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This study presents a secure vehicle localization framework designed to maintain accuracy under 
GPS spoofing attacks. The framework integrates a spoofing detection mechanism operating in three 
adaptive modes and employs refined dynamic, measurement, and attack models. A decomposition-
based Kalman filter is utilized to develop a fusion algorithm for robust state estimation. Simulation 
and field experiments confirm that the proposed approach achieves high localization accuracy and 
resilience against spoofing in complex urban environments.
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Secure localization is of great importance for land vehicles, identifying the position and orientation for location-
based applications like navigation, collision warning and cooperative driving1. Typically, one widely schemes for 
secure localization GPS and dead reckoning (DR) fusion according the Kalman filter (KF)2. However, the classical 
Kalman filter is inherently constrained by its assumption of linear system dynamics and Gaussian noise, limiting 
its effectiveness in scenarios where the vehicle motion model exhibits significant nonlinearities. Moreover, the 
performance of GPS/DR fusion schemes can degrade substantially when GPS signals are compromised, such 
as during spoofing attacks, which introduce erroneous measurements that cannot be adequately mitigated by 
standard filtering techniques. These limitations highlight the need for secure localization frameworks capable of 
handling nonlinearities and maintaining reliable performance in adversarial environments.

There are many suboptimal solutions for GPS/DR fusion, among which the extended KF (EKF), like 
polynomial EKF3 and invariant EKF4, is the simplest one. However, the EKF and its extensions often exhibit 
poor performance in practical applications where the underlying process dynamics are strongly nonlinear. This 
limitation arises primarily from their reliance on first-order Taylor series approximations, which introduce 
significant errors when the system deviates from locally linear behavior. Additionally, EKF-based approaches 
are sensitive to initial conditions, which can further degrade estimation accuracy in real-world scenarios. In 
response to these limitations, several numerical integration-based filters have been introduced as alternatives 
to conventional linearization methods. Notable examples include the unscented Kalman filter (UKF)5, cubature 
Kalman filter (CKF)6, stochastic integration filter7, and Taylor moment expansion filter8. These so-called sigma-
point filters approximate the state distribution more accurately by propagating a set of deterministically chosen 
samples through the nonlinear system dynamics, offering improved estimation performance for moderate 
nonlinearities. Nevertheless, these methods also face challenges: for systems exhibiting strong nonlinearities, 
sigma-point filters tend to incur considerable computational cost due to the need to evaluate the nonlinear 
system at multiple points, which can render them impractical for real-time applications. Furthermore, filters 
based on higher-order Taylor series expansions9 suffer from poor approximation properties when higher-
order terms fail to converge rapidly, along with other numerical stability issues. These challenges motivate the 
development of alternative filtering strategies that can achieve a balance between computational efficiency and 
robust performance in strongly nonlinear, uncertain, and potentially adversarial environments.

Knowledge-based and data-driven approaches represent the two primary strategies for mitigating spoofing 
attacks. The knowledge-based approach typically involves comparing the residual, derived from the discrepancy 
between sensor measurements and the system model, to a predefined threshold. Techniques such as the chi-
square detector are then employed to determine the presence of an attack. The effective implementation of such 
techniques generally requires a well-designed state observer or estimator, along with rigorous statistical analysis 
predicated on the accurate characterization of the estimation error covariance, typically involving inversion of 
the covariance matrix10–13. While these methods offer interpretability and a foundation grounded in system 
theory, their performance can degrade if the underlying models are inaccurate or incomplete, particularly in 
the face of complex or adaptive attack patterns. In contrast, data-driven approaches have emerged as a flexible 
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alternative, leveraging advances in machine learning to learn complex, possibly nonlinear mappings between 
measurement data and expected positioning outcomes. Deep learning architectures and heuristic algorithms14,15 
are increasingly employed to detect anomalies by identifying deviations from learned patterns that characterize 
normal operating conditions. Additional learning-based attack detection frameworks, such as those discussed 
in16–18, expand this capability by exploiting large datasets to improve generalization across operational scenarios. 
However, most existing data-driven methods operate passively, relying on historical or real-time data streams 
without actively probing the environment for attack signatures. Recent research suggests that passive detection 
performance can be enhanced through active information gathering strategies, which involve deliberately 
introducing excitation signals or diversifying sensor usage to better characterize potential attack signatures19,20. 
Despite these advances, the effective collection of informative data about unknown and evolving attack strategies 
remains a significant challenge, particularly in safety-critical applications where operational constraints limit the 
extent to which active probing can be performed. This underscores the need for detection frameworks that can 
seamlessly integrate model-based rigor with data-driven adaptability while addressing practical constraints on 
data acquisition in real-world vehicular environments.

