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OPEN A directed weighted network

approach for hazard chain risk
assessment including heavy rainfall
induced geological disasters and
flooding

Jingjing Pei', Caiyan Dai'" & Tong Cui2

With the increasing frequency of extreme climatic events in cities, the heavy rainfall-geological
hazard-flood urban hazard chain has become more prominent, while traditional single-hazard
assessments fail to reveal its systemic transmission mechanisms. This study constructs a hazard chain
risk assessment framework based on directed weighted networks to support precise urban disaster
identification and control. Using Event Tree Analysis (ETA), 23 key hazard nodes were identified to
build a causal loop network, and a Bayesian network was developed to quantify node dependencies.
The disaster-bearing body was divided into actual and functional subsystems, and its exposure—
vulnerability and disaster resistance capacity were evaluated using an improved Analytic Hierarchy
Process and the brittle entropy method. A multi-influence matrix integrating node degree, shortest
path, and global influence was designed to calculate the risk weights of 38 nodes and establish the
directed weighted network. Applied to Mentougou District, Beijing, the comprehensive hazard chain
risk value was calculated as 34.23, and key high-risk nodes were identified. The results show that
this model surpasses traditional unweighted or single-hazard methods by enabling dynamic and
quantitative evaluation of complex urban hazard chains, offering new insights for enhancing urban
resilience and disaster prevention.

Keywords Urban hazard chains, Directed weighted networks, Bayesian networks, Exposure-vulnerability
analysis, Hazard chain risk assessment

In recent years, global warming has led to an increasing number of extreme weather events. In urban areas,
heavy rainfall often triggers severe secondary disasters. The characteristics of urban systems, combined with
prolonged rainfall duration, significantly amplify disaster-induced losses. Due to high population and economic
density as well as complex internal interactions, urban disaster systems exhibit features such as risk clustering and
nonlinear loss amplification within hazard chains (Shi?!, Helbing”). However, the growing risk of urban hazard
chains contrasts with the still underdeveloped emergency management systems. Therefore, this study focuses
on hazard chain risk assessment to provide a scientific reference for urban disaster prevention and mitigation.
To date, numerous scholars have proposed models for hazard chain risk assessment. Research in disaster
risk management has shifted from single-hazard, linear, and static assessments to the construction of complex
network models to reveal the nonlinear and dynamic characteristics of hazard chain risks (Helbing’). For example,
Menoni proposed the concept of the “disaster loss—damage chain,” which first systematically described disaster
coupling effects (Scira Menoni?®), and Gill developed a hazard chain analysis framework using a hazard matrix
(Gill and Malamud'?). Chen Changkun’s team abstracted the evolution of snow and ice disasters into a network
structure and, by combining the risk matrix with the Borda ranking method, achieved quantitative grading
of node risks (Chen Changkun and Sun Yunfeng% Chen Changkun and Xie Mingfeng®). Existing evaluation
methods for directed weighted networks mainly identify key nodes by simulating the dynamic transmission
of information. However, hazard chain risk assessment should not only focus on node risks within complex
network models but also on the risks associated with links between nodes. Current models seldom account
for the heterogeneity and directionality of connections, thus failing to fully represent the complex coupling
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effects of hazard chains. For instance, the improved PageRank-based DWCN-NodeRank algorithm by Zhang
Kun et al. (Zhang Kun and Li Qibai*?) evaluates node importance in directed weighted networks but cannot
simultaneously achieve high accuracy and efficiency. Liu Rui et al. introduced weighted Bayesian networks to
reflect the evolution of specific hazard chains through probability transfer mechanisms (Liu'6, Li Ming!?), yet
the transmission direction within the hazard chain remains insufficiently addressed. Although Sanjay Kumar
et al.'? expanded the k-core (ks) decomposition approach to include second-order neighboring nodes using
an improved WVoteRank algorithm, potential causal relationships among more distant nodes may still be
overlooked. In summary, evaluation of weighted networks should not rely solely on static topology but must also
account for differences in information flow caused by varying link weights.

To enhance the modernization of emergency management systems and capabilities, this study analyzes
disaster-influencing factors and integrates methods such as Event Tree Analysis (ETA) and Bayesian networks to
construct a complex network that incorporates emergency response capacity. The correlations among different
disaster events are comprehensively considered, and by quantifying the interaction intensity between nodes,
an unweighted structural network is refined into a directed weighted simulation network. While systematically
assessing urban hazard chain risks, this study dynamically considers the interactions among multiple factors
and develops a more comprehensive evaluation approach. The findings can assist grassroots decision-makers
in urban areas facing similar disaster scenarios in identifying critical chain-breaking nodes and improving
emergency response actions.

Research methods

Research path

Given the characteristics of heavy rainfall-geological hazard-flooding chain, this study compares existing
disaster risk assessment methods. Traditional methods such as the risk matrix and Analytic Hierarchy Process
(AHP) are simple and practical, but they rely heavily on subjective expert judgment and static indicator weights,
making it difficult to capture the temporal evolution and cascading propagation of disaster processes?. Fuzzy
comprehensive evaluation and grey system analysis are applicable to uncertainty problems, however, they
focus primarily on indicator scoring and classification, failing to reflect inter-hazard dependencies and system
feedback mechanisms (Yuxiang Yang, 2025). Machine learning and remote sensing approaches can identify
correlations between nodes, but they cannot distinguish causality and often require large datasets (Nikolay
Kazanskiy'®). In addition, some studies use single Bayesian networks to assess landslide or flood risk (Zening
Wu, 2019); although they address uncertainty, their structures largely depend on expert-defined relationships
and lack systematic identification of hazard chain logic and key propagation paths.Thus, current methods exhibit
the following limitations: a. They assume disasters as linear and independent events, ignoring coupling and
cascading relationships; b. They struggle to simultaneously consider system feedback structures and conditional
probability reasoning; c. They have limited ability to identify critical nodes and reveal risk transmission paths.

