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Homicide is one of the most severe forms of violence and is the single most costly crime in the United 
States. Despite its high financial cost and incalculable emotional toll, we know very little about 
predicting who will commit such crimes. Here we followed a large (n = 202) sample of incarcerated 
youth for 16 years after release from a maximum-security juvenile correctional facility. Official records 
and clinical interviews indicated n = 35 committed a homicide during this follow-up period. Clinical 
(psychopathic traits, age of first arrest) and neural variables (gray matter volume of the amygdala and 
temporal pole) collected at baseline while boys were housed at the correctional facility significantly 
differed between homicide and non-homicide (n = 167) groups. Classification through machine learning 
models using these clinical and neural data predicted which formerly incarcerated youth committed a 
future homicide as adults with high accuracy. The model which included a priori clinical (psychopathic 
traits) and neural variables (bilateral amygdala, insula, parahippocampal gyrus, middle temporal 
pole, superior temporal pole, and orbitofrontal cortex) achieved top performance with 76% accuracy 
(sensitivity = 86%; specificity = 75%). The implications of these results are discussed as they relate to 
intervention and prevention efforts.
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Crime is a major public health issue in the United States. Societal estimates of the cost of crime exceed $4 trillion 
annually1. Homicide, the death of an individual by means of violence committed by another person, is the 
single most expensive offense-costing 20 times more than any other crime2. The emotional cost associated with 
loss of life is incalculable. The majority of homicides are committed by individuals who have been previously 
arrested3. Further, juvenile antisocial behavior is a significant predictor of persistent and severe criminal 
behavior occurring during adulthood4. Despite this, underlying clinical features and neural circuits associated 
with homicide remain poorly understood.

Postdictive studies have investigated characteristics and past experiences of juveniles who already committed 
homicide. In one study, youth convicted of homicide, compared to youth convicted of burglary, were more 
likely to have authoritarian parents, parental arrest record, and extensive problems at school5. Another study 
comparing homicidal youth to non-homicidal youth found lower IQ and higher rates of exposure to violence in 
those who previously committed homicide7. In a study comparing youth with history of homicide with youth 
who had committed non-homicidal violent acts, homicidal youth reported higher frequency of substance use 
disorders and greater availability of firearms8. Finally, research from our group suggests homicidal youth are 
characterized by higher rates of substance use, post-traumatic stress disorder, and psychopathic traits compared 
to non-homicidal violent and non-violent incarcerated youth6.

The first prospective studies identifying variables associated with future homicide were conducted using 
the Pittsburgh Youth Study sample, a multi-cohort sample representative of school-age children. Researchers 
found having a disruptive behavioral disorder, serious delinquency in self and peers, cruelty towards people, 
school delinquency, and positive attitudes towards drugs and delinquency increased odds ratio of committing 
a future homicide from 1.9 to 4.99. They also found a cumulative effect of risk factors, such that having four 
or more violence risk factors (e.g., behavioral, attitude, cognition, psychiatric, offending, birth, family, peer, 
and school factors) presented increased risk of future homicidal behavior. Another study re-examining the 
Pittsburgh Youth Study sample reported the individuals characterized by a higher number of early risk factors 
were associated with an increased probability of later conviction for violent offences, including homicide10. 
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Early risk factors included experiencing physical abuse, parental stress, associating with delinquent peers, and 
low school motivation10. These studies highlight social and clinical variables that can promote risk for future 
violence, including homicide. However, none of the latter studies have examined the neural circuits that might 
differ between youth who do and do not commit homicide.

Our research group has previously identified neural differences between incarcerated youth who have and 
have not previously committed a homicide6. Incarcerated boys who previously committed a homicide were 
characterized by reduced gray matter volume in the medial and lateral temporal lobe compared to incarcerated 
boys with no prior history of homicide. However, no study to date has investigated whether clinical and 
neuroimaging data collected during adolescence from incarcerated youth can predict future instances of 
homicide. Here, we present the first longitudinal study using clinical and neuroimaging variables collected 
from incarcerated adolescents to prospectively predict future homicides committed during adulthood. We 
hypothesized that boys who committed a future homicide would present with higher psychopathic traits 
than their incarcerated peers who would not go on to commit homicide (see11 for meta-analysis). Early age 
of engaging in antisocial behavior has long been theorized to characterize youth who have extensive criminal 
careers continuing into adulthood4,12. Given this, we also hypothesized earlier age of onset of antisocial behavior 
in boys who would commit a future homicide. Additionally, based on our prior research6, we hypothesized 
that reduced regional gray matter volume in the bilateral amygdala, insula, parahippocampal gyrus, middle 
and superior temporal pole, and orbitofrontal cortex collected during adolescence would predict which boys 
committed a future homicide during adulthood. Machine learning classification analyses, using support-vector 
machine (SVM), were performed to identify clinical and neural variables that differentiated individuals who 
did and did not commit a future homicide. The goal of this work is to identify both clinical and neurobiological 
targets for intervention, such that tailored treatment can be implemented early in life to help prevent future 
instances of severe violent behavior.

