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for 5-year mortality prediction
after percutaneous coronary
intervention
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Percutaneous coronary intervention (PCl) is a cornerstone treatment for coronary artery disease,

yet accurate prediction of long-term mortality remains a critical challenge due to the complex
interplay of risk factors. Existing prognostic models rely predominantly on structured clinical data,
overlooking the rich, nuanced information embedded in diagnostic imaging and procedural narratives.
To address this gap, we present a novel multimodal machine learning framework that integrates
coronary angiography video, unstructured procedural text, and structured clinical variables to predict
5-year all-cause mortality. Utilizing a large real-world cohort of 10,353 patients, we extracted visual
embeddings via CLIP, textual embeddings via BioBERT, and structured features to construct a unified
patient representation. Our trimodal LightGBM model achieved an AUC-ROC of 0.814, significantly
outperforming single- and dual-modality baselines (p < 0.01). SHAP-based analysis revealed that
unstructured data captured complementary prognostic signals, while structured variables provided
concentrated predictive strength. This study demonstrates the prognostic value of integrating
heterogeneous data sources and establishes a robust, explainable foundation for precision medicine in
interventional cardiology.

Percutaneous coronary intervention (PCI) is a minimally invasive procedure used to relieve narrowing
or blockage of the coronary arteries and restore blood flow, typically by inflating a balloon and deploying a
stent in the affected artery’. In recent years, PCI has fundamentally transformed the management of coronary
artery disease, reducing mortality and improving patient quality of life. However, despite these advances, the
identification of patients at risk of mortality after PCI remains a significant clinical challenge*>.

This challenge is magnified by the sheer scale of the procedure and the persistent risk of adverse outcomes.
PCI represents the cornerstone of revascularization therapy, with millions of procedures performed globally
each year®. However, large-scale registry data indicate that post-discharge mortality rates remain alarmingly
high in high-risk subsets, underscoring that procedural success does not equate to long-term survival®.

This discrepancy requires a shift in focus from immediate outcomes to long-term prognosis. Clinical
evidence suggests that late outcomes are increasingly driven by the progression of native atherosclerotic disease
in non-culprit lesions rather than stent failure®. Consequently, the 5-year period serves as a pivotal window
for evaluating the efficacy of secondary prevention, extending beyond the immediate post-procedural period.
As highlighted in landmark follow-up studies like the SYNTAX trial, the divergence in clinical outcomes
necessitates extended monitoring to capture the true prognostic trajectory’. Therefore, accurate prediction of
5-year all-cause mortality is essential to identify patients who require aggressive risk factor modification.

A fundamental limitation of current risk prediction approaches is their reliance on conventional risk scores
or regression models®. However, these traditional methods often impose linear and additive assumptions,
which can obscure complex, nonlinear relationships between risk factors and outcomes®~!!.Consequently, these
methods neglect the wealth of nuanced, prognostic information embedded within the angiographic images and
the procedural reports. This represents a significant missed opportunity, as angiographic images capture complex
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anatomical details that are difficult to quantify manually, while procedural reports contain critical qualitative
observations that extend beyond structured data fields. The increasing availability of these multimodal data
presents an unprecedented opportunity to move beyond traditional risk factors and create more individualized
risk profiles for long-term patient management!'>13.

To address these limitations, we propose a multimodal machine learning (ML) framework that integrates (1)
visual data from coronary angiography imaging, (2) unstructured procedural text reports, and (3) structured
tabular clinical data to predict 5-year all-cause mortality after PCI. We chose tree-based ensemble algorithms
for this task as they are ideally suited to the challenge. These techniques, such as LightGBM, are designed to
learn high-order, nonlinear interactions from heterogeneous datasets without strong distributional assumptions.
For instance, gradient-boosting trees have already demonstrated superior performance over traditional logistic
regression for post-PCI mortality prediction by capturing complex threshold effects in clinical variables'.
Furthermore, their outputs can be interpreted using post hoc explainability methods like SHAP, providing
valuable insights into the model’s decision-making process'®.

Our goal is to improve predictive performance of post-PCI mortality compared to single-modality models.
We developed and evaluated four ML models (XGBoost, CatBoost, Light GBM and Random Forest) using a
real-world cohort and analyzed feature contributions across modalities.

Related works

Traditionally, post-PCI risk assessment has relied on scoring systems such as the ACEF (Age, Creatinine,
Ejection Fraction)!6. While these scores provide a standardized baseline, they are inherently limited by their
assumption of linear relationships between risk factors and outcomes. To address this, recent studies have
applied machine learning (ML) to structured electronic health record (EHR) data. Liu et al.® demonstrated the
effectiveness of gradient-boosting algorithms in large clinical datasets, achieving robust predictive performance
through the comprehensive engineering of structured data elements. A systematic review and meta-analysis by
Zaka et al.!” further corroborated that ML models outperform conventional risk scores. However, the reviewed
studies were predominantly limited by their exclusive reliance on structured data, failing to incorporate imaging
or unstructured text data that are routinely available in clinical practice. This limitation represents a significant
underuse of the rich phenotypic information present in modern healthcare settings.

