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This paper proposes a method for obtaining independent mesh models of individual components 
from a point cloud representing an aggregate. An aggregate consists of a collection of small, similar 
components, such as individual grapes in a bunch. Typical shape reconstruction creates a rough shape 
of the entire bunch, but fails to recover individual components from the bunch due to occlusion and 
missing points for shapes. To achieve this type of modeling, we assume that each component can 
be approximated as a spherical shape. Leveraging this assumption, we develop geometry-aware 
clustering that identifies and segments individual components from the aggregate. During this 
procedure, we search for the optimal position and size of a predefined aggregate component that 
best fits the cluster. When overlapping components are detected, the corresponding clusters are 
merged. We demonstrate the effectiveness of the proposed method by applying it to several types of 
aggregates, such as grapes and tomatoes.
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In computer graphics (CG), creating a variety of 3D objects is essential to enhance the realism of visual content. 
Since scenes typically contain a large number of objects, modeling all of them manually requires significant time 
and effort. To address this issue, various methods have been proposed for simplifying the process of 3D object 
modeling. In particular, many recent approaches allow users to easily model 3D objects by using images or 
illustrations as input 1–6. However, these methods typically generate a single mesh model per object. Therefore, 
it is difficult to model each individual component of an aggregate, such as the individual grape berries in a 
bunch, as an independent mesh. In our preliminary experiments, we applied the method proposed by Liu et 
al.5. to reconstruct a 3D model of a grape bunch. However, as shown in Fig.  1, the individual grape berries 
were not separated, and the result was a single fused shape lacking clear separation between components. More 
recently, methods based on Gaussian Splatting have attracted significant attention, and Cen et al. proposed a 
3D segmentation method utilizing Gaussian Splatting7. However, even with these state-of-the-art techniques, it 
remains challenging to individually recognize each grape berry in a bunch.

To address this problem, we propose a method that models aggregates by reconstructing each component 
as an independent mesh. Specifically, we segment the point cloud obtained from images into individual 
components through a combination of clustering and component fitting. Our method takes as input a point cloud 
representing the target aggregate and a mesh model of a single component. The point cloud is generated from 
input images using COLMAP1, a widely used Structure-from-Motion pipeline. We apply k-means clustering to 
the point cloud, and for each cluster, we determine the position, orientation, and size of the best-fitting aggregate 
component via a search based on Chamfer distance. However, this process alone is not sufficient to accurately 
identify all components, as one component may be split into multiple clusters, or a single cluster may span 
multiple components. As a solution, we merge clusters based on the overlap between the fitted components, 
and then reapply the component fitting to the merged clusters. In this paper, we focus on aggregates composed 
mainly of spherical components, and demonstrate the effectiveness of our method on various inputs, including 
both synthetic CG images and real-world photographs.

As a line of research on 3D reconstruction of aggregates, several methods have been proposed in the 
agricultural domain for estimating the number of grape berries and evaluating their quality8,9. These methods 
aim to support harvesting and quality control by estimating the number and size distribution of grape berries 
from one or more input images. However, they tend to be computationally expensive and often require specialized 
equipment. Moreover, to the best of our knowledge, no prior work has focused on estimating the 3D information 
of individual aggregate components for the purpose of CG modeling.
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Related work
3D reconstruction
Structure-from-Motion (SfM) and Multi-View Stereo (MVS) are widely used techniques for reconstructing 
the 3D shape of objects from multi-view images. COLMAP by Schönberger et al.1 enables high-precision 3D 
reconstruction from images by detecting corresponding feature points across multiple views and estimating 
camera motion and 3D point positions based on geometric relationships. Langguth et al. achieved high-accuracy 
3D reconstruction by incorporating shading information in addition to stereo matching10. Cui et al. proposed a 
reconstruction method that combines the advantages of incremental and global SfM approaches11. Hepp et al. 
developed a method specialized for large-scale building reconstruction using a drone2. While these methods are 
effective for generating high-quality 3D models of individual objects, they struggle to produce separated models 
of individual components when the target is a densely packed aggregate.