Results
Group Differences
Participants in the current study are from the SouthWest Advanced Neuroimaging Cohort-Youth (SWANC-Y; 
funded by NIMH R01MH071896-0: PI: Kiehl). Comprehensive criminal records review and self-reported 
incidents of homicide gathered from clinical interviews were used to determine group assignment. Of the n = 
202 incarcerated boys studied here, n = 35 committed a homicide after their release from the juvenile correctional 
facility (i.e., “Homicide” (H) group). The remaining n = 167 boys who showed no evidence of homicide crimes 
before or during the follow-up period were assigned to the “No-Homicide’” (No-H) group. See “Materials and 
Methods” for additional information on group classification strategy. Consistent with our hypotheses, individuals 
in the H group scored significantly higher on baseline Hare Psychopathy Checklist: Youth Version (PCL: YV13 
Total scores (M = 25.9, SD = 4.8) as compared to No-H participants (M = 22.4, SD = 5.5), t(200) = 3.60, p < 
0.001. Participants in the H group also scored higher on PCL: YV Factor 1 scores (M = 7.7, SD = 2.3) than 
No-H (M = 6.1, SD = 2.8) participants, t(200) = 3.10, p = 0.002. Additionally, participants in the H group scored 
significantly higher on PCL: YV Factor 2 scores (M = 15.8, SD = 2.4) than participants in the No-H group (M = 
14.1, SD = 3.0) ,t(200) = 3.32, p = 0.001. Finally, H participants were significantly younger (M = 11.8, SD = 2.5) 
than No-H participants (M = 12.6, SD = 2.1) at the time of their first arrest, t(200) = − 2.14, p = 0.033. Groups 
did not significantly differ on any of the remaining 23 clinical variables investigated (see Supplementary Tables 
S3 and S4 for descriptive statistics, and Supplementary Tables S5 and S6 for results). Supplementary Tables S7 
and S8 display exploratory t-test results between H and No-H groups on PCL: YV Facet and Item scores. Further, 
approximately 30% of the youth (n = 11) in the H group had committed a homicide during adolescence. In order 
to examine the role of past behavior in predicting future behavior, we conducted t-test analyses excluding these 
participants from the H group. The Future Homicide-Only (FH-only) group was then compared to No-H group 
(see Supplementary Tables S9 and S10). Significant differences in clinical variables between the original H-group 
versus the No-H group were also observed in the FH-Only versus the No-H group analyses.

As predicted, H participants exhibited reduced gray matter volume within a priori ROIs, including the 
bilateral amygdala, bilateral middle temporal pole, and right superior temporal pole compared to No-H 
participants. There were no significant differences in the remaining seven ROIs. Whole-brain voxel-based 
morphometry (VBM) analyses and group difference statistics are presented in Fig. 1; Table 1. Results of a VBM 
analysis comparing FH-Only and No-H groups can be found in Supplementary Fig. S3. These results are similar 
to, albeit less widespread, than the original VBM analysis comparing H and No-H participants.

Machine learning: support-vector machine (SVM)
To test the predictive capability of the imaging and behavioral variables while making no assumptions on their 
relationships or the underlying distributions of these variables (unlike a regression) a binary classifier using 
machine learning was trained to predict H and No-H participants. Machine learning classification was used to 
develop models that identified the best possible combination of variables that could accurately predict between 
H and No-H participants. Due to the lack of an existing separate forensic sample to test the generalizability 
of the machine learning model, of the n = 202 individuals included in our study, 20% of participants in both 
H and No-H groups were held out as an out-of-sample test set on which the trained machine learning model 
would be evaluated for performance. The choice of 20% was guided by having enough of the Homicide group 
in the test dataset while retaining a sufficient number in the model building dataset to build a generalizable 
model. The remaining 80% of participants were used as the data sample to tune a linear SVM machine learning 
model using a stratified, k-fold cross-validated approach with k = 5 to ensure enough of the rare H samples were 
retained in the test sample of each resampling fold thereby balancing the tradeoff between bias and variance 
in the trained model, given the low base rate of H in the overall sample14–16. Repeated cross validation and 
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stratified cross validation approaches16 were implemented during model training to minimize variance and bias. 
Keeping with best practices of handling prediction in a small data set with a relatively rare occurrence event, 
a cost-sensitive SVM kernel was used for learning the model, the classifiers were evaluated on the balanced 
accuracy metric and the threshold for classification was tuned on the final model before applying to the test 
data17 (See Machine Learning subsection of Methods for more detailed methodology). The best performing 
model (76% overall accuracy, 86% sensitivity, and 74% specificity) consisted of gray matter volume estimates for 
all 12 a priori ROIs, total brain volume, age at scan, and PCL: YV factor scores. Variables included in all models 
are listed in Supplementary Table S11. Model statistics are displayed in Table 2 and Supplementary Table S12. 
Feature importance analyses were also run to determine the extent to which each variable contributed to the 
classification rate for each respective model. See Fig. 2 for feature importance values for the best performing 
model, Fig. 3 for feature importance values for all models run, and Supplementary Fig. S1 for a comparison 

Fig. 1.  Voxel-based morphometry (VBM) results comparing gray matter volume (GMV) between Homicide 
(H; n = 35) and No-Homicide (No-H; n = 167) participants. Covariates included in VBM analyses were age at 
MRI scan and total brain volume. Blue indicates t-values for regions in which the H group had lower GMV 
compared to the No-H group, with lighter blue/white indicating larger differences. Results presented at 
p < 0.05, uncorrected.
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of feature importance values of all models. Receiver operating characteristic (ROC) curves for all models are 
displayed in Supplementary Fig. S2.

Discussion
The current study identified clinical and neural variables collected during adolescence that were predictive of 
future instances of homicide occurring during adulthood. A sample of n = 202 high-risk adolescents incarcerated 
at a maximum-security juvenile correctional facility in the United States were followed for a period of 16 years 
post-release. We observed that adolescents from this sample who committed a future homicide as adults scored 
higher on baseline measures of psychopathic traits, had an earlier age of onset of antisocial behavior, and were 
characterized by reduced GMV in bilateral amygdalae, middle temporal pole, and right superior temporal pole 
compared to adolescents who did not commit a future homicide. Support-vector machine learning was able to 
predict participants who did (sensitivity: 86%) and did not (specificity: 74%) commit a future homicide with 76% 
overall accuracy and 82% area under the receiver operating characteristic (ROC) curve. This high sensitivity rate 
demonstrates that we were able to successfully predict six out of the seven (86%) incarcerated adolescents in the 
hold-out test sample who committed a future homicide as adults using both clinical and neural features.

