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Starting from the elastic light scattering and the induced fluorescence emission from airborne particles 
and extending to the counting and differentiation of the associated signals, a framework is proposed 
to describe the detection of bioaerosols using an image sensor. For validation, monodisperse NaCl 
particles were generated to mimic abiotic particles, while monodisperse 1% mass riboflavin particles 
were generated to mimic biotic particles. By challenging a prototype sensor with these particles, 
the exposure time, particle speed, and signal-to-noise ratio were shown to be critical parameters for 
detection. Additionally, it was displayed that the induced fluorescence emission can be isolated from 
the elastic light scattering by using a well-selected long-pass filter. Furthermore, correlating the color 
of the captured signals to an induced fluorescence contribution was shown to be a potential avenue 
of differentiation between biotic and abiotic particles. It is predicted that this color differentiation 
method can distinguish between a near-continuous range of visible induced fluorescence emission 
wavelengths, giving the ability to distinguish individual fluorophores from one another using simple 
filtering and a single detector. This framework will be used to further optimize the image-based 
bioaerosol sensor evaluated here.

Real-time knowledge of bioaerosol concentrations and identities is an important piece of information in many 
monitoring applications. For an example, the presence of aerosolized mold has been previously associated to 
varying degrees with allergic and asthmatic symptoms1,2. Real-time detection of these aerosolized mold particles 
can allow for the timely implementation of improved ventilation or other remediation efforts. For a more time-
sensitive example, real-time detection of the bacteria Bacillus anthracis could help with the immediate evacuation 
of a targeted area3. Many different methods and instruments have been developed to achieve real-time detection 
of bioaerosols and address these applications4,5.

There are multiple commercial instruments that have varying capabilities for real-time monitoring of 
bioaerosols including, but not limited to the ENVI BioScout (Bertin Environics, Finland), the Wideband 
Integrated Bioaerosol Sensor (WIBS, Droplet Envea Group, United States), and the BioTrak Real-Time 
Viable Particle Counter (TSI, United States)6,7. These instruments mainly rely upon induced fluorescence to 
differentiate bioparticles from abiotic particles. Induced fluorescence of bioparticles occurs due to the presence 
of fluorophores. These fluorophores can absorb and then release a photon, assuming sufficient excitation. The 
released photons will have a longer wavelength than the original photons8. Most bioparticles contain some 
combination of these fluorophores. Induced fluorescence can also be present for certain abiotic particles, leading 
to the potential for false positives when relying solely upon this property for detection9–11. Despite this, induced 
fluorescence is widely used as a trigger detector for the presence of bioaerosols. Once triggered, more time-
intensive methods of analysis can be completed for detailed verification and identification.

Due to their high sensitivity, many bioaerosol instruments focused on induced fluorescence detection use 
photomultiplier tubes as their main optical component4,6,7. For instruments relying upon photomultiplier tubes 
or single photodetectors to quantify the induced fluorescence signal, they are limited to interpreting the presence 
of particles as electrical pulses. This limits the information that can be gained without using complex optical 
systems. An image sensor is more effective at resolving simultaneous particle scattering/emission events due 
to capturing the spatial distribution of signals. Multiple particles can pass through the beam at a single time 
and still be differentiated as separate events. A single photodetector or photomultiplier tube would need to 
differentiate these events using solely the electrical signal or ensure minimal coincidence events. Additionally, 
the proposed framework will detail the use of the signal color to identify an induced fluorescence contribution 
while preserving a portion of the elastic scattering. The preservation of the elastic signal could allow for the 
detection and differentiation of both abiotic particles and bioparticles with a single sensor and simple filtering. 
To identify a similar amount of information, a single photodetector or photomultiplier tube system would either 
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require a detector with multiple channels or several separate detectors, each configured for a different wavelength 
range. In theory, using an image sensor for the detection of bioaerosols allows for simpler optical setups as more 
information is readily available and recorded. This benefit comes at the cost of reduced sensitivity and higher 
computational requirements for detection.

Image sensors have has been applied previously for the detection of bioparticles12–17. All of the referenced 
instruments use some form of image sensor to detect bioparticles; however, they may also utilize unique 
techniques, in addition to or other than induced fluorescence, to differentiate bioparticles from abiotic particles, 
such as holography, fluorescent dyes, and spectral grating12–17. Additionally, many of the referenced instruments 
require the deposition of particles onto a substrate/surface before detection, whereas the goal for this prototype 
sensor is to keep the particles airborne12–16.

The proposed framework will focus solely upon using induced fluorescence emission as a marker for 
bioparticles, as the goal is to minimize the complexity and cost of the associated prototype sensor. The detection 
setup described here is an expansion of the previously proposed method by Ye et al.18. It is believed that the 
simple optical setup of the proposed framework and prototype sensor offer the reduced complexity and cost 
desired, compared to the previously mentioned approaches. Furthermore, by maintaining the airborne state of 
the challenged particles, the prototype sensor design does not require a consumable element, such as substrates 
or a working fluid. As far as the color differentiation approach that will be detailed, this method obtains similar 
information to the techniques used by Huffman et al. 2016 (by extension Swanson and Huffman), and Zhang 
et al. about the induced fluorescence contribution but forgoes the use of spectral grating which complicates the 
optical setup and spreads the induced fluorescence emission over a larger array of pixels12,13,17. This is at the cost 
of reduced information as the full spectrum of emitted light will not be known, only the simplified information 
presented by the signal color. For a task focused on bioaerosol identification (i.e. differentiating mold particles 
from pollen particles), the aforementioned information may be required; however, the focus here is general 
trigger detection of bioaerosols.

The scope of this report will be the introduction of a framework for the real-time image detection of 
bioaerosols. The objective of this framework is to mathematically describe the detection of airborne bioparticles 
using an image sensor and induced fluorescence, starting from the interaction of particles with an incident 
light source and extending to the counting and differentiation of the associated signals in a recorded image. 
While some of the general principles of this framework have been implemented in the previously mentioned 
studies, it is believed that this framework is unique in its description of these principles and aims to provide 
a clear summary of the interactions involved. To validate the proposed framework, the experimental results 
obtained using a prototype sensor will be presented. While the prototype sensor is still under development and 
requires further optimization before the limits of the method can be verified, these experimental results serve to 
confirm and describe the general detection trends associated with the framework. Both the limitations currently 
observed with the method and the expected limitations with the method are discussed to provide a baseline for 
what can be accomplished. The proposed framework will be used to guide the optimization of the prototype 
sensor and serve as a starting point for the description of similar methods.

A framework for detection and differentiation
Elastic light scattering
The light scattered and emitted from a bioparticle passing through an incident light source will be a combination 
of the elastic light scattering and induced fluorescence emission, assuming sufficient excitation. For elastic light 
scattering, Rayleigh scattering is typically assumed for particles much smaller than the wavelength of the incident 
light19. This form of scattering, assuming a spherical particle and unpolarized incident light, is described by Eq. 
(1).