Recently, 3D reconstruction techniques based on deep learning have made remarkable progress. Mildenhall 
et al. proposed NeRF3, a method for synthesizing novel views from a set of images with known camera poses. 
NeRF represents a scene as a continuous 5D function and optimizes it using a neural network. Based on NeRF, 
several studies have explored novel view synthesis from a single input image12. However, these methods cannot 
represent geometry in the form of surface meshes. In response to this limitation, Tang et al. proposed a method 
for extracting surface meshes from NeRF4. Their approach generates high-quality models by adaptively refining 
vertex positions and face density on a coarse mesh extracted from NeRF, based on rendering errors. An approach 
that incorporates deep learning into Multi-View Stereo (MVS) has also been proposed. MVSNet, introduced 
by Yao et al.13, is an end-to-end architecture that replaces the depth map estimation process in MVS with deep 
learning. This method takes multi-view images as input and constructs a 3D cost volume representing depth 
hypotheses for each pixel to estimate the depth map. This approach enables faster and more accurate mesh 
generation compared to traditional MVS methods.

Furthermore, methods have been proposed to generate meshes directly without intermediate representations 
such as voxels or point clouds. Liu et al. proposed MeshDiffusion14, which directly generates 3D meshes using 
diffusion models. This method achieves mesh generation capable of representing finer undulations and sharp 
edges compared to conventional methods by learning data converted from object meshes in 3D shape databases 
into lattice structures composed of tetrahedra. GET3D by Gao et al.15 is a method that directly generates high-
quality 3D textured meshes with arbitrary topologies by combining differentiable mesh representations with 
neural networks that predict color information from 3D spatial coordinates. These methods can create detailed 
mesh data with fewer images compared to existing SfM, but since they treat the target as a single object, it is 
difficult to obtain mesh models where the components of an aggregate are separated.

Aggregate modeling
Several methods have been proposed for modeling aggregates. Ma et al. introduced a method for generating 
aggregates by synthesizing repeated elements over a large output region specified by the user, based on a small 
number of input samples16. By efficiently encoding and optimizing properties such as shape, size, color, and 
spatial distribution of the elements, this method produces visually plausible aggregates. Roveri et al. proposed a 
sample-based method for synthesizing repetitive structures17. This approach learns a given example pattern and 
applies it to new regions or shapes, generating visually consistent structures. Sakurai et al. proposed a modeling 
technique for aggregates with non-periodic stacked structures18. Their method generates aggregates solely 
through parameter control, by optimizing random element placements to minimize overlaps, without relying 
on physical simulations or sample data. Hsu et al. presented a system to assist with the interactive modeling of 
aggregates19. In their method, an element field is first defined based on partial user input regarding the position, 
orientation, and scale of elements. Then, the remaining elements are automatically generated by optimizing 
their positions, orientations, and scales to produce a coherent aggregate. These approaches allow the procedural 
modeling of visually plausible aggregates. Similarly, we aim to simplify the modeling of aggregates and propose 
a method that takes point clouds obtained from real images as input, enabling the generation of aggregates with 
spatial arrangements that more closely resemble real-world instances.

Although not intended for CG applications, methods related to aggregates have been proposed to reconstruct 
the three-dimensional shape of grapes, estimate the number of grape berries, and perform quality management8,9. 
These methods support harvesting and quality management by obtaining the distribution of grape numbers and 

Fig. 1.  Reconstructed result using a previous approach (Liu et al.).
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sizes from one or multiple input images. However, these methods have constraints such as high computational 
cost and the need for specialized equipment. In contrast, our approach leverages the rapidly advancing techniques 
in computer vision to enable modeling using point clouds obtained from real-world images, without the need 
for specialized equipment. Furthermore, by combining clustering and element search on the point cloud, our 
method achieves a lower computational cost compared to the aforementioned approaches.

Our method
An overview of our geometry-aware clustering is shown in Fig. 2. In this study, the inputs are a point cloud 
representing an aggregate and a mesh model representing a single component (hereafter referred to as the 
component model). Since this work focuses on aggregates composed of spherical components, such as grapes 
and tomatoes, we use a sphere as the component model. The point cloud is generated using COLMAP1. Our 
method applies three processes to the input point cloud: clustering, component model fitting, and cluster 
merging, in order to segment the point cloud into clusters corresponding to individual components. Finally, 
we perform detailed fitting of the component model to each cluster, enabling component-wise modeling of the 
aggregate. The following sections describe each process in detail.

