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Prediction method for rock shear
strength parameters based on
data-driven and interpretability
analysis

Zi-Jun Jin', Chao Wang%23*, Shuai Qi*, Yv Liu?, Hao Yu' & Zi-Wang He?

To overcome the limitations of single models in addressing complex, nonlinear problems in predicting
rock shear strength parameters and the hyperparameter random selection problem, this study
constructed a novel prediction framework for rock shear strength parameters. First, the light gradient
boosting machine (LightGBM), extreme gradient boosting (XGBoost), categorical boosting (CatBoost),
and random forest (RF) algorithms are employed as the base-learners for the ensemble model,

with XGBoost serving as the meta-learner to build a stacking ensemble model. On the basis of the
sparrow search algorithm (SSA), tent chaotic mapping is used to initialize the sparrow population, the
Cauchy-Gaussian hybrid mutation mechanism is used to dynamically select the probability control
mutation type, the dynamic adaptive weight is used to adjust the balance between global exploration
and local development, and Levy flight is used to help the sparrow population individuals jump out

of the local optimum to construct the chaos-improved sparrow search algorithm (CISSA) to optimize
the hyperparameters of the stacking model. Second, based on the 199 datasets of different rock
types, the model was trained via fivefold cross-validation and evaluated based on the coefficient of
determination (R?), root mean square error (RMSE) and mean absolute error (MAE). Concurrently, the
Shapley additive explanations (SHAP) method was employed to analyse the degree of contribution of
each predictive index. The results demonstrate that the CISSA-Stacking model achieves R? values of
0.9936 and 0.9744 for c and ¢, respectively, with corresponding RMSE of 0.4303 and 0.7635 and MAE
of 0.2161 and 0.5867, indicating significantly superior overall performance compared with benchmark
models. SHAP interpretability analysis revealed that the importance rankings for c are Vor ucs, BTS,
and p, whereas those for ¢ are p, UCS, Vo and BTS. Finally, intelligent prediction software based on
the CISSA-Stacking model was developed. The software is simple in operation, intuitive in results and
excellent in performance, enables rapid and accurate prediction of c and ¢ through manual input of the
Vo P UGS, and BTS indices or by importing tabular data containing these four indices. The engineering
application further confirmed the accuracy and practical utility of both the model and the software,
providing a new efficient method for engineers to quickly and accurately estimate rock shear strength
parameters.

Keywords Rock shear strength parameters, Stacking ensemble algorithm, Chaos-improved sparrow search
algorithm, SHAP interpretability analysis, Intelligent prediction

In recent years, many geotechnically complex and geohazard-prone rock mass engineering projects have emerged
worldwide in mining, water conservancy and hydropower, urban and rural construction, transportation, and
other fields!. As the most direct foundation of all engineering construction, the mechanical properties of rock
masses constitute the fundamental basis for engineering design, construction, and stability evaluation. Most
catastrophic rock mass engineering disasters are attributed to issues in the test or value determination of the
mechanical parameters of engineering rock masses. Among various rock engineering disasters, shear failure
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stands out as one of the main failure modes of rock instability>=. As key parameters characterizing rock shear
strength, cohesion c and the internal friction angle ¢ have been widely adopted in the stability evaluation of rock
mass engineering’. Under normal circumstances, accurate acquisition of ¢ and ¢ requires a shear test or triaxial
compression test. However, these tests involve substantial manpower and material resources for sampling and
specimen preparation, along with prolonged testing durations, high costs, and significant data scatter®-'%, which
often prevent engineers from obtaining relevant parameters in time, consequently compromising both project
timelines and construction safety. Therefore, developing rapid, accurate, and cost-effective approaches to acquire
the critical shear strength parameters c and ¢ has become an urgent priority in rock engineering practice.

In recent years, prediction methods based on machine learning models have been widely used in the field of
rock mass engineering!!-20. Researchers worldwide have developed numerous methods to indirectly estimate
the shear strength parameters of rocks based on correlations between these parameters and other physical
and mechanical indices, as shown in Table 1. Armaghani et al.2! established a predictive model for shale shear
strength parameters by taking the dry density (DD), Schmidt hammer rebound number (SH,), Brazilian
tensile strength (BTS), P-wave velocity (V.), and point load index (I(50)) as prediction indicators and using
particle swarm optimization (PSO) to optimize an artificial neural network (ANN). Shen et al.?? proposed a
shear strength parameter prediction model based on a genetic algorithm (GA) that incorporates the UCS, UTS,
and confining stress (o,) as input variables. M Zhang et al.** employed Gaussian process theory to construct
mapping relationships between rock shear strength parameters, UCS and UTS under different kernel functions.
Shahani et al.?* selected Vo density (p), UCS, and BTS as predictors and developed four machine learning-based
prediction models for shear strength parameters, namely, LASSO regression (LR), ridge regression (RR), DT,
and SVM. However, the above prediction methods generally use single-model approaches that can capture only
limited data features. When dealing with the complex, nonlinear, and multidimensional characteristics inherent
in rock shear strength parameter data, they demonstrate poor global search ability, a tendency to fall into local
optima, an unstable prediction effect, low accuracy, and weak generalization ability.