	
Ip,e,λ (θ) = I0 ∗ π4 ∗ dp
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R is the distance from the particle, dp is the particle diameter, λ0 is the incident light wavelength, m is the 
refractive index of the particle, θ  is the angle between the scattering direction and the incident light direction, 
I0 is the intensity of the incident light, and Ip,e,λ is the intensity of the elastically scattered light. The λ  
subscript denotes the wavelength associated with that intensity. For elastic scattering, λ  is equal to λ0. If the 
wavelength of the incident light is not significantly longer than the diameter of the particle, Mie scattering must 
be considered, described by Eq. (2) and assuming once again a spherical particle and unpolarized incident light.

	
Ip,e,λ (θ) = I0 ∗ λ2

0 ∗ (i1 + i2)
8 ∗ π2 ∗ R2

� (2)

 i1 is the perpendicular polarization parameter, and i2 is the parallel polarization parameter19. These two 
parameters are functions of the refractive index of the particle, the size of the particle, the wavelength of the 
incident light, and the scattering angle. For brevity, only the elastic scattering of unpolarized light is explicitly 
covered here; however, the above equations can be substituted with expressions for the elastic scattering of 
polarized incident light.

In the proposed setup, the scattered light will fall upon an array of pixels, assumed to be rectangular. The 
radiant power delivered to a given pixel can be found by considering the geometry of the pixel-particle system. 
For simplicity and generality, the use of an imaging lens will not be considered directly in the geometry of the 
pixel-particle system. For the simplified geometry, the particle will be placed at the origin, the incident light will 
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be a ray pointed in the positive y-direction, and the pixel will be placed horizontally at a fixed height of z0 in the 
positive z-direction, as shown in Fig. 1.

  
With this geometry, R is the radius from the origin, and θ  is the same scattering angle as defined in Eqs. (1) 

and (2) . These two quantities can be described solely by the spatial position of the pixel relative to the particle as 
shown in Fig. 1. It will also be assumed that only the component of light normal to the pixel surface will contribute 
to the radiant power the pixel receives. Depending on the properties of the pixel, it may be a fair assumption 
to consider the full contribution of light reaching the pixel, rather than just the normal component; however, 
considering only the normal component serves as a more conservative assumption. Using this geometry and 
the given assumptions, the radiant power the pixel receives from the elastic light scattering is given by Eq. (3).

	

Pp,e,λ,pixel =
x1ˆ

x0

y1ˆ

y0

Ip,e,λ (x, y, z0) ∗ z0√
x2 + y2 + z2

0

dy dx� (3)

Pp,e,λ,pixel is the radiant power a pixel receives from the elastic light scattering of a given particle.
The contribution from the elastic scattering of the medium must also be considered. This is described in 

detail in Ye & Pui20. Each of the molecules within the illuminated medium will elastically scatter the incident 
light according to Eq. (1), assuming that the molecular diameter of the medium is much smaller than the 
incident wavelength. The radiant power to the pixel from the medium can be found using Eq. (3) as well. The 
framework described in this paper will assume that the interference between the medium and the particle 
scattering, described in Ye & Pui, can be neglected20. By neglecting this interference, the light reaching a pixel 
from a given particle and the surrounding medium can be represented by a linear relationship that follows the 
superposition principle. In this manner, the effect of two or more overlapping waves at any point in space is the 
linear effect of the individual waves at that point.

Induced fluorescence emission
The induced fluorescence emission involves a complex relationship that requires consideration of the 
excitation wavelength, the excitation intensity, the particle geometry, and the particle composition. Hill, et al. 
2015 describes this relationship using a fluorescence cross section, Cf

21,22. The total intensity of the induced 
fluorescence emission from a particle in all directions can be described by Eq. (4). For details on the calculation 
of the fluorescence cross-section, refer to Hill et al. 2013 and Hill et al. 2015.

	 Pp,f,λ,full angle = Cf ∗ I0 where Cf = Cf (dp, λ0, . . . )� (4)

The induced fluorescence emission given in Eq. (4) is only valid for full angle collection. The geometry in Fig. 1 
does not fulfill this condition, so a modification must be made. The framework described by Hill et al. 2015 does 
not give an angular dependence, so one can only assume a generic dependence on the pixel position and the 
total fluorescence emission to describe the induced fluorescence emission reaching a given pixel. This can be 
expressed by Eq. (5).

Fig. 1.  The assumed geometry of the pixel-particle system with the incident light pointed in the positive 
y-direction and a horizontal, rectangular pixel at a height of z0. For the consideration of polarized light 
sources, this geometry will need modification as the elastic scattering will also be dependent on the angle 
between the polarization and the pixel.
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Pp,f,λ,pixel =
x1ˆ

x0

y1ˆ

y0

Ip,f,λ(I0, Cf , x, y, z0) ∗ z0√
x2 + y2 + z2

0

dy dx� (5)

Pp,f,λ,pixel is the radiant power a pixel receives from the induced fluorescence emission of a given particle.

Total radiant power reaching a pixel
With the assumption of negligible interference, the total radiant power reaching a pixel can be considered as the 
superposition of the elastic light scattering from the particle, Pp,e,λ,pixel, the induced fluorescence emission 
from the particle, Pp,f,λ,pixel, and the background signal from sources of light other than the particles 
themselves, Pb,λ,pixel. The elastic light scattering from the medium is contained within this background radiant 
power term.

Until this point, the radiant power contributions have been described at a singular wavelength; however, the 
total radiant power can be considered as a discrete sum of radiant powers at key wavelengths, given in Eqs. (6)–
(8).

	
Pp,e,pixel =

n∑
i =1

Pp,e,λ,pixel (λi, λi + ∆λ) =
n∑

i =1

Pp,e,λ,pixel (λi, λi + ∆λ)
∆λ

∗ ∆λ� (6)

	
Pp,f,pixel =

n∑
i =1

Pp,f,λ,pixel (λi, λi + ∆λ) =
n∑

i =1

Pp,f,λ,pixel (λi, λi + ∆λ)
∆λ

∗ ∆λ� (7)

	
Pb,pixel =

n∑
i =1

Pb,λ,pixel (λi, λi + ∆λ) =
n∑

i =1

Pb,λ,pixel (λi, λi + ∆λ)
∆λ

∗ ∆λ� (8)

n is the number of key wavelengths that must be considered, and ∆λ represents a small interval of wavelengths. 
To represent this as a continuous integral over a range of wavelengths, a spectral power distribution can be 
defined by Eq. (9).

	
Si (λ) = lim

∆λ→0

Pi(λ, λ + ∆λ)
∆λ

� (9)

The i subscript is a placeholder for the subscript of the three different contributions, and Si is the corresponding 
spectral power distribution for each contribution. The total radiant power can then be described as the integration 
of a spectral power distribution across the wavelength range of interest.