Clustering point cloud
The point cloud representing an aggregate is obtained using an existing structure-from-motion method such 
as COLMAP. Since the reconstructed point clouds differ in scale depending on the target object and imaging 
conditions, each point cloud is normalized so that it fits within a bounding box of [−1, 1] along all axes. Next, to 
reduce computational cost, the normalized point cloud is downsampled using a voxel grid method. Specifically, 
the three-dimensional space is divided into a uniform grid of 2003 voxels, and all points contained within each 
voxel are replaced by a single point corresponding to their centroid. This reduction in point density effectively 
decreases the computational burden for the subsequent clustering and fitting processes, while preserving most of 
the geometric details of the aggregate. The preprocessed point cloud is then partitioned into clusters.

We adopt k-means clustering for this step. The k-means clustering is a method that partitions the given data 
into k clusters. Specifically, it begins by randomly initializing k cluster centroids (centers of mass), then assigns 
each data point to the cluster with the nearest centroid. The centroids are then recalculated based on the current 
cluster assignments, and the data points are reassigned to the nearest new centroids. This process is repeated 
until the centroids converge. The number of clusters is specified by the user as an approximate value that is larger 
than the expected number of components in the aggregate. This overestimation helps prevent a single cluster 
from spanning multiple components.

Fitting aggregate component to cluster
We fit a component model into each cluster in the clustered point cloud. An overview of this process is shown in 
Fig. 3. For each cluster, we perform a RANSAC-based search which consists of two steps: hypothesis generation 

Fig. 2.  Overview of our framework.
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and local refinement. In the hypothesis generation step, we randomly sample a small number of points from the 
cluster and compute a candidate sphere based on them. In the local refinement step, each candidate sphere is 
optimized using only the sampled points, refining its parameters (center and radius) to better fit those points. 
This process is repeated for multiple hypotheses, and the best-fitting sphere is selected based on Chamfer distance 
evaluated over the entire cluster. In our experiments, the number of hypotheses Nhypo was set to 50, and the 
maximum number of iterations in the local refinement step Nrefi was set to 50. These values were determined 
empirically based on preliminary experiments.

In the hypothesis generation step, 10% of the points within each cluster are randomly sampled. For the 
sampled points, local refinement (described later) is performed to estimate the radius and center position of the 
sphere that best fits the sample. Then, for all points p in the cluster, the distance dp to the surface of the refined 
sphere is computed, and those points whose distances fall below a predefined threshold ϵ are marked as inliers. 
Specifically, this distance dp is computed as follows:

	 dp = |r − ∥xp − c∥2|� (1)

where, xp is a position of the point p, c and r are the center and radius of a hypothesis sphere, respectively. We set 
ϵ = 0.015 for all examples. If the ratio of inlier points to the total number of points in the cluster exceeds 50%, 
the hypothesis is considered valid, and the Chamfer distance between the refined sphere and the inlier points 
is computed. This process is repeated for all hypotheses, and the hypothesis with the smallest Chamfer distance 
among the valid ones is selected as the best-fitting sphere for the cluster. Also, these parameters in the hypothesis 
generation step were determined empirically. Halving the parameters caused fitting failures, while doubling 
them increased runtime without improving results.