In recent years, ensemble learning algorithms such as stacking have shown excellent performance in handling
complex problems; for example, Chen et al.? established a stacking model based on downhole vibration data
from drilling parameters and Young’s modulus from rock mechanics parameters, aiming for accurate prediction
of rock mechanics parameters. This model consistently achieved high accuracy in predicting the rock Young’s
modulus across different datasets, providing a novel approach for the estimation and prediction of this parameter.
Yang et al.** proposed an improved FR-Stacking model based on clustering theory. By extracting both the
attributive and clustering characteristics of landslide influencing factors in Yingshan County and inputting them
into learning models, the model derived predictive values for landslide occurrence probability, enabling effective
assessment of landslide disaster risk. Gao et al.’! integrated parameters traditionally used in ground motion
prediction equations into a stacking ensemble model for predicting ground motion parameters. Compared with
single models, this ensemble model exhibited superior performance in seismic hazard analysis and structural
seismic performance assessment.

Although stacking models demonstrate excellent performance in handling complex nonlinear problems,
they still suffer from the issue of random hyperparameter selection®?. Existing research employs metaheuristic
optimization algorithms, such as the sparrow search algorithm (SSA)??, particle swarm optimization (PSO)3%%,
and harris hawks optimization (HHO)?*%, to optimize the hyperparameters of the base learner models within
ensemble learning algorithms. These approaches can effectively mitigate the problem of unstable prediction
performance caused by random hyperparameter selection. However, when applied to the prediction of rock
shear strength parameters, these algorithms still encounter a series of issues. These include insufficient diversity
during population initialization, unstable search efficiency, and a tendency to become trapped in local optima.
Therefore, it is imperative to enhance the optimization algorithms by integrating existing improvement strategies.

To avoid the problem of a single model processing the complex nonlinear data of rock shear strength
parameter prediction and effectively solve the problem of the unstable prediction effect caused by the random
selection of hyperparameters, which is based on data-driven and interpretability analysis methods, V, p, UCS,
and BTS are selected as input indices, and ¢ and ¢ are used as output indices to construct a sample database. The
data distribution was analysed via box line plots and frequency distribution histograms. LightGBM, extreme
gradient boosting (XGBoost), categorical boosting (CatBoost), and random forest (RF) are used as the base-
learners for the ensemble model, and XGBoost is used as the meta-learner to construct the stacking ensemble

Input indices Sample number | Reference Method

DD, SHn, BTS, Vp, IS(SO) 52 Armaghai et al. 2014% PSO-ANN
Shen et al. 2018% GP

UCS, UTS, g, 245 Mahmoodzadeh et al. 20222 | PSO-LSTM
Fathipour-Azar. 20222 RF

UCS, UTS 214 Zhang et al. 20247 GPR
Shahani et al. 202224 SVM

V., p, UCS, BTS 199 Li et al. 2024%7 BO-ET
Han et al. 202428 DBO-RF

Table 1. Prediction methods for rock shear strength parameters.
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Fig. 1. Correlation analysis plots.

model to optimize the hyperparameters of the model through the chaos-improved sparrow search algorithm
(CISSA), thereby constructing the CISSA-Stacking model for rock shear strength parameter prediction and
interpreting the contribution of the prediction indicators by applying the Shapley additive exPlanations (SHAP)
method, providing engineers with a novel, efficient method for rapid and precise estimation of rock shear

strength parameters.