Model
Model performance (%)
overall/sensitivity/specificity ROC AUC (%)

A priori model with neural data + Age + PCL: YV scores 76/86/74 82

Clinical data only 68/14/80 65

Neural data only 71/71/71 80

Clinical + neural data 68/86/65 80

Table 2.  Prediction results across machine learning models. Numbers in model performance column 
represent percentages of overall accuracy, sensitivity (i.e., true positive), and specificity (i.e., true negative) 
rates, respectively. Area under the receiver operating characteristic (ROC) curve results are presented in the 
last column. The ROC curve plots true positive rates against false positive rates for all decision thresholds. The 
ROC AUC computes the area under the ROC curve, with a higher value indicating better ability to predict 
homicide group members (positive) while minimizing false positives (1: perfect predictive model, 0.5: random 
guess model). A priori model is listed first. Remaining models were run for completeness. Clinical Data = Age, 
IQ, socioeconomic status (SES), number of substance use disorders (SUD), addiction severity index (ASI) 
substance use severity scores, Barrett impulsiveness scale (BIS-11) total scores, psychopathy checklist: youth 
version (PCL: YV) factor 1 and factor 2 scores, number of traumatic brain injuries (TBI), age of first arrest, 
trauma checklist 2.0 (TCL) factor 1 and factor 2 scores, number of prior felonies, probation/parole violations, 
and convictions, psychopathology assessed via kiddie schedule for affective disorders and schizophrenia 
(KSADS) (i.e., anxiety, depression, conduct disorder/ oppositional deviant disorder (CD/ODD), attention 
deficit/ hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD)), gang affiliation, parental 
incarceration, parental separation; neural Data = GMV within a priori ROIs including the left and right 
amygdala, left and right insula, left and right parahippocampal gyrus, left and right middle temporal pole, left 
and right superior temporal pole, left and right orbitofrontal cortex, and total brain volume (BV).

 

Region x y z t (200) Cohen’s d p-FWE p-FDR p-un

L. Amygdala − 27 − 6 − 14 3.19 0.45 0.010 0.012 0.0004

R. Amygdala 32 − 2 − 15 3.15 0.45 0.013 0.018 0.0005

L. Insula − 36 0 − 15 2.95 0.42 0.092 0.176 0.0009

R. Insula 45 − 8 3 2.51 0.35 0.211 0.232 0.0032

L. Parahippocampal gyrus − 23 − 14 − 26 2.70 0.38 0.101 0.154 0.0019

R. Parahippocampal gyrus 29 − 12 − 26 2.54 0.36 0.163 0.202 0.0030

L. Middle temporal pole − 38 21 − 36 3.20 0.45 0.031 0.041 0.0004

R. Middle temporal pole 38 18 − 42 3.56 0.50 0.016 0.012 0.0001

L. Superior temporal pole − 39 21 − 33 3.04 0.43 0.058 0.254 0.0007

R. Superior temporal pole 50 18 − 21 3.18 0.45 0.049 0.025 0.0004

L. Orbitofrontal cortex − 32 38 − 8 1.71 0.24 0.424 0.495 0.0217

R. Orbitofrontal cortex 48 118 − 15 2.33 0.33 0.287 0.422 0.0052

Table 1.  Neuroanatomical differences between homicide (H; n = 35) and No-Homicide (No-H; n = 167) 
participants. Reductions in Gray matter volume in a priori regions of interest in H participants as compared to 
No-H participants; t = t-value; p-FWE = p-value corrected for family-wise error rate; p-FDR = p-value corrected 
for false discovery rate; p-un = uncorrected, Raw p-value; bolded p-values indicate results which survived 
FWE-correction or FDR-correction in the corresponding column.
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Fig. 3.  Feature importance bars for all models. Bars represent the relative weight each variable held in group 
classification, with taller bars indicating that variable contributed more strongly to the classification. Model 
A = a priori model with neural data + Age + PCL: YV scores. Model B = clinical data only. Model C = neural data 
only. Model D = clinical + neural data.

 

Fig. 2.  3D surface render of left and right sagittal orientations of the cortical and subcortical areas with 
Homicide < No-Homicide parametric overlay with respective feature importance. Left and right 3D surface 
renders of the cortical and subcortical areas of the brain in the sagittal anatomical orientation. Cut planes have 
been made in Montreal Neurological Institute (MNI) stereotaxic space at an intersection of x = 5, y = − 15, and 
z = − 20 to simultaneously show statistically significant cortical and subcortical effects. A parametric overlay of 
the Homicide < No-Homicide contrast map is rendered at a threshold of p ≤  0.05 and cluster extent threshold 
of k = 10 voxels on a gradient of blue to cyan indicating level of significance. Below the 3D surface render is 
the feature importance bar plot for the best performing classification model, with those neural features that 
significantly differed between groups visible in the above 3D brain render having their respective bars shaded 
in cyan. Taller bars indicate variables that contributed more strongly to the classification. Model displayed 
includes GMV within all 12 a priori ROIs, age at scan, BV, PCL: YV Factor 1, and PCL: YV Factor 2. PCL: YV 
Factor 1 and Factor 2, bilateral amygdala, left insula, and right middle temporal pole are the most strongly 
weighted variables contributing to group classification.
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Using a model that included both clinical (i.e., PCL: YV Factor 1 and Factor 2 scores, age at MRI scan) and 
neural data (i.e., 12 a priori ROI volume estimates and total BV), we were able to reliably differentiate between 
adolescents who did and did not commit a future homicide during adulthood. A model including age of first arrest 
in addition to these aforementioned variables was also run, and resulted in identical classification metrics. Age of 
first arrest was not included in final models presented here to reduce dimensionality. The 86% level of sensitivity 
remained consistent across model iterations and threshold tuning for models including both clinical and neural 
data (see Table 2 and Supplementary Table S12), demonstrating there is improved utility when incorporating 
both clinical measures and neuroanatomical metrics in predicting future homicidal behavior among high-risk 
youth. These classification results are similar to our previous report6 in postdictive classification of homicide 
offending during adolescence, where 81% overall accuracy, 81% sensitivity, and 80% specificity were found using 
a machine learning algorithm that included PCL: YV Factor 1 scores, total number of convictions, socioeconomic 
status, total brain volume, and GMV data from the OFC, cingulate cortex, and temporal pole. Importantly, the a 
priori model outlined in the current study was able to classify homicide offenders above and beyond just those 
who committed a violent offense. Specifically, classification into violent versus non-violent groups using this 
model was just above chance (see Supplementary Table S13). Further, n = 15 of the n = 25 correctly classified 
No-H participants in the hold-on sample had violent felony arrests in adulthood. Taken together, these studies 
demonstrate the applicability of machine learning in classifying ultra-high-risk adolescents.