Recent advances in multimodal learning have shown considerable promise in various clinical domains. Lin
etal.!? successfully integrated clinical parameters with imaging data for the prediction of short-term mortality in
intensive care units, while Dipaola et al.'> combined clinical and textual data for the prediction of the outcome
of COVID-19. Within the cardiovascular domain, a recent review by Yang et al.!® highlighted the potential of
fusing cardiac imaging with EHRs to advance care. Specifically for post-PCI prognosis, Bhattacharya et al."?
demonstrated that a deep fusion model integrating ECG time-series and structured clinical data outperformed
unimodal baselines in predicting 6-month adverse outcomes.

Despite these advancements, significant research gaps remain. First, existing post-PCI multimodal studies,
such as Bhattacharya et al,, are typically limited to dual-modal approaches (e.g., signal and tabular) and do not
incorporate diagnostic angiography videos or procedural text reports. Second, the prediction horizons are often
restricted to short-term endpoints, such as in-hospital or 6-month mortality, leaving the critical 5-year period
for secondary prevention unexplored.

The present study addresses these limitations by developing a comprehensive trimodal framework that
integrates angiographic images, procedural text reports, and structured clinical data to predict 5-year all-
cause mortality after PCL. Unlike previous studies limited to short-term outcomes or partial data integration,
our approach targets an extended prediction horizon that is clinically significant for late cardiovascular event
management. By explicitly modeling the complementary contributions of each data modality and leveraging
their synergistic predictive capacity, our approach represents a substantial advancement beyond existing single-
or dual-modality methodologies, allowing for more precise and clinically relevant risk prediction in the post-
PCI population.

Methods

Our multimodal approach combines visual, textual, and structured clinical data to predict 5-year all-cause
mortality after percutaneous coronary intervention. Figure 1 illustrates the overall framework, detailing the data
processing and integration pipeline for mortality prediction. The following subsections detail the data collection
process and feature extraction methods for each modality.

Data collection

The patient selection process is illustrated in Fig. 2. We initially screened 25,000 patients who underwent
coronary revascularization at Asan Medical Center between January 2003 and December 2018. To create the
study cohort, we first excluded patients who underwent Coronary Artery Bypass Grafting (CABG) instead of
PCI. Subsequently, to ensure a complete 5-year follow-up period for all subjects, we only included patients
who received their intervention on or before December 31, 2014. After applying these criteria, a total of 10,353
patients were included in the final analysis. During this period, 1204 patients died while 9149 patients survived.
The study was approved by the Institutional Review Board of Asan Medical Center (IRB No. 20230186). Table 1
summarizes the baseline characteristics of the study cohort, stratified by 5-year mortality.

For each patient, we obtained three complementary data modalities: (1) coronary angiographic images
in DICOM format, with a mean of 15 imaging sequences per patient captured from multiple projections,
(2) procedure reports dictated immediately after the intervention and stored as free text narratives, and (3)
structured clinical data consisting of 71 routinely recorded variables.
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Fig. 1. Overview of the multimodal machine learning framework for predicting post-PCI mortality. The
pipeline integrates three data modalities: (1) coronary angiographic images processed through CLIP visual
encoder to generate 512-dimensional embeddings, (2) procedural text reports encoded using BioBERT to
produce 768-dimensional representations, and (3) structured clinical data comprising 71 tabular features.
Features from all modalities are concatenated into a unified 1351-dimensional vector and fed into gradient
boosting models for mortality prediction.

Patients who underwent coronary
revascularization
at Asan Medical Center
(Jan 2003 — Dec 2018)

Included n = 25,000

Patients who underwent

> Coronary Artery Bypass
Grafting(CABG) instead of PCI

' Excluded n = 8,743

Patients who underwent
PCl

Included n = 16,257

Patients with less than

> 5 years of follow-up
v Excluded n = 5,904

Final patient cohort
Included in the analysis

Included n =10,353

Fig. 2. Patient inclusion flowchart. From an initial cohort of 25,000 patients who underwent coronary
revascularization at Asan Medical Center between January 2003 and December 2018, patients undergoing
CABG were excluded, and only those with intervention before December 31, 2014 were included to ensure
complete 5-year follow-up, resulting in 10,353 patients in the final analysis.

Table 2 shows the descriptive statistics for the unstructured data modalities of the cohort. These statistics
characterize coronary angiography videos by the number of frames before and after key-frame selection, and the

reports by their length in both the word count and token count.

