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Percutaneous coronary intervention (PCI) is a cornerstone treatment for coronary artery disease, 
yet accurate prediction of long-term mortality remains a critical challenge due to the complex 
interplay of risk factors. Existing prognostic models rely predominantly on structured clinical data, 
overlooking the rich, nuanced information embedded in diagnostic imaging and procedural narratives. 
To address this gap, we present a novel multimodal machine learning framework that integrates 
coronary angiography video, unstructured procedural text, and structured clinical variables to predict 
5-year all-cause mortality. Utilizing a large real-world cohort of 10,353 patients, we extracted visual 
embeddings via CLIP, textual embeddings via BioBERT, and structured features to construct a unified 
patient representation. Our trimodal LightGBM model achieved an AUC-ROC of 0.814, significantly 
outperforming single- and dual-modality baselines (p < 0.01). SHAP-based analysis revealed that 
unstructured data captured complementary prognostic signals, while structured variables provided 
concentrated predictive strength. This study demonstrates the prognostic value of integrating 
heterogeneous data sources and establishes a robust, explainable foundation for precision medicine in 
interventional cardiology.

Percutaneous coronary intervention (PCI) is a minimally invasive procedure used to relieve narrowing 
or blockage of the coronary arteries and restore blood flow, typically by inflating a balloon and deploying a 
stent in the affected artery1. In recent years, PCI has fundamentally transformed the management of coronary 
artery disease, reducing mortality and improving patient quality of life. However, despite these advances, the 
identification of patients at risk of mortality after PCI remains a significant clinical challenge2,3.

This challenge is magnified by the sheer scale of the procedure and the persistent risk of adverse outcomes. 
PCI represents the cornerstone of revascularization therapy, with millions of procedures performed globally 
each year4. However, large-scale registry data indicate that post-discharge mortality rates remain alarmingly 
high in high-risk subsets, underscoring that procedural success does not equate to long-term survival5.

This discrepancy requires a shift in focus from immediate outcomes to long-term prognosis. Clinical 
evidence suggests that late outcomes are increasingly driven by the progression of native atherosclerotic disease 
in non-culprit lesions rather than stent failure6. Consequently, the 5-year period serves as a pivotal window 
for evaluating the efficacy of secondary prevention, extending beyond the immediate post-procedural period. 
As highlighted in landmark follow-up studies like the SYNTAX trial, the divergence in clinical outcomes 
necessitates extended monitoring to capture the true prognostic trajectory7. Therefore, accurate prediction of 
5-year all-cause mortality is essential to identify patients who require aggressive risk factor modification.

A fundamental limitation of current risk prediction approaches is their reliance on conventional risk scores 
or regression models8. However, these traditional methods often impose linear and additive assumptions, 
which can obscure complex, nonlinear relationships between risk factors and outcomes9–11.Consequently, these 
methods neglect the wealth of nuanced, prognostic information embedded within the angiographic images and 
the procedural reports. This represents a significant missed opportunity, as angiographic images capture complex 
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anatomical details that are difficult to quantify manually, while procedural reports contain critical qualitative 
observations that extend beyond structured data fields. The increasing availability of these multimodal data 
presents an unprecedented opportunity to move beyond traditional risk factors and create more individualized 
risk profiles for long-term patient management12,13.

To address these limitations, we propose a multimodal machine learning (ML) framework that integrates (1) 
visual data from coronary angiography imaging, (2) unstructured procedural text reports, and (3) structured 
tabular clinical data to predict 5-year all-cause mortality after PCI. We chose tree-based ensemble algorithms 
for this task as they are ideally suited to the challenge. These techniques, such as LightGBM, are designed to 
learn high-order, nonlinear interactions from heterogeneous datasets without strong distributional assumptions. 
For instance, gradient-boosting trees have already demonstrated superior performance over traditional logistic 
regression for post-PCI mortality prediction by capturing complex threshold effects in clinical variables14. 
Furthermore, their outputs can be interpreted using post hoc explainability methods like SHAP, providing 
valuable insights into the model’s decision-making process15.

Our goal is to improve predictive performance of post-PCI mortality compared to single-modality models. 
We developed and evaluated four ML models (XGBoost, CatBoost, LightGBM and Random Forest) using a 
real–world cohort and analyzed feature contributions across modalities.

Related works
Traditionally, post-PCI risk assessment has relied on scoring systems such as the ACEF (Age, Creatinine, 
Ejection Fraction)16. While these scores provide a standardized baseline, they are inherently limited by their 
assumption of linear relationships between risk factors and outcomes. To address this, recent studies have 
applied machine learning (ML) to structured electronic health record (EHR) data. Liu et al.8 demonstrated the 
effectiveness of gradient-boosting algorithms in large clinical datasets, achieving robust predictive performance 
through the comprehensive engineering of structured data elements. A systematic review and meta-analysis by 
Zaka et al.17 further corroborated that ML models outperform conventional risk scores. However, the reviewed 
studies were predominantly limited by their exclusive reliance on structured data, failing to incorporate imaging 
or unstructured text data that are routinely available in clinical practice. This limitation represents a significant 
underuse of the rich phenotypic information present in modern healthcare settings.