In the local refinement step, the goal is to optimize the radius and center position of the sphere that best 
fits the sampled points within each hypothesis. First, a sphere with an initial radius specified by the user is 
placed at the centroid of the sampled points. Through experiments, we have confirmed that setting the initial 
radius to approximately match the smallest component in the target aggregate yields favorable results. Next, 
the method performs an iterative search by translating and scaling the sphere. Specifically, a set of candidate 
spheres is generated by perturbing the current sphere’s position and radius. For each candidate, the Chamfer 
distance to the sampled points is computed, and the candidate with the smallest distance is selected as the 
new reference sphere for the next iteration. We adopt a symmetric Chamfer distance dCD , which serves as the 
objective function for this optimization:

	

dCD(Psmp, Vsph) = 1
|Psmp|

∑
q∈Psmp

min
v∈Vsph

∥xq − xv∥2 + 1
|Vsph|

∑
v∈Vsph

min
q∈Psmp

∥xv − xq∥2� (2)

where, Psmp is the set of sampled points and Vsph is the set of vertices of the candidate sphere mesh. xq  and 
xv  indicate positions for the sampled points and the vertices of the candidate sphere, respectively. This process 
is repeated until one of the following conditions is met: (1) the Chamfer distance falls below a predefined 
threshold dth1 (0.015 in our experiments), (2) the change in Chamfer distance from the previous iteration falls 
below a threshold dth2 (0.001 in our experiments), or (3) the number of iterations reaches the maximum limit 

Fig. 3.  Overview of our fitting process.
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Nrefi. The radius and position of the final sphere are taken as the optimized result. Each iteration evaluates 
35 candidate spheres generated by combining 7 translations (including no translation) along the positive and 
negative directions of each of the x, y, and z axes (with a translation width of 0.01), and 5 radius scalings (0.8, 
0.9, 1.0, 1.1, 1.2).

Merging superfluous clusters
The k-means clustering does not always produce clusters that precisely follow the shape of individual 
components. As a result, it is possible for a single component to be split across multiple clusters, or for a single 
cluster to span multiple components. In such cases, the fitted spheres obtained in the earlier step often overlap 
with each other. To address this, we detect overlapping spheres and merge the corresponding clusters in order 
to improve the accuracy of component detection. In this study, two spheres are considered to be overlapping if 
the distance between their centers is less than 90% of the sum of their radii: ∥ci − cj∥2 < α(ri + rj), where 
ci, cj  and ri, rj  are centers and radii for i- and j-th spheres, and we set α = 0.9. When such a pair is found, the 
corresponding clusters are merged. As shown in Fig. 4, if three or more spheres mutually overlap, all of their 
corresponding clusters are merged, and k-means clustering is reapplied using a new number of clusters equal 
to the number of overlapping spheres minus one. The fitting process described earlier is then repeated for the 
merged cluster. This process of overlap detection and cluster merging is repeated until no further overlapping 
spheres are found.

After the merging process, a more detailed fitting procedure is applied to each cluster using the position and 
radius of the best-fitting sphere obtained by the earlier RANSAC search as the initial values. Specifically, the 
sphere search process described in the previous local refinement step is extended to include per-axis scaling and 
rotation as additional parameters. The scaling operation is applied independently along each axis, analogous 
to the radius scaling described earlier. For rotation, seven variations are evaluated: six corresponding to ±10◦ 
rotations around each of the x, y, and z axes, and one with no rotation.

Experimental results
Figures  5 and  6 show the results of aggregate modeling using the proposed method. Fig.  5 presents results 
obtained from point clouds generated from rendered images of aggregate 3D models using the 3DCG software 
Blender. Figure 6 shows results obtained from point clouds reconstructed from images of real food samples 
captured from 360 degrees around the object. Statistics of these experiments are summarized in Table 1. For 
point cloud generation from images, we used COLMAP1, a reconstruction system based on Structure from 
Motion. The image sets used as input to COLMAP were obtained as follows. For the rendered 3D models 
(Fig. 5), we placed a virtual camera at a fixed distance from the object and rendered 60 images by rotating the 
camera around the object in azimuth by 6 degrees increments over 360 degrees. When these 60 images did not 
yield a satisfactory point cloud reconstruction in COLMAP, we additionally rendered another 60 images with 
the virtual camera tilted by 35 degrees in elevation, resulting in a total of 120 images. For the real objects (Fig. 6), 
we suspended each sample from a small motorized rotating device (similar to a mirror ball motor) and captured 
a video using a smartphone while the object was continuously rotated. We then extracted approximately 90 
frames from the recorded video for reconstruction. In our experiments, the images were captured under white 
fluorescent lighting; however, as long as the object is clearly visible, there are no strict constraints on illumination. 
For both the CG and real-image experiments, the image resolution was 1920 × 1080. After generating the point 
clouds, we applied color-based filtering and spatial cropping to extract only the point cloud corresponding to 
the target aggregate.