To address these gaps, this study establishes a comprehensive assessment framework for compound hazard
chains based on “Event Tree — Causal Loop Diagram (CLD) - Bayesian Network — AHP and Brittle Entropy -
Multi-Influence Matrix”” First, Event Tree Analysis (ETA) is used to trace the evolution paths of storms inducing
landslides, debris flows, and flooding, identify key nodes, and construct the temporal logic of the hazard chain.
Second, Causal Loop Diagrams from system dynamics are introduced to incorporate positive and negative
feedback mechanisms, overcoming the limitations of traditional methods in reflecting nonlinear interactions
and self-reinforcing effects*!. Compared with studies inferring hazard relationships solely from statistical data,
this step provides a structured causal network for Bayesian modeling, reducing subjective bias.

Based on this, a Bayesian network is constructed to model disaster chain reasoning, quantify node states,
and assign conditional probabilities. Subsequently, the improved AHP is used to identify key influencing factors
of the actual disaster-bearing body from the exposure-vulnerability perspective. The brittle entropy method is
applied to evaluate the disaster resilience of functional disaster-bearing subsystems, enabling the construction
of an urban vulnerability assessment system. Finally, a multi-influence matrix is used to analyze the driving and
dependence degrees among nodes. Combined with the TOPSIS method to determine relative closeness, nodes
are ranked and weighted — meaning the results provide not only “risk values” but also “high-sensitivity nodes”

The following is the technical roadmap of this research (Fig. 1):
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Fig. 1. Research technology roadmap.
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Fig. 2. Bayesian network schematic.

Event title

Overview

15 July 2006 Heavy Rainfall in Shaoguan | were damaged; 84 ponds and dams were washed away; 105.2 kms of communication lines were disrupted; three bridges collapsed

Heavy rainfall triggered torrential mountain floods and widespread inundation; 32 small reservoirs and 1,081 irrigation facilities

and 73 sections of road were severed. Floodwaters destroyed 110,000 cubic metres of road foundations and 66.94 kms of road surface

17 May 2010: Heavy Rainfall in Tongren,

The heavy rainfall has triggered geological hazards in parts of five counties—Dejiang, Songtao, Yanhe, Shiqian, and Jiangkou—
resulting in damage to some crops, collapse of residential buildings, and varying degrees of damage to infrastructure including roads

Guizhou and water conservancy facilities
Numerous sections of the city’s roads, bridges and water conservancy projects sustained damage, with multiple residential buildings
21 July 2012 Heavy Rainfall in Beijing collapsing across the municipality and hundreds of vehicles suffering severe losses. Preliminary estimates indicate economic losses

approaching ten billion yuan citywide. The disaster resulted in 79 fatalities

Table 1. Major heavy rainfall disaster events in china over a 25-year period (excerpt).

Bayesian network model
A Bayesian network is an extension of Bayesian theory and consists of:

It is represented by a directed acyclic graph. Nodes A, B, and C represent variables, and directed arrows
denote the relationships between them (see Fig. 2). Event A is called the parent node, serving as the foundation
of the network, and its probability is defined as the prior probability, typically derived from expert knowledge.
Event C is the child node, which represents the outcome and directly supports decision-making. Event B is an
intermediate node, which can act as the parent of C or the child of A. Directed edges generally point from parent
to child nodes. If two nodes are not connected by an arrow, they are conditionally independent.

In the Bayesian network, Event A is defined as the parent node. It forms the basis of the network structure,
and its probability is referred to as the prior probability, which is associated with objective laws and is typically
derived from expert knowledge. Event C is the child node, representing the final result of Bayesian reasoning and
directly serving decision-making needs. Event B is an intermediate node, which may function either as a parent
of C (influencing the child node through prior probabilities) or as a child of A (receiving the influence of prior
probabilities from the parent node). Directed edges in a Bayesian network generally point from parent nodes to
child nodes. If no arrow exists between two nodes, it indicates conditional independence between them.

Each node is associated with a Conditional Probability Table that characterizes its dependency on its parent
nodes. Let X be a variable and P, the set of its parent nodes. Then, the joint probability of all variables in the
network can be expressed as:

px) =] P(xilPa) (1)

Bayesian network model building

Node identification and segmentation

To construct the logical network of the heavy rainfall-geological hazard-flooding chain, this study collected
reports of 27 storm-induced disaster events in China over the past 25 years using online news and official
databases. These cases were used to comprehensively identify possible secondary hazards triggered by heavy
rainfall (selected cases are shown in Table 1). The identification logic here is based on event tree analysis, which
analyses the results of subsequent events that may result from the event. For example, take the 6.13 Shenzhen
disaster in 2008; the disaster chain can be deduced from the following reports (Fig. 3):

Duration of 10 h, within an hour, Xujiahui area has nearly 120 mm of heavy rainfall, rainfall in some areas of
the storm as high as 143 mm, the rainstorm caused, roads are seriously waterlogged, a total of more than 3,000
traffic accidents of various types, rail traffic many times dangerous, flights are delayed.

According to the analysis, the formation of the heavy rainfall-geological hazard-flood disaster chain consists
of three components: first, the heavy rainfall, the washout of rainfall and the cumulative effect of rainfall are
the key driving factors inducing the disaster chain, and they are the main disaster-causing factors causing the
destabilisation of the relatively stable disaster-conceiving environment (Culler®; Dalia Kirschbaum®; Roland
Kaitna!®). For the event of heavy rainfall, the two most important discriminatory factors are the intensity and
duration of rainfall, so the two nodes of rainfall intensity and rainfall duration are selected. The combination of
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Fig. 3. Example of event tree analysis method.

Number | Node name Number | Node name

Al Rainfall intensity B13 Topographical difference
A2 Rainfall duration Cl4 Landslide

B3 Lithological C15 Debris flow

B4 Geological structure C16 Debris dammed lake

B5 Slope protection C17 Flash flood

B6 Gradient C18 Flooding (return period)
B7 Intensity of anthropogenic activity | C19 Waterlogged

B8 Vegetation (land surface type) D20 Building collapse

B9 Loose soil D21 Casualty

B10 Original water system D22 Crops destroyed

B11 Riverbank dam D23 City function

B12 Drainage capacity

Table 2. Key nodes of the heavy rainfall-geological hazard-flooding chain.

heavy rainfall and the other two components can be regarded as two sub-systems, mountainous and urban, so
the selection of nodes is also split into two systems, which are identified separately.