Recent advances in multimodal learning have shown considerable promise in various clinical domains. Lin 
et al.12 successfully integrated clinical parameters with imaging data for the prediction of short-term mortality in 
intensive care units, while Dipaola et al.13 combined clinical and textual data for the prediction of the outcome 
of COVID-19. Within the cardiovascular domain, a recent review by Yang et al.18 highlighted the potential of 
fusing cardiac imaging with EHRs to advance care. Specifically for post-PCI prognosis, Bhattacharya et al.19 
demonstrated that a deep fusion model integrating ECG time-series and structured clinical data outperformed 
unimodal baselines in predicting 6-month adverse outcomes.

Despite these advancements, significant research gaps remain. First, existing post-PCI multimodal studies, 
such as Bhattacharya et al., are typically limited to dual-modal approaches (e.g., signal and tabular) and do not 
incorporate diagnostic angiography videos or procedural text reports. Second, the prediction horizons are often 
restricted to short-term endpoints, such as in-hospital or 6-month mortality, leaving the critical 5-year period 
for secondary prevention unexplored.

The present study addresses these limitations by developing a comprehensive trimodal framework that 
integrates angiographic images, procedural text reports, and structured clinical data to predict 5-year all-
cause mortality after PCI. Unlike previous studies limited to short-term outcomes or partial data integration, 
our approach targets an extended prediction horizon that is clinically significant for late cardiovascular event 
management. By explicitly modeling the complementary contributions of each data modality and leveraging 
their synergistic predictive capacity, our approach represents a substantial advancement beyond existing single- 
or dual-modality methodologies, allowing for more precise and clinically relevant risk prediction in the post-
PCI population.

Methods
Our multimodal approach combines visual, textual, and structured clinical data to predict 5-year all-cause 
mortality after percutaneous coronary intervention. Figure 1 illustrates the overall framework, detailing the data 
processing and integration pipeline for mortality prediction. The following subsections detail the data collection 
process and feature extraction methods for each modality.

Data collection
The patient selection process is illustrated in Fig.  2. We initially screened 25,000 patients who underwent 
coronary revascularization at Asan Medical Center between January 2003 and December 2018. To create the 
study cohort, we first excluded patients who underwent Coronary Artery Bypass Grafting (CABG) instead of 
PCI. Subsequently, to ensure a complete 5-year follow-up period for all subjects, we only included patients 
who received their intervention on or before December 31, 2014. After applying these criteria, a total of 10,353 
patients were included in the final analysis. During this period, 1204 patients died while 9149 patients survived. 
The study was approved by the Institutional Review Board of Asan Medical Center (IRB No. 20230186). Table 1 
summarizes the baseline characteristics of the study cohort, stratified by 5-year mortality.

For each patient, we obtained three complementary data modalities: (1) coronary angiographic images 
in DICOM format, with a mean of 15 imaging sequences per patient captured from multiple projections, 
(2) procedure reports dictated immediately after the intervention and stored as free text narratives, and (3) 
structured clinical data consisting of 71 routinely recorded variables.
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Table 2 shows the descriptive statistics for the unstructured data modalities of the cohort. These statistics 
characterize coronary angiography videos by the number of frames before and after key-frame selection, and the 
reports by their length in both the word count and token count.

Multimodal feature extraction
We constructed a comprehensive feature set for each patient by extracting information from three distinct data 
modalities: visual angiographic data, textual procedural reports, and structured clinical data. The following 

Fig. 2.  Patient inclusion flowchart. From an initial cohort of 25,000 patients who underwent coronary 
revascularization at Asan Medical Center between January 2003 and December 2018, patients undergoing 
CABG were excluded, and only those with intervention before December 31, 2014 were included to ensure 
complete 5-year follow-up, resulting in 10,353 patients in the final analysis.

 

Fig. 1.  Overview of the multimodal machine learning framework for predicting post-PCI mortality. The 
pipeline integrates three data modalities: (1) coronary angiographic images processed through CLIP visual 
encoder to generate 512-dimensional embeddings, (2) procedural text reports encoded using BioBERT to 
produce 768-dimensional representations, and (3) structured clinical data comprising 71 tabular features. 
Features from all modalities are concatenated into a unified 1351-dimensional vector and fed into gradient 
boosting models for mortality prediction.

 

Scientific Reports |         (2026) 16:2887 3| https://doi.org/10.1038/s41598-025-32734-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


sections detail the extraction methodology for each modality. To ensure optimal feature representation for each 
modality, we conducted preliminary experiments comparing various architectures. These comparisons, detailed 
in Supplementary Table S1, informed our final selection of feature extraction models.