	

Pp,e,pixel =

λfˆ

λi

Sp,e,pixel (λ) dλ � (10)

	

Pp,f,pixel =

λfˆ

λi

Sp,f,pixel (λ) dλ � (11)

	

Pb,pixel =

λfˆ

λi

Sb,pixel (λ) dλ � (12)

λi is the shortest wavelength of interest, and λf  is the longest wavelength of interest. Additionally, there are 
various physical interactions that reduce the radiant power reaching the image sensor, such as the scattered light 
interacting with a filter applied in line with the image sensor. Many of these factors have some dependence on the 
wavelength of the light, especially those associated with optical filters. Equations (13)–(15) allow these physical 
interactions to be considered in the previously described integrations.

	

Pp,e,pixel =

λfˆ

λi

(
m∏

i=1

fi (λ)

)
∗ Sp,e,pixel (λ) dλ � (13)
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λi

(
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fi (λ)

)
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Scientific Reports |         (2026) 16:2827 4| https://doi.org/10.1038/s41598-025-32744-x

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	

Pb,pixel =

λfˆ

λi

(
m∏

i=1

fi (λ)

)
∗ Sb,pixel (λ) dλ � (15)

 fi is each unique factor needed to describe physical interactions before the radiant power reaches the pixel, and 
m is the total number of these factors. These interactions can be a function of a variety of parameters depending 
on what interacts with the particle and background light before it reaches the image sensor. For the case of a 
color filter array or a similar arrangement of pixels that filter specific wavelengths, this filtering can be modeled 
through these factors. Additionally, the quantum efficiency, a wavelength dependent efficiency related to the 
pixels ability to convert photons to a charge, can be modeled through these factors23.

The quantity that a given pixel ultimately responds to is the total radiant energy collected over a sampling 
period, known as the exposure time. The radiant energy received is converted to a charge by the pixel, and this 
charge is the quantity that is processed to form the captured image23. The radiant energy collected for a given 
pixel in a set exposure time can be described by Eqs. (16)–(18).

	

Ep,e,pixel =
teˆ

t0

Pp,e,pixel (t) dt� (16)

	

Ep,f,pixel =
teˆ

t0

Pp,f,pixel (t) dt� (17)

	

Eb,pixel =
teˆ

t0

Pb,pixel (t) dt� (18)

Ep,e,pixel is the radiant energy collected by a pixel from the particle elastic light scattering, Ep,f,pixel is the 
radiant energy collected by a pixel from the particle induced fluorescence emission, Eb,pixel is the radiant 
energy collected by a pixel from the background light sources, t0 is the start of the exposure time, and te is the 
end of the exposure time. The radiant power for each component must now be considered as time dependent as 
the particles may be moving or the incident light profile may be transient. The total radiant energy collected by 
the pixel during the exposure time can then be written as the summation of these three terms, assuming once 
again that they follow the superposition assumption.

	 Epixel = Ep,e,pixel + Ep,f,pixel + Eb,pixel� (19)

When evaluating the energy collected by a pixel and the overall particle signal, an important parameter to 
consider is the particle contribution compared to the background contribution. An effective way of quantifying 
this is the signal-to-noise ratio given by Eq. (20).

	
SNR = Ep,e,pixel + Ep,f,pixel

Eb,pixel
� (20)

SNR is the signal-to-noise ratio. The goal of a well-designed image detection sensor will be to maximize 
this signal-to-noise ratio. A high signal-to-noise ratio means that the pixels containing particles will be clearly 
distinguished from pixels only observing the background light sources. A high signal-to-noise ratio can be 
accomplished by having dark, non-reflective surfaces. It is also important to ensure that the amount of radiant 
energy collected from a particle, Ep,e,pixel + Ep,f,pixel, is greater than the detection threshold of a given pixel.

Counting particle signals
The radiant energy collected at each pixel is converted by the image sensor to a pixel value. This conversion 
can vary depending on the image sensor; however, the result is a pixel value that is dependent on the amount 
of radiant energy collected during the exposure time. The gain of the image sensor, Gsensor , will dictate this 
conversion. The conversion can be represented generically by Eq. (21).

	 Ipixel = Ipixel(Epixel, Gsensor)� (21)

Once an image is generated using the array of pixels and their associated values, the particle signals need to be 
differentiated from the background signal. In the simplest case, one can consider counting pixel by pixel. If the 
pixel value achieves a value greater than a set threshold, it can be flagged as a particle as described by Eq. (22).

	
Di = 1, if Ipixel > Ithres

0, if Ipixel < Ithres
� (22)

Di flags that a given zone, each pixel in this example, contains a particle, and Ithres is the user-defined 
threshold. The threshold pixel value will be dependent on the signal-to-noise ratio given in Eq. (20). The total 
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particle count for a given frame then could be found by examining each pixel and summing up each of the flags 
to get a total count, given in Eq. (23).

	
Ncount =

n∑
i=1

Di� (23)

Ncount is the total number of particles counted for a given frame. This method of going pixel by pixel within the 
image would overestimate the particle counts as a particle signal is usually captured on more than one pixel. In 
general, any algorithm that can isolate the area of a continuous particle signal and define it as a single instance 
can be used. Since the detection algorithm will vary from sensor to sensor, it is best to rewrite Eq. (22) in more 
general terms.

	
Di = 1, if detection criteria met

0, otherwise � (24)

With each of the particle zones flagged by the detection criteria, the number of particles within a given frame 
can then be counted using Eq. (23).

There are two important criteria to be considered for the number of particles counted per image. The first of 
these is the counting efficiency. The counting efficiency relative to the number of particles present in a captured 
image is defined by Eq. (25).

	
ηcounting = Ncount

Ntotal
� (25)

ηcounting  is the counting efficiency relative to the number of particles present in a captured image, and Ntotal 
is the total number of particles in the image. For particle counting instruments, there is also a counting efficiency 
defined with respect to the total number of particles challenged by a sensor. The counting efficiency with respect 
to the particles challenged by the sensor is a function of many other parameters not covered here such as the 
fluid dynamics within the detection chamber. The focus of this framework is on the image detection method in 
a generic sense, so the counting efficiency is defined here based solely on the information contained within the 
captured images.

In addition to the counting efficiency, it is also important to quantify the number of false positives, areas of 
the image that meet the detection criteria due to noise or other factors but are not particle signals. This can be 
defined as a simple ratio between the number of false positives and the number of counted particles.

	
αfalse = Nfalse

Ncount
� (26)

αfalse is the ratio of the false counts to the total particles counted, and Nfalse is the number of false positives. A 
well-developed detection algorithm and a high signal-to-noise ratio are required to achieve a counting efficiency, 
ηcounting , of unity and a small false count ratio, αfalse. By having a negligible false count ratio and a counting 
efficiency near unity, each particle within the image will be counted without any non-physical particles being 
counted.