It is important to note that not all models tested in the current study performed equally as well. Predicting 
future homicidal behavior using only clinical variables (i.e., psychopathic traits, history of trauma, previous 
offense history, etc.; for full list of variables included in all models see Supplementary Table S11) resulted in 
65% ROC. When only including neural data in the classification model, model performance increased to 80% 
ROC, with 71% sensitivity and 71% specificity rates. While overall performance of this latter model is similar 
to models incorporating both clinical and neural data, the sensitivity rate is lower when only including neural 
data. These results support the notion that the inclusion of both clinical and neural data together serve as the 
best method for identifying at-risk adolescents most likely to commit a future homicide, while balancing overall 
model performance. Indeed, neural data may allow for the capture of latent traits not fully assessed using clinical 
instruments alone.

Our group difference results demonstrate that age of first arrest and psychopathic traits are particularly 
important in determining juveniles’ risk for future homicide. It has been theorized that two subtypes of juvenile 
offenders exist: adolescent-limited and lifecourse persistent4. Adolescent-limited offenders engage in antisocial 
behavior only during childhood/adolescence and typically engage in lower rates of criminal offending upon 
entering adulthood. On the contrary, lifecourse persistent offenders continue to offend throughout the lifespan, 
with antisocial behavior routinely increasing in severity and frequency4. Lifecourse persistent offenders, 
compared to adolescent-limited, are characterized by earlier age of criminal onset4. The current results support 
this notion, as boys who would go on to commit a homicide in adulthood were significantly younger at the time 
of their first arrest compared to boys who would not commit a future homicide. This suggests boys included in 
our homicide group may be characterized as lifecourse-persistent offenders. Psychopathy scores may perhaps 
be even more discriminatory of who may commit a future homicide than age of first arrest. In this sample, boys 
in the H group scored significantly higher on PCL: YV Total, Factor 1, and Factor 2 scores. Feature importance 
models (Figs. 2 and 3, and Supplementary Fig. S1) displaying the relative predictive weight of each variable 
across all models show psychopathic traits are among the strongest predictors in all clinical-only and combined 
clinical and neural models. Psychopathic traits have also proven to have great utility in predicting future violence 
in other work18–21.

In the present study, incarcerated adolescents who committed a future homicide during adulthood were 
characterized by reduced baseline gray matter volume in the bilateral amygdala, bilateral middle temporal 
pole, and right superior temporal pole compared to incarcerated adolescents who did not commit a future 
homicide. Further, these regions were among the strongest negatively weighted features in the classification 
model, indicating that reduction of volume in these regions contributed the most to group membership. Figure 3 
and Fig. S1 demonstrate that when clinical and neural variables are included in the same model, neural data 
subsumes predictive information provided by the majority of clinical variables. Thus, reinforcing the importance 
of evaluating gray matter volume in regions identified here when assessing risk for homicide. Specifically, while 
the quality and breadth of information gained from clinical assessments varies by administrator and tool, 
neuroanatomical data is highly reliable and may be able to provide information on traits not directly assessed via 
clinical methods, such as is demonstrated here.

Reduced GMV within the amygdala has been previously shown to be predictive of both previous homicide 
in boys6 and future instances of violent felonies in adult men22. The amygdala has been previously implicated in 
processes including abnormal emotional learning and aversive conditioning in both psychopathy and antisocial 
behavior more generally23. The temporal pole has been associated with emotional and social processing24 
and higher likelihood of rearrest25. Studies have also found deficits in this region in those who score high in 
psychopathy26. The current results demonstrate that incarcerated adolescents who would go on to commit a 
future homicide during adulthood are characterized by neuroanatomical abnormalities in regions contributing 
to social interactions and emotional responding. Additionally, GMV reductions in these regions have also 
been associated with childhood trauma exposure27. It is important to consider, then, that neuroanatomic 
characteristics measured at baseline may in part be a consequence of earlier adverse experiences, including 
childhood maltreatment or trauma exposure. We note however, that the H and non-H groups did not significantly 
differ on an expert-rated assessment of trauma in the current study (see Supplementary Table S5). An additional 
VBM analysis was conducted including Trauma Checklist (TCL28) as a covariate (Supplementary Fig. S4), which 
resulted in nearly identical findings as displayed in Fig. 1. Therefore, childhood maltreatment or exposure to 
trauma is not likely contributing significantly to the current results.
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All incarcerated adolescents included in the SWANC-Y cohort are considered to be at a high risk for future 
criminal offending based on their previous antisocial behavior. However, being able to better understand the 
variables that place an adolescent at a more severe level of risk for future criminal behavior during adulthood, 
including homicide, is essential for improving the individual’s quality of life, the safety and well-being of society 
overall, and reducing the cost of crime. A number of risk assessment tools are currently used to predict risk 
for future antisocial behavior in youth. Tools such as the Structured Assessment of Violence Risk in Youth 
(SAVRY)29, Youth Assessment and Screening Instrument (YASI)30, and Structured Assessment of Protective 
Factors – Youth Version (SAPROF-YV)31 are used in the justice system to provide insight on the likelihood of 
re-offending among juvenile offenders when making parole, sentencing, and treatment course decisions. Studies 
investigating the predictive ability of these tools find overall moderate predictive validity and have thus far 
been limited to predicting general or violent recidivism32–35. To our knowledge, no study to date has examined 
the efficacy of such risk assessment tools in predicting future instances of homicide. Future studies may aim 
to compare the efficacy of the PCL: YV to other existing risk assessment tools in predicting future homicidal 
behavior.