Visual feature extraction
For each patient, we obtained coronary angiographic videos taken during PCI procedures. On average, 15 
angiographic sequences (512 × 512 px, 15 fps) per patient were captured, each sequence varying in length and 
capturing coronary arteries from different anatomical views under contrast injection.

Processing every frame from these sequences would result in prohibitively high computational costs. 
Previous studies on large-scale video analysis have proposed key frame extraction as an effective strategy to 
reduce redundancy and improve efficiency in processing high-volume visual data20. So we used an internal 
model to automatically identify key frames that best represent each major coronary artery. The selector assigns 
a vessel-visibility score to each frame and retains only those with clearly opacified coronary anatomy, reducing 
the frame count by approximately 90 % while preserving diagnostic information.

The selected representative frames were fed into the CLIP (Contrastive Language Image Pretraining) model21 
with a Vision Transformer backbone (ViT-B/32). CLIP is a model trained on hundreds of millions of image-
text pairs and produces a 512-dimensional representation for an input image. Each representative angiographic 
frame was fed through CLIP’s image encoder to obtain a corresponding 512-dimensional feature vector.

Since patients had varying numbers of representative frames corresponding to their individual coronary 
anatomy and procedural complexity, we needed a standardized approach to create features at the patient level. For 
patients with multiple representative frames, we compute the element-wise average of their frame embeddings 
to yield a single consolidated visual feature vector per patient. This averaging approach condenses the rich visual 
information of the coronary anatomy into a compact numerical form suitable for machine learning.

Textual feature extraction
Following each PCI procedure, interventional cardiologists write reports documenting coronary anatomy, 
descriptions of lesions, devices used, and any complications or notable events. We collect PCI reports for each 
patient as unstructured text data. These reports contain valuable contextual information, such as descriptions 
of complex bifurcation lesion or no-reflow phenomenon, that may not be fully captured by structured variables.

Characteristic Mean ± SD Median [IQR]

Textual data

  Word count 158.7 ± 70.9 136.0 [108.0 − 196.0]

  Biobert tokens 392.2 ± 175.0 340.0 [267.0 − 486.0]

Visual data

 No. of total frames 75.3 ± 40.6 67.0 [47.0 − 95.0]

  No. of selected key frames 15.8 ± 7.9 14.2 [9.8 − 19.8]

Table 2.  Descriptive statistics of unstructured data modalities. IQR interquartile range.

 

Characteristic

Total patients Survival group Death group

P-value(n=10,353) (n = 9149) (n = 1204)

Age, yr 63.1 ± 10.2 62.1 ± 10.0 69.5 ± 9.7 <0.001

Male sex, n (%) 7,734 (74.8%) 6,762 (75.2%) 972 (71.8%) 0.005

Body-mass index, kg/m−2 25.0 ± 3.1 25.1 ± 3.0 24.0 ± 3.3 <0.001

Hypertension, n (%) 6,688 (64.7%) 5,865 (65.2%) 823 (60.8%) 0.107

Diabetes mellitus, n (%) 3,385 (32.7%) 2,979 (33.1%) 406 (30.0%) <0.001

Hyperlipidaemia, n (%) 6,139 (59.4%) 4,960 (55.2%) 1,179 (87.1%) <0.001

Current smoker, n (%) 2,681 (25.9%) 2,295 (25.5%) 386 (28.5%) <0.001

Chronic kidney disease, n (%) 342 (3.3%) 300 (3.3%) 42 (3.1%) <0.001

History of myocardial infarction, n (%) 580 (5.6%) 506 (5.6%) 74 (5.5%) <0.001

History of PCI, n (%) 1,460 (14.1%) 1,274 (14.2%) 186 (13.7%) 0.011

History of CABG, n (%) 135 (1.3%) 117 (1.3%) 18 (1.3%) 0.175

History of stroke/TIA, n (%) 663 (6.4%) 580 (6.5%) 83 (6.1%) <0.001

Left-ventricular ejection fraction, (%) 59.2 ± 8.5 60.1 ± 6.6 56.6 ± 9.8 <0.001

Serum creatinine, mg/dL−1 1.10 ± 1.12 1.0 ± 1.4 1.6 ± 2.0 <0.001

Table 1.  Baseline clinical characteristics.  Continuous variables are reported as mean ± SD; categorical 
variables as number (percentage).
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We preprocessed each report with a multi-step preprocessing pipeline based on standard practices in clinical 
natural language processing22. The initial step involved the removal of irrelevance sections, where we used a rule-
based approach with regular expressions to programmatically delete report headers containing metadata such as 
operator names, as well as patient identifiers to ensure de-indentification. Subsequently, we performed medical 
terminology normalization. This included abbreviation resolution, for which we developed a custom dictionary 
to expand common cardiovascular abbreviations to their full terms (e.g., [SPSVERBc1SPS] was converted to 
[SPSVERBc2SPS]). It also involved the standardization of vessel and condition synonyms, where a manually 
curated mapping file was used to convert lexical variations of the same clinical concept to a single, canonical term 
(e.g., both [SPSVERBc3SPS] and [SPSVERBc4SPS] were mapped to [SPSVERBc3SPS]). Finally, the normalized 
text was converted to lowercase to ensure consistency before being passed to the BioBERT encoder.