Inspired by the aforementioned, this paper presents a secure vehicle localization framework subject to GPS 
spoofing attack with three operational modes. Specifically, we introduce a decomposition-based Kalman filter 
algorithm tailored for nonlinear process model, followed by a measurement-based spoofing detection method. 
It is worth emphasizing that the proposed framework distinguishes itself from existing methods through two 
principal innovations. First, the decomposition-based Kalman filter employs empirical Fourier decomposition 
and Hermite series expansion to better capture nonlinear system dynamics, overcoming the linearization 
limitations of EKF and the computational burden of sigma-point filters. Second, the three-mode spoofing 
detection and fusion mechanism offers a dynamic and adaptive defense strategy against GPS spoofing, a feature 
not fully explored in conventional single-mode or passive detection schemes. By bridging model-based filtering 
with data-adaptive decomposition, this work provides a more robust and efficient localization solution for 
vehicles operating under adversarial conditions. The main contributions of this note are summarized as follows:

	1)	 A localization scheme comprising three modes, namely, GPS/DR fusion, DR/received signal strength (RSS) 
fusion, and DR only, is proposed to ensure accurate and secure positioning in the presence of GPS spoofing 
attacks.

	2)	 A novel Kalman-like filter and a measurement-based spoofing detection method is introduced for accurate 
estimation.

This paper is organized as follows. Section II introduces the overview of the proposed methodology. The 
development of the method for vehicle localization are presented in Section III. Performance evaluation is 
organized in Section IV. Finally, the conclusions are provided in Section V.

Overview of the proposed methodology
Accounting for the multi-vehicle scenario, accurate self-localization and coordinated monitoring are twin 
critical components. Furthermore, under attack, ensuring secure localization across the entire multi-vehicle 
system necessitates the implementation of an attack detection mechanism. Given these considerations, this 
section introduces a unified localization framework explicitly designed to fulfill a dual function: (1) to provide 
real-time detection of spoofing attacks targeting individual vehicles within the cooperative formation, and 
(2) to ensure the continuity and integrity of localization performance for all vehicles, even under sustained 
adversarial conditions. The proposed framework adopts a hybrid multi-sensor approach wherein GPS serves as 
the primary source of absolute positioning under nominal conditions, while inertial measurement unit (IMU) 
and received signal strength (RSS) data are exploited to enable continuous and resilient state estimation when 
GPS signals become unreliable or are subject to deliberate spoofing. This integrated strategy not only supports 
autonomous vehicles in maintaining accurate self-localization but also enables cross-vehicle consistency checks 
that leverage redundancy inherent in the cooperative system architecture. As a result, the framework ensures 
that vehicles can seamlessly transition from GPS-dominant localization to inertial/RSS-aided estimation, 
thereby maintaining robust situational awareness and navigational integrity even during extended periods of 
GNSS signal degradation or spoofing attack. Through this design, secure localization becomes a system-wide 
property rather than a function constrained to individual vehicles, marking a critical advancement for resilient 
cooperative navigation in adversarial environments.

The localization framework is structured into two primary modules: an attack detection module and a filtering 
module, both of which are elaborated upon in the subsequent subsections. The attack detection module functions 
to estimate the presence of attack signals, framed as a hypothesis testing problem with two potential hypotheses. 
The filtering module employs a local decomposition method to generate reliable location estimates. Additionally, 
the system operates in three modes: DR/GPS, DR/RSS, and DR-only (see Fig. 1). Importantly, both the DR/
GPS and DR/RSS modes are inherently secure due to their exploitation of multiple independent information 
sources, including cooperative data sharing among neighboring vehicles. This diversity in sensing modalities 
and communication channels enhances the system’s resilience against single-source attacks and ensures robust 
operation in complex, adversarial environments. To formalize system reliability, we define the notion of vehicle 
trustworthiness within a cooperative group of n vehicles: a vehicle is classified as reliable if its position estimate 
can be reconstructed using either DR/GPS or DR/RSS fusion, and as unreliable if localization must rely solely on 
DR measurements. This definition enables dynamic trust management at the system level, facilitating adaptive 
decision-making for secure cooperative localization and coordination in large-scale vehicular networks.