Multimodal feature extraction

We constructed a comprehensive feature set for each patient by extracting information from three distinct data
modalities: visual angiographic data, textual procedural reports, and structured clinical data. The following
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Total patients | Survival group | Death group

Characteristic (n=10,353) (n=9149) (n=1204) P-value
Age, yr 63.1£10.2 |62.1+10.0 |69.5+9.7 |<0.001
Male sex, n (%) 7,734 (74.8%) | 6,762 (752%) | 972 (71.8%) | 0.005
Body-mass index, kg/m ™2 25.0+3.1 |25.1+3.0 24.0 + 3.3 | <0.001
Hypertension, n (%) 6,688 (64.7%) | 5,865 (65.2%) 823 (60.8%) 0.107
Diabetes mellitus, n (%) 3,385 (32.7%) | 2,979 (33.1%) 406 (30.0%) <0.001
Hyperlipidaemia, n (%) 6,139 (59.4%) | 4,960 (55.2%) 1,179 (87.1%) | <0.001
Current smoker, n (%) 2,681 (25.9%) | 2,295 (25.5%) 386 (28.5%) <0.001
Chronic kidney disease, n (%) 342 (3.3%) 300 (3.3%) 42 (3.1%) <0.001
History of myocardial infarction, n (%) | 580 (5.6%) 506 (5.6%) 74 (5.5%) <0.001
History of PCIL, n (%) 1,460 (14.1%) | 1,274 (14.2%) 186 (13.7%) 0.011
History of CABG, n (%) 135 (1.3%) 117 (1.3%) 18 (1.3%) 0.175
History of stroke/TIA, n (%) 663 (6.4%) 580 (6.5%) 83 (6.1%) <0.001
Left-ventricular ejection fraction, (%) 59.2 + 8.5 60.1 + 6.6 56.6 + 9.8 | <0.001
Serum creatinine, mg/dL ™! 1.10+1.12 |1.0£1.4 1.6 +2.0 <0.001

Table 1. Baseline clinical characteristics. Continuous variables are reported as mean + SD; categorical
variables as number (percentage).

Characteristic ‘ Mean + SD ‘ Median [IQR]

Textual data

‘Word count 158.7 £ 70.9 | 136.0 [108.0 — 196.0]
Biobert tokens 392.2 + 175.0 | 340.0 [267.0 — 486.0]

Visual data
No. of total frames 75.3 + 40.6 67.0 [47.0 — 95.0]

No. of selected key frames | 15.8 = 7.9 14.2 [9.8 — 19.8]

Table 2. Descriptive statistics of unstructured data modalities. IQR interquartile range.

sections detail the extraction methodology for each modality. To ensure optimal feature representation for each
modality, we conducted preliminary experiments comparing various architectures. These comparisons, detailed
in Supplementary Table S1, informed our final selection of feature extraction models.

Visual feature extraction

For each patient, we obtained coronary angiographic videos taken during PCI procedures. On average, 15
angiographic sequences (512 x 512 px, 15 fps) per patient were captured, each sequence varying in length and
capturing coronary arteries from different anatomical views under contrast injection.

Processing every frame from these sequences would result in prohibitively high computational costs.
Previous studies on large-scale video analysis have proposed key frame extraction as an effective strategy to
reduce redundancy and improve efficiency in processing high-volume visual data?’. So we used an internal
model to automatically identify key frames that best represent each major coronary artery. The selector assigns
a vessel-visibility score to each frame and retains only those with clearly opacified coronary anatomy, reducing
the frame count by approximately 90 % while preserving diagnostic information.

The selected representative frames were fed into the CLIP (Contrastive Language Image Pretraining) model*!
with a Vision Transformer backbone (ViT-B/32). CLIP is a model trained on hundreds of millions of image-
text pairs and produces a 512-dimensional representation for an input image. Each representative angiographic
frame was fed through CLIP’s image encoder to obtain a corresponding 512-dimensional feature vector.

Since patients had varying numbers of representative frames corresponding to their individual coronary
anatomy and procedural complexity, we needed a standardized approach to create features at the patient level. For
patients with multiple representative frames, we compute the element-wise average of their frame embeddings
to yield a single consolidated visual feature vector per patient. This averaging approach condenses the rich visual
information of the coronary anatomy into a compact numerical form suitable for machine learning.

Textual feature extraction

Following each PCI procedure, interventional cardiologists write reports documenting coronary anatomy,
descriptions of lesions, devices used, and any complications or notable events. We collect PCI reports for each
patient as unstructured text data. These reports contain valuable contextual information, such as descriptions
of complex bifurcation lesion or no-reflow phenomenon, that may not be fully captured by structured variables.
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We preprocessed each report with a multi-step preprocessing pipeline based on standard practices in clinical
natural language processing®. The initial step involved the removal of irrelevance sections, where we used a rule-
based approach with regular expressions to programmatically delete report headers containing metadata such as
operator names, as well as patient identifiers to ensure de-indentification. Subsequently, we performed medical
terminology normalization. This included abbreviation resolution, for which we developed a custom dictionary
to expand common cardiovascular abbreviations to their full terms (e.g., [SPSVERBc1SPS] was converted to
[SPSVERBCc2SPS]). It also involved the standardization of vessel and condition synonyms, where a manually
curated mapping file was used to convert lexical variations of the same clinical concept to a single, canonical term
(e.g., both [SPSVERBc3SPS] and [SPSVERBc4SPS] were mapped to [SPSVERBc3SPS]). Finally, the normalized
text was converted to lowercase to ensure consistency before being passed to the BioBERT encoder.