Cleaned reports were encoded into a fixed-length numerical representation using BioBERT23, a BERT-based 
transformer model specifically pre-trained in the biomedical and clinical literature. We used the frozen BioBERT 
base model to generate a 768-dimensional document embedding. This frozen-embedding strategy is consistent 
with prior work showing robust performance of BioBERT on cardiovascular note classification without task-
specific tuning24. We took the output vector corresponding to the !‘blockMath?‘CLS!‘/blockMath?‘ token from 
the final layer of BioBERT as an aggregate representation of the entire report. This approach effectively captures 
the semantic content and clinical context of each procedure note.

Structured feature extraction
We extracted 71 structured clinical features for each patient from a registry within our institution. All variables 
represent the patient’s baseline status, defined as data recorded at the time of the index PCI procedure or during 
the index hospitalization. These features include demographics of the patient (age, sex, body mass index), 
laboratory values and vital signs (serum creatinine, left ventricular ejection fraction), cardiovascular risk factors 
(hypertension, diabetes status, smoking status, hyperlipidemia), medical history and comorbidities (history of 
myocardial infarction, previous stroke, previous PCI or CABG, heart failure, chronic kidney disease, COPD), 
and angiographic findings such as the number of vessels with significant stenosis.

Standard preprocessing was applied to the tabular data prior to modeling. The level of missingness was 
overall low. A detailed summary of the missing values for all variables before imputation is provided in the 
Supplementary Table 1. Missing values in continuous variables were imputed using the median values, while 
categorical variables were imputed with the mode values. Continuous features were normalized using min–max 
scaling to a range of 0–1 and categorical features were encoded one-hot as appropriate. The final tabular feature 
vector comprised 71 dimensions per patient.

Multimodal feature fusion
After extracting feature vectors from each modality, we concatenated the vectors into a single unified representation 
per patient. Specifically, we join the 512-dimensional visual, 768-dimensional text and 71-dimensional tabular 
feature vectors end-to-end, resulting in a combined feature vector of 1351 dimensions for each patient. This early 
fusion approach enables uniform treatment of all modalities within a single feature space suitable for machine 
learning classification. We selected gradient-boosting tree models for classification due to their demonstrated 
effectiveness in structured data and robustness to mixed feature types without extensive preprocessing 
requirements. Four ensemble tree algorithms were trained and compared: XGBoost, LightGBM, CatBoost, 
and Random Forest. These algorithms naturally accommodate both numerical and categorical features, while 
maintaining robustness to varying feature scales.

Model training was performed to predict the binary outcome of mortality after PCI. Among the algorithms, 
LightGBM shows the best performance in preliminary experiments, so we selected it as our primary model 
for further analysis. LightGBM is a gradient-boosting framework that optimizes tree growth and handles 
large feature sets efficiently. It also provides measures of feature importance, which we leveraged for model 
interpretation. Our LightGBM was trained with a learning rate of 0.05, 31 leaves per tree, 500 boosting rounds, 
and early stopping after 50 rounds without AUROC improvement. To effectively address the inherent class 
imbalance in our mortality prediction task, we utilized cost-sensitive learning within LightGBM by setting the 
scale pos weight parameter.

To ensure reliability of our performance estimates, we performed 5-fold cross-validation on the training data. 
The training set was stratified by outcome to preserve class balance in each fold. The model was trained from 
scratch for each combination of folds and we verified consistency across folds.

Experiment results
Evaluation metrics
We evaluated the performance of the model using a combination of discrimination, calibration, and clinical 
utility metrics. For discrimination, we primarily report the area under the receiver operating characteristic 
curve (AUC-ROC) and the macro averaged F1 score. AUC-ROC summarizes the model’s ability to distinguish 
between survivors and non-survivors across all possible thresholds, and is robust to class imbalance25. Given the 
positive-class prevalence of 11.6%, we also report the area under the precision–recall curve (PR-AUC), which is 
more informative for imbalanced datasets26.

Macro F1 is the harmonic mean of precision and recall computed per class and averaged equally across 
classes, ensuring that performance on the minority class (death) is not overshadowed by the majority class 
(survivors). This choice prioritizes sensitivity to clinically critical but rare adverse outcomes.

In addition to discrimination, we evaluated probability calibration using the Brier score, expected calibration 
error (ECE)27, and reliability diagrams. Well-calibrated probabilities are essential if predicted risks are to be used 
in clinical decision making.

Scientific Reports |         (2026) 16:2887 5| https://doi.org/10.1038/s41598-025-32734-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Finally, we assessed the net clinical benefit using the Decision Curve Analysis (DCA)28, which compares 
utility of the model to the ’treat all’ and ’treat none’ strategies in a range of clinically relevant risk thresholds 
(5–20%). This combination of metrics allows for a comprehensive evaluation of both statistical performance and 
practical utility.