Differentiating bioparticle signals
For bioparticle detection, one must also consider the differentiation of bioparticles from abiotic particles. One 
way of accomplishing this is to apply a long-pass filter aimed at completely attenuating the elastic light scattering 
contribution. This method of isolating only the induced fluorescence emission mimics the approach of the 
previously mentioned commercial instruments and similar methods. Ideally, the filter attenuation factor for the 
elastic wavelengths would be equal to zero, leaving Eq. (27) to describe the radiant energy captured by a given 
pixel. The background light contribution is still included in this expression, but this contribution should also be 
greatly diminished.

	 Epixel = Ep,f,pixel + Eb,pixel� (27)

With a well-chosen filter, the particles that are counted will only be particles with a sufficiently strong induced 
fluorescence contribution. Equations (23)-(26) are still fully applicable for counting the number of bioparticles 
with this method. For Eq. (26) though, the number of false positives, Nfalse, should also include any abiotic 
particle signals that are detected due to leakage or other sources.

A second method of differentiation involves using the color of the particle signal to identify if an induced 
fluorescence contribution is present. Instead of aiming for complete attenuation of the elastic signal, the goal 
is to eliminate only the necessary amount of elastic light scattering until a color change due to the induced 
fluorescence contribution is observed.

Using this differentiation method, one can still get the total particle count per image using Eqs. (23) and (24). 
Another flag can be implemented that signifies whether a detected particle contains an induced fluorescence 
contribution or is purely elastic light scattering using the wavelength estimated by the color. An image sensor 
uses the previously mentioned color filter array, typically red-green-blue (RGB), and an interpolation process 
known as demosaicing to assign each pixel a corresponding color23. Assuming a typical RGB color filter 
array for example, a given pixel will be coated with a filter targeting a wavelength range defined for blue, a 
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wavelength range defined for green, or a wavelength range defined for red. Each of these filters are described by 
their corresponding wavelength-dependent transmission curves23. As mentioned previously, this wavelength-
dependent transmission of the radiant energy collected by a pixel can be implemented through the factors in 
Eqs. (13)–(15). Importantly, this means that the color assigned to a given pixel is a function of the radiant energy 
captured by itself and the differently filtered, neighboring pixels. This process of assigning a color to a given 
pixel can vary depending on the exact color filter array, and algorithm used by a given image sensor; however, 
if the generated image represents the color in some form, this method should be able to be adapted. Equation 
(28) describes this marker assuming only two channels are considered, fluorescence and no fluorescence. The 
color differentiation method could allow for many such channels to be considered, based on the observed color 
differences, without the need for complex sensor geometries.

	
Ji = 1, if λcalc > λcutoff

0, otherwise � (28)

Ji is a flag for an induced fluorescence signal, λcalc is the calculated wavelength of the signal based on the color, 
and λcutoff  is the cutoff wavelength defining whether a signal contains an induced fluorescence contribution or 
not. The number of bioparticles per frame can then be calculated using Eq. (29) and assuming that the induced 
f﻿luorescence signals present are only due to biological sources.

	
Bcount =

n∑
i=1

Di ∗ Ji� (29)

Bcount is the number of bioparticles counted for the given frame. A separate counting efficiency can be defined 
for the counting of the bioparticles, given in Eq. (30).

	
ηcounting,bio = Bcount

Btotal
� (30)

ηcounting,bio is the counting efficiency relative to the number of bioparticles present in the image, and Btotal is 
the total number of bioparticles within the image. Similarly, the number of false positives can be quantified for 
the bioparticle counting, given by Eq. (31).

	
αfalse,bio = Bfalse

Bcount
� (31)

αfalse,bio is the ratio of the false positives to the total bioparticles counted, and Bfalse is the number of false 
positives. The bioparticle false positives will include both abiotic particle signals and noise signals incorrectly 
identified as bioparticles. This method requires consideration of Eqs. (23)–(26) and Eqs. (28)–(31) to obtain both 
accurate counting of the total particles present and accurate differentiation of bioparticles from abiotic particles.

Results and discussion
General image detection
A sensor was developed to utilize image detection of particles and validate the proposed framework. The general 
detection method is given below in Fig. 2.

The particles pass through a collimated laser beam oriented horizontally across the image. The elastically 
scattered light and the emitted induced fluorescence light is then collected by the image sensor, which generates 
a corresponding image. The particle signals are then isolated from the background signals using the procedure 
described in the methods section. The individual particle signals are counted, yielding a total particle count for 
that frame. In this way, the image detection method acts as multiple instances of single particle counting for each 
of the isolated signals within a captured image. This removes some of the ambiguity associated with other optical 
counting methods since it is possible to directly view each of the individual particle signals, as opposed to relying 
upon an electrical pulse to detect the presence of a particle.

As covered in Eqs. (16)–(18), one of the key parameters that must be set is the exposure time. In the case of 
the image sensor used here, the exposure time is selected via an exposure control value ranging from 0 to -13. 
From the camera manufacturer, the exposure control values of -2, -4, -6, and -10 correspond to exposure times of 
250 ms, 62.5 ms, 15.6 ms, and 0.98 ms respectively; however, these exposure times were not verified and should 
be taken as estimations. Importantly, the larger the value, in this case the closer to zero, the longer the exposure 
time. The effect of changing the exposure time is shown in Fig. 3.

Figure 3a contains the largest number of particles out of the four different exposure times. There is also a 
notable increase in the scattering from the medium within the laser path for Fig. 3a. As the exposure time is 
increased, more particle signals are present as there is more time for particles to pass through the illuminated 
region. The background signal also grows during this extended time due to the contribution from the medium 
and background. A shorter exposure time means that particles will not have sufficient time to pass through 
the illuminated area, so fewer particle signals are captured and those that are captured can be incomplete if the 
exposure time is set too short, as seen in Fig. 3d. The benefit to this shorter exposure time is the decrease in the 
background brightness level.

With the dark background observed here and the ability to easily distinguish the particle signals from the 
background, even at an exposure control value of -2, there would be no clear reason to set the exposure control 
value to -6 or -10 in relation to the image quality. The potential benefit to these shorter exposure times would 
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be being able to operate the image sensor at a higher frame rate. Operating at a higher frame rate reduces 
the chances of saturating the viewing area but requires increased computational power to apply the detection 
algorithm at the increased pace. The effect of changing the exposure time on the average particle counts is shown 
quantitively in Supplemental Fig. S1.

The trends observed for this sensor design are a departure from those expected for stationary particles. While 
the framework allows for both moving particles and stationary particles to be described, the prototype sensor 
specifically focuses on airborne, moving particles. Since the moving particles can pass through the viewing area 
within the exposure time, increasing the exposure time beyond a certain limit will not yield an improvement 
for a given signal’s brightness. For stationary particles, increasing the exposure time will allow for the particles 
to contribute more radiant energy to a given pixel as they will be scattering and emitting light during the full 
duration of the exposure time, assuming negligible saturation of the pixels. This allows for stronger particle 
signals simply by adjusting the exposure time. This was shown by Swanson and Huffman through varying the 

Fig. 3.  Captured images for 2.87-µm NaCl particles passing through a 375-nm laser with no filter applied. All 
images were taken with particle concentrations at approximately 40 #/cm3. Note that the images are cropped 
to focus on the illuminated area. (a) Exposure control value set to -2. (b) Exposure control value set to -4. (c) 
Exposure control value set to -6. (d) Exposure control value set to -10.