Cleaned reports were encoded into a fixed-length numerical representation using BioBERT??, a BERT-based
transformer model specifically pre-trained in the biomedical and clinical literature. We used the frozen BioBERT
base model to generate a 768-dimensional document embedding. This frozen-embedding strategy is consistent
with prior work showing robust performance of BioBERT on cardiovascular note classification without task-
specific tuning?!. We took the output vector corresponding to the !'blockMath?‘CLS!/blockMath?‘ token from
the final layer of BioBERT as an aggregate representation of the entire report. This approach effectively captures
the semantic content and clinical context of each procedure note.

Structured feature extraction

We extracted 71 structured clinical features for each patient from a registry within our institution. All variables
represent the patient’s baseline status, defined as data recorded at the time of the index PCI procedure or during
the index hospitalization. These features include demographics of the patient (age, sex, body mass index),
laboratory values and vital signs (serum creatinine, left ventricular ejection fraction), cardiovascular risk factors
(hypertension, diabetes status, smoking status, hyperlipidemia), medical history and comorbidities (history of
myocardial infarction, previous stroke, previous PCI or CABG, heart failure, chronic kidney disease, COPD),
and angiographic findings such as the number of vessels with significant stenosis.

Standard preprocessing was applied to the tabular data prior to modeling. The level of missingness was
overall low. A detailed summary of the missing values for all variables before imputation is provided in the
Supplementary Table 1. Missing values in continuous variables were imputed using the median values, while
categorical variables were imputed with the mode values. Continuous features were normalized using min-max
scaling to a range of 0-1 and categorical features were encoded one-hot as appropriate. The final tabular feature
vector comprised 71 dimensions per patient.

Multimodal feature fusion

After extracting feature vectors from each modality, we concatenated the vectors into a single unified representation
per patient. Specifically, we join the 512-dimensional visual, 768-dimensional text and 71-dimensional tabular
feature vectors end-to-end, resulting in a combined feature vector of 1351 dimensions for each patient. This early
fusion approach enables uniform treatment of all modalities within a single feature space suitable for machine
learning classification. We selected gradient-boosting tree models for classification due to their demonstrated
effectiveness in structured data and robustness to mixed feature types without extensive preprocessing
requirements. Four ensemble tree algorithms were trained and compared: XGBoost, LightGBM, CatBoost,
and Random Forest. These algorithms naturally accommodate both numerical and categorical features, while
maintaining robustness to varying feature scales.

Model training was performed to predict the binary outcome of mortality after PCI. Among the algorithms,
LightGBM shows the best performance in preliminary experiments, so we selected it as our primary model
for further analysis. LightGBM is a gradient-boosting framework that optimizes tree growth and handles
large feature sets efficiently. It also provides measures of feature importance, which we leveraged for model
interpretation. Our LightGBM was trained with a learning rate of 0.05, 31 leaves per tree, 500 boosting rounds,
and early stopping after 50 rounds without AUROC improvement. To effectively address the inherent class
imbalance in our mortality prediction task, we utilized cost-sensitive learning within LightGBM by setting the
scale pos weight parameter.

To ensure reliability of our performance estimates, we performed 5-fold cross-validation on the training data.
The training set was stratified by outcome to preserve class balance in each fold. The model was trained from
scratch for each combination of folds and we verified consistency across folds.

Experiment results

Evaluation metrics

We evaluated the performance of the model using a combination of discrimination, calibration, and clinical
utility metrics. For discrimination, we primarily report the area under the receiver operating characteristic
curve (AUC-ROC) and the macro averaged F1 score. AUC-ROC summarizes the model’s ability to distinguish
between survivors and non-survivors across all possible thresholds, and is robust to class imbalance?’. Given the
positive-class prevalence of 11.6%, we also report the area under the precision-recall curve (PR-AUC), which is
more informative for imbalanced datasets®.

Macro F1 is the harmonic mean of precision and recall computed per class and averaged equally across
classes, ensuring that performance on the minority class (death) is not overshadowed by the majority class
(survivors). This choice prioritizes sensitivity to clinically critical but rare adverse outcomes.