In Fig. 1, Fvn  and Frn  denote wheel-ground interaction forces, vL and vR are left and right wheel speeds, 
vG is the vehicle center velocity, lf  and lr  are distances to the front and rear axles, δ  is the steering angle, ψ  
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is the yaw angle, dr  is the slip angle, and β  is the sideslip angle. The proposed localization solution consists of 
two phases: initialization and the main recursion phase, both executed simultaneously in a distributed manner 
across all vehicles. The initialization phase occurs once, under controlled conditions, to verify GPS position 
consistency and detect spoofing. During this phase, each vehicle’s position is initialized with the GPS value, 
assuming reliability, and considers its neighbors as safe. IMU, GPS, and RSS measurements are available. In 
the main recursion phase, each vehicle performs two tasks: detecting GPS spoofing attacks and executing self-
localization using IMU and RSS data. Position estimation is based on the states of neighboring vehicles, with 
spoofing conditions determined through hypothesis testing (H0 and H1). Details of spoofing detection are 
discussed in Section V.

Development of the method
System model
In this section we consider an graph G = (V, E), where node i represents the i-th vehicle, and edge eij signifies 
the capability of vehicles i and j to interact. The edge eij implies the vehicles can infer their relative distances 
through RSS data by the predefined communication. Let r = min{rRSS, rCOM}, where rRSS and rCOM represent the 
range limits of RSS and communication, respectively. For any vehicle i, we formally define Dij(k) is the distance 
between vehicles i and j.

Vehicle dynamic and measurement model
Based on our previous work, we introduce the vehicle kinematics as follows (for details see2.

	

∆y = yk − yk−1 = dr sin (ψk−1 + βk−1)
⇒ yk = yk−1 + vG∆t (ψk−1 + βk−1)

� (1a)

	

∆x = xk − xk−1 = dr cos (ψk−1 + βk−1)
⇒ xk = xk−1 + vG∆t cos (ψk−1 + βk−1)

� (1b)

with

	
β̇ = −ωz + 2Cf

mvx

(
δ − β − lf ωz

vx

)
+ 2Cr

mvx

(
−β + lrωz

vx

)
� (2a)

	
ψ̇z = 2Cf lf

Iz

(
δ − β − lf ωz

vx

)
+ 2Crlr

Iz

(
−β + lrωz

vx

)
� (2b)

Fig. 1.  Localization architecture, where Fx~ and Fy~ denote the wheel-ground interactions, vx and vy for 
velocities, vL and vR for wheel speeds, vG is the vehicle center velocity, lf and lr are the distances to the front and 
rear axles, while δfψ, dr, and β represent the steering angle, yaw angle, and slip angle, respectively.
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where ω, Iz and m are the angular velocity, yaw inertia moment and mass, while δ is assuming to be a constant. 
By considering a set of N interconnected vehicles, the position can be described by the vector Xi(k) =[x, y, φ]T, 
then the prediction equation can be obtained as

	 Xi (k) = f(Xi (k − 1)) + Wi (k − 1)� (3)

where f denotes the transition matrix as described in (1–2), and Wi(k−1) ~ N(0, Q).
By adopting Gaussian noise model, we have the position measurement Z(GPS) i(k) as,

	 Z(GP S)
i (k) = CXi (k) + V(GP S)

i (k)� (4)

where C is the observation processes for each i-th vehicle and V(GPS) i(k) ~ N(0, RGPS). At each RSS acquisition 
period TRSS, the i-th vehicle infers the relative distance to the j-th vehicle as dij(k) =|| Z(GPS) i(k) - Z(GPS) 
j(k)||<rRSS, where rRSS sensing radius. Then, the Dij(k) can be achieved by

	 Dij (k) = dij (k) + nd (k)� (5)

where nd(k) expressed the Gaussian noise. Then the relative location measurement made by i-th vehicle to its 
nearby j-th vehicle is modelled as

	

Z(RSS)
i (k) = q (CXi (k) − CXj (k)) + V(RSS)

i (k)

= q(Dij (k)) + V(RSS)
i (k)

� (6)

with Vi,RSS k ~ N(0, RRSS), the deterministic function q() models the relation of the observation. Let Zi(k) 
=[Z(GPS) i(k), Z(RSS) i(k)] be the related GPS and RSS noisy observations collected by the vehicles at time k. 
The augmented measurement model is then:

	

Zi (k) =
[

Z(GP S)
i (k)

Z(RSS)
i (k)

]
=

[ C 0
Mv Mf

]
Xi (k) +

[
V(GP S)

i (k)
V(RSS)

i (k)

]

= HkXi (k) + Vi (k)
� (7)

where Vi k ~ N(0, R), Hk is the matrix of the know regressors, with C=I⨂C and denoting the Kronecker product. 
The matrix Mv=[Mi] and Mf=[Mj] are block-partitioned defined as Mi =-C and Mk=C.

Attack model
When a vehicle is under attacked, its GPS measurements become unreliable, making them unsuitable for 
accurate position estimation. Assuming a deterministic bias from the attack a(k), we have:

	 Z(GP S)
j (k) = CXj (k) + a (k) + V(GP S)

j (k)� (8)

then the relative location measurement made by i-th vehicle to its nearby j-th vehicle such that

	 Z(RSS),a
ij (k) = qijDij (k) + a (k) + V(RSS)

ij (k)� (9)

For convenience, let g(X,V) = qijDij(k) + V(RSS) ij(k), then (9) can be simplified to

	 Z(RSS),a
ij (k) = g (X, V) + a (k)� (10)

Model decomposition based Kalman filter
Decomposition rule and series expansion
According to the existing literature21, we introduce the empirical Fourier decomposition ends up with a 
representation of the form

	
g (x) =

n∑
d=1

sd (x) + rd (x)� (11)

where sd(x) denotes the dth decomposed component, rd(x) is the residual. The Empirical Fourier Decomposition 
(EFD) adaptively decomposes the nonlinear function g (x) into intrinsic mode functions sd (x) and a residual 
rd (x). Each component is then expanded using probabilist’s Hermite polynomials Hen (x), which are 
orthogonal under Gaussian measures. This two-step process ensures that the expansion accurately captures 
nonlinear dynamics while maintaining computational tractability. Here, sd (x) represents the d-th decomposed 
component derived from EFD, which captures specific modes of the nonlinear function, such as dominant 
motion dynamics in vehicle kinematics. The residual rd (x) accounts for unmodeled components, ensuring 
completeness of the approximation. By introducing Hermite polynomials that
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Hn (x) = (−1)ne

x2
/2 d(n)

dxn
e
−x2

/2, n = 0, 1, ...� (12)

we have the Empirical decomposed Fourier-Hermite series as

	
g (x) =

∞∑
k=0

1
k!E

[
n∑

d=1

s
(k)
d (x) + r

(k)
d (x)

]
Hk (x)� (13)

Then, the multidimensional case can be written by

	
g (x) =

∞∑
k=0

1
k!

n∑
i1,...,ik=1

ck
i1,...,ik

[
Hk

(
L−1 (x − µ)

)]
i1,...,ik

� (14)

where one-dimensional can be achieved by

	
ck

i1,...,ik
=E

[[
n∑

d=1

s
(k)
d (x) + r

(k)
d (x)

] [
Hk

(
L−1 (x − µ)

)]
i1,...,ik

]
� (15)

The EFD is conceptually linked to vehicle kinematics by interpreting the decomposed components as 
representations of distinct motion modes. For example, the first component s1 (x) may correspond to 
linear acceleration, while higher-order components capture turning maneuvers or vibrations. This physical 
interpretability ensures that the decomposition is not merely a numerical artifact but aligns with observable 
vehicular behavior.

Then, we have that

	
ck

i1,...,ik
=

n∑
j1,...,jk=1

ak
j1,...,jk

k∏
m=1

Ljm,im � (16)

with

	
ak

j1,...,jk
= E

[
∂k

∂xj1 ...∂xjk

[
n∑

d=1

s
(k)
d (x) + r

(k)
d (x)

]]
� (17)

and the coefficient vectors follows

	
E

[
g (x) gT (x)

]
=

∞∑
k=0

1
k!Γk � (18)

with

	
Γk=

n∑
j1,...,jk=1

ck
i1,...,ik

(
ck

i1,...,ik

)T =
n∑

j1,...,jk=1

ak
j1,...,jk

(
ak

j1,...,jk

)T
k∏

m=1

Σim,jm � (19)

Equation  (19) defines the covariance matrix Γ k , which incorporates higher-order statistical moments 
through the coefficients ak

h... h. This formulation ensures accurate uncertainty propagation by capturing 
nonlinear interactions, thereby enhancing filter stability and convergence. For example, the first component 
s1 (x) corresponds to the vehicle’s linear acceleration, while s2 (x) captures turning maneuvers. Higher-order 
components represent transient dynamics such as vibrations or abrupt steering changes. This alignment ensures 
that the decomposition is physically meaningful and not merely a numerical artifact.