Model selection
To Select the best performing model and ensure a robust evaluation, we conducted a 5-fold cross validation for 
all classifiers. For a fair comparison, we included a baseline model based on the ACEF score16(age, creatinine, and 
ejection fraction), traditionally used to stratify patients into qualitive risk categories such as low, intermediate, 
and high risk. We calculated the continuous ACEF score for each patient and fitted a logistic regression model 
using this score as the sole predictor. This baseline and all machine learning models were evaluated using identical 
data splits. Table 3 shows the performance of four models in the test set, all using identical fused input features.

The results demonstrate that the gradient-boosted tree models substantially outperformed the Random 
Forest and ACEF score baselines. Among the evaluated models, LightGBM achieved the best performance across 
all primary metrics, with a mean AUC-ROC of 0.790, PR-AUC of 0.462, and F1-macro of 0.674. Therefore, 
LightGBM was selected for all subsequent analyzes.

Performance on imbalanced data and clinical relevance
Our dataset exhibits a notable class imbalance, with a 5-year post-PCI mortality prevalence of 13.2%. In such 
scenarios, macro F1-score might not fully capture the model’s ability to identify the minority class effectively. 
To provide a more granular understanding of our model’s performance on the minority class, we assessed its 
F1-score and precision specifically for this group. A hypothetical random classifier, given the 13.2% prevalence, 
would theoretically yield a minority class F1-score of 0.126 and a precision of 0.127.

In contrast, our LightGBM model significantly outperformed this random baseline, achieving a minority 
class F1-score of 0.385 and a precision of 0.410, as detailed in Table 4. This outcome represents a substantial 
threefold improvement in discriminative power for the minority class compared to random chance, clearly 
indicating a performance well beyond arbitrary prediction. Furthermore, the model exhibited a high specificity 
of 92.0%, which is essential for reliably identifying survivors and minimizing false positives, thereby reducing 
potential alarm fatigue in clinical settings. While the recall for the minority class was 36.3%, the precision of 
41.0% is particularly meaningful. It implies that patients identified as high-risk by our model have a substantially 
elevated probability of actual mortality, representing a 3.2-fold lift over the baseline prevalence. This level of 
precision robustly supports the implementation of targeted secondary prevention strategies for individuals 
flagged as high-risk, enhancing the clinical utility and effectiveness of our risk stratification model.

Subgroup analysis for robustness and precision
To explicitly evaluate our model’s robustness and its capacity to provide actionable insights within these 
challenging cohorts, we stratified the study population. We first established a No Complex History group, 
encompassing patients without any prior PCI, CABG, or stroke. This group, representing a more general PCI 
population, served as our baseline for assessing fundamental prognostic signal capture.

In this No Complex History group, with a 5-year mortality of 12.17%, our model maintained a robust AUC 
of 0.738 (Precision 0.397), indicating its effectiveness in identifying subtle prognostic patterns from multimodal 
data even in the absence of overt high-risk clinical history. Furthermore, the model demonstrated an enhanced 
ability to precisely identify mortality risk within specific high-risk subgroups, as detailed in Table 5. For instance, 
in patients with a history of CABG, where the 5-year mortality rate was notably high at 28.95%, the model 

Metric Random Baseline Our Model Improvement (Lift)

Macro F1-score 0.497 0.649 +30.6%

Death class F1 0.126 0.385 3.0x (205%)

Death class precision 0.127 0.410 3.2x (222%)

Specificity 0.868 0.920 -

Table 4.  Detailed class-wise performance metrics compared to a stratified random baseline. The model 
demonstrates a 3-fold improvement in precision and F1-score for the minority (Death) class.

 

Model AUC-ROC PR-AUC F1-macro

ACEF score 0.757 ± 0.019 0.328 ± 0.022 0.555 ± 0.019

LightGBM 0.790 ± 0.021 0.462 ± 0.013 0.674 ± 0.019

CatBoost 0.781 ± 0.031 0.423 ± 0.019 0.655 ± 0.016

XGBoost 0.779 ± 0.011 0.424 ± 0.029 0.616 ± 0.039

Random Forest 0.731 ± 0.015 0.285 ± 0.003 0.467 ± 0.003

Table 3.  Cross-validated performance of all models. Values represent the mean ± standard deviation from 
5-fold cross-validation.
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achieved a precision of 0.654. Similarly, for patients with a history of stroke, the precision was 0.504, both 
significantly higher than the baseline. This enhanced precision in complex clinical profiles underscores the 
model’s reliability in identifying those who require aggressive intervention, translating directly into improved 
long-term patient management strategies.

Ablation performance by modality
We evaluated the incremental value of each modality by training LightGBM classifiers on (i) one modality at 
a time, (ii) every pairwise combination, and (iii) all three modalities. Table 6 summarizes the discrimination 
achieved when LightGBM is supplied with each modality alone, every bimodal pair, or all three data sources. The 
metrics are calculated in the held-out fold-1 test split, 95 % confidence intervals are derived from 500 bootstrap 
resamples.