For the mountain subsystem, topographic differences and geological formations determine the potential
energy of landslide and debris flow hazards. The mountain subsystem provides the main contextual environment
for the incubation and development of hazards. The most frequent hazard events within this region include
landslides, debris flows and flash floods. Of these, both landslides and debris flows are generally slope
geotechnical instability problems and are often interrelated in their genesis (Liu'®). In the whole mountain
subsystem, nodes reflecting objective local conditions that affect the probability of disasters other than heavy
rainfall should also be included. By analysing the causes of geological hazards such as landslides and mudflows,
the influencing factors can be summarised as geological, geomorphological, hydrological and anthropogenic
vegetation conditions (Hu®). Specific factors may include Lithological, geological structure, slope protection,
gradient, intensity of anthropogenic activity, vegetation (land surface type), loose soil, original water system,
riverbank dam, and drainage capacity (Thapa®®, He!%; Kadirhodjaev, Azam!'?).

The urban subsystem mainly represents the disaster-bearing body, which is the subject of disaster losses.
The main characteristic of this region is the high number of man-made structures. Artificial buildings can be
divided into three categories: disaster prevention and mitigation projects, infrastructure to maintain the basic
functions of the city, and civil buildings that need to be considered as disaster-bearing bodies. Analysed from
the perspective of disaster-bearing bodies, urban disaster-bearing bodies mainly include population, buildings,
economy, crops and infrastructure, etc. Among them, the economic loss is usually converted by counting other
disaster-bearing bodies (Zhao Axing and Ma Zongjin3?).

Based on the results of the event tree analysis and a review of relevant literature, the following key points have
been selected (Table 2):

For all of the above nodes, relationships were identified in groups of two using the Causal Loop Diagram
(CLD) in Vensim, usually using arrows marked with ‘+” and ‘-’ to indicate the relationship between factors.
Arrows marked with ‘+” and ‘- are usually used to indicate the relationship between the factors, and the two
are considered positively correlated if there is an induced effect. If the high reliability strength of the parent node
can inhibit the occurrence of the events of the child node or the occurrence of the events of the parent node can
reduce the reliability strength of the child node, the two are considered to be negatively correlated. The causal
loop diagram drawn accordingly is shown below (Fig. 4):
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Fig. 4. Causal loop diagram of the heavy rainfall-geological hazard-flooding chain.

Conditional probability learning

The construction of the disaster chain Bayesian network model requires the establishment of a Bayesian network
graph, according to which causal inference is applied to achieve probabilistic prediction. In this paper, the
Bayesian network is used to reason about the probability of occurrence of each disaster event in Mentougou
District, in order to quantitatively describe the process of disaster chain risk formation in the place. Before
learning the Bayesian network, it is necessary to clarify the possible states of each node, in the event tree theory,
each node has at least two states of ‘yes’ and ‘no. In order to guarantee the accuracy of the results and clarify
the severity of the event, reference to China’s National Meteorological Administration, the geological disaster
prevention and control engineering industry and some standards in the field of production safety and related
literature (Yang Qigui and Zhou Heqing®; Shuai Min??) for each node is divided into 2-5 different states, which
are divided as follows (Table 3):

In this paper, based on past news such as Xinjing Newspaper, National Emergency Broadcasting, Beijing
Flood Control Press Conference, Baidu Encyclopedia and other past news, we statistically analysed the summer
rainstorms in Beijing over the past 20 years, consulting with experts to determine the status of the intermediate
nodes. Arrange and combine the states of the derived base nodes to construct a conditional probability learning
database tailored to local conditions in Beijing (Table 4). The model database is characterised by the fact that it is
tailored to the realities of Beijing and removes some of the extreme combinations that are beyond the geography
of the district, which improves the accuracy and relevance of the model learning and, at the same time, reduces
the need for big data.

For the probability of possible induced effects between disaster chains, the Expectation Maximisation (EM)
algorithm is applied for parameter learning, and the missing variables are estimated for the incomplete dataset,
so as to form a training dataset with no missing data; and then probabilistic statistics for the case of no missing
data is applied to obtain the conditional probability parameters, and the approximate infer the likelihood of a
disaster chain occurring.

Prior probability analysis

Based on the historical data of Mentougou District, the a priori probability of some nodes in the model is
corrected by combining experts’ scoring of the status of the local base nodes. Among all the nodes identified,
nodes A1-Bl11 belong to the basic nodes, i.e., nodes whose status can be judged in advance before the occurrence
of the event. For this part of the nodes, the collected statistical data of Mentougou District is provided to the risk
assessment expert group, and the a priori probability that Mentougou District is in the status of different nodes
at present is judged based on the distribution of the scoring interval of the experts or the average of the whole
country.