Studies suggest that adolescence is a prime developmental window for intervention work36–38. By determining 
risk level and providing the appropriate treatment during a crucial developmental period, reductions in future 
antisocial behavior have been observed in other samples of high-risk boys36–38. For example, the Mendota 
Juvenile Treatment Center (MJTC) follows a clinical-correctional hybrid model36 where high-risk youth are 
provided with intensive cognitive behavioral therapy, education, and ancillary services. MJTC uses positive 
reinforcement to reward good behavior and promotes attendance in treatment and programming with mental 
health professionals36. Youth who completed programming at MJTC are 50% less likely to commit violent 
offenses upon release to the community than youth serving time in other correctional facilities. Indeed, in 
one study, none of the n = 200 MJTC treated youth committed a future homicide during a two-year follow-up 
window, whereas 10.6% of the untreated youth committed 16 total homicides38. Neuroanatomical features like 
those identified in the current study may also represent key targets for specialized treatment modalities. Research 
suggests neuroplasticity, or the brain’s ability to change over time, may be linked to behavioral changes resulting 
from psychotherapy39,40. This, combined with the reduced prevalence of homicide in MJTC-treated youth, 
supports the idea that risk factors for future homicide identified in the current study (i.e., high psychopathy 
scores and reduced GMV in the amygdala and temporal pole) may be mitigated if appropriately addressed via 
early interventions.

We note that more research is needed before the methodologies presented here should be used for individual-
subject prediction. Additionally, we acknowledge that MRI scans may not be readily available to all justice-
involved youth. Nevertheless, our results are the first to provide support for the utility in combining clinical and 
neural data when investigating risk level for future homicide in adolescent offenders, up to 16-years after their 
release.

Limitations and Future Directions
There are a few limitations to note. Despite our best attempts to accurately assign group membership, it is possible 
that participants included in the No-H group committed a homicide following their release from the juvenile 
correctional facility and have been incorrectly assigned to the wrong group. While we used both official record 
(n = 22) and self-reported incidences (n = 13) of homicidal behavior, there may be participants included in the 
No-H group who have committed this behavior but were not caught and did not disclose this information to 
research staff. There may also be participants who have not yet committed a homicide and may go on to commit 
one in the future. We plan to conduct additional follow-up studies at longer timepoints to address this issue.

Our sample was unique in several ways. This project was designed to work with a very high-risk sample 
to help the judicial system make evidence-based decisions regarding both risk prediction and treatment 
programming. Our sample was drawn from the highest-security juvenile correctional center in the State of 
New Mexico. This is a state-run facility for serious adolescent offenders and our sample is likely to differ from 
secure county/city managed correctional facilities and certainly will differ from community-based samples. Our 
participants were only those research-seeking individuals housed at this juvenile correctional facility. Although 
most of the youth at this facility volunteered to participate in this project, our work may not generalize to the 
entire population of high-risk youth offenders (i.e., those who did not volunteer for research or were excluded 
[see exclusion criteria]). It is also possible that geospatial variables may influence results (i.e., state- or nation-
wide homicide rate, firearm access), especially as it pertains to samples outside of the United States. Our sample 
was also restricted to boys. Thus, it is important for future research to examine other samples (e.g., incarcerated 
girls, adolescents housed at county or city-run facilities, and international samples) to test the generalizability 
of our findings.

Future studies should also aim to replicate and extend the methodology outlined here. Specifically, the current 
study identified variables predictive of any type of future homicide. Future studies should investigate specific 
homicidal subtypes, including sexual, multi-victim, or serial homicide. Additionally, while the best performing 
model had a high rate of specificity (i.e., true negatives), there were still boys included in the No-H group who 
were misclassified as high risk for future homicide. Given the practical implications of this work, more research 
is needed before the current methodologies can be used in practice. Finally, total or factor scores were included 
in models here. Future studies should investigate the utility of facet and/or individual item scores from various 
assessments in predicting future behavior. Thus, while the models explored here provide good groundwork for a 
psychobiological-based evaluation of risk factors associated with homicide, future studies are still needed before 
this or similar work should be implemented in informing risk level during probation, parole, and resentencing 
decisions.
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Conclusion
The current study utilized machine learning methods to predict which juvenile offenders would and would not 
commit a homicide up to 16 years after their release from a juvenile correctional facility based on clinical and 
neuroanatomical data. Overall classification rates were high, with models achieving 76% overall accuracy (82% 
ROC), and sensitivity (predicting future homicide: 86%), and specificity (predicting non-homicide: 74%) rates. 
This study is the first to investigate the efficacy of both clinical and neuroimaging data collected from juvenile 
boys who are already deemed to be at a high risk for future antisocial behavior in predicting who will commit 
a future homicide during adulthood. This study serves as a promising foundation for future investigations into 
the validity of this approach in understanding and predicting risk for future offending, particularly homicide. 
These results also indicate psychopathic traits, supplemented by abnormalities in brain regions associated with 
emotional learning and prosocial behavior, may be key targets for specialized treatment approaches aimed at 
reducing risk for severe violent behavior.