The decomposition-based Kalman filter is derived by applying an empirical Fourier decomposition to the 
state-space model, as outlined in Eq. (11). The Hermite expansions used in this method are truncated at the d-th 
level, with the truncation chosen based on the system’s nonlinearities and computational constraints. This choice 
affects both the convergence behavior and the stability of the filter. For higher-order expansions, convergence is 
guaranteed under certain conditions, particularly when the state space exhibits moderate nonlinearity. To ensure 
that the decomposition remains stable, we utilize a stability analysis based on the residuals of the decomposition, 
which are analyzed in Eq. (19).

Although empirical Fourier decomposition is typically viewed as a numerical technique, it can be conceptually 
linked to vehicle kinematics by interpreting the decomposed components as representations of distinct modes of 
vehicle motion. For example, the first few components of the decomposition capture the vehicle’s primary motion 
dynamics, such as steady acceleration and turning behavior, while higher-order components correspond to more 
complex behaviors such as transient accelerations or vibrations. This provides a physical interpretation of the 
decomposition, where the extracted components directly relate to observable vehicular motion characteristics.
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Novel Kalman filter
According to the aforementioned derivation, we now give the prediction and update steps follows:

	 m−
k = f̂ (mk−1, Pk−1)� (20)

	

P −
k = F̂mPk−1F̂T

m + 1
2!

∑
i,j,u,v

f̂
(2)
i,u Pi,jPu,v

(
f̂

(2)
j,v

)T

+ 1
3!

∑
i,j,u,v,a,b

f̂
(3)
i,u,aPi,jPu,vPa,b

(
f̂

(3)
j,v,b

)T
+ · · · + Qk

� (21)

where we used shorthand notation Pi,j=[Pk−1]i,j and the derivatives are evaluated at mk−1 and Pk−1.
update

	

Sk = ĤmPk−1ĤT
m + 1

2!
∑

i,j,u,v

ĥ
(2)
i,uPi,jPu,v

(
ĥ

(2)
j,v

)T

+ 1
3!

∑
i,j,u,v,a,b

ĥ
(3)
i,u,aPi,jPu,vPa,b

(
ĥ

(3)
j,v,b

)T
+ · · · + Rk

� (22a)

	 Kk = P−
k HT

mS−1
k � (22b)

	 mk = m−
k + Kk

(
zk − ĥ

(
m−

k , P−
k

))
� (22c)

	 Pk = P−
k − KkSkKT

k � (22d)

The design of the decomposition-based Kalman filter is motivated by the need to accurately represent non-
Gaussian and nonlinear state distributions without resorting to costly sampling or linearization. By integrating 
empirical Fourier decomposition with Hermite polynomial expansions, the filter captures higher-order moments 
of the state distribution, leading to improved estimation performance. This approach differs from the FHKF9 in 
its data-driven decomposition process, which adapts to the underlying signal structure rather than relying on 
fixed basis functions. The recursive form of the filter ensures that computational demands remain manageable 
for real-time vehicular systems, addressing a key limitation of particle-based and high-order Taylor methods.