The expert group consisted of eight experts, five of whom were local Beijing scholars engaged in disaster risk
assessment research, and three of whom were front-line staff members of the Mentougou District department
responsible for emergency response and disaster reduction. Combining the results of learning from the past
20 years of June—August rainstorm disaster cases in Beijing and the scoring opinions of the experts, the a priori
probabilities of the new model were determined as follows (Table 5):
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Number | Node name Status value
Al Rainfall intensity (Rainfall per unit of time /mm/d) | [0-25] / [25-50] / [50-100] / [100-250] / [250 ~]
A2 Rainfall duration (Duration of rainfall /h) [0-12] / [12-24] / [24-48] / [48 ~]
B3 Lithological Solid / Not solid
B4 Geological structure Stable / Unstable
B5 Slope protection Supported / Unsupported
B6 Gradient Not steep / Steep
B7 Intensity of anthropogenic activity No mining / light mining / heavy mining
B8 Vegetation (land surface type) Dense forest / shrubland / grassland / wasteland
B9 Loose soil Tight / loose
B10 Original water system (River flow /m?/s) [0-200] / [200-1500] / [1500-2500] / [2500 ~]
B11 Riverbank dam With / without levee
B12 Drainage capacity Strong / Weak
B13 Topographical difference (m) [0-200] / [200-400] / [400-600] / [600-800]
Cl4 Landslide (Landslide volume /10*m?) None / [0-10] / [10-100] / [100-1000] / [1000 ~]
C15 Debris flow (Total cubic metres stacked /10*m?) None / [0-1] / [1-10] / [10-50] / [50 ~]
Cl6 Debris dammed lake (storage capacity /10*m?) None / [0-100] / [100-1000] / [1000-10000] / [10000 ~]
C17 Flash flood None / general flash floods / high sand content flash floods
C18 Flooding (return period) None / [0-5] / [5-20] / [20-50] / [50 ~]
C19 Waterlogged None/general/severe
D20 Building collapse None/slightly damaged/severely damaged
D21 Casualty (Number of casualties/person) [0-3]/[3-10]/[10-30]/{30 ~]
D22 Crops destroyed (Affected area /km?) None / [0.01-500] / [500-1000] / [1000-1500]
D23 City function No damage / slight damage / general damage / severe damage
Table 3. Possible states of the nodes of the heavy rainfall-geological hazard-flooding chain and classification
criteria.
Al | A2 (B3 |B4 | B5 |B6 | B7 | B8 | B9 | B10 | B11 | B12 | B13 | C14 | C15 | C16 | C17 | C18 | C19 | D20 | D21 | D22 | D23
D |D B |[B |A|B |A |B |[B |B A A C A C A B C C B C B D
B B B |B |A |B |A |B (B |B A A C A A A A A A A A A B
c |(C |B |B |[A B |A |B |B |B A A C B A A A A B A A A B
c |(C |B |B |A B |A |B |B |B A B C A A A A A A A A A A
B |B |B |B |A|B |A |B |[B |B A A C A A A A A B A A A B
Table 4. Conditional probability database (excerpt).
Number | Node name Prior probability
Al Rainfall intensity 0.001/0.675/0.173/0.150 / 0.001
A2 Rainfall duration 0.051/0.299/ 0.564 / 0.084
B3 Lithological 0.247/0.753
B4 Geological structure 0.614/0.386
B5 Slope protection 0.876/0.124
B6 Gradient 0.372/0.628
B7 Intensity of anthropogenic activity 0.731/0.267 / 0.001
B8 Vegetation (land surface type) 0.002/0.940 / 0.057 / 0.002
B9 Loose soil 0.324/0.676
B10 Original water system (River flow /m%/s) | 0.001/0.996 / 0.002 / 0.001
B11 Riverbank dam 0.949/0.051
B12 Drainage capacity 0.736 / 0.264
B13 Topographical difference (m) 0.001/0.002/0.996 / 0.001
Table 5. Bayesian model prior probabilities for each node.
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Simulation results and validation
Combined with the conditional probabilities trained by the EM algorithm, the final model computes the
posterior probability of each node in the current situation as follows (Fig. 5):

Verifying the accuracy of probabilistic parameters of Bayesian networks based on Genie sensitivity. The
definition of sensitivity essentially reflects the strength of the influence of the changes of the higher-level nodes
on the lower-level nodes, and the distribution of sensitivity and the distribution of the influence weights of the
nodes are highly convergent for the network in which multiple nodes jointly determine the state of the lower-
level nodes. Therefore, within this subsystem, the normalisation result of sensitivity is used as the main basis for
weight distribution. The link edges A1-C14 are used to denote the sensitivity of node Al to have influence on
node C14, and the sensitivity of each initial node to the intermediate nodes and each intermediate node to the
final node is analysed by Genie software, with a variation value of 10%, and the final results are as follows (Table
6):

Disaster resilience analysis and risk assessment

Influencing factors analyzing

Traditional Bayesian network-based disaster chain analysis mainly focuses on the probability of disaster
occurrence and the formation process of disasters, but it is insufficient for analysing the correlation between
disaster bearers. By analysing the influencing factors of the disaster-bearing part of the Bayesian network, it
helps to analyse its internal correlation and enhance the integrity of the risk assessment model. In this paper, the
hazard-bearers are mainly considered from the perspectives of population, buildings, crops and basic functions
of the city. By splitting disaster-bearing bodies into actual disaster-bearing bodies and functional disaster-bearing
bodies, and determining the link side weights using different methods respectively, the differences of urban
disaster-bearing bodies are expressed from three perspectives of exposure, vulnerability and resilience, with
the intention of analysing the full model of influencing factors affecting the risk-resistant capacity of disaster-
bearing bodies.

Exposure performance is the volume of disaster-bearing bodies affected by disasters and accidents, and the
number of disaster-bearing bodies as well as their spatial distribution characteristics can reflect the exposure
of the urban system more intuitively. In this paper, three indicators, namely, average population density, urban
area, and GDP of agricultural products, are mainly selected as the basis indicators for assessing the exposure of
urban systems.

The first aspect of vulnerability is for the disaster-bearing population, and the most frequently used evaluation
indicator is population density as the main evaluation indicator (Wu Zongzhi®®). In the disaster chain of heavy
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Fig. 5. Bayesian probabilistic model simulation results.
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Relevant node | Sensitivity | Relevant node | Sensitivity
A1-Cl4 0.329 A2-C18 0.513
A2-Cl14 0.329 B11-C18 0.26
B3-C14 0.298 C17-C18 0.123
B4-C14 0.045 Al1-C19 0.378
B5-Cl14 0.28 A2-C19 0.263
B6-Cl4 0.33 B12-C19 0.164
B7-Cl14 0.33 B13-C19 0.224
B8-C14 0.349 C18-C19 0.1
B9-Cl14 0.294 C14-D20 0.053
A2-C15 0.32 C15-D20 0.213
B5-Cl15 0.21 C18-D20 0.11
B6-Cl15 0.32 Cl14-D21 0.041
B8-C15 0.32 C15-D21 0.14
B9-Cl15 0.252 C17-D21 0.115
C14-C15 0.05 D20-D21 0.233
B10-Cl16 0.655 Al1-D22 0.526
C15-Cl16 0.214 C18-D22 0.131
A1-C17 0.358 C19-D22 0.121
A2-C17 0.359 C14-D23 0.028
B6-C17 0.358 C15-D23 0.092
B8-C17 0.358 C17-D23 0.104
Cl16-C17 0.238 C18-D23 0.078
A1-C18 0.507 C19-D23 0.069

Table 6. Calculation of the sensitivity of each node of the Bayesian model.

rainfall-geological hazards-flooding, the tests suffered by the disaster-affected population can be divided into
two categories, namely, the ability to cope with sudden-onset disasters and the ability to tolerate prolonged
periods of time in a disaster environment. The former is usually associated with the self-rescue technical capacity
of the same population, while the latter is more closely related to the average physical capacity of the local
population. The definitions and quantitative methods of the selected indicators are given below:

1. Self-help technology index P, ;1.

POPequ

Pvul(cdu) - POP X 100% (2)

where: P, ;. is the urban self-rescue technology index; POP,,, is the number of people with disaster emer-
gency seif—rescue capability, and the ratio of people with post-secondary education is used to characterise the
self-rescue technology index; and POP is the total urban population.