Materials and Methods
Data Collection
Data for the current study was collected in two phases. First, data (e.g., clinical and neural variables) was 
originally collected from incarcerated male adolescents as part of the SouthWest Advanced Neuroimaging 
Cohort – Youth (SWANC-Y; R01 MH071896-01, PI: Kiehl) sample. Participants included in the SWANC-Y 
sample were recruited from a maximum-security juvenile correctional facility in the state of New Mexico from 
the years 2007 to 2011. At this time of initial contact, written consent to participate in the initial data collection, 
to be contacted for follow-up data collection, and longitudinal record review was provided by participants over 
the age of 18 or by the participant’s parent or legal guardian for those under the age of 18. Written assent was 
also provided by participants under the age of 18. Participants provided written consent as adults to participate 
in additional data collection at follow-up timepoints. The University of New Mexico, Ethical and Independent 
Review Services/Salus IRB, the Office for Human Research Protections, and the juvenile correctional facility 
where data collection occurred (current IRB approval: Salus IRB; Study # 15050) approved of all research 
protocols. All research was performed in accordance with regulations set by the IRB.

In the second phase, outcomes data (i.e., both self-reported antisocial behavior post-release from the juvenile 
correctional facility and official adult charges and convictions) were collected. SWANC-Y study participants 
were followed-up with for up to 16 years after their release from the juvenile correctional facility to complete 
additional clinical assessments used to gauge involvement in antisocial behavior across the life course (see 
Assessments below; R01 HD092331, PI: Kiehl). Official arrests were extracted from criminal records obtained 
from the Administrative Office of the Courts in New Mexico and curated by the Center for Science and 
Law’s Criminal Record Database (CRD41. Data in the CRD were matched with previous participants via four 
identifiers, including first and last name, date of birth, and social security number. In addition to these criminal 
records, online searches (social media, White Pages, Been Verified, county records, New Mexico Corrections 
Department offender search, and out of state inmate databases) were conducted to compile re-arrest data for all 
participants, including those not found in the CRD (i.e., participants who moved out of state).

Participants
The final sample for the present study included n = 202 incarcerated adolescent boys recruited from a maximum-
security juvenile correctional facility in the state of New Mexico at the time of original data collection. Participants 
ranged from 13.82 to 19.37 years old (M = 17.48, SD = 1.10) at the time of their baseline MRI scan. Participants 
self-identified their race as American Indian or Alaskan Native (n = 17), Black or African American (n = 11), 
Native Hawaiian or Other Pacific Islander (n = 1), White (n = 120), or more than one race (n = 6), and their 
ethnicity as Hispanic or Latino (n = 158) or Non-Hispanic or Latino (n = 36). Additionally, n = 47 participants 
chose not to disclose their race, and n = 8 chose not to disclose their ethnicity. Participants reported medication 
use in the following categories at the time of MRI scan: antipsychotics (n = 36), antidepressants (n = 79), 
ADHD medications (n = 32), other (n = 81), unclassified (n = 4), and no medications (n = 72). Medications were 
considered unclassified if there was insufficient information via self-report or institutional file to determine 
the name and use. See Supplementary Table S1 for race and ethnicity counts, and Supplementary Table S2 for 
medication counts for participants included in both homicide and non-homicide groups.

Exclusion criteria for original data collection are as follows: traumatic brain injury associated with an extensive 
loss of consciousness, past or current history of CNS disease (e.g., stroke, multiple sclerosis, seizures, etc.), 
current or previous history of psychotic disorder as defined by the Diagnostic and Statistical Manual of Mental 
Disorders—Fourth Edition (DSM-IV42, first-degree relative with a history of psychotic disorder, hypertension 
or diabetes, mental retardation or fetal alcohol spectrum disorder, MRI contraindication (e.g., ferrous metal in 
body), low IQ (i.e., lower than 70), and low reading level (i.e., less than fourth-grade reading level). Participants 
were also excluded from the current study if they did not have a T1-weighted image. Finally, the current sample 
was restricted to male participants as there were too few female volunteers (n = 57) and the base-rate for future 
homicides among women was too low to power analyses (n = 1).