Combining all three modalities showed the strongest overall performance, with a AUC-ROC of 0.814, a PR-
AUC of 0.472 and the highest F1macro. DeLong tests confirmed that this trimodal AUC-ROC was significantly 
higher than any single or bimodal alternative (P < 0.01 versus the tabular-only model). Adding angiographic 
images (Tabular + Visual) or procedural reports (Tabular + Text) to the structured baseline increased AUC-ROC 
by 0.021 and 0.013, respectively, and increased PR-AUC to approximately 0.46, demonstrating that unstructured 
inputs provide complementary prognostic signal. In contrast, removing tabular variables (Visual + Text) caused 
a marked decline in all metrics (AUC-ROC 0.708), underscoring the indispensable role of conventional clinical 
risk factors.

Feature attribution analysis by modality
To quantify the relative contribution of each modality (visual, textual, and tabular) when used jointly in our 
multimodal classification model, we computed feature importance using SHAP (SHapley Additive exPlanations) 
values, following a group aggregation approach similar to that used in prior multimodal explainability research29. 
we first summed the absolute SHAP values of all features belonging to a given modality to obtain the raw sum 
contribution, which reflects the total influence of that modality on the model predictions. We then computed a 
mean normalized contribution by dividing the raw SHAP sum of each modality by its feature dimension (512 
for visual, 768 for textual, 71 for tabular), thereby mitigating the dimension bias that arises when modalities 
have widely differing feature counts. Table 7 shows that the raw sum analysis indicates that the textual modality 
accounts for the highest proportion of variance in the model output (48.91%), followed by visual (27.98%) 
and tabular (23.11%). However, after dimension normalization, tabular features emerge as the most influential 
(73.33%), with textual (14.35%) and visual (12.32%) contributing more modestly. This divergence highlights 
the importance of correcting for feature dimensionality when comparing modalities, while high-dimensional 
embeddings (e.g., text and visual) can dominate in raw aggregation, per-feature normalization reveals that each 
tabular variable carries strong predictive weight.

These findings complement our earlier ablation results, where the full trimodal model outperformed any 
single-modality or bimodal configuration. Together, they suggest that all three modalities provide unique and 

Input modalities AUC-ROC PR-AUC F1macro

Tabular only 0.789 (0.76–0.82) 0.437 (0.39–0.48) 0.657 (0.63–0.68)

Visual only 0.682 (0.64–0.72) 0.297 (0.25–0.35) 0.594 (0.55–0.64)

Text only 0.652 (0.60–0.70) 0.246 (0.21–0.29) 0.476 (0.43–0.52)

Tabular + Visual 0.810 (0.78–0.84) 0.458 (0.41–0.51) 0.662 (0.63–0.69)

Tabular + Text 0.802 (0.77–0.83) 0.463 (0.41–0.52) 0.674 (0.66–0.72)

Visual + Text 0.708 (0.66–0.75) 0.294 (0.25–0.35) 0.594 (0.55–0.64)

All three 0.814 (0.79–0.84) 0.472 (0.42–0.52) 0.682 (0.65–0.71)

Table 6.  Discrimination of LightGBM models by input modality. Values are point estimates with 95 % 
bootstrap CIs. PR-AUC is reported in addition to AUC-ROC because the positive-class prevalence is 11.6%.

 

Subgroup N Mortality (%) AUC-ROC Precision Recall F1-score

No complex history 8409 12.17 0.738 0.397 0.364 0.380

High-risk subgroups

 History of PCI 1,581 15.62 0.750 0.404 0.393 0.398

 History of CABG 152 28.95 0.710 0.654 0.386 0.486

 History of Stroke 733 23.74 0.707 0.504 0.391 0.440

Table 5.  Performance of the multimodal LightGBM model stratified by patient historical conditions. The No 
Complex History group serves as a baseline, demonstrating robust overall performance. Notably, high-risk 
subgroups show improved precision for mortality prediction, indicating the model’s clinical utility in complex 
cases.
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complementary prognostic information: textual and visual embeddings add aggregate signal, while tabular 
variables deliver concentrated per-feature importance that is critical for accurate risk stratification.

Important predictors and clinical factors
We further examined which specific features were the most influential in the final multimodal model, focusing 
on the tabular modality due to its inherent interpretability. Using SHAP values for the LightGBM model, we 
rank features by their average impact on the output of the model. The main contributors included several clinical 
risk factors and patient characteristics. Figure 3 highlights the features of the tabular data by their importance 
in SHAP. The highest ranking predictors were height (Ht.), ejection fraction (EF), and female sex (SexF ). 
Creatinine ranked fourth, while age was seventh. Other variables in the top ten included hyperlipidemia status, 
the extent of coronary disease, smoking status, diabetes status, and body mass index (BMI).