Position estimation
The position of the i-th vehicle is estimated using a tightly integrated framework that enhances localization 
robustness and accuracy by fusing dead reckoning (DR) sensor outputs with GPS observations. The estimation 
process is structured into three sequential yet parallelizable stages, corresponding to distinct sensor data streams: 
(1) a DR-based estimation leveraging inertial measurement unit (IMU) data to capture short-term vehicle 
dynamics and motion characteristics; (2) a GPS-based estimation providing absolute positioning information 
when satellite signals are available; and (3) a hybrid estimation that fuses both IMU and GPS measurements 
to exploit their complementary characteristics—namely, the short-term stability of inertial data and the long-
term accuracy of GPS. These parallel estimations are subsequently combined in a statistically optimal fashion, 
wherein the final position estimate is computed as a weighted fusion of the individual estimates. The weighting 
scheme is dynamically adjusted according to the confidence level associated with each sensor’s data quality, which 
reflects factors such as sensor noise characteristics, current operational conditions, and detected anomalies (e.g., 
degraded or spoofed GPS signals). Specifically, higher confidence is assigned to estimates derived from sensors 
exhibiting lower measurement uncertainty at any given epoch, ensuring that the integrated solution dynamically 
adapts to heterogeneous and potentially adverse navigation environments. This adaptive multi-sensor fusion 
strategy not only mitigates the limitations of individual sensors but also enhances overall positioning reliability, 
making the framework well-suited for deployment in intelligent transportation systems and autonomous vehicle 
platforms operating under challenging urban conditions. To this end, these estimations are performed in parallel 
and then combined using weights based on the confidence level of each sensor’s data as follows

	 x̂i (k, k) = β0x̂i (k, k − 1) + βDx̂D
i (k, k) + βGx̂G

i (k, k) + βF x̂F
i (k, k)� (23)

where β0, βD, βG and βF are parameters of the filter. Note that the estimates x̂G
i  (k,k) and x̂F

i  (k,k) update only 
when GPS measurements are available. In this case, we have

	 x̂i (k, k) = (β0 + βG + βF ) x̂i (k, k − 1) + βDx̂D
i (k, k)� (24)

The decomposition order D in the Empirical Fourier-Hermite expansion (Eqs. 13–14) balances accuracy and 
complexity. Higher D improves nonlinear approximation but increases computation. Empirically, D = 3 achieves 
optimal trade-off, capturing essential dynamics while maintaining efficiency. This selection enables MDEPF-
comparable accuracy with FHKF-like computational performance, as validated in Section IV. D remains 
adjustable for specific application requirements.
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Spoofing attack detection
The spoofing detection module is grounded in Bayesian inference, where we formulate the problem as a 
hypothesis test. The likelihood ratio in Eq. (25) compares the probability of the observed measurements under the 
null hypothesis H0 (no spoofing) versus the alternative hypothesis H1 (spoofing present). This approach allows 
for adaptive thresholding based on prior probabilities and sensor noise characteristics, providing a probabilistic 
foundation for attack detection. This section presents the measurement-based spoofing detection procedure 
integrated within the localization framework. The approach leverages the statistical characteristics of position 
estimates derived from different sensor fusion strategies to identify inconsistencies indicative of spoofing attacks. 
Specifically, we consider the position estimates pFUS i obtained from the fused IMU and GPS measurements, 
and pDR i derived solely from dead reckoning (DR) sensors, for the i-th vehicle. Under normal conditions, 
both estimates are assumed to follow Gaussian distributions centered at the true vehicle position pi, but with 
distinct variances reflecting their respective noise characteristics: σ2 FUS for the fused solution and σ2 DR for 
the DR-only estimate. To formalize the spoofing detection criterion, we introduce a likelihood ratio test that 
quantifies the consistency between these independent position estimates. The likelihood ratio is computed as the 
ratio of the probability density functions under the hypothesis of no spoofing versus the alternative hypothesis 
that spoofing is present. This statistical test effectively captures deviations beyond expected sensor noise levels, 
allowing the system to robustly discriminate between nominal operational conditions and anomalous scenarios 
caused by malicious GPS signal manipulation. By exploiting the complementary statistical properties of the 
fused and DR-based estimates, this measurement-based detection mechanism provides an efficient and adaptive 
means of enhancing the resilience of the localization system to GPS spoofing attacks. Furthermore, the use 
of variance-weighted likelihood ratios ensures that detection sensitivity dynamically adjusts in accordance 
with the prevailing sensor noise environment, thereby reducing false alarms while maintaining high detection 
probability. We now give the likelihood ratio as follows

	 Υ = log
(
p

(
pDR

i , pi, pF US
i |H0

)/
p

(
pDR

i , pi, pF US
i |H1

))
� (25)

where p() is the joint probability with a threshold γ > 0 chosen to control the false alarm (FA). H0 is rejected in 
case of ϒ < γ, minimizing the misdetection probability, thereby forming the spoofing test. The threshold γ  was 
calibrated offline via Monte Carlo simulations under nominal conditions to maintain a false alarm rate below 
2%, following the Neyman-Pearson criterion. Under H0, we have that