The total sample of n = 202 former SWANC-Y study participants was then further divided into two 
groups based on future homicidal behavior. The Homicide (H) group consisted of n = 35 participants who 
committed a homicide after their release from the juvenile correctional facility, whereas the No Homicide (No-
H) group consisted of n = 167 participants who did not engage in homicidal behavior at any time point prior 
to incarceration as a youth or up to 16 years after their release from the juvenile correctional facility. This rate 
of homicide (i.e., 17%) is substantially higher than average rates of homicide committed by men reported in 
the state of New Mexico across a similar 16-year follow-up period (i.e., 0.0075%43,44; follow-up period: 2007–
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2023). Participants were included in the H group if they were charged with the following crimes after their 
release: Murder in any degree, Manslaughter, and/or Attempted Murder, with the exception of certain Vehicular 
Manslaughter convictions. In vehicular manslaughter cases, participants were excluded if the details of their 
crime indicated they did not willfully and intentionally kill another person (e.g., being involved in a car accident 
resulting in a death of another individual). Participants with charges of assault, battery, or other violent crimes 
remained in the No-H group because these charges do not indicate intent to cause immediate death or great 
bodily harm resulting in death. Charges were used to determine group assignment rather than convictions 
due to the high rate of charges being dropped or reduced in severity during plea bargaining in the United 
States. Using charges rather than final convictions therefore allowed us to determine the intent of violence based 
off of the official record of the crime. In addition to official charges, participants were also included in the H 
group if they self-reported engaging in homicide (i.e., committing homicide or attempted homicide in which 
an intent to kill was evident) via clinical interviews and self-report questionnaires obtained during follow-up 
data collection. The clinical interviews used to obtain self-reported homicide included the Hare Psychopathy 
Checklist: Youth Version (PCL: YV13), the Hare Psychopathy Checklist-Revised (PCL-R45), and an in-house 
crime inventory (CI46), collected at both the initial timepoint and at follow-up. Additionally, four assessments 
that were developed by our research group to capture antisocial behavior throughout the lifecourse were used 
to determine group membership. Specifically, two assessments were administered at the first timepoint as part 
of the original grant and the remaining two were longitudinal assessments administered during the follow-up 
period when participants were adults. A total of n = 51 participants (out of 202, 25%) completed at least one of 
these follow-up assessments. Information on self-reported homicidal behavior was cross-referenced between 
multiple assessments and timepoints to avoid incorrect group assignment due to false reporting. Based on these 
definitions, n = 22 participants had an official adult charge of homicide/manslaughter/attempted homicide and n 
= 13 participants self-reported engaging in homicidal behavior after their release from the juvenile correctional 
facility. Of the n = 35 participants in the H group, n = 11 previously committed homicide prior to their admission 
into the juvenile correctional facility. Within this grouping, n = 3 participants were classified in the homicide 
group in our previous report6. The remaining n = 8 were determined to have met current criteria for previous 
homicidal behavior based on additional information. Supplemental analyses were conducted excluding these n = 
11 participants with previous homicides (see Supplementary Tables S9 and S10, and Fig. S3), to ensure reliability 
of results. Finally, participants were included in the No-H control group if they did not have an official charge or 
conviction of Murder in any degree, Manslaughter, or Attempted Murder in any degree, and did not self-report 
homicidal behavior at any timepoint (i.e., both before their admittance to the juvenile correctional facility and 
after their release).

Assessments
All baseline data included in analyses were collected from the SWANC-Y cohort as part of a larger study. The 
following variables were assessed: age at scan, IQ, socioeconomic status, number of substance use disorders, 
years of substance use, impulsivity, psychopathy, psychopathologies (i.e., anxiety, depression, attentional 
deficient-hyperactivity disorder, conduct disorder/oppositional defiant disorder, post-traumatic stress disorder), 
childhood trauma, number of traumatic brain injuries, age of first arrest, number of prior felonies, number 
of prior misdemeanors, number of prior probation/parole violations, total number of prior convictions, gang 
affiliation, parental incarceration, parental separation, total brain volume, and GMV estimates within regions 
of interest (ROIs; bilateral amygdala, insula, parahippocampal gyrus, middle temporal pole, superior temporal 
pole, orbitofrontal cortex). See Supplementary Information for additional details on all clinical variables.

MRI: Imaging Parameters
High-resolution T1-weighted structural MRI scans were acquired with the Mind Research Network Siemens 
1.5T Avanto mobile MRI scanner, stationed at the juvenile correctional facility at the time of original data 
collection, using a multi-echo MPRAGE pulse sequence (repetition time = 2530 ms, echo times = 1.64 ms, 3.50 
ms, 5.36 ms, 7.22 ms, inversion time = 1100 ms, flip angle = 7◦, slice thickness = 1.3 mm, matrix size = 256 × 256) 
yielding 128 sagittal slices with an in-plane resolution of 1.0 × 1.0 mm.

MRI: Preprocessing and Region of Interest Selection
Data were pre-processed and analyzed using Statistical Parametric Mapping 12 (SPM12) software47 (Wellcome 
Department of Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm). T1 images were 
automatically oriented to anterior-posterior commissure (AC-PC) alignment using the auto_acpc_reorient 
algorithm (https://github.com/lrq3000/auto_acpc_reorient) and were visually inspected to ensure proper 
realignment. Images were then spatially normalized to Montreal Neurological Institute (MNI) standard space 
via the Unified Segmentation approach as implemented in SPM1248, which applies image registration based on 
Gaussian mixture modelling, tissue classification with warped prior probability maps, and bias correction to be 
combined in the same generative model. During spatial normalization, data were resampled to 2 × 2 × 2 mm, 
segmented into gray/white/cerebrospinal fluid maps, and modulated with Jacobian determinants to preserve 
total volume. Voxels with a gray matter value < 0.15 were excluded to remove possible partial volume effects. 
Finally, modulated and normalized segmented images were spatially smoothed with a 10 mm full width at half 
maximum (FWHM) Gaussian kernel.

Neuroanatomical regions of interest (ROIs) were selected based on previous literature documenting their 
association with psychopathic traits, antisocial behavior, and homicidal offending6,49–52. These included regions 
including the bilateral amygdala, insula, parahippocampal gyrus, superior temporal pole, middle temporal pole, 
and orbitofrontal cortex. ROIs were delineated using the Wake Forest University (WFU) Pick Atlas Toolbox53,54. 
These ROIs are displayed in Fig. 4.

Scientific Reports |         (2026) 16:2920 9| https://doi.org/10.1038/s41598-025-32782-5

www.nature.com/scientificreports/

http://www.fil.ion.ucl.ac.uk/spm
https://github.com/lrq3000/auto_acpc_reorient
http://www.nature.com/scientificreports


Data Analysis

Independent Samples t-test
Independent samples t-tests were conducted to investigate group differences between H and No-H participants 
on clinical and criminological variables. Due to a priori hypotheses regarding the relationships between homicide 
and psychopathic traits and age of first arrest, uncorrected one-tailed t-tests were performed for PCL: YV Total, 
Factor 1, and Factor 2 scores, and age of first arrest. Exploratory analyses compared additional variables (i.e., age 
at MRI scan, IQ, SES, Number of SUDs, ASI, BIS-11 total, number of TBIs, number of prior felonies, number of 
prior misdemeanors, number of prior parole/probation violations, total number of criminal convictions, total 
BV, and Trauma Checklist (TCL) Total, Factor 1, and Factor 2 scores) between groups, as these relationships 
are less supported. These post-hoc tests therefore underwent two-tailed independent samples t-tests, and a 
Bonferroni multiple comparison correction was utilized (i.e., 0.05/15, or p < .003).