Establishment and analysis of the sample database

Prediction index selection
Based on the principles of geomechanics, analysis was conducted via the Mohr-Coulomb criterion, revealing

that the relationships between the rock shear strength and the parameters c and ¢ are as follows:
T=cH+optany (1)

where 7 is the rock shear strength and ¢_ is the effective normal stress. The relationship of the principal stresses
(0}, 0;) can be represented via the linear envelope line:

1+ sin 2ccos
o1 = 2P gy . )
1 —sing 1 —sing
2ccos @
7= T sing ©

where o, and o, are the uniaxial compressive strength and confining pressure, respectively, and where o, i
is the unconfined compressive strength. In this case, the relationship between o, and c is linear, whereas the
relationship between ¢ and ¢ is nonlinear. In recent years, researchers have proposed various failure criteria,

which can be expressed as follows:

Scientific Reports |

(2026) 16:3080

| https://doi.org/10.1038/s41598-025-32687-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Rock type Number Vp/m-s‘l p/g-cm3 | UCS/MPa | BTS/MPa | c/MPa | ¢/(°)
L1 4790.10 2.78 138.00 17.39 21.58 |37.10
L2 4630.28 2.73 128.30 16.00 21.22 | 38.12
Limestone L3 4625.05 | 2.72 122.40 15.21 21.10 | 37.00
L49 3590.70 2.56 95.10 11.70 16.40 | 28.50
Q1 6328.14 | 2.75 237.76 29.85 32.00 |41.34
Q2 6017.56 | 2.70 22545 27.8 30.00 | 39.60
Quartzite Q3 5911.37 2.68 225.70 28.00 27.20 | 39.00
Q50 5735.06 |2.58 214.01 26.6 26.70 | 38.50
S1 5065.12 2.79 156.50 20.90 2245 |36.30
S2 5059.09 |2.78 155.50 20.60 21.35 |35.15
Slate S3 4932.56 2.74 147.40 18.10 20.80 34.00
S50 4105.56 | 2.59 120.90 15.85 16.65 |27.70
QMS1 3487.25 2.79 68.4 8.40 1450 |41.1
QMS2 3348.64 2.78 66.2 8.10 14.31 | 39.00
Quartz-mica schist | QMS3 3099.68 | 2.75 64.8 8.03 14.07 | 37.80
QMS50 | 3256.38 | 2.76 66.95 8.00 14.14 | 39.84
Min 2209.34 2.41 40.97 5.20 9.96 24.57
Max 6328.14 | 2.89 237.76 29.85 32.11 | 4335
Avg 4350.51 2.66 127.45 15.96 19.26 | 34.22
Std 1102.65 0.10 55.12 6.91 5.15 4.40

Table 2. Sample database and statistical characteristics.

01 =03 + Oei(Mi—> + 5)° (4)

ct

where o, is the Brazilian tensile strength and R, m, s and a are empirical constants. o, and g, are closely related to
0, and are related to c and ¢.

To explore the correlations between the UCS, BTS, and rock shear strength parameters ¢ and ¢, this study
adopts 199 sets of UCS and BTS data from Kainthola et al.*® and conducts correlation analysis via Pearson
correlation coefficients, as shown in Fig. 1.

Both the UCS and BTS are linearly related to ¢, with determination coefficients R? of 0.936 and 0.929,
respectively, indicating strong correlations. However, they are not linearly related to ¢, as evidenced by their
low R? values of 0.087 and 0.073, respectively. Therefore, using only the UCS and BTS is inadequate for accurate
prediction of the ¢ value, which is consistent with the above theoretical analysis. To address this issue, numerous
scholars have introduced other physical and mechanical parameters to improve the prediction accuracy.
Shahani et al.>* demonstrated that while the UCS and BTS are retained, the accuracy of the prediction results
can be effectively improved by introducing the parameters V_ and p, which characterize the rock compactness
obtained via P-wave velocity tests and density measurement tests. Among them, V_ reflects the density and
elastic properties of the rock, whereas p is influenced by the composition and internal fabric of the rock mass.
Compared with other parameters, such as 05 which characterizes the stress range of shear failure obtained via
triaxial compression tests, V. and p have the advantages of lower acquisition costs and shorter testing cycles.
Therefore, this study selects four 1nd1ces—V p> UCS, and BTS—to construct an index system for rock shear
strength parameter prediction.

Establishment of the sample database

In the study of regression prediction via machine learning methods, the sample database is crucial to model
prediction performance. This study employs V., p, UCS, and BTS as input indices, with the rock shear strength
parameters ¢ and ¢ as output indices for predlctlon V_ was measured via a portable ultrasonic non-destructive
digital indicating tester (PUNDIT), and the UCS was determined via uniaxial compression tests. BTS was
obtained via Brazilian splitting tests. c and ¢ were derived from triaxial compression tests conducted on samples
of four distinct rock types under confining pressures of 20, 40, and 60 MPa, and the failure load and confining
pressure were then plotted in a graph from which ¢ and ¢ were calculated for individual rock types from the
tangent drawn to the arc. The dataset utilized in this study was sourced from reference®®, and sample data were
obtained from four rock types collected in the Luhri area, Himachal Pradesh, India: limestone, quartzite, slate,
and quartz-mica schist.
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Fig. 2. Frequency distribution histograms of each index in the database.