 

Fig. 2.  Diagram of the general detection method used by the prototype sensor in this evaluation. One or more 
optical filters can be placed between the image sensor and the lens to attenuate a wavelength range of interest.
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exposure time of deposited 2.0-µm fluorescent PSL spheres13. This represents a significant trade-off between the 
method employed by the prototype sensor described here and other similar detection methods that focus on 
stationary particles.

Contributing in a similar manner to the particle signals is the particle speed through the illuminated area. 
Figure 4 depicts images of particles captured when moving through the sensor at three different average flow 
velocities and one image of stagnated particles.

In Figs. 4a−c, the moving particle signals have a streak-like geometry. The faster particles will only contribute 
a notable amount of light to a given pixel for a short amount of the exposure time. Once past the region of a 
given pixel, the contribution from the particle will be near zero, so the overall light collected from the particle, 
Ep,e,pixel + Ep,f,pixel, will be less for a given pixel than for a slow-moving or static particle. At the edges of 
the particle signal where the pixel value is usually the least, this increase in the particle speed will cause the edges 
to be less distinguishable from the background. For Fig. 4c, the particles are moving slow enough that a clear 
termination of the signal is observed inside the illuminated area. Figure 4d displays that stagnated particles will 
appear bright and confined compared to the other cases due to the limited motion during the exposure time. By 
stagnating the particles, it may be possible to replicate the behavior of stationary particles, where a continuous 
benefit can be obtained from increasing the exposure time.

Using the process described in the methods section, the SNR as a function of particle speed can be estimated. 
The SNR with 95% confidence was estimated to be 16,000 ± 800, 330 ± 20, 166 ± 7, and 127 ± 4 for the stagnant 
case, the 0.1-m/s case, the 0.6-m/s case, and the 1-m/s case respectively. Decreasing the average flow speed 
through the camera viewing area results in a higher SNR. A nearly two orders of magnitude jump is observed 
between the 0.1-m/s case and the stagnant particle case. This is due to the issue of fewer missed particle signals 
for the stagnant particle case, resulting in a significantly lower background value. This likely inflates this metric 
for the stagnant particle case. Comparing just the average pixel value, the stagnant case has an average of 71 ± 1.5, 
the 0.1-m/s case has an average of 63 ± 2, the 0.6-m/s case has an average of 54 ± 1.0, and the 1-m/s case has 
an average of 46 ± 0.7. This further reinforces the observed trend that decreasing the flow speed increases the 
SNR, without consideration of the missed particle signals. It is important to mention that the 0.1-m/s particles 
may not fully cross the laser profile as shown in Fig. 4c. This could be inflating the average value as the contour 
captured will not feature the final portion of the particle signal where the pixel value decreases again due to the 
change in the laser profile.

While the signal quality may be negatively impacted by faster particle speeds, the faster the particles and the 
flow move through the image area, the more particles that can pass through the image during the exposure time. 
This leads to a competing effect of more particles being present in each image, but potentially a worse counting 
efficiency due to the diminished particle signal. The effect of this increased particle speed on the average particle 
count per frame is displayed in Supplemental Fig. S2.

Based on the results from the prototype sensor, the velocity threshold where the particle signals worsen 
notably is approximately 1 m/s for the elastic scattering. With an inlet diameter of 3.2 mm, this corresponds to 
an inlet volumetric flow rate of 0.5 L/min, which is comparable in magnitude to the 0.3-L/min sample flow rate 
of the WIBS6. Currently though, the prototype sensor is not focusing the particles through the laser profile. This 
lack of focusing means that not every particle is challenged equally. Because of this, the prototype sensor likely 

Fig. 4.  Captured images for 2.87-µm NaCl particles passing through a 375-nm laser with no filter applied and 
a constant exposure time between cases. It is assumed that the average flow speed reflects that of the average 
particle speed; however, deviations may be present due to inertial effects. Note that the images are cropped to 
focus on the illuminated area. (a) Average flow speed of 1.0 m/s. (b) Average flow speed of 0.6 m/s. (c) Average 
flow speed of 0.1 m/s. (d) Particles captured after stagnating the inlet flow.
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challenges less particles than the WIBS despite the similar flow rates. This will require further improvement 
and optimization as the image sensor allows for particles to be spatially distributed in the viewing plane, but 
confinement in the out-of-plane direction is still desired to ensure each particle is being challenged (i.e. not out 
of focus or removed from the peak laser power).

The movement of the particles is just one such consideration that must be made when designing an effective 
particle detection algorithm. There are many factors that must be considered to get a counting efficiency, 
ηcounting , near unity and limit the false count ratio, αfalse, to an adequately low level. Figure 5 depicts a few of 
the common issues encountered with having a simple detection algorithm and an updated detection algorithm 
to address these issues.

In Fig. 5a, two clear particle signals are observed, but the detection algorithm interprets the two signals as 
one. A robust detection algorithm will need to be able to handle cases where the contours are either close to or 
are overlapping one another. Without this issue fully addressed, the summation of the particle flags in Eq. (23) 
will yield a lower total than the image contains. This will decrease the counting efficiency, ηcounting .

In Fig. 5b, it is possible to identify 4 different areas where faint particle signals are present. As mentioned in 
the framework, achieving a high signal-to-noise ratio, SNR, will allow these fainter signals to be detected without 
having to worry about an excessive number of false positives. In these images, the signal-to-noise ratio appears 
high, allowing for these faint signals to be counted if the detection algorithm was tuned further.

If the detection algorithm is too aggressive, it is possible to encounter the issue in Fig. 5c. In Fig. 5c, contours 
are applied to regions of the image that do not have clearly visible particles, resulting in an increased total particle 
count. It is a balance to count the faint particle signals like those in Fig. 5b while avoiding counting noise such as 
those in Fig. 5c. These two cases will need to be balanced to achieve a counting efficiency, ηcounting , near unity 
and limit the false count ratio, αfalse, to an adequately low level.

The final issue, shown in Fig. 5d, is a single particle signal being counted as three different particle signals. 
This is especially common for blurry signals caused by out-of-focus particles. These blurry signals can have areas 
of high and low intensity, leading to multiple separate particle signals being detected despite it only being one 
true particle signal. Proper focusing of the optics can help mitigate this issue.