In addition to discrimination, we evaluated probability calibration using the Brier score, expected calibration
error (ECE)?, and reliability diagrams. Well-calibrated probabilities are essential if predicted risks are to be used
in clinical decision making.
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Model AUC-ROC PR-AUC F1-macro

ACEF score 0.757 £0.019 | 0.328 £0.022 | 0.555 +0.019
LightGBM 0.790 £ 0.021 | 0.462 +0.013 | 0.674 + 0.019
CatBoost 0.781 £0.031 | 0.423 £0.019 | 0.655 +0.016

XGBoost 0.779 £0.011 | 0.424 £0.029 | 0.616 +0.039
Random Forest | 0.731 +0.015 | 0.285 +0.003 | 0.467 + 0.003

Table 3. Cross-validated performance of all models. Values represent the mean + standard deviation from
5-fold cross-validation.

Metric Random Baseline | Our Model | Improvement (Lift)
Macro F1-score 0.497 0.649 +30.6%

Death class F1 0.126 0.385 3.0x (205%)

Death class precision | 0.127 0.410 3.2x (222%)
Specificity 0.868 0.920

Table 4. Detailed class-wise performance metrics compared to a stratified random baseline. The model
demonstrates a 3-fold improvement in precision and F1-score for the minority (Death) class.

Finally, we assessed the net clinical benefit using the Decision Curve Analysis (DCA)?, which compares
utility of the model to the ’treat all’ and ’treat none’ strategies in a range of clinically relevant risk thresholds
(5-20%). This combination of metrics allows for a comprehensive evaluation of both statistical performance and

practical utility.

Model selection
To Select the best performing model and ensure a robust evaluation, we conducted a 5-fold cross validation for
all classifiers. For a fair comparison, we included a baseline model based on the ACEF scorelﬁ(age, creatinine, and
ejection fraction), traditionally used to stratify patients into qualitive risk categories such as low, intermediate,
and high risk. We calculated the continuous ACEF score for each patient and fitted a logistic regression model
using this score as the sole predictor. This baseline and all machine learning models were evaluated using identical
data splits. Table 3 shows the performance of four models in the test set, all using identical fused input features.
The results demonstrate that the gradient-boosted tree models substantially outperformed the Random
Forest and ACEF score baselines. Among the evaluated models, Light GBM achieved the best performance across
all primary metrics, with a mean AUC-ROC of 0.790, PR-AUC of 0.462, and Fl-macro of 0.674. Therefore,
LightGBM was selected for all subsequent analyzes.

Performance on imbalanced data and clinical relevance

Our dataset exhibits a notable class imbalance, with a 5-year post-PCI mortality prevalence of 13.2%. In such
scenarios, macro F1-score might not fully capture the model’s ability to identify the minority class effectively.
To provide a more granular understanding of our model’s performance on the minority class, we assessed its
F1-score and precision specifically for this group. A hypothetical random classifier, given the 13.2% prevalence,
would theoretically yield a minority class F1-score of 0.126 and a precision of 0.127.

In contrast, our LightGBM model significantly outperformed this random baseline, achieving a minority
class F1-score of 0.385 and a precision of 0.410, as detailed in Table 4. This outcome represents a substantial
threefold improvement in discriminative power for the minority class compared to random chance, clearly
indicating a performance well beyond arbitrary prediction. Furthermore, the model exhibited a high specificity
of 92.0%, which is essential for reliably identifying survivors and minimizing false positives, thereby reducing
potential alarm fatigue in clinical settings. While the recall for the minority class was 36.3%, the precision of
41.0% is particularly meaningful. It implies that patients identified as high-risk by our model have a substantially
elevated probability of actual mortality, representing a 3.2-fold lift over the baseline prevalence. This level of
precision robustly supports the implementation of targeted secondary prevention strategies for individuals
flagged as high-risk, enhancing the clinical utility and effectiveness of our risk stratification model.

Subgroup analysis for robustness and precision

To explicitly evaluate our model’s robustness and its capacity to provide actionable insights within these
challenging cohorts, we stratified the study population. We first established a No Complex History group,
encompassing patients without any prior PCI, CABG, or stroke. This group, representing a more general PCI
population, served as our baseline for assessing fundamental prognostic signal capture.

In this No Complex History group, with a 5-year mortality of 12.17%, our model maintained a robust AUC
0f 0.738 (Precision 0.397), indicating its effectiveness in identifying subtle prognostic patterns from multimodal
data even in the absence of overt high-risk clinical history. Furthermore, the model demonstrated an enhanced
ability to precisely identify mortality risk within specific high-risk subgroups, as detailed in Table 5. For instance,
in patients with a history of CABG, where the 5-year mortality rate was notably high at 28.95%, the model
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Subgroup N Mortality (%) | AUC-ROC | Precision | Recall | F1-score
No complex history | 8409 | 12.17 0.738 0.397 0.364 | 0.380
High-risk subgroups

History of PCL 1,581 | 15.62 0.750 0.404 0.393 | 0.398
History of CABG 152 28.95 0.710 0.654 0.386 | 0.486
History of Stroke 733 23.74 0.707 0.504 0.391 | 0.440

Table 5. Performance of the multimodal LightGBM model stratified by patient historical conditions. The No
Complex History group serves as a baseline, demonstrating robust overall performance. Notably, high-risk
subgroups show improved precision for mortality prediction, indicating the model’s clinical utility in complex

cases.