For the limestone, the thin section shows a dominance of stained carbonate minerals, viz. calcite and
dolomite, darkly colored, fine- to medium-grained rock.

Quartz comprises approximately 85% of the minerals present in the rock mass. The rounded to subrounded
quartz grains have sutured boundaries, and the straight bound aries of the medium-sized quartz grains exhibit
recrystallization. The detrital quartz grains also have sutured contacts.

Slate is a fine-grained rock consisting predominantly of clay minerals. The identification of individual minerals
and textures is difficult because of the fineness of the groundmass. The rock mass shows the development of
alternating dark and light bands. The light bands are distinguished by quartz grains, whereas the dark bands
represent fine clay minerals. The dark bands are probably carbonaceous and are thicker than the lighter bands.
Continuous fractures have developed across and along the bands.

For the the quartz—mica schist, muscovite, biotite, quartz and feldspar constitute most of the minerals in the
rock. The rock mass is banded in nature, showing a typical schistose structure, and the schistosity is defined by a
strongly preferred orientation of muscovite and biotite. The muscovite grains are smaller in size than the biotite
grains. The biotite grains are present as both patchy and plump slabs.

After discrete values and repeated values are eliminated, the database comprises 49 sets of limestone, 50 sets
of quartzite, 50 sets of slate and 50 sets of quartz—mica schist, totaling 199 sample groups. Partial data along with
their statistical characteristics are presented in Table 2.

Data visualization analysis

Box line plots and frequency distribution histograms were employed for data visualization analysis. Figure 2
displays the frequency distribution histogram of each index in the sample data. Specifically, parameters p
and c exhibit relatively standard normal distributions, with no significant left or right skewness. The other
four parameters display bimodal distribution curves. Discrete values were observed in BTS, ¢, and ¢. This
phenomenon arises because the database compiled for this study comprises four distinct rock types. The data
distribution of the established database is reasonable.
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Fig. 3. Box line plots for all indicators in the database.

This study employed the Matplotlib library in Python to generate box line plots of each prediction indicator,
as shown in Fig. 3. Owing to the differences in their physical and mechanical properties, the four types of rock
have distinct data distribution ranges. However, the distribution states are relatively uniform, with no significant
outliers, demonstrating that the sample database established in this study is scientifically reliable and can be used
to predict rock shear strength parameters.

CISSA-stacking prediction model and application software

Principle of the chaos-improved sparrow search algorithm

The sparrow search algorithm is a novel swarm intelligence optimization algorithm inspired by the foraging
and antipredation behaviours of sparrows®. The foraging process of sparrows can be abstracted as a discoverer-
follower mode, incorporating a scout and early warning mechanism. The discoverers, characterized by high self-
fitness and a wide search range, guide the population in exploration and foraging. Followers, aiming to achieve
better fitness, forage by following the discoverers. To improve their own predation rate, some followers monitor
discoverers to compete for food with them or forage around them. When the whole population is threatened
by predators or aware of danger, antipredation behaviour is triggered immediately. Compared with other
metaheuristic optimization algorithms, such as the whale optimization algorithm, particle swarm optimization
and Harris hawks optimization, the SSA has the advantages of high search accuracy, fast convergence speed
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Fig. 4. CISSA algorithm flowchart.

Classification Benchmark function | Function name Value range
£ Schwefel 2.22 [-10, 10]
Unimodal function | f, Schwefel 1.2 [-100, 100]
f3 Quartic function, i.e., noise [-1.28,1.28]
fi Generalized rastrigin’s function | [-5.12, 5.12]
Multimodal function
A Generalized griewank’s function | [-600, 600]

Table 3. Benchmark test function information.

and strong robustness. However, when the search is close to the global optimum, issues such as a reduction in
population diversity, susceptibility to falling into a local optimum, and unstable search efficiency persisti*-*2

To address the limitations of the SSA, considering that the Cauchy and Gaussian distribution functions
exhibit superior search ability*?, the dynamic adaptive weight can improve the stability of the search®, Levy
flight helps the algorithm jump out of the local optimal solution®’, and the tent chaotic sequence demonstrates
uniform ergodicity and fast convergence®®. This study adopts four improvement strategies to enhance the SSA
as follows. First, the tent chaotic mapping is used to initialize the population so that the initial individuals are as
evenly distributed as possible; then, leveraging the strong global exploration ability of Cauchy mutation and the
property of Gaussian mutation suitable for local refinement, a Cauchy-Gaussian hybrid mutation mechanism
is adopted to dynamically select the probability control mutation type; next, Levy flight is introduced to adjust
the individual when population aggregation or dispersion occurs to help the individual jump out of the local
optimum; finally, dynamic adaptive weights are used to adjust the balance between global exploration and local
exploitation. Higher weights are applied to enhance global exploration in the early stage of iteration, whereas
lower weights strengthen local refinement in the later stage, as shown in Fig. 4.