Notably, EF, creatinine, and age correspond to the well-established ACEF risk score widely used by 
interventional cardiologists to estimate rapid mortality risk. Their prominence in our SHAP analysis is consistent 
with established clinical evidence that impaired cardiac function, renal dysfunction, and advanced age are strong 
predictors of post-PCI mortality.

Fig. 3.  SHAP summary plot ranking tabular features in the multimodal model. Top features include 
Ht. (Height), EF (Ejection Fraction), and Sex_F; other important predictors include Creatinine, EXT_
DISEASE_1VD, and Age. Colors denote feature value (blue: low, magenta: high); positive SHAP values increase 
predicted risk.

 

Modality Raw sum (%) Mean-normalized (%)

Visual 27.98 12.32

Textual 48.91 14.35

Tabular 23.11 73.33

Table 7.  Relative contribution of each modality to the trimodal LightGBM model, computed using absolute 
SHAP value aggregation. Raw sum aggregates contributions across all features within a modality, while mean-
normalized adjusts for the number of features to reduce dimension bias.
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Model calibration and decision-curve analysis
Figure 4 compares the reliability of the uncalibrated raw probabilities with those obtained after the Platt scaling. 
Platt calibration reduced the Brier score from 0.099 to 0.078 and the 10-bin expected calibration error (ECE) 
from 0.107 to 0.041. The calibration slope improved from 0.70 to 0.93 and the intercept from –1.37 to –0.60, 
indicating attenuation of overall overprediction and better alignment of predicted and observed risks while 
preserving discrimination (AUROC unchanged at 0.814).

Across risk thresholds of 5 to 20 %, the Platt scaled model provided a greater net benefit than the raw model 
and both default strategies (treat-all, treat-none) (Fig.  5). For example, at a threshold 10 %, the Platt scaled 
model achieves a net benefit of 0.055, while treating all patients yields a negative benefit (–0.006) and treating 
none yields zero. Thus, using the calibrated model would avoid unnecessary follow-up in low-risk patients while 
capturing more true events among those at high risk.

Discussion
In this study, we developed a multimodal machine learning model that integrates angiographic images, 
procedural text reports, and structured clinical variables to predict 5-year all-cause mortality after PCI. The 
trimodal LightGBM model achieved the highest discrimination among all tested configurations (AUC-ROC 
0.814, PR-AUC 0.472, macro-F1 0.682), significantly outperforming any single-modality or bimodal alternative. 
These results confirm that each modality provides complementary prognostic information, and that their 
integration yields the most accurate long-term risk prediction.

The use of a binary classification framework to first establish the foundational evidence that our specific 
multimodal approach, integrating dynamic angiographic video, procedural text, and structured data, is superior 
for long-term PCI prognosis. By simplifying the prediction task to a fixed 5-year endpoint, our ablation study 
shows that the trimodal model significantly outperforms all unimodal and bimodal configurations. Having 
demonstrated the value of this data fusion, the simpler framework facilitated an interpretable analysis via SHAP. 
This allowed us to move beyond prediction to explanation, revealing for the first time a key mechanism of how 
these heterogeneous data sources contribute to risk.

Fig. 5.  Decision-curve analysis. The Platt-calibrated model (orange) delivers the highest net benefit across 
thresholds 5–20%.

 

Fig. 4.  Reliability diagrams for the multimodal LightGBM model before (left) and after (right) Platt scaling. 
Each dot represents one decile of predicted risk. Vertical bars denote 95% binomial CIs. Insets report Brier 
score, ECE(10), calibration slope and intercept.
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The modality level SHAP analysis offers further insight into the model’s decision-making. When absolute 
SHAP values were summed without adjustment, the textual modality appeared to contribute the largest share 
(48.91%), followed by visual (27.98%) and tabular (23.11%) features. However, after normalizing by feature 
dimensionality, the tabular modality accounted for 73.33% of the contribution, suggesting strong predictive 
value per variable despite its lower aggregate dimensionality. This divergence underscores the importance of 
correcting for dimension bias when comparing heterogeneous feature sets, as high-dimensional embeddings can 
otherwise appear disproportionately influential.

Feature-level interpretation of the tabular modality further supports the clinical credibility of the model. 
The top predictors–height, ejection fraction, and female sex–were accompanied by creatinine and age, which 
together form the ACEF risk score widely used in interventional cardiology. This alignment with established 
prognostic markers, while also integrating novel signals from unstructured modalities, strengthens confidence 
in the model’s validity.

Theoretical and practical implications
The design of our proposed framework offers significant implications for computational, mathematical, and 
biological theories in cardiovascular medicine.

From a computational and mathematical perspective, our findings demonstrate the efficacy of a modular 
fusion strategy in clinical settings. While end-to-end deep learning is a powerful paradigm, our results validate a 
resource-efficient theory of fusion that high-performance risk stratification can be achieved by decoupling feature 
extraction via pre-trained semantic alignment from classification. Mathematically, this approach leverages the 
specific strength of gradient boosting in optimizing decision boundaries within heterogeneous feature spaces. 
This suggests that for datasets of this magnitude, utilizing distinct, pre-trained semantic manifolds followed by 
a robust tabular classifier serves as a highly effective alternative to the complexity and potential overfitting risks 
associated with training massive end-to-end multimodal networks from scratch.