Input modalities | AUC-ROC PR-AUC F1 .o

Tabular only 0.789 (0.76-0.82) | 0.437 (0.39-0.48) | 0.657 (0.63-0.68)
Visual only 0.682 (0.64-0.72) | 0.297 (0.25-0.35) | 0.594 (0.55-0.64
Text only 0.652 (0.60-0.70) | 0.246 (0.21-0.29) | 0.476 (0.43-0.52

Tabular + Visual

0.810 (0.78-0.84)

0.458 (0.41-0.51)

Tabular + Text

0.802 (0.77-0.83)

0.463 (0.41-0.52)

0.674 (0.66-0.72

Visual + Text

0.708 (0.66-0.75)

0.294 (0.25-0.35)

)
)
0.662 (0.63-0.69)
)
)

0.594 (0.55-0.64

All three

0.814 (0.79-0.84)

0.472 (0.42-0.52)

0.682 (0.65-0.71)

Table 6. Discrimination of LightGBM models by input modality. Values are point estimates with 95 %
bootstrap CIs. PR-AUC is reported in addition to AUC-ROC because the positive-class prevalence is 11.6%.

achieved a precision of 0.654. Similarly, for patients with a history of stroke, the precision was 0.504, both
significantly higher than the baseline. This enhanced precision in complex clinical profiles underscores the
model’s reliability in identifying those who require aggressive intervention, translating directly into improved
long-term patient management strategies.

Ablation performance by modality

We evaluated the incremental value of each modality by training LightGBM classifiers on (i) one modality at
a time, (ii) every pairwise combination, and (iii) all three modalities. Table 6 summarizes the discrimination
achieved when LightGBM is supplied with each modality alone, every bimodal pair, or all three data sources. The
metrics are calculated in the held-out fold-1 test split, 95 % confidence intervals are derived from 500 bootstrap
resamples.

Combining all three modalities showed the strongest overall performance, with a AUC-ROC of 0.814, a PR-
AUC of 0.472 and the highest F1___ . DeLong tests confirmed that this trimodal AUC-ROC was significantly
higher than any single or bimodal alternative (P < 0.01 versus the tabular-only model). Adding angiographic
images (Tabular + Visual) or procedural reports (Tabular + Text) to the structured baseline increased AUC-ROC
by 0.021 and 0.013, respectively, and increased PR-AUC to approximately 0.46, demonstrating that unstructured
inputs provide complementary prognostic signal. In contrast, removing tabular variables (Visual + Text) caused
a marked decline in all metrics (AUC-ROC 0.708), underscoring the indispensable role of conventional clinical
risk factors.

Feature attribution analysis by modality
To quantify the relative contribution of each modality (visual, textual, and tabular) when used jointly in our
multimodal classification model, we computed feature importance using SHAP (SHapley Additive exPlanations)
values, following a group aggregation approach similar to that used in prior multimodal explainability research?.
we first summed the absolute SHAP values of all features belonging to a given modality to obtain the raw sum
contribution, which reflects the total influence of that modality on the model predictions. We then computed a
mean normalized contribution by dividing the raw SHAP sum of each modality by its feature dimension (512
for visual, 768 for textual, 71 for tabular), thereby mitigating the dimension bias that arises when modalities
have widely differing feature counts. Table 7 shows that the raw sum analysis indicates that the textual modality
accounts for the highest proportion of variance in the model output (48.91%), followed by visual (27.98%)
and tabular (23.11%). However, after dimension normalization, tabular features emerge as the most influential
(73.33%), with textual (14.35%) and visual (12.32%) contributing more modestly. This divergence highlights
the importance of correcting for feature dimensionality when comparing modalities, while high-dimensional
embeddings (e.g., text and visual) can dominate in raw aggregation, per-feature normalization reveals that each
tabular variable carries strong predictive weight.

These findings complement our earlier ablation results, where the full trimodal model outperformed any
single-modality or bimodal configuration. Together, they suggest that all three modalities provide unique and
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Modality | Raw sum (%) | Mean-normalized (%)
Visual 27.98 12.32
Textual 48.91 14.35
Tabular 23.11 73.33

Table 7. Relative contribution of each modality to the trimodal LightGBM model, computed using absolute
SHAP value aggregation. Raw sum aggregates contributions across all features within a modality, while mean-
normalized adjusts for the number of features to reduce dimension bias.
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Fig. 3. SHAP summary plot ranking tabular features in the multimodal model. Top features include

Ht. (Height), EF (Ejection Fraction), and Sex_F; other important predictors include Creatinine, EXT_
DISEASE_1VD, and Age. Colors denote feature value (blue: low, magenta: high); positive SHAP values increase
predicted risk.

complementary prognostic information: textual and visual embeddings add aggregate signal, while tabular
variables deliver concentrated per-feature importance that is critical for accurate risk stratification.