2. Urban population fitness index P

vul(age)
POPeiger + POPchita
g =1- 3
Puul(age) 1 POP x 100% (3)
where: P, is the physical fitness index of the urban population; POP,,, is the number of elderly (>65)

population in the city; POP,,,, is the number of children (< 14) population within the city; and POP is the
total urban population. The above parameters can be obtained from the demographic statistics of Mentougou
District.

Secondly, for the disaster-bearing body of buildings, in the disaster chain of heavy rainfall-geological haz-
ards-flooding, buildings will be subjected to forces such as immersion, scouring and wind blowing, etc. Cur-
rently, the research on the seismic damage sensitivity of buildings is more mature, and it is generally measured
by the building structural index, which characterises the structural damage sensitivity of the building, and
the time-of-use index, which affects the damage sensitivity of the building because of the time of use. For
flooding, the local surface runoff coeflicient is also taken into account to measure the water retention capacity
of local buildings. The definitions and quantitative methods of the selected indicators are given below:

3. Building structure index
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4 S
Hvul(str) = Zi:l (g) VID; (4)

where: i is the category of housing structure, defining the common domestic 1-4 categories of building structure
in the order of earth and wood structure, brick and wood structure, brick-concrete structure, steel-concrete
structure; S; is the corresponding structure of the housing area (number of rooms); S is the total area of the
housing area in the region (the total number of rooms); V' I.D; on behalf of the ith category of housing rela-
tive to the average rate of loss of a particular type of disaster, (1-4 loss rate reference(Zhou*) in architecture
design.).

4. Building depreciation rate.

The longer a house is in use, the less able it is to withstand external shocks, the more sensitive it is to various types
of disasters, and the more likely it is to suffer damage. Setting the parameter of depreciation rate quantifies its
capacity in the interval from 0 to 1. The indicator is defined as follows:

Dic T 5)

HVU -
() o
where: T, and T}, represent the number of years the building has been in use and the design life, respectively;
when the number of years the building has been in use, T, exceeds the design life, T4, the depreciation rate
is set to be 1. n represents the number of building samples investigated.

5. Weighted pavement runoff coefficient.

Based on the runoff coefficients of different road surfaces in the ‘Calculation Standards for Stormwater Runoff in
Planning and Design of Urban Stormwater Systems, and using the approximate proportions of the different
land uses in the area under study as the weightings, the composite runoff coeflicient of the area will be calcu-
lated, which will serve as a quantitative indicator for evaluating the drainage capacity of its road surfaces.

6. Recombination rate during the heavy rainfall fruiting period.

For the crop disaster-bearing body, the first consideration of its exposure to agricultural GDP ratio as a measure
of indicators, followed by consideration of the planting of different categories of crops and their growth cycle,
the Beijing Mentougou District, the main agricultural products Beijing White Pear as an example, the sum-
mer June-August pear tree in the stage of the just hanging fruit, there are often for the ripening of the fruit by
the impact of rainstorms were knocked down. Assuming that the date of pear tree fruit in June-August in line
with the standard normal distribution:

1 _ (z—46)2

— e~ 2645 6
11.5 x v/2I1 (©)

f(z)

where the mathematical expectation y is half the number of days in June-August, i.e. 46. its left and right 40
intervals, i.e. 46 days contains 99.99% probability. The percentage of pear trees affected during the duration of
the rainstorm was used as a quantitative indicator of crop growth cycle factors.

For the urban functional disaster-bearing body, with reference to the division of urban lifeline projects, the
system that guarantees the operation of the basic functions of the city is divided into six sub-systems, namely,
power, gas storage, water, underground pipelines, transport and communications: the power system mainly
represents the power generation capacity of the power plant and the supporting transmission capacity; gas
represents the city’s reserves of natural gas, oil, petrol and other energy sources. The water source mainly
represents the water purification capacity of the waterworks and the ability to distribute the required industrial
water to key nodes. Underground pipelines represent the ability to transport clean water or fuel to various
nodes in the city. Transportation represents the city’s ability to move various resources through various vehicles,
aircraft, ferries, and other modes of transport. Communication systems represent the ability of the city to control
and exchange real-time information.

The Indices for evaluating the exposure vulnerability of urban disaster-bearing bodies are shown in the table
below (Table 7):

Weighting allocation

The weights of the exposure-vulnerability indicator

The weights of the exposure-vulnerability disaster-bearing body indices were determined by the hierarchical
analysis method. The weight allocation method given in Sect. 4.2 was also used to integrate the experts ‘ opinions
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Goal layer

Criteria layer Sub-criteria layer Alternatives layer

Vulnerability assessment of urban
disaster-bearing bodies

Building exposure Urban area (H,)

Infrastructure strength (Hyu1(str))

Building exposure-vulnerability (J)

Building vulnerability | Degree of building ageing (Hu1(T))

Building hydrophobicity (H,)

Personnel exposure Population density (P,)

Personnel exposure-vulnerability (R) Personnel emergency response capacity (Pyul(edu))

Personnel vulnerability

Personnel tolerance (Py 1 (age))

Crop exposure GDP of agricultural products (N,)

Crop exposure-vulnerability (N)

Crop vulnerability Crop growth cycle (N)

Table 7. Index system for evaluating the exposure vulnerability of disaster-bearing bodies.

Classify Eigenvector | Weight value | Maximum eigenvalue | CI value
Urban area 1.253 31.333%
Infrastructure strength 1.911 47.770%

4.123 0.041
Degree of building ageing | 0.648 16.210%
Building hydrophobicity | 0.187 4.687%

Table 8. Exposure-vulnerability indices weights for building disaster-bearing bodies.