In the initial clusters (shown in the bottom-left corner of each “Target object” image), a single component is 
often split across multiple clusters. In contrast, after applying the proposed method, the clusters (shown in the 
bottom-left corner of each “Our result” image) are generally aligned with individual components. This is also 
supported by the small difference between the actual number of components Ne and the number of clusters 
computed by our method Nm, as summarized in Table  1. Furthermore, by comparing the “Target object” 
and “Our result”, it is evident that the size and placement of most components are accurately estimated. The 
Supplementary video contains animation examples showing the point clouds and mesh models for each result, 
rendered from 360-degree viewpoints.

Fig. 4.  Cluster merging process.
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Fig. 6.  Our results on real food samples: (a) grape, (b) cherry, and (c) tomato. The inset image on the target 
object/our result shows initial/resultant clusters.

 

Fig. 5.  Our results on 3D models of aggregates. The inset image on the target object/our result shows initial/
resultant clusters.
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Next, to quantitatively evaluate the quality of the results, we checked the accuracy of the positions of each 
aggregate component explored by the proposed method using CloudCompare20, similar to the conventional 
method9. Table  2 shows the results of calculating the mean and standard deviation of the center-to-center 
distances of corresponding components in the target 3D model and our result model. Each value is normalized 
based on the length of the diagonal of the bounding box covering the entire input model. In Table  2, the 
average center-to-center distance between corresponding components is around 0.02, and since the value of the 
conventional method9 is about 0.02-0.04, we achieved high accuracy in terms of position. The experiments were 
conducted on a PC equipped with an Intel Core i9-10850K processor and 64GB of memory. Excluding point 
cloud generation by COLMAP, the computation time for the proposed method was approximately 150 seconds. 
In contrast, the computation time excluding COLMAP in the conventional method9 has been reported to be 
at least 1,000 seconds. Although the computational environments used in the two studies are not identical and 
thus the times are not directly comparable, our method is more than six times faster. Moreover, since Woo et al.’s 
experiments were conducted using a GPU, it is reasonable to expect that our method, which has not yet been 
implemented on a GPU, could be even faster under similar conditions.

Next, Fig.  7 presents a comparison with the state-of-the-art method for 3D segmentation via Gaussian 
Splatting, namely SAGA7. SAGA enables interactive segmentation of scenes constructed using 3D Gaussian 
Splatting (3D-GS). The results obtained by SAGA are shown in the right column of Fig. 7, using the same set 
of input images as in our results. In all examples, SAGA produces several components that are fragmented 
into multiple small clusters, whereas our method does not exhibit such issues. SAGA relies on the Segment 
Anything Model (SAM)21, a 2D segmentation model used for training. However, SAM struggles to generate 
accurate masks for aggregates composed of many small, densely packed objects, such as those targeted in our 
study. As a result, SAGA, which uses these masks as supervision, fails to infer effective features for distinguishing 
individual components in 3D space. In contrast, our method achieves effective segmentation of aggregates 
through geometry-aware clustering.

In terms of comparison methods, the approach of Woo et al.9 is also based on a spherical assumption, as 
their framework approximates each grape berry as a sphere. SAGA7, on the other hand, is designed to handle 
more general 3D shapes. While fine-tuning SAGA on a dataset tailored to grape-like aggregates could potentially 
improve its segmentation accuracy in our setting, the training code for the model is not publicly available, 
which makes such experiments difficult to carry out. Furthermore, fine-tuning a large model would require 
a substantial amount of training data and compute. From the standpoint of computational and manual cost, 

Experiment Md Ms

Figure 5 (a) 0.020062 0.007476

Figure 5 (b) 0.030415 0.009254

Figure 5 (c) 0.027770 0.010666

Figure 5 (d) 0.022777 0.013357

Figure 5 (e) 0.020843 0.005546

Figure 5 (f) 0.034067 0.012271

Figure 8 (a) 0.021039 0.012019

Figure 8 (b) 0.017230 0.010914

Table 2.  Center-to-center mean distance (Md) and standard deviation (Ms) between the input components 
and the corresponding components obtained by the proposed method for each result.