Important predictors and clinical factors

We further examined which specific features were the most influential in the final multimodal model, focusing
on the tabular modality due to its inherent interpretability. Using SHAP values for the LightGBM model, we
rank features by their average impact on the output of the model. The main contributors included several clinical
risk factors and patient characteristics. Figure 3 highlights the features of the tabular data by their importance
in SHAP. The highest ranking predictors were height (Ht.), ejection fraction (EF), and female sex (Sexr).
Creatinine ranked fourth, while age was seventh. Other variables in the top ten included hyperlipidemia status,
the extent of coronary disease, smoking status, diabetes status, and body mass index (BMI).

Notably, EF, creatinine, and age correspond to the well-established ACEF risk score widely used by
interventional cardiologists to estimate rapid mortality risk. Their prominence in our SHAP analysis is consistent
with established clinical evidence that impaired cardiac function, renal dysfunction, and advanced age are strong
predictors of post-PCI mortality.
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Model calibration and decision-curve analysis

Figure 4 compares the reliability of the uncalibrated raw probabilities with those obtained after the Platt scaling.
Platt calibration reduced the Brier score from 0.099 to 0.078 and the 10-bin expected calibration error (ECE)
from 0.107 to 0.041. The calibration slope improved from 0.70 to 0.93 and the intercept from -1.37 to -0.60,
indicating attenuation of overall overprediction and better alignment of predicted and observed risks while
preserving discrimination (AUROC unchanged at 0.814).

Across risk thresholds of 5 to 20 %, the Platt scaled model provided a greater net benefit than the raw model
and both default strategies (treat-all, treat-none) (Fig. 5). For example, at a threshold 10 %, the Platt scaled
model achieves a net benefit of 0.055, while treating all patients yields a negative benefit (-0.006) and treating
none yields zero. Thus, using the calibrated model would avoid unnecessary follow-up in low-risk patients while
capturing more true events among those at high risk.

Discussion

In this study, we developed a multimodal machine learning model that integrates angiographic images,
procedural text reports, and structured clinical variables to predict 5-year all-cause mortality after PCI. The
trimodal LightGBM model achieved the highest discrimination among all tested configurations (AUC-ROC
0.814, PR-AUC 0.472, macro-F1 0.682), significantly outperforming any single-modality or bimodal alternative.
These results confirm that each modality provides complementary prognostic information, and that their
integration yields the most accurate long-term risk prediction.

The use of a binary classification framework to first establish the foundational evidence that our specific
multimodal approach, integrating dynamic angiographic video, procedural text, and structured data, is superior
for long-term PCI prognosis. By simplifying the prediction task to a fixed 5-year endpoint, our ablation study
shows that the trimodal model significantly outperforms all unimodal and bimodal configurations. Having
demonstrated the value of this data fusion, the simpler framework facilitated an interpretable analysis via SHAP.
This allowed us to move beyond prediction to explanation, revealing for the first time a key mechanism of how
these heterogeneous data sources contribute to risk.
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The modality level SHAP analysis offers further insight into the model’s decision-making. When absolute
SHAP values were summed without adjustment, the textual modality appeared to contribute the largest share
(48.91%), followed by visual (27.98%) and tabular (23.11%) features. However, after normalizing by feature
dimensionality, the tabular modality accounted for 73.33% of the contribution, suggesting strong predictive
value per variable despite its lower aggregate dimensionality. This divergence underscores the importance of
correcting for dimension bias when comparing heterogeneous feature sets, as high-dimensional embeddings can
otherwise appear disproportionately influential.

Feature-level interpretation of the tabular modality further supports the clinical credibility of the model.
The top predictors-height, ejection fraction, and female sex-were accompanied by creatinine and age, which
together form the ACEEF risk score widely used in interventional cardiology. This alignment with established
prognostic markers, while also integrating novel signals from unstructured modalities, strengthens confidence
in the model’s validity.

Theoretical and practical implications
The design of our proposed framework offers significant implications for computational, mathematical, and
biological theories in cardiovascular medicine.

From a computational and mathematical perspective, our findings demonstrate the efficacy of a modular
fusion strategy in clinical settings. While end-to-end deep learning is a powerful paradigm, our results validate a
resource-efficient theory of fusion that high-performance risk stratification can be achieved by decoupling feature
extraction via pre-trained semantic alignment from classification. Mathematically, this approach leverages the
specific strength of gradient boosting in optimizing decision boundaries within heterogeneous feature spaces.
This suggests that for datasets of this magnitude, utilizing distinct, pre-trained semantic manifolds followed by
a robust tabular classifier serves as a highly effective alternative to the complexity and potential overfitting risks
associated with training massive end-to-end multimodal networks from scratch.