Performance test of the improved algorithm

To verify the performance of the proposed chaotic improved SSA, performance comparative experiments were
conducted on the same test set as the original SSA and the widely used metaheuristic optimization algorithms,
such as particle swarm optimization and whale optimization algorithms. To ensure fairness in the experiment,
all algorithms were configured with identical parameters—a maximum of 500 iterations, a population size of
30, and 30 independent executions for each algorithm—to minimize the impact of stochastic variations on the
results. Five functions with known optimal solutions of 0, including unimodal functions f,-f, and multimodal
functions f4-f5, were selected as the benchmark test functions, as shown in Table 3, and three-dimensional
representations of the five chosen benchmark functions are shown in Fig. 5.

The mean value (Avg) and standard value (Std) are selected to evaluate the performance of each algorithm.
The results of each benchmark test function are shown in Table 4, and the iteration curves of the test functions
are shown in Fig. 6. Compared with other algorithms, the CISSA demonstrates superior performance and
search optimization ability on both unimodal and multimodal functions. For the former f,-f,, the results of
the improved CISSA are close to the optimal solution 0, showing orders-of-magnitude improvement in the
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Fig. 5. Three-dimensional benchmark function plots.

optimization effect over those of the other algorithms. For the latter f,-f., the CISSA exhibited outstanding
performance in escaping the local optima, demonstrating advantages not only in terms of convergence speed but
also in requiring fewer iterations to obtain the optimal result. This evidence indicates that the proposed CISSA
possesses the characteristics of high search accuracy, fast convergence speed, and excellent stability and can
avoid falling into local optima.

Principle of the stacking ensemble model
As an ensemble learning algorithm, stacking has been widely applied across various industries in recent years.
Its key characteristic lies in training multiple different base-learners and then feeding their output into the meta-
learner for further training, thus effectively reducing the model’s overfitting risk while enhancing the overall
accuracy and robustness®”. The principle of the stacking ensemble algorithm is illustrated in Fig. 7. In this study,
LightGBM, XGBoost, CatBoost, and RF are employed as base-learners, with XGBoost serving as the meta-learner
to construct a stacking ensemble model. The selected models are all well-established and high-performance
algorithms in the field of machine learning that are capable of extracting data features from multiple perspectives
and fully leveraging their respective learning strengths.

Among them, Light GBM*®, as a framework based on gradient boosting decision trees, improves computational
efficiency when the database is processed through optimized algorithm design while maintaining excellent
prediction performance.
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Benchmark test function | Algorithm | Avg Std
PSO 33.71639236 | 11.09604659
WOA 1.23263e-43 | 4.06123e-43
A SSA 4.15e-37 6.89e-37
CISSA 1.3e-110 5.3e-110
PSO 8422.3 4685.112
WOA 35720.64 9523.983
% SSA 1.06e-69 5.68e-69
CISSA le-221 0
PSO 0.638668 0.270494
WOA 0.002554 0.002471
5 SSA 0.001442 0.000876
CISSA 0.000246 0.00022
PSO 150.2698 18.2227
WOA 0 0
s SSA 196.9886 27.68936
CISSA 0 0
PSO 28.04252 8.700986
WOA 0.000958 0.005157
5 SSA 0.097038 0.291246
CISSA 0 0

Table 4. Benchmark test function results.

XGBoost!, as an optimized distributed gradient boosting library, enhances the robustness of the ensemble
model through its algorithmic stability and ability to handle missing values.

CatBoost?, as a gradient boosting algorithm library specifically designed for processing category features,
prevents target leakage via orderly boosting while automatically processing high-cardinality category features,
thereby increasing prediction diversity.

RF* effectively reduces the variance and overfitting risk by constructing multiple decision trees through
voting or averaging; as a nongradient boosting model, it complements the gradient boosting trees by covering
different bias-variance equilibrium points.