	
λ = Dij√

σ2
F US + σ2

GNSS

� (26)

Now, we can employ the i-th vehicle detects spoofing by GPS and IMU measurements, simplifying the likelihood 
ratio by removing j-th neighbors. Specifically, we have that

	
min

{
σ2

DR∥p̂i − pi∥2 + σ2
GNSS

∥∥p̂DR
i − pi

∥∥2

σ2
DRσ2

GNSS

}
� (27)

with

	
p̂i = σ2

DRpi + σ2
GNSSp̂DR

i

σ2
DR + σ2

GNSS

� (28)

To ensure the robustness of the decomposition-based Kalman filter, we analyze the convergence and stability 
of the proposed method. Convergence is achieved by limiting the truncation level of the Hermite expansions 
based on the error thresholds specified for each application. As the level of truncation increases, the accuracy 
improves, but so does the computational cost. We recommend a truncation level that balances the performance 
requirements and real-time processing constraints. Additionally, the decomposition method remains stable 
within the error bounds defined by the system’s noise characteristics and sensor limitations. The framework 
effectively handles both sustained and intermittent spoofing through continuous real-time evaluation of the 
likelihood ratio test (Eq. 25). This enables rapid detection of spoofing onset, triggering immediate transition 
from GPS/DR to secure modes (DR/RSS or DR-only) to isolate compromised GPS. When spoofing ceases, the 
test automatically signals a return to nominal conditions, seamlessly restoring high-accuracy GPS/DR fusion. 
This dynamic adaptation maintains operational resilience and accuracy across varying attack profiles. The 
framework minimizes false spoofing detection through multiple mechanisms. The likelihood ratio test (Eq. 25) 
specifically targets persistent biases characteristic of spoofing, ignoring temporary signal loss. Automatic mode 
transition to DR/RSS or DR-only occurs based on signal quality metrics, independent of spoofing detection. 
Temporal hysteresis requires consistent threshold violations before declaring spoofing, preventing transient 
errors from triggering alarms. This approach effectively distinguishes attacks from routine signal degradation.

Performance evaluation
Numerical simulation
This study employs a high-fidelity simulation framework, meticulously configured with high-resolution 
temporal and physical parameters, to rigorously evaluate the resilience of the proposed method with adaptive 
mode switching against sophisticated GPS spoofing attacks. The simulation is executed with a time step of 
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Δt = 0.1 s over a total duration of T = 150 s, resulting in N = 1500 discrete time steps for robust statistical analysis. 
The vehicle dynamics are represented by a comprehensive nonlinear bicycle model with a six-dimensional state 
vector encompassing position, yaw, velocity, sideslip angle, and yaw rate, parameterized by a wheelbase L = 2.8 m, 
mass m = 1500 kg, yaw inertia Iz = 2500 kg·m², and front and rear cornering stiffnesses Cf = Cr = 80,000 N/rad. 
The process noise covariance is defined as Q = diag([0.3², 0.3², 0.05², 0.2², 0.05², 0.02²]) to account for unmodeled 
dynamics and disturbances. A realistic multi-sensor suite is modeled with conservative noise characteristics: 
GPS position measurements with a standard deviation σGPS = 2.0  m, IMU yaw rate measurements with 
σIMU = 0.1 rad/s, and RSS-based range measurements from five strategically positioned anchors at coordinates 
[50, 50], [150, 150], [250, 50], [50, 200], and [300, 200] (in meters), each corrupted by noise with σRSS = 1.0 m. 
A challenging urban trajectory, generated via cubic spline interpolation of nine predefined waypoints to ensure 
kinematic feasibility, serves as the reference path. A sophisticated GPS spoofing attack is strategically initiated at 
t = 50 s and terminated at t = 100 s, characterized by time-varying bias functions of 15 + 5·sin(0.2t) meters in the 
x-direction and 10 + 3·cos(0.15t) meters in the y-direction, effectively simulating a stealthy and evolving threat 
profile. The performance of the proposed DKF is comparatively analyzed against two benchmark estimators—
the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF). A tri-modal operational strategy is 
implemented for the DKF, enabling seamless transitions between Mode 1 (GPS/Dead Reckoning fusion during 
nominal conditions), Mode 2 (DR/RSS fusion upon GPS compromise), and Mode 3 (DR-only as an emergency 
fallback).

Figure  2 illustrates the two-dimensional