Additional exploratory analyses were conducted comparing Future Homicide-Only (FH-Only; n = 24) boys, 
a subset of those in the H group who did not have a previous history of homicidal behavior prior to baseline data 
collection, to the No-H group on all aforementioned clinical variables. Further, independent samples t-tests were 
also conducted comparing the original H- and No-H participants on PCL: YV Facet and Item scores.

Fisher’s Exact Test  Fisher’s Exact Tests were performed to investigate exploratory group differences between 
(a) H and No-H participants, and (b) FH-Only and No-H participants, on binary variables (i.e., all KSADS 
diagnoses, gang affiliation, parental incarceration, and parental separation). A Bonferroni multiple comparison 
correction was again utilized with these binary comparisons (i.e., 0.05/8, or p = .006).

Voxel-based morphometry
Voxel-based morphometry (VBM) is a voxel-wise neuroimaging technique, which was used here to determine 
group differences in gray matter volume (GMV) between H and No-H groups. An additional VBM analysis 
was conducted examining neuroanatomical differences between FH-Only and No-H groups. Specifically, two-
sample t-tests were performed on a voxel-wise basis across gray matter segmentation maps. Given the sample 
sizes, we utilized non-parametric comparisons through the Randomise55 algorithm in the FMRIB Software 
Library (FSL56, applying N = 10,000 permutations, to generate contrast estimate maps. Brain volume (BV, sum of 

Fig. 4.  The 12 a priori regions of interest. 1 and 2: left and right amygdala. 3 and 4: left and right insula. 5 and 
6: left and right parahippocampal gyrus. 7 and 8: left and right middle temporal pole. 9 and 10: left and right 
superior temporal pole. 11 and 12: left and right orbitofrontal cortex. All regions were identified using the 
Wake Forest University (WFU) Pick Atlas Toolbox.
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gray matter and white matter volumes for each participant) and participant’s age at MRI scan were included as 
covariates. Given the a priori selection of previously published ROIs, binarized masks of each hemisphere of the 
bilateral a priori ROIs (amygdala, insula, parahippocampal gyrus, superior temporal pole, middle temporal pole, 
and orbitofrontal cortex) were used for small volume correction (SVC) to spatially constrain the search area 
for peak estimates, using false discovery rate (FDR) correction at p(FDR) ≤ 0.05 (Fig. 1). A final VBM analysis 
examining GVM differences between H- and No-H groups was conducted in which BV, age at MRI scan, and 
TCL scores were included as covariates.

Machine Learning
Weighted Linear Support Vector Machines (SVM), where the H and No-H groups are automatically weighted 
based on their sizes (inversely proportional to size in training data) was chosen to classify between the H and 
No-H groups due to the size imbalance between the two groups. This weighted linear SVM approach attempts 
to find the optimal decision boundary (hyperplane) that maximizes the margins between the H and No-H 
groups in the dataset feature space. The hyperparameter C in the SVM is a regularization term that balances 
the margin maximization and misclassification penalty. By implementing a weighted classifier, during the ML 
training procedure, the algorithms will choose the hyperparameter C of the SVM that assigns more importance 
(i.e., weight) to the correct identification of the minority homicide class members. This helps to reduce the 
classifier from being biased towards the majority non-homicide class. An a priori model included all ROIs, total 
BV, age at MRI scan, and PCL: YV factor scores. Additionally, the following models were conducted: (1) all 
clinical variables alone, (2) all neural data alone, and (3) all clinical and neural data combined for completeness 
(see Supplementary Table S11 for a list of all models investigated here). The value of the hyperparameter C 
was chosen using 1000 bootstrapped iterations randomly chosen from the range of 1e-5 to 1e-3 per training 
dataset (n = 133) and the best performing value on the validation dataset (n = 33) was chosen. This process was 
repeated 15 times across several splits of the 80% of the dataset (n = 166) that was reserved for model tuning and 
optimization. The most frequently chosen C value was subsequently used to train the 80% of the data and derive 
the best Linear SVM model. Homicide cases are intrinsically low probability events, hence, to maximize the 
identification of high-risk individuals over classification accuracy57, instead of using resampling methods such 
as SMOTE, the default decision threshold of 0.5 for classification was altered. Additionally, since a significant 
number of the features are not well-separated [Supplementary Tables S5 and S6, Table 1], resampling methods 
may overfit to the minority class thereby reducing the generalizability of the classifier58. Therefore, the decision 
threshold for determining the class membership in the best model was tuned to maximize the f1 score to balance 
precision and recall59 to increase the classifiers prediction capability of the individuals in the Homicide class. The 
held-out test dataset (n = 35, H = 7, No-H = 28) was then applied to the tuned model to derive final performance. 
The tuned threshold classifier models generally improved the specificity of the models with imaging-variables 
with minimal loss of sensitivity, thereby improving overall accuracy. Feature importance weights for all the 
features were extracted to understand the contribution of each of them to the overall model performance.

Data availability
The data presented in this article are not readily available due to the potential for re-identification of participants 
in the present sensitive population (incarcerated juveniles). Interested parties should contact Dr. Kent Kiehl 
(kkiehl@unm.edu) for data used in this report, which may be shared under a signed data sharing agreement.
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