Model construction

The construction process of the CISSA-Stacking prediction model is shown in Fig. 8. First, Vp’ p, UCS, and
BTS are selected as input indices, and ¢ and ¢ are used as output indices to construct a sample database.
Fivefold cross-validation is used to divide the dataset, and the data distribution is analysed via box line plots
and frequency distribution histograms. Second, the data in the database are input into the model, and the
CISSA optimization algorithm is then employed to optimize the hyperparameters of each model. Based on the
optimized hyperparameters for ¢ and ¢, the corresponding hyperparameters in the stacking ensemble model
are adjusted to establish the CISSA-stacking prediction model. Third, fivefold cross-validation was used to train
the model, and the performance of the model was tested by R?, the root mean square error (RMSE) and the
mean absolute error (MAE). SHAP interpretability analysis is conducted to evaluate the contribution of each
prediction indicator from three aspects: feature importance analysis, feature impact distribution analysis, and
feature dependency analysis. Finally, based on the tkinter library in Python, intelligent prediction software for
rock shear strength parameters is developed and used in engineering applications to test the practicability of the
application software.

Model performance validation

To evaluate the performance of the CISSA-Stacking prediction model, individual base models and the
stacking ensemble model without CISSA algorithm optimization were selected as comparative benchmarks.
Under identical operating conditions, all the models received training via fivefold cross-validation and were
subsequently utilized for predicting the rock shear strength parameters. The basic model hyperparameters of the
stacking model optimized by the CISSA algorithm are shown in Table 5.

The performance evaluation results of each model are presented in Table 6. The proposed CISSA-Stacking
model achieved superior performance, with R? values of 0.9942 and 0.9724, RMSE values of 0.4203 and 0.7532,
and MAE of 0.2261 and 0.5761 for ¢ and ¢, respectively, which significantly outperforms those of all basic
models, confirming that the CISSA combined with the ensemble framework provides remarkable advantages for
predicting rock shear strength parameters.

The comparison between the predicted and true values of ¢ and ¢ for each model is shown in Figs. 9 and
10, where the black dotted lines represent the fitting line with a slope of 1, the area composed of the red lines
demarcates a+ 10% margin around the fitting line, and each scatter spot corresponds to a data point. The closer
the scatter point is to the fitting line, the closer the predicted value is to the true value. Compared with other
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Fig. 6. Comparison of iteration curves for benchmark functions.

models, the CISSA-Stacking model has high prediction accuracy, good stability, and strong generalization ability
in predicting ¢ and ¢ because the scatter points are densely distributed near the fitting line.

The error analysis figures for ¢ and ¢ of each model are shown in Figs. 11 and 12. Compared with the other
models, the CISSA-Stacking model maintains prediction errors within 1.5% for cohesion ¢ and within 2% for the
internal friction angle ¢, demonstrating superior prediction accuracy.
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Application software development

To facilitate the engineering application of the proposed CISSA-Stacking prediction model, intelligent software
for estimating rock shear strength parameters based on the Tkinter library in Python was developed, as illustrated
in Fig. 13. The software adopts a modular design. With the four-rock physical-mechanical parameters of V, p,
UCS, and BTS input, it can quickly estimate the values of ¢ and ¢. Batch prediction of ¢ and ¢ can also be realized
by clicking the “importing data” button to import tabular data containing the four parameters. The software
features a user-friendly operation, intuitive result visualization, and excellent performance, making it suitable
for diverse engineering applications.

SHAP interpretability analysis

Feature importance analysis

The importance of each feature variable is quantified by computing the absolute value of the average Shapley
value of each feature in the prediction model through SHAP. The higher the Shapley value is, the more important
the feature variable is to the prediction results. The SHAP method is employed to evaluate the contributions of
the four features in the CISSA-Stacking model, as visualized in Fig. 14. The figure shows that for cohesion ¢, the
variable with the highest absolute value of the Shapley value and the most significant feature importance is V,
followed by UCS, BTS, and p; for the internal friction angle ¢, the variable with the highest absolute value of the
Shapley value and the most significant feature importance is p, followed by UCS, V , and BTS, which proves that
the parameters v, and p, which represent the density of rock, can effectively improve the prediction accuracy of
the model.

Feature influence distribution analysis

Figure 15 shows the scatter plot of the feature influence distribution based on the SHAP calculation. The abscissa
represents the Shapley value of the data points, with points greater than 0 indicating positive contributions to
the prediction results, whereas those less than 0 indicate negative contributions. The ordinate represents the
feature value of the data point, with interpretations that the redder the color of the data point is, the larger the
feature value of the point is, the bluer the color is, the smaller the feature value of the point is, and the purple
indicates that the feature value of the point is the intermediate value. Each feature variable is arranged in order
of importance from top to bottom. Therefore, the influence of each feature variable on the prediction results
can be judged by the distribution and color difference of the data points in the figure. The figure shows that
for cohesion ¢, V_ has the most significant impact on the prediction results, and when its feature value is large,
it contributes positively to the prediction; for the internal friction angle ¢, p has the most significant impact,
and when its feature value is large or close to the intermediate value, it makes a positive contribution to the
prediction; moreover, for the four feature variables, as their values increase, the Shapley values for ¢ and ¢ also
show an upwards trend, which demonstrates that each feature variable exhibits a significant positive correlation
with the prediction results of the rock shear strength parameters.