 

Experiment Nv Ni Ne Nm to

Figure 5 (a) 55476 60 35 35 123.780

Figure 5 (b) 42913 60 24 24 136.966

Figure 5 (c) 44402 60 37 35 125.581

Figure 5 (d) 45198 100 69 72 183.46

Figure 5 (e) 21283 40 22 21 65.158

Figure 5 (f) 23293 20 8 8 164.165

Figure 6 (a) 117503 60 49 49 112.349

Figure 6 (b) 26123 15 6 6 84.72

Figure 6 (c) 123416 20 12 12 180.389

Figure 8 (a) 85075 60 27 27 1233.981

Figure 8 (b) 98846 60 37 35 1059.595

Table 1.  Summary of the number of vertices in the input point clouds (Nv), initial number of clusters (Ni), 
actual number of components (Ne), number of clusters computed by our method (Nm), and computation 
time of our method (to, in seconds), for each result.
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we therefore consider our geometry-aware clustering approach to be advantageous for practical modeling of 
aggregates from point clouds.

Finally, We additionally evaluated the proposed method on aggregates composed of ellipsoidal and slightly 
deformed spherical components (Fig. 8). To support these non-spherical shapes, we made minimal but concrete 
extensions to the original pipeline, which had been designed under a spherical assumption. First, in the 
RANSAC-based fitting step, we generalized the inlier criterion. For each hypothesized component, represented 
as a mesh, we compute for every mesh vertex the distance to the nearest point in the corresponding cluster, 
and then calculate the proportion of vertices whose distance is below a predefined threshold. Second, in the 
hypothesis generation step, we extended the set of candidate components to include rotated variants. In addition 
to the unrotated hypothesis, we generate and evaluate patterns in which the component is rotated by ±10 
degrees around each coordinate axis, in the same manner as in the post-fitting step. Third, we reformulated 
the cluster merging condition using inside–outside information. For a pair of hypothesized components, we 
compute the fraction of vertices of one component that lie inside the other (the number of vertices inside divided 
by the total number of vertices of that component). If this fraction exceeds a threshold n%, the two components 
are regarded as overlapping and are merged. In our experiments, a threshold of 2% yielded the best results for 
ellipsoidal components, while 10% worked best for the slightly deformed shapes. As shown in Fig. 8, Tables 1 

Fig. 8.  Our results on ellipsoidal and slightly deformed component shapes. The inset image on the target 
object/our result show initial/resultant clusters.

 

Fig. 7.  Comparisons with Segment Any 3D Gaussians. The inset image on our cluster shows the target object.
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and 2, the proposed method achieves good segmentation and localization performance even for these ellipsoidal 
and slightly deformed components under the extended settings. These results indicate that our framework 
can be naturally extended beyond purely spherical components and has the potential to handle more general 
component shapes.

Discussion
In our method, the number of clusters k for k-means clustering and the initial radius of the component model 
must be specified by the user in advance. To investigate the range of these parameters within which the proposed 
method operates stably, we conducted a sensitivity analysis using the example in Fig. 5. For the cluster number, 
we considered three settings: k = Ne, k = 2Ne, and k = 3Ne, where Ne is the actual number of components. 
When the components were relatively large (Fig. 5(a), (b), (c), and (f)), all three settings produced final cluster 
counts within approximately ±2 of Ne. However, for examples with smaller components (Fig. 5(d) and (e)), the 
settings k = 2Ne and k = 3Ne led to over-segmentation. These results suggest that choosing k to be about 1.5–2 
times the actual number of components yields a stable final number of clusters. For the initial radius, we scaled 
the radius of the smallest visible component by factors of 0.7, 0.8, 0.9, 1.1, 1.2, and 1.3. Radii smaller than the 
smallest component (0.7–0.9) reduced the effectiveness of the merging step and consistently resulted in over-
segmentation for all examples in Fig. 5. In contrast, larger radii (1.1–1.3) had little influence on the clustering 
quality and still produced appropriate segmentation. In terms of localization accuracy, the over-segmented cases 
showed degraded accuracy, whereas the other settings achieved accuracy comparable to that reported in Table 2. 
Automatic estimation of the cluster number k and the initial radius remains an important topic for future work. 
In particular, we expect that learning-based approaches, such as the deep learning framework of Woo et al.9, 
could be incorporated into our pipeline to predict appropriate parameter values from the input data.