From a biological perspective, the superior performance of our trimodal model reinforces the theory of 
systemic atherosclerosis. This theoretical framework posits that post-PCI mortality is not determined solely 
by the local stented lesion (visual modality) or immediate procedural success (textual modality), but by the 
complex interplay of diffuse vascular burden and systemic metabolic risk factors (tabular modality). Our model 
provides empirical evidence for this theory, demonstrating that prognostic signals are distributed across diverse 
biological phenotypes rather than isolated in a single data type. This supports a holistic definition of high-risk 
patients, shifting the focus from localized pathology to a systemic understanding of disease progression.

Beyond these theoretical contributions, this framework is designed as a practical Clinical Decision Support 
System (CDSS) capable of benefiting human healthcare in real-time. Regarding its real-time deployment 
strategy, the proposed system is designed to be lightweight and modular, facilitating seamless integration into 
existing Electronic Medical Record (EMR) workflows. Unlike computationally expensive generative models, our 
discriminative framework allows the system to automatically retrieve stored angiographic videos, procedural 
notes, and tabular laboratory results upon a patient’s discharge to generate a risk score within seconds, without 
requiring manual data entry or dedicated GPU clusters.

The deployment of this tool translates into two tangible benefits for healthcare. First, it enables precision 
secondary prevention. By accurately identifying patients with a high 5-year mortality risk who might otherwise 
be overlooked by traditional scores, clinicians are empowered to initiate targeted interventions, such as 
personalized lipid-lowering therapies or prolonged dual antiplatelet therapy, specifically for this high-risk 
subgroup. Second, the model facilitates significant resource optimization. With its high specificity, the model 
reliably identifies low-risk patients who can safely undergo standard, less intensive follow-up protocols, thereby 
reducing unnecessary hospital visits and associated healthcare costs. Ultimately, this transforms the model 
from a mere binary classifier into an active agent for life-saving intervention and efficient allocation of valuable 
healthcare resources.

Limitations and future works
Our study has several important limitations. First, the study was conducted at a single tertiary center, which may 
limit generalizability due to center-specific practices and patient characteristics. While the dataset is large and 
clinically heterogeneous, external validation on multi-center cohorts will be necessary to confirm robustness. 
Second, our binary classification approach is a simplification of the underlying time-to-event problem and does 
not capture the temporal dynamics of risk.Third, although SHAP based group aggregation is a widely used and 
theoretically grounded method for attributing importance to modalities, it remains a correlational measure and 
does not prove causal influence; future work could incorporate counterfactual or perturbation-based approaches 
to complement SHAP. Fourth, our fusion strategy used early concatenation with gradient-boosted trees. While 
effective, this approach may not fully capture cross-modal interactions. transformer based or attention-driven 
fusion architectures could be explored to model richer dependencies. Finally, although we report group level 
feature importance, case level interpretability remains limited. developing clinically interpretable, patient-
specific explanations will be essential for adoption.

In summary, this work demonstrates that integrating complementary information from structured clinical 
variables, angiographic imaging, and procedural text substantially improves long-term mortality prediction after 
PCI. The findings are consistent with prior multimodal explainability research and highlight both the aggregate 
value of high-dimensional unstructured data and the concentrated per-variable importance of structured 
clinical features. By addressing the noted limitations in future studies particularly through external validation, 
applying this validated multimodal framework to survival models, exploring advanced fusion strategies, and 
enhancing interpretability, this approach could form the basis of a robust, explainable decision support tool for 
interventional cardiology.
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Conclusion
We presented a multimodal machine learning approach that integrates coronary angiography images, procedural 
text reports, and structured clinical data to predict the risk of mortality after PCI. By fusing data sources, we 
achieved significantly higher discrimination than any single- or dual-modality configuration.

Beyond improved accuracy, the modality-level SHAP analysis and feature-level interpretation provide 
clinically relevant insights, revealing that unstructured imaging and text data capture aggregate prognostic 
signals, while structured clinical variables deliver concentrated per feature predictive value. These findings 
highlight the potential of explainable multimodal AI to augment, rather than replace, existing clinical risk scores.

Future work will focus on external multi-center validation to confirm generalizability, the exploration of 
advanced fusion architectures to better capture cross-modal interactions, and the development of patient-specific 
explanations to enhance clinical trust and adoption. Ultimately, the proposed approach could be integrated into 
routine post-PCI care pathways, enabling data-driven, individualized risk stratification and supporting timely 
interventions to improve long-term patient outcomes.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the sensitive 
nature of the health information and the requirement for Institutional Review Board (IRB) supervision but are 
available from the corresponding author on reasonable request.
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