Feature dependency analysis
To evaluate the interaction between feature variables in the prediction process, the SHAP method is used to
quantify the interaction among them, thereby analysing their influence on the prediction results. Figure 16
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displays the feature interaction plots for the most significant variables in the prediction of the rock shear strength
parameters. In the figure, the horizontal axis represents the feature value, the left vertical axis denotes the Shapley
value, and the scatter points represent individual data points. A feature variable that interacts most significantly
with the primary variable is selected as the color axis—redder hues correspond to higher values of the interacting
feature at that data point. As shown in the plot, the feature variable V. contributes the most to the prediction
of cohesion ¢, and with increasing feature values, the Shapley value and UCS feature values show an increasing
trend, which proves that the influence of the UCS on V_ is relatively obvious, whereas the characteristic variable
p contributes the most to the prediction of the internal friction angle ¢, and with increasing feature values and
Shapley values, the feature value of the UCS does not show a similar increasing trend, suggesting that the UCS
has no significant influence on p.

Engineering application

During the Kunyang phosphate mine No. 2 concession in Yunnan Province, China, roadway headings frequently
suffer roof fall and cave-in due to complex geological conditions (such as concealed karst caves, faults, folds,
fracture zones, and concentrated karst fissure water), combined with strong blasting disturbances, which
seriously affect construction safety and progress. To address this, the basic physical-mechanical parameters of the
surrounding rock under engineering disturbance are determined via a series of rock mechanics tests, including
uniaxial compression tests, Brazilian splitting tests and variable-angle shear tests. The results provide critical
references for roadway support, stope filling and stability evaluation. Table 7 presents the physical-mechanical
parameters of the five types of disturbed rock from the mine®.

The ¢ and ¢ values were predicted via the CISSA-Stacking software developed in this study, and the results
are summarized in Table 8. The comparative plots between the actual values and the predicted values are shown
in Fig. 17. As shown, the model achieves an absolute error (AE) below 0.6 for both the ¢ and ¢ values across all
five types of disturbed rock strata, which demonstrates that the results predicted by the software are close to the
real values and can be effectively applied to practical engineering.
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CISSA optimized
hyperparameters
Model Hyperparameter | Optimized range | ¢/MPa o/ (°)
num_leaves (31,127) 64 38
learning_rate (0.01,0.2) 0.08 0.18
LightGBM min_data_in_leaf | (10, 50) 16 14
feature fraction (0.6, 0.9) 0.88 0.62
lambda_L1 (0,0.5) 0.37 0.42
max_depth (3,10) 7 6
XGBoost learning_rate (0.01, 0.3) 0.29 0.11
n_estimators (50, 200) 52 145
depth (4, 10) 8 6
CatBoost learning_rate (0.01, 0.3) 0.16 0.03
iterations (50, 200) 161 171
RE n_estimators (50, 200) 57 199
max_depth (3,15) 6 12
max_depth 2,8) 2 3
Meta-learner | learning_rate (0.01,0.3) 0.04 0.14
n_estimators (50, 200) 161 193

Table 5. Hyperparameter optimization results of all the base models.

Prediction parameters | Model R? RMSE | MAE
LightGBM 0.9671 | 0.9673 | 0.7384

XGBoost 0.9896 | 0.5652 | 0.3649

/MPa CatBoost 0.9901 | 0.5535 | 0.3621
RF 0.9881 | 0.5746 | 0.3121

Stacking 0.9918 | 0.5126 | 0.2977

CISSA-Stacking | 0.9942 | 0.4203 | 0.2261
LightGBM 0.9162 | 1.3971 | 0.9724

XGBoost 0.9632 | 0.8812 | 0.6821

. CatBoost 0.9526 | 1.0446 | 0.7859
910 RF 0.9564 | 0.8823 | 0.6721
Stacking 0.9685 | 0.8284 | 0.6323

CISSA-Stacking | 0.9724 | 0.7532 | 0.5761

Table 6. Comparison of model evaluation indices.