Clustering could also, in principle, be performed using density-based methods; however, in our preliminary 
experiments with DBSCAN, it did not produce clusters as reliably as k-means, and therefore we did not adopt 
it in our framework. DBSCAN is highly sensitive to variations in point density, noise, and missing data due 
to occlusions. Point clouds reconstructed by SfM software such as COLMAP often exhibit inhomogeneous 
point density, with regions of both high and low density depending on the imaging conditions, and they may 
also contain noise. As a result, tuning the parameters (the neighborhood radius and the minimum number of 
samples) is difficult, and the resulting cluster shapes were less stable compared to those obtained with k-means. 
For example, when the neighborhood radius was set too large, almost the entire point cloud was labeled as a 
single cluster, whereas when the neighborhood radius was set too small, a mixture of a few large clusters and 
many small fragmented clusters appeared. Based on these observations, we concluded that k-means clustering 
is more suitable for our setting.

Although the proposed method significantly reduces search time compared to existing approaches, point cloud 
generation using COLMAP remains a bottleneck. In our experiments, 60 to 120 images were used to generate 
sufficiently dense point clouds for accurate component fitting, and the COLMAP reconstruction process alone 
took approximately 30 to 60 minutes. The conventional method proposed by Woo et al.9 also relies on COLMAP 
for point cloud reconstruction. In contrast, recent approaches using deep learning or Gaussian Splatting have 
the potential to reduce computational cost. However, in our preliminary experiments, applying the proposed 
method to point clouds generated by Gaussian Splatting did not yield satisfactory results. Therefore, it remains 
necessary to develop a faster point cloud reconstruction method that can maintain accuracy comparable to 
COLMAP.

In Fig. 5c, d and f, the size and placement of components are not accurately reconstructed in cases where the 
components are densely packed or extremely small. This is likely due to the fact that, in such densely packed 
regions, the point clouds corresponding to individual components cannot be fully captured from the input 
images. This issue is particularly evident in the example shown in Fig. 9, where several clusters are not correctly 
identified. In this case, while the actual number of components is 49, the number of clusters obtained by the 
proposed method is 56, which resulted in over-segmentation compared to other examples. These observations 

Fig. 9.  Failure case of our method.
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suggest that future work should consider incorporating approaches capable of inferring occluded or unobserved 
parts of the components from images.

Conclusions
In this paper, we proposed a method for modeling an aggregate from images, with the goal of arranging 
components to match input images and creating independent mesh models for each component. We first extract 
a point cloud of an aggregate from the images with COLMAP. By applying k-means clustering to the point 
clouds and repeatedly performing fitting and merging on the obtained clusters, we created mesh models with 
separated components of the aggregate. The proposed method was able to maintain position accuracy equivalent 
to conventional methods while achieving faster processing times.

One important direction for future work is to improve the accuracy of the fitting process. The current method 
assumes that the point cloud accurately captures the geometry of the components; however, in practice, point 
clouds may suffer from missing shape data due to occlusions in the input images, as well as varying point density 
and noise caused by measurement conditions. Therefore, it is necessary to develop more robust fitting algorithms 
and incorporate methods that can predict the shapes of occluded or missing regions. Another challenge lies 
in handling a wider variety of component shapes. The current method targets only aggregates composed of 
spherical components, but real-world aggregates often contain elements with diverse shapes, such as ellipsoids 
or irregular geometries. By improving the clustering and fitting procedures, we aim to extend the method to 
support more general types of aggregates.

Data availability
The data generated during the current study available from the corresponding author on reasonable request.
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