For the preliminary detection algorithm used, shown in Figs. 5a-d, a high sensitivity to small signals was 
required to count the focused particle signals, resulting in many false positives. For accurate quantification of 

Fig. 5.  Isolated screenshots of elastic scattering from 2.87-µm particles illuminated with a 375-nm laser 
and with no filter applied. Note that the images are cropped to focus on the illuminated area. (a) Screenshot 
showing two particle signals merged into a single particle signal. (b) A brightened and higher contrast version 
of (a) showing the visible particles missed by the detection algorithm. (c) Example showing unclear particle 
signals away from the main area of illumination. (d) Example showing a single signal being counted as 
multiple particles. (e) Example showing the updated detection algorithm tailored to the moving particle signal 
geometry.
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particles, a more sophisticated detection program is required to supress the high number of false counts while 
maintaining a counting efficiency near unity. This is achieved by developing the detection algorithm based on 
the streak-like geometry of the moving particle signals rather than just general contours. An example of such a 
detection algorithm is shown in Fig. 5e and described in the methods section. The updated detection algorithm 
is more effective at detecting the thin, dull signals without introducing many false counts.

For the preliminary detection algorithm, the false count ratio was approximately 14% with an average counting 
efficiency of 1.0. This was estimated using the process described in the methods section. The combination of 
these two metrics displays that the preliminary detection algorithm had a substantial number of false positives 
but also missed a considerable number of visible signals as well. The updated code performs much better with 
a false count ratio of approximately 3.5% and an average counting efficiency of 1.0. This displays that there 
are still false counts that can be reduced and particle signals that are not being counted, but it is within an 
acceptable level, especially considering overlapping particle signals. It is important to note that these metrics are 
specifically for the elastic scattering detection of 2.87-µm NaCl particles at an average flow speed of 0.6 m/s and 
an exposure control value of -4. These metrics, especially the counting efficiency, are dependent on the signal 
strength and operating conditions, so the reported metrics should be considered as under optimal conditions. 
Further improvements can still be made to improve these metrics and the overall detection quality, especially 
for weak particle signals.

Induced fluorescence detection: removal of elastic light scattering
The previous discussion focused on the general detection of particles using the image detection method; however, 
bioparticle detection has its own considerations. Figure 6 shows an example of the method described where only 
the induced fluorescence contribution is visible through the application of a UV-IR cut filter (Gzikai), which has 
a reported transmittance of 93% at 415 nm.

Without a filter applied, the image appears almost identical to the NaCl images shown in the previous figures, 
specifically that of Fig. 4d. The reason for this similarity is that the dominant term for the light collected during the 
exposure time is Ep,e,pixel. Even though there may be a contribution from the induced fluorescence emission, 
this contribution, Ep,f,pixel, is much smaller in magnitude than the elastic light scattering contribution. When 
viewing the particle signals without a filter, the captured signals will reflect this dominant, incident wavelength, 
hence the violet color assigned to the particle signals.

Riboflavin is expected to have induced fluorescence emission in the range of 500 to 600 nm for an excitation 
wavelength near the 375-nm laser24. This higher wavelength emission is the reason that the color of the filtered 
riboflavin particles is more green-shifted/red-shifted than the elastic scattering, as this wavelength range is 
expected to be detected more heavily by the green and red-designated pixels of the color filter array23. This also 
signifies that the bulk of the riboflavin induced fluorescence emission is removed from the wavelength of the 
incident light. This allows for a filter that attenuates the elastic light scattering without having to attenuate the 
induced fluorescence emission. Additionally, the incident wavelength used here is well-suited for the excitation 
of riboflavin, so the fluorescence cross-section is expected to be significant. This large fluorescence cross-section 
results in a high intensity signal for the riboflavin, depicted by the large and bright signals in Fig. 6.

Currently, a filter and excitation wavelength combination that fully removes the elastic scattering and still 
allows for consistent counting of the induced fluorescence signals has not been achieved. The particle counts of 
1% mass riboflavin particles at two different diameters are given in Supplemental Fig. S3 and Supplemental Fig. 
S4. For 2.87-µm particles, counts of approximately 60% of the elastic scattering counts for the same conditions 
were achieved. This displays that the counting is nearing the required limit for accurate quantification for these 
particles but has not yet reached it. Moving to 1.33-µm particles of the same composition leads to essentially 
zero particles detected per frame regardless of the input particle concentration. This displays that the current 
sensitivity and particle illumination is insufficient to properly detect particles of this size and composition. 
Further optimization of the particle illumination and sensor sensitivity will be required to achieve consistent 
quantification.

Fig. 6.  Isolated images of pure riboflavin particles illuminated with a 375-nm, 300-mW laser with and 
without a UV-IR cut filter (Gzikai) applied in line with the image sensor. The images are of an unknown size 
and concentration of particles generated through nebulization. The images were captured after stagnating 
the particle flow. Note that the image is cropped to focus on the illuminated area. The UV-IR cut filter has a 
reported transmission of 93% at a wavelength of 415 nm.
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While the 1% mass riboflavin detection shows the potential of the method and prototype sensor, the 
sensor still requires significant optimization and improvement in terms of sensitivity before it is expected to 
yield accurate bioaerosol detection and quantification. The chemical composition of Bacillus vegetative cells 
chronicled by Hill et al. 2015 lists a dry weight mass fraction of 0.007% flavin mononucleotide + riboflavin22. 
This gives an idea of the mass percentage of riboflavin expected in real bioparticles. To consistently detect a 3-µm 
Bacillus cell, a roughly 2 orders of magnitude improvement in sensitivity would be required when considering 
this fluorophore by itself and assuming the signal strength is proportional to the mass of the fluorophore present. 
When considering the combination of this fluorophore and other fluorophores present in a bioaerosol, such as 
NADH which has a listed dry weight mass fraction of 0.062% (combined with NADPH) and tryptophan which 
has a listed dry weight mass fraction of 4%, the improvement required is expected to be less22. The difficulty 
will be exciting all the fluorophores present. Detection of smaller particles will require further improvements 
to the sensitivity. With the current sensor design, it is expected that the detection limit will be 1-µm or larger 
bioparticles; however, verification of this limit will need to be investigated.

Induced fluorescence detection: color differentiation
The second method of differentiation proposed in this framework involves using the particle signal color to 
identify an induced fluorescence contribution. Figure 7 depicts the implementation of this method for NaCl, 
and 1% mass riboflavin particles using the combination of two UV-IR cut filters (Gzikai) and a 405-nm laser.

A visible color difference is observed when comparing the NaCl and 1% mass riboflavin signals in Fig. 7a and 
b. As was mentioned previously, the color of the observed signals is a function of the radiant energy collected 
by a given pixel compared to the neighboring pixels. The NaCl particles will mainly contribute to the pixels 
focused on the lower wavelengths, particularly the blue-designated pixels, due to only elastically scattering the 
incident 405-nm light. This results in the color of these signals being designated as the blue color observed in 
Fig. 7a. For the 1% mass riboflavin particles, they have a significant contribution to the pixels focused on the 
higher wavelengths, particularly the green-designated and red-designated pixels, from the induced fluorescence 
emission. While the elastic scattering contribution should be similar to the NaCl particles, the increased 
contribution to the green-designated and red-designated pixels results in a more green-shifted color being 
assigned to the 1% mass riboflavin signals. The exact color can vary between individual signals as shown in 
Fig. 7b, depending on the signal quality and potentially slight changes in the particle composition. As is observed 
in Fig. 7c, the mixture of 1% mass riboflavin and NaCl particles shows two distinct colors, showing the potential 
to differentiate biological and abiotic signals simultaneously.