Conclusion

To overcome the limitations of single models in addressing complex, nonlinear problems in predicting rock
shear strength parameters and the hyperparameter random selection problem, a novel prediction framework
for rock shear strength parameters was constructed, providing a new approach for engineers to rapidly and
accurately estimate these parameters. Specifically:

1

2

3)

Integrated correlation analysis and reference review indicate that the parameters V_ and p, obtained via
P-wave velocity tests and density measurement tests, significantly enhance the predictive accuracy when
combined with the UCS and BTS. Furthermore, compared with other parameters, such as o, from triaxial
compression tests, which characterize the stress range for shear failure initiation, V,, and p have the advan-
tages of lower acquisition costs and shorter testing cycles.

To avoid the problems of population diversity reduction, susceptibility to local optima, and unstable search
efficiency in existing rock shear strength parameter prediction models when searching near global optima,
four improvement strategies—the tent chaotic mapping, Cauchy-Gaussian hybrid mutation mechanism,
Levy flight, and dynamic adaptive weight—are implemented to improve the sparrow search algorithm, and
five benchmark test functions are used to test the performance of the sparrow search algorithm, particle
swarm optimization algorithm and whale optimization algorithm before and after improvement. The re-
sults show that the chaos-improved sparrow search algorithm (CISSA) has superior search accuracy, faster
convergence, better stability, and the ability to escape local optima.

Following the data-driven principle, Light GBM, XGBoost, CatBoost, and RF are used as base-learners, with
XGBoost serving as the meta-learner, and the CISSA is applied to optimize the hyperparameters of each
base-learner and meta-learner, thereby constructing the CISSA-Stacking prediction model. Predicting the
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Fig. 9. Comparison between the predicted and actual cohesion values.
cohesion ¢ and internal friction angle ¢ via the model yields R* values of 0.9942 and 0.9724, RMSE values
of 0.4203 and 0.7532, and MAE of 0.2261 and 0.5761, respectively—all of which are superior to those of
comparative models, confirming the excellent performance and strong generalizability ability of the model.
Furthermore, to facilitate rapid and accurate estimation of rock shear strength parameters for engineering
practitioners, a new intelligent prediction software for rock shear strength parameters is developed based
on the model in this study. The software was successfully applied to predict the c and ¢ values for five types
of disturbed rock strata in the Kunyang phosphate mine No. 2 concession, Yunnan, China, which verified
its practical utility.
(4) The SHAP interpretability analysis method was applied to evaluate the contributions of the prediction in-

dices to the outputs of the CISSA-Stacking model. The analysis revealed the following importance rankings
for c: Vp, UCS, BTS, and p and for ¢: p, UCS, Vp, and BTS. These results demonstrate that the rock density
parameters V, and p can effectively enhance the prediction performance.

Further research

Considering that the database employed in this study encompasses only four rock types and contains a limited
database of only 199 sample groups, predictions derived from a small sample size may constrain the model’s
generalizability. Furthermore, the current research solely utilized data from the Kunming phosphate mine

for

engineering applications, which precludes assessment of the model’s robustness across diverse geological

environments. Consequently, future research will focus on the following:

M
2
3)
4

A larger-scale database incorporating various lithologies will be established to predict rock shear strength
parameters.

Validation using data from sources beyond the Kunming phosphate mine will be undertaken to test the
robustness of the proposed model in other geological settings, such as jointed rock masses.

Further refine the validation procedures and error reporting mechanisms of the developed application soft-
ware to increase its credibility.

Additionally, the model’s practical utility will be further examined through laboratory physical tests, onsite
monitoring data, and onsite software predictions.
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Rock type V,/ms 1| p/g-em™3 | UCS/MPa | BTS/MPa | c/MPa | ¢/(°)
Black silty shale 3716.7 272 113.1 6.3 18.29 | 42.52
Roof dolomite 5018.5 2.77 120.1 6.9 2520 |41.70
Bottom dolomite 5271.1 2.78 123.9 8.1 25.24 | 44.90
Upper layer phosphorite | 5532.8 2.78 123.3 6.6 19.25 | 45.11
Lower layer phosphorite | 5527.8 2.79 99.6 9.2 20.35 | 46.81

Table 7. Physical-mechanical parameters of the disturbed rock in Kunyang concession mine No. 2 concession.
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Black silty shale 18.29 17.82 0.47 | 42.52 42.06 0.46
Roof dolomite 25.20 25.69 0.49 | 41.70 41.39 0.31
Bottom dolomite 25.24 24.81 0.43 | 44.90 44.63 0.27
Upper layer phosphorite | 19.25 18.76 0.49 | 45.11 45.44 0.33
Lower layer phosphorite | 20.35 20.68 0.33 | 46.81 46.57 0.24

Table 8. Prediction results of the c and ¢ values of the disturbed rock in the Kunyang phosphate mine No. 2

concession.
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Fig. 17. Comparisons between the actual values and the predicted values.
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