From a biological perspective, the superior performance of our trimodal model reinforces the theory of
systemic atherosclerosis. This theoretical framework posits that post-PCI mortality is not determined solely
by the local stented lesion (visual modality) or immediate procedural success (textual modality), but by the
complex interplay of diffuse vascular burden and systemic metabolic risk factors (tabular modality). Our model
provides empirical evidence for this theory, demonstrating that prognostic signals are distributed across diverse
biological phenotypes rather than isolated in a single data type. This supports a holistic definition of high-risk
patients, shifting the focus from localized pathology to a systemic understanding of disease progression.

Beyond these theoretical contributions, this framework is designed as a practical Clinical Decision Support
System (CDSS) capable of benefiting human healthcare in real-time. Regarding its real-time deployment
strategy, the proposed system is designed to be lightweight and modular, facilitating seamless integration into
existing Electronic Medical Record (EMR) workflows. Unlike computationally expensive generative models, our
discriminative framework allows the system to automatically retrieve stored angiographic videos, procedural
notes, and tabular laboratory results upon a patient’s discharge to generate a risk score within seconds, without
requiring manual data entry or dedicated GPU clusters.

The deployment of this tool translates into two tangible benefits for healthcare. First, it enables precision
secondary prevention. By accurately identifying patients with a high 5-year mortality risk who might otherwise
be overlooked by traditional scores, clinicians are empowered to initiate targeted interventions, such as
personalized lipid-lowering therapies or prolonged dual antiplatelet therapy, specifically for this high-risk
subgroup. Second, the model facilitates significant resource optimization. With its high specificity, the model
reliably identifies low-risk patients who can safely undergo standard, less intensive follow-up protocols, thereby
reducing unnecessary hospital visits and associated healthcare costs. Ultimately, this transforms the model
from a mere binary classifier into an active agent for life-saving intervention and efficient allocation of valuable
healthcare resources.

Limitations and future works

Our study has several important limitations. First, the study was conducted at a single tertiary center, which may
limit generalizability due to center-specific practices and patient characteristics. While the dataset is large and
clinically heterogeneous, external validation on multi-center cohorts will be necessary to confirm robustness.
Second, our binary classification approach is a simplification of the underlying time-to-event problem and does
not capture the temporal dynamics of risk.Third, although SHAP based group aggregation is a widely used and
theoretically grounded method for attributing importance to modalities, it remains a correlational measure and
does not prove causal influence; future work could incorporate counterfactual or perturbation-based approaches
to complement SHAP. Fourth, our fusion strategy used early concatenation with gradient-boosted trees. While
effective, this approach may not fully capture cross-modal interactions. transformer based or attention-driven
fusion architectures could be explored to model richer dependencies. Finally, although we report group level
feature importance, case level interpretability remains limited. developing clinically interpretable, patient-
specific explanations will be essential for adoption.

In summary, this work demonstrates that integrating complementary information from structured clinical
variables, angiographic imaging, and procedural text substantially improves long-term mortality prediction after
PCI. The findings are consistent with prior multimodal explainability research and highlight both the aggregate
value of high-dimensional unstructured data and the concentrated per-variable importance of structured
clinical features. By addressing the noted limitations in future studies particularly through external validation,
applying this validated multimodal framework to survival models, exploring advanced fusion strategies, and
enhancing interpretability, this approach could form the basis of a robust, explainable decision support tool for
interventional cardiology.
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Conclusion

We presented a multimodal machine learning approach that integrates coronary angiography images, procedural
text reports, and structured clinical data to predict the risk of mortality after PCIL. By fusing data sources, we
achieved significantly higher discrimination than any single- or dual-modality configuration.

Beyond improved accuracy, the modality-level SHAP analysis and feature-level interpretation provide
clinically relevant insights, revealing that unstructured imaging and text data capture aggregate prognostic
signals, while structured clinical variables deliver concentrated per feature predictive value. These findings
highlight the potential of explainable multimodal Al to augment, rather than replace, existing clinical risk scores.

Future work will focus on external multi-center validation to confirm generalizability, the exploration of
advanced fusion architectures to better capture cross-modal interactions, and the development of patient-specific
explanations to enhance clinical trust and adoption. Ultimately, the proposed approach could be integrated into
routine post-PCI care pathways, enabling data-driven, individualized risk stratification and supporting timely
interventions to improve long-term patient outcomes.

Data availability

The datasets generated and/or analysed during the current study are not publicly available due to the sensitive
nature of the health information and the requirement for Institutional Review Board (IRB) supervision but are
available from the corresponding author on reasonable request.
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