To further illustrate the color difference between the signals, the hue of the detected contours, a representation 
of the color described by the angle on a color wheel, was calculated for the particle compositions shown in 
Fig. 7a and b. This was completed for six different detection videos of each particle type, a total of 7200 frames. 
The average hue for each particle type was calculated by averaging the hue of all contours detected within 
these frames. The average hue with 95% confidence was found to be 224° +/− 1° and 142° +/− 5° for NaCl and 
1% mass riboflavin, respectively. This further highlights the observed color differences in Fig. 7a and b, and 
that it can be represented quantitively. For example, the hue could be used to differentiate the presence of an 
induced fluorescence contribution by correlating this metric to an estimated dominate wavelength and then 
setting λcutoff  in Eq.  (28) to the wavelength estimated for a hue of 200°. Using this hue as a cutoff for the 
previously mentioned detection videos, the riboflavin particles would be identified as particles with an induced 

Fig. 7.  Isolated images depicting the color difference due to induced fluorescence contributions for particles 
illuminated with a 405-nm, 300-mW laser. Note that the images are cropped to focus on the illuminated area. 
(a) 2.87-µm NaCl particles with two UV-IR cut filters (Gzikai) applied, an exposure control value of -4, and a 
particle speed of 0.1 m/s. (b) 2.87-µm 1% mass riboflavin particles with two UV-IR cut filters (Gzikai) applied, 
an exposure control value of -4, and a particle speed of 0.1 m/s. (c) An unknown concentration of NaCl and 
1% mass riboflavin particles with two UV-IR cut filters (Gzikai) applied. The UV-IR cut filters have a reported 
transmission of 93% at a wavelength of 415 nm.
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fluorescence contribution with 99.3% accuracy; however, approximately 10% of NaCl signals would also be 
identified as particles with an induced fluorescence contribution as well. Further work will be required to limit 
these deviations and keep signals from being misidentified.

The counting of the particle compositions given in Fig. 7a and b with two UV-IR cut filters (Gzikai) applied 
and illuminated with a 300-mW, 405-nm laser are given in Supplemental Fig. S5. At a diameter of 2.87 μm, the 
NaCl particles are counted at roughly 50% of the level that the 1% mass riboflavin particles are being counted at 
with this setup. This displays that the elastic scattering attenuation is too significant with this setup to achieve a 
counting efficiency of unity for the total particle counts, as particles with no induced fluorescence contribution 
at this size will be counted at a reduced rate. This represents one of the main struggles with this implementation. 
A filter will need to be chosen that does not affect the induced fluorescence emission wavelengths and only 
attenuates the elastic light scattering wavelengths to the required level. The required attenuation could vary 
depending on the incident light level and the particle composition of interest. It is still not fully evaluated what 
level of elastic scattering detection can be achieved while maintaining color differences like the ones displayed 
here.

Pertaining to the differentiation between different fluorophores, this aspect of the method is expected to be 
limited by the wavelength difference between the induced fluorescence emissions and the accuracy that the color 
can be assigned. For tryptophan and riboflavin as an example, there is expected to be a notable difference between 
the two emission wavelength ranges24. This allows for more room for the two fluorophore signals to deviate in 
color while still being accurately differentiated. These deviations can be from differences in the individual particle 
compositions and noise associated with the radiant energy collected by a given pixel. For fluorophores with a 
similar emission range, these deviations in the color may compromise the ability to consistently differentiate two 
different fluorophores. Another challenge will be managing differences in the elastic scattering contribution. If 
a particle has a different ratio of an elastic scattering contribution to the induced fluorescence contribution even 
when containing the same fluorophore, the signal color would skew further or closer to the incident wavelength 
color. This may limit the ability to differentiate different fluorophores from one another for particles with 
significantly different sizes or optical properties.

Conclusion
The proposed framework effectively outlines the process of using an image sensor for the detection of bioaerosols 
using the induced fluorescence emission from such particles. From the interaction of both abiotic and biological 
particles with a given incident light source to the implementation of a detection algorithm to quantify the 
corresponding signals, each step of the interaction is mathematically described to highlight the importance 
and the required optimizations associated with each step of the detection process. While the assumptions and 
simplifications made in the derivation of this framework may need further expansion and consideration before 
exact quantitative values can be obtained, it is believed that this framework provides a valuable tool for those 
looking to implement image detection of bioaerosols in a novel manner or refine existing instances of such 
methods. Further expansion of the framework could allow for complex interactions, such as the interference 
between the medium and particle scattering, to be considered.

As far as the prototype sensor itself, the experimental evaluation displayed that an updated detection algorithm, 
tailored to the signal geometry, could achieve a false count ratio of approximately 3.5% and a counting efficiency 
near unity at optimal detection conditions. Additionally, the evaluation displayed that a compromise must be 
made when controlling the particle speed through the detection region. The faster particle speeds contributed 
to a reduced SNR but allowed for an increased number of particles to appear in each image. Similarly, it was 
shown that the exposure time must be selected to give enough time for the particle signals to be well-captured, 
but short enough to avoid saturation of the detection region and excessive background brightness. These trends 
can all be described by the proposed framework, and lend credence to the accuracy of the framework, despite 
the simplifications and assumptions implemented.

Pertaining to the bioaerosol detection capabilities, evaluation of 1% mass riboflavin particles validated 
that applying a long-pass filter to remove all elastic scattering can be used to differentiate and detect induced 
fluorescence signals with this setup; however, the detection of this fluorophore will need significant optimization 
before the sensor can be applied to real bioaerosol detection. To detect real bioaerosols near 1 μm in diameter 
using this method, an estimated two orders of magnitude improvement will be required. The second proposed 
method of differentiation, using the color difference between the elastic scattering contribution and the induced 
fluorescence contribution, was shown to be a plausible approach, both in the framework and experimentally. A 
clear difference in the average hue, approximately 82°, was observed between filtered NaCl signals and filtered 
1% mass riboflavin signals. Use of this difference would allow for approximately 99.3% of 2.87-µm 1% mass 
riboflavin particles to be identified as having an induced fluorescence contribution; however, 10% of 2.87-µm 
NaCl particles would also be identified as such. More work will be required to validate whether the balance 
between having a clear color difference and preserving the required elastic light scattering contribution can be 
achieved.

Future work will be focused on further developing the image-based bioaerosol sensor, using this framework 
for guidance. Classification of the laser profile, excitation parameters, and other key factors will allow for a 
more quantitative evaluation of the framework and analytical optimization of the prototype sensor. Outside of 
the interactions described by the proposed framework, additional work is required to optimize the sensor fluid 
dynamics and the particle counting efficiency in terms of the total number of particles challenged by the sensor. 
This introduces additional parameters that must be addressed in tandem with the parameters identified in this 
framework.
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Methods
A photograph of the sensor used to evaluate the proposed framework is given below in Fig. 8.

