mixes. The RF model also
produced consistent predictions, though slightly underestimating peak
strengths in high-performance mixes (M7 and M8). The SVR model showed
reasonable accuracy but exhibited marginally higher deviations for both

low- and high-strength mixes.

The predictive performance of each model was quantified using statistical
error metrics, namely the Coefficient of Determination (R?), Root Mean
Square Error (RMSE), and Mean Absolute Error (MAE), as summarized in
Table 3. The ANN model achieved the highest accuracy with an R? value
above 0.99 and the lowest RMSE and MAE values across all ages, followed
closely by RF. SVR, while still acceptable, exhibited slightly lower R? and
higher error values. This superior performance of ANN is attributed to its
non-linear learning capability and ability to generalize from complex multi-
variable interactions such as FS content, AP content, molarity, and curing

age.

From the comparative analysis, it is evident that ANN provides the most
reliable predictions for compressive strength, making it a suitable candidate
for integration into the experimental-ML framework of this study. The
strong agreement between predicted and experimental values further
validates the model’s generalizability and potential for use in mix design

optimization.

Table 3 Performance metrics of ML models for compressive strength
prediction



) RMSE MAE
Model | R (MPa) (MPa)
ANN 0.993 0.72 0.55
RF 0.988 0.95 0.72
SVR 0.976 1.43 1.05
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Fig. 11 Experimental vs. predicted compressive strength for mixes at 7, 28,
and 90 days using ANN, RF, and SVR models

Conclusions

The outcomes of this research have direct applicability to real-world
sustainable construction projects, particularly in marine structures, bridge
decks, precast members, industrial flooring, and urban infrastructure where
both high mechanical performance and enhanced durability are critical. The
optimized GPC mix containing 90% FS and 10% AP activated with 9M
NaOH (M7) demonstrated superior performance in terms of strength,
permeability resistance, and environmental impact, making it highly
suitable for aggressive exposure conditions such as chloride-rich
environments and high-moisture zones. The combination of improved
packing density, dense gel matrix formation, and low porosity ensures both
structural integrity and long-term durability. However, successful field
adoption will require consideration of local availability of FS and AP,
variations in curing protocols, and quality control measures to maintain
consistency. Additionally, climate-specific factors such as freeze-thaw
cycles in cold regions or shrinkage in hot climates should be addressed

through design modifications, such as adjusting water-to-binder ratios or



adding supplementary admixtures/fibers. Based on the experimental

investigations carried out on GPC mixes incorporating FS and AP, the

following conclusions can be drawn:

a

The study identified M7 (90% FS, 10% AP, 9M NaOH) as the optimum
mix, delivering the highest overall mechanical and durability

performance among the eight tested designs.

M7 achieved a compressive strength of 76.29 MPa, flexural strength
of 6.11 MPa, and split tensile strength of 4.04 MPa, outperforming all
other mixes due to the synergy of optimal AP content and higher

molarity activator.

M7 mix reduced water sorptivity to 0.135 mm/vmin, indicating
minimal capillary porosity and enhanced resistance to moisture

ingress.

RCPT results confirmed M7 as Very Low Permeability (800 coulombs),
ensuring superior chloride resistance for marine and coastal

applications.

MLmodels (ANN, RF, SVR) successfully predicted compressive
strength, with Random Forest achieving the highest accuracy (R? =

0.991), validating the potential of Al tools for GPC mix optimization.

Carbon footprint analysis revealed that M7 balanced exceptional
performance with a moderate environmental impact (~559 kg COa2-
eq/m?3), remaining significantly lower than conventional OPC concrete

emissions.

The study reinforces the potential of FS-AP based GPC as a high-
performance, low-carbon, and durable construction material,
contributing to circular economy goals through the beneficial reuse of

industrial by-products.
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