Classify Eigenvector | Weight value | Maximum eigenvalue | CI value
Population density 2.089 69.646%

Personnel tolerance 0.703 23.422% 3.124 0.062
Personnel emergency response capacity | 0.208 6.932%

Table 9. Population exposure-vulnerability indicator weights.

Classify Eigenvector | Weight value | Maximum eigenvalue | CI value
GDP of agricultural products | 1.676 83.780%

2.000 0.000
Crop growth cycle 0.324 16.220%

Table 10. Exposure-vulnerability indicator weights for crop disaster-bearing bodies.

after 8 experts’ deliberations. Based on the sum-product approximation, and after passing the consistency test,
the weights of the indicators were found as follows (Table 8; Table 9; Table 10):

Vulnerability weights for urban functions

According to the idea of vulnerability theory, taking the six subsystems of electricity, gas storage, water source,
underground pipeline, transport and communication as examples, on the basis of the qualitative analysis of the
interactions of lifeline subsystems (five ways of interactions among functions of the city include: interdependence,
mutual proximity, mutual substitution, and assistance in repairing) (Liu'%), the entropy theory is adopted to
quantify the degree of uncertain interactions. Thus, the brittle correlations between urban lifeline systems are
analysed and combined with the disaster damage sensitivity of single-function lifeline systems, so as to evaluate
the disaster damage sensitivity of urban lifeline systems as a whole.

Firstly, the association Boolean matrix is constructed and summed to get the composite matrix, and each
column of the composite matrix is summed to get the association of each sub-system affected by other sub-
systems:

Electricity =10,
Communication=>5.

Of the four types of relationship, neighbourhood influence can be characterised as brittle homogeneity,
substitution can be characterised as brittle opposition; and reliance influence and repair influence can be
characterised as brittle fluctuation.

Electricity: P,=1/10, P,=1/10, P.=8/10; H,=0.230, H,=0.230, H.=0.179; w,=0.480, w,=0.613, w.=0.65;
H3=0.368.

Gas Storage: P, =0, P,=1/7, P.=6/7; H,=0, H,=0.278, H.=0.132; w,=0, w,=0.653, w.=0.603; H.;=0.261.

Gas Storage=7, Water source=7, Underground Pipeline=10, Transport=11,
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Water source: P,=1/7, P,=0, P.=6/7; H,=0.278, H,=0, H.=0.132; w,=0.527, wy,=0, w.=0.603; H;=0.226.

Underground Pipeline: P,=2/10, P,=1/10, P.=7/10; H,=0.322, H,=230, H.=0.250; w,=0.567, wy,=0.613,
w,=0.707; Hy=0.500.

Transport: P,=1/11, P,=2/11, P.=8/11; H,=0.218, H,=0.310, H.=0.232; w,=0.467, wp,=0.677, w.=0.694;
H;=0.472.

Communication: P,=1/5, P,=1/5, P.=3/5; H,=0.322, H,=0.322, H.=0.306; w.=0.567, w,=0.685, W,
=0.744; H;=0.631.

Construction of weighted network mode

After Genie’s sensitivity analysis between nodes, the structure is simplified into a unidirectional network with
initial nodes to intermediate nodes and intermediate nodes to final nodes. Then the refinement of the overall
network is completed by constructing the exposure-vulnerability indicator factor evaluation model of the
disaster-bearing body, and its overall network node diagram is as follows (Fig. 6):

In order to rationally assign individual link side weights, the weights between subsystems derived from
different methods need to be harmonised. Firstly, a hierarchical analysis of hazard and exposure vulnerability is
conducted to derive the weight share of the two larger dimensions:

According to the expert rating opinion and combining the results of most scholars (Hu Haibo®; Bai Wanping')
who have conducted PHA analyses for urban disaster risks, the ratio of hazard and exposure-vulnerability is
roughly 0.607:0.383.

Max-min normalisation is performed to normalise the network weights in the range [0-1]. The formula is
as follows:

Ti — Tmin

W = —— (7)

Tmazx — Tmin

where w is the link edge weight, x; is the sensitivity of link edge i, and Zmae and Zmin are the maximum and
minimum values in the full sample. When ;=%mn, it is set as a very small positive number with a value slightly
greater than 0 (1 x 1073). The final results are as follows (Table 11):

In order to comprehensively consider the influence of other nodes in the system when calculating the node
importance degree, this paper refers to the directed weighted network method based on multiple influence
matrix proposed by Wang Yu et al. (Wang Yu and Guo Jinli¥’) to evaluate the important nodes of the network
constructed in this paper. According to the node degree calculation, node network efficiency calculation,
multiple influence matrix construction, the importance degree of node i is defined in the formula to calculate

Gradient
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Fig. 6. Integrated logic diagram of the storm-geological-hazard-flooding chain system.
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Link side name | Weight | Link side name | Weight | Link side name | Weight
Al-Cl4 0.4801 | Cl16-C17 0.3349 | C15-D23 0.1021
A2-C14 0.4801 | A1-C18 0.7640 | C17-D23 0.1212
B3-C14 0.4306 | A2-C18 0.7735 | C18-D23 0.0797
B4-C14 0.0271 | B11-C18 0.3700 | C19-D23 0.0654
B5-Cl14 0.4019 | C17-C18 0.1515 | J1-D20 0.2703
B6-Cl4 0.4817 | A1-C19 0.5582 | J2-D20 0.4364
B7-Cl14 0.4817 | A2-C19 0.3748 | J3-D20 0.1184
B8-Cl14 0.5120 | B12-C19 0.2169 | J4-D20 0.0026
B9-Cl14 0.4242 | B13-C19 0.3126 | R1-D21 0.6558
A2-C15 0.4657 | C18-C19 0.1148 | R2-D21 0.1908
B5-Cl15 0.2903 | C14-D20 0.0399 | R3-D21 0.0248
B6-Cl15 0.4657 | C15-D20 0.2951 | N1-D22 0.7987
B8-C15 0.4657 | C18-D20 0.1308 | N2-D22 0.1184
B9-Cl15 0.3573 | C14-D21 0.0207 | G1-D23 0.3257
C14-C15 0.0351 | C15-D21 0.1786 | G2-D23 0.2180
B10-Cl16 1.0000 | C17-D21 0.1388 | G3-D23 0.1828
C15-Cl16 0.2967 | D20-D21 0.3270 | G4-D23 0.4585
A1-C17 0.5263 | A1-D22 0.7943 | G5-D23 0.4303
A2-C17 0.5279 | C18-D22 0.1643 | G6-D23 0.5903
B6-C17 0.5263 | C19-D22 0.1483

B8-C17 0.5263 | C14-D23 0.001

Table 11. Systematic link side weights for the storm-geological-flood hazard chain.

the importance degree of each node, and the calculation results and the final ranking are shown in the following
table (Table 12):
The relative posting progress derived based on topsis is normalised so that the sum of all node weights is
equal to 10, which is satisfied:
Z: w; =10 ®)

The node weights obtained at this point are regarded as the weights of the individual node risks in this model
with respect to the total system risk.

Case study

The realistic risk of Beijing Mentougou District is calculated by quantifying the realistic risk value of each node.
Among them, for the disaster-bearing environment and disaster nodes, the risk value can be derived from the
Bayesian model results by calculating the expected value. For the disaster-bearing body attribute node, it needs
to be quantified based on the actual data.

For the population, buildings and agriculture in Mentougou District, reference is made to the Mentougou
District 2022 National Economic and Social Development Statistical Bulletin, the 2021 Mentougou District
Statistical Yearbook, the Seventh National Population Census Bulletin of Mentougou District, Beijing Municipal
Statistical Yearbook, as well as the Outline of the Fourteenth Five-Year Plan for the National Economic and
Social Development of the Mentougou District and the Visionary Objectives of the Mentougou District for the
Year 2035. For the damage to the basic urban functions of Mentougou District, reference is made to news reports
on torrential rains in Beijing over the years, mainly from People’s Daily Online, Xinhua Net, and Netease News.
Based on the calculation of the base risk value for each node is determined in the table below (Table 13):

The basic risk value of each node was combined with its corresponding weight, and overall risk was classified
into four levels within the value range of 0-100 (see Table 14). The final result shows that the comprehensive
risk value of the heavy rainfall-geological hazard-flooding chain in Mentougou District is 34.23, indicating a
“medium to moderately high risk zone”

Based on the weighted risk values of each node, this study calculated risk values for three types of hazard
chains: a. heavy rainfall-geological hazard chain b. heavy rainfall-flooding chain c. heavy rainfall-geological
hazard-flooding chain. The results are shown in Table 15.

The findings indicate that the compound hazard chain (34.23) presents a higher risk than either single
hazard chain, implying that in mountainous urban environments, if geological hazards and flooding evolve in
a cascading manner under heavy rainfall, their impacts may be superimposed or even amplified. The risk of the
single heavy rainfall-geological hazard chain (21.47) is relatively low and spatially confined to localized slope
failures such as landslides or collapses. The heavy rainfall-flooding chain shows a slightly higher risk (27.65), as
it is controlled by drainage capacity and river convergence conditions, resulting in more regional and burst-type
impacts.
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Node name S7 D;s | Relative proximity | Order of importance | Weight
Rainfall intensity 2.1860 | 0 0.933 1 1.0461
Rainfall duration 1.7249 | 0 0.78 2 0.8745
Lithological 0.3014 | 0 0.137 22 0.1536
Geological structure 0.0190 | 0 0.008 36 0.0090
Slope protection 0.4845 | 0 0.22 15 0.2467
Gradient 1.0316 | 0 0.469 6 0.5258
Intensity of anthropogenic activity 0.3372 | 0 0.153 20 0.1715
Vegetation (land surface type) 1.0528 | 0 0.479 5 0.5371
Loose soil 0.5471 | 0 0.249 14 0.2792
Original water system 0.7000 | 0 0.318 10 0.3565
Riverbank dam 0.2590 | 0 0.117 24 0.1312
Drainage capacity 0.1518 | 0 0.068 30 0.0762
Topographical difference 0.2188 | 0 0.099 27 0.1110
Landslide 1.1829 | 0.0411 | 0.539 4 0.6043
Debris flow 1.2347 | 0.1570 | 0.566 3 0.6346
Debris dammed lake 0.6234 | 0.1434 | 0.29 11 0.3251
Flash flood 1.0206 | 0.0911 | 0.467 7 0.5236
Flooding 0.9604 | 0.1323 | 0.441 8 0.4945
Waterlogged 0.5754 | 0.1217 | 0.267 12 0.2994
Building collapse 0.5798 | 0.0808 | 0.266 13 0.2982
Casualty 0.4610 | 0.0861 | 0.213 16 0.2388
Crops destroyed 0.4212 | 0.0713 | 0.194 18 0.2175
City function 0.7722 | 0.0753 | 0.353 9 0.3958
Urban area 0.1892 | 0 0.086 28 0.0964
Infrastructure strength 0.2188 | 0 0.099 26 0.1110
Degree of building ageing 0.0829 | 0 0.037 35 0.0415
Building hydrophobicity 0.0018 | 0 0.001 38 0.0011
Population density 0.4591 | 0 0.209 17 0.2343
Personnel emergency response capacity | 0.1336 | 0 0.06 31 0.0673
Personnel tolerance 0.0174 | 0 0.007 37 0.0078
GDP of agricultural product 0.1250 | 0 0.056 33 0.0628
Crop growth cycle 0.0829 | 0 0.037 34 0.0415
Electricity 0.2280 | 0 0.103 25 0.1155
Gas Storage 0.1526 | 0 0.069 29 0.0774
Water source 0.1280 | 0 0.058 32 0.0650
Underground Pipeline 0.3210 | 0 0.146 21 0.1637
Transport 0.3012 | 0 0.137 23 0.1536
Communication 0.4132 | 0 0.188 19 0.2108

Table 12. Relative proximity of nodes and calculated values of weights.

Conclusions

The current risk situation in China is summarised as with global warming and the continuous advancement of
China’s industrialisation and urbanisation, extreme weather tends to be stronger, heavier and more frequent,
bringing great negative impacts to urban society. In view of this, it is of great practical significance to study the
risk of heavy rainfall disaster and its derived disaster chain, with large cities as the main disaster-bearing body.
The conclusions of this paper are as follows:

Based on the cases of severe rainstorm disasters in various provinces of China in the past 25 years, the
key nodes of the disaster chain propagation were systematically identified and analysed in terms of causative
relationships through the event tree method. And by analysing the definitions in disaster science, the disaster
event is split into three levels of disaster-conceiving environment, disaster-causing factor and disaster-bearing
body, and a logical network of heavy rainfall-geological disaster-flood disaster chain containing three levels and
a total of 23 nodes is constructed.

Combined with the risk assessment method, the traditional unweighted complex network of structural
importance analysis of the hazard chain based only on the induced relationship was deepened into a directed
weighted network combining expert experience, historical probability, vulnerability and other multi-factors.
Specific methods used Bayesian probability model, hierarchical analysis and fragility entropy to quantify the
importance of each influencing factor in terms of hazard, vulnerability and system resilience, respectively.
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Node name Base risk value | Node name Base risk value
Rainfall intensity 4.925 Building collapse 3.905
Rainfall duration 431 Casualty 3.725
Lithological 6.8 Crops destroyed 2.938
Geological structure 5.7 City function 4.625
Slope protection 3.8 Urban area 9.5
Gradient 7.5 Infrastructure strength 1.075
Intensity of anthropogenic activity | 2.945 Degree of building ageing 1
Vegetation (land surface type) 3.9 Building hydrophobicity 7.247
Loose soil 7.45 Population density 9.5
Original water system 3.75 Personnel emergency response capacity | 1.917
Riverbank dam 35 Personnel tolerance 2.62
Drainage capacity 5.35 GDP of agricultural products 0.02
Topographical difference 6.25 Crop growth cycle 8.9
Landslide 3.15 Electricity 2.216
Debris flow 3.1 Gas Storage 2.018
Debris dammed lake 1.81 Water source 1.455
Flash flood 3.535 Underground Pipeline 1.606
Flooding 2.49 Transport 4.375
Waterlogged 5 Communication 2.125

Table 13. Base risk values for each node of the heavy rainfall-geological hazard-flooding chain.

Risk value R | Risk level Meaning

0-20 Low Low probability of occurrence and limited losses

20-40 Medium There is a possibility of chain-reaction triggering, with localised high-risk areas
40-60 High Prioritise defence and monitoring

>60 Extremely high | Prone to triggering a chain of disasters and causing severe losses

Table 14. Risk level classification.

Hazard chain type Risk value R | Key affected segments Characterisation analysis
Heavy rainfall-geological hazard chain 21.47 Landslide, debris flow Spatially dispersed distribution, with localised impact
Heavy rainfall-flooding chain 27.65 River confluence, urban drainage congestion The impact is concentrated in river valleys and low-

lying areas within urban districts

Heavy rainfall-geological hazard-flooding chain | 34.23

Landslides blocking valleys and gorges, and the | The cumulative amplification effect is pronounced,
breach of earthen dams causing floods exhibiting a chain-like progression

Table 15. Risk values for the heavy rainfall hazard chain.

Using the multiple influence matrix algorithm and TOPSIS algorithm to rank the importance of nodes and
assign weights based on the propagation efficiency of a forward-weighted network with a storm-geological-
hazard-flood hazard chain as an example, we identify that the high risk in the propagation of the chain mainly
comes from the intensity of rainfall, the topographic difference within the area and the excessive population size.
Finally, a risk assessment method for disaster chains in directed weighted networks with both spatial topology
and temporal evolutionary dynamics is developed.

Discussion

The research discusses the results of the risk assessment. From the baseline risk values across various nodes,
it is evident that exposure nodes exhibit significantly higher risk values. This indirectly reflects that the highly
concentrated population and economic infrastructure in the Beijing region, coupled with its role as the capital,
are the primary reasons why the risk of heavy rainfall disasters in this area receives such high priority.

The next category of high-risk nodes pertains to natural environmental factors such as topography, slope
gradient, rock composition, and geological structures. This indicates that Mentougou District possesses
unfavourable geographical conditions, with its natural environment inherently predisposing it to elevated risks
of geological hazards. Furthermore, owing to these geographical constraints, urban development is concentrated
in low-lying, flat terrain with extensive paved surfaces, resulting in a significantly heightened probability of urban
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flooding. Next is the influence of rainfall patterns. Due to the surrounding mountainous terrain, precipitation
is highly concentrated both temporally and spatially, resulting in a greater likelihood of torrential downpours.

Despite adverse natural conditions, the built infrastructure of Mentougou District is relatively well developed,
with substantial governmental investment in disaster prevention, mitigation, and ecological restoration. This
ensures that urban emergency functions remain operational during heavy rainfall events. From the perspective
of weighted risk values, although the long-term expected risk derived from historical rainfall data is not high,
rainfall contributes the largest proportion, and the strong interannual variability of precipitation in Mentougou
makes high-risk years more likely. Besides rainfall, high-risk factors include slope gradient, loose soil, and
vegetation cover, indicating that soil erosion control and ecosystem restoration are essential for regional safety.
In addition, accelerating the development of new urban centers and relocation of residents currently remains an
effective strategy for reducing regional risk, and its benefits outweigh the potential increase in urban flooding or
management challenges caused by urban expansion.

Urban heavy rainfall disasters are highly complex systems with significant uncertainty and blurred subsystem
boundaries. To accurately quantify the risks of both nodes and edges within the hazard chain network, this study
adopted multiple weighting methods, which inevitably increased the methodological complexity. Furthermore,
the classification of several node states lacks refined criteria, introducing subjectivity and possibly affecting
model accuracy.

Although this study refined the disaster chain into a directed weighted network through an indicator-based
approach, limitations remain in weight determination due to constraints in time and experience. Future research
may focus on: Expanding the Bayesian network database by collecting more disaster cases, refining network
structure, and extending the temporal scale of the model; Conducting field surveys to increase spatial resolution
by dividing disaster-bearing bodies into grid units, thereby producing more practical urban disaster risk maps;
Developing more robust mathematical models, or refining scoring dimensions, to minimize subjectivity within
a reasonable range.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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