A 405-nm 300-mW laser and a 375-nm 300-mW laser were used for the evaluation. The input power to the 
lasers was controlled with adjustable power supplies. The laser beam was focused using a collimating lens. The 
sensor chamber featured a 3.2-mm circular inlet aligned with the laser beam such that each particle passed at least 
once through the laser beam. A 6-mm, 5-MP, wide angle lens was positioned above the focused beam to observe 
the particles passing through the illuminated area. An image sensor (i.e. camera), Sony IMX291, was positioned 
such that it looked down at the illuminated area and the region surrounding it. The image sensor position was 
adjusted using a custom focusing mechanism, such that well-focused images of the particles passing through the 
laser beam were captured. The focusing mechanism allows the distance from the lens to the image sensor and 
the orientation of the image sensor to be adjusted independently, a necessary feature for optimal focusing and 
consistent quantification. Timed samples of the images were collected using a custom-Python software, allowing 
for the camera settings, detection settings, and analysis settings to be adjusted manually. The quantitative results 
given in Supplemental Figs. S1 – S2 and Supplemental Fig. S5 were captured at a frame rate of 15 FPS. The results 
in Supplemental Figs. S3 and S4 were captured at a frame rate of approximately 7.5 FPS.

To mimic the detection of micron-sized bioaerosols, a Flow Focusing Monodisperse Aerosol Generator (TSI 
Model 1520, FMAG) was used to generate solid particles of varying diameters. The particle diameters reported 
in the evaluation are geometric particle diameters. Through the variation of the particle solution concentration, 
droplet generation frequency, dilution air flow rate, and solution liquid flow rate, the size and concentration of 
the generated particles was controlled25. Solutions ranging from 0.001 to 0.0001 volume fractions were required 
for the generation of particles in the size range of 1 μm to 3 μm. Supplemental Table S3 outlines the parameters 
required for the generation of each particle diameter tested. NaCl particles were generated to observe purely 
elastic light scattering as there should not be an induced fluorescence contribution from such particles. Riboflavin 
was chosen as the evaluated fluorophore as it is commonly cited as an indicator for the presence of bioaerosols 
and has an excitation wavelength within the desired range22,24. All solutions were prepared using HPLC-grade 
water. The riboflavin was mixed with NaCl for the quantitative evaluation depicted in Supplemental Figs. S3–S5 
because of the difficulty reaching the required solution concentrations and to better mimic real bioparticles.

To serve as a reference for the particle size distribution and the number concentration of the generated 
particles, an Aerodynamic Particle Sizer (TSI Model 3321, APS) was used in parallel with the prototype image 
sensor. The Aerodynamic Particle Sizer recorded both the particle size distribution and the average number 
concentration of the generated particles during the sampling period. By recording this, the number of particles 
counted during the sampling period with the prototype sensor could be directly correlated to a given particle 
number concentration. To ensure a true monodisperse distribution of particles, a multiplet reduction impactor 
was placed downstream of the FMAG26. The volumetric flow rate through the prototype sensor was controlled 
using a calibrated mass flow controller controlled via a LabVIEW program. The flow rate was recorded at a rate 
of 1 Hz with the data being written to a .CSV file for future reference.

Fig. 8.  Photograph of the prototype sensor used to investigate the image detection method. The lower module 
is the main detection chamber. This module contains the inlet and outlet ports, a connector for the laser, a 
laser dump, and a thread for the imaging lens. The surfaces of the detection chamber are matte-black anodized 
aluminum to reduce background light sources. The rectangular module on the upper portion of the sensor is a 
custom focusing mechanism that allows for the distance from the lens to the image sensor and the orientation 
of the image sensor to be adjusted independently.
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To capture the image in Fig.  6, a nebulizer was used to disperse a high concentration of pure riboflavin 
particles. For this generation method, the size and the concentration of the particles generated were unknown. 
The results of these nebulized particles were not used in quantitative analysis and were specifically used for 
illustrative purposes.

For the preliminary detection algorithm used to identify the particle signals shown in Figs. 5a-d, the image 
was first converted to grayscale. After this conversion, a blur was applied to reduce the level of noise in the 
image. Next, OpenCV adaptative thresholding was used to process the captured images and identify pixels that 
could be considered part of a particle signal. The OpenCV adaptive thresholding assigns a high value, 255, or a 
low value, 0, to the pixels above an adaptively defined threshold based on the local area around the pixel. After 
completing this thresholding, the OpenCV FindContours function was then used on this processed image. The 
OpenCV FindContours function uses an algorithm to determine contours based on the borders of the high 
value and low value pixels27. The number of particles within the captured image was then defined as the number 
of independent contours. The number of particles counted for each image was then saved to a .CSV file for future 
analysis.

For the updated detection algorithm used to collect the quantitative data in Supplemental Figs. S1–S5 and 
shown in Fig. 5e, an algorithm specifically focused on the streak-like geometry of the moving particle signals 
was employed. The captured images were converted to a gray-scale image, and a vertical blur was applied. Once 
the blur was applied, two separate adaptative thresholds were applied to the image. The first of these was focused 
on identifying blurry, out-of-focus particle signals. Only these types of signals were kept based on the calculated 
aspect ratio. The second adaptive threshold was focused on identifying the particle signals that are long and 
narrow. The results from both adaptive thresholds were combined into a single image. Small signals, those 
associated with noise, were then removed from the combined image. The remaining signals were then connected 
in the vertical direction as the images periodically featured disconnected zones for a given particle signal. Finally, 
the OpenCV FindContours function was used to identify the number of particles within the captured image. 
This particle count was then saved to .CSV file for analysis.

To determine the average pixel value and the SNR, the updated detection algorithm was used without the 
vertical blur applied. The average pixel value for each identified contour was found using the grayscale image, with 
a maximum value being 255. The individual contour values were then averaged to yield an average pixel value 
for the given detection video. For each frame, the average background pixel value was calculated by averaging 
the pixel value of all pixels not included in the contours identified as particle signals. This was done for detection 
videos zoomed into the particle signals to avoid including the background far from the detection region. These 
were then averaged for all frames of the detection video. The SNR was then calculated using Eq. (20), assuming 
that the pixel value was proportional to the radiant energy collected by each pixel.

To estimate the false count ratio and the counting efficiency of the detection code, the number of particles 
the detection code counted for each frame was compared to the visual counting of distinct particle signals within 
the image for 100 frames. Additionally, the number of false counts per frame was also quantified. This was done 
for an exposure control value of -4 and an average flow speed of 0.6 m/s at three different concentrations. The 
counting efficiency of the detection code and the false count ratio were calculated for each frame and averaged 
across the 100 frames, using Eqs. (25) and (26). Evaluating both metrics relies upon user judgement, so these 
serve mainly as rough estimations of these parameters.

Data availability
Data available on request from the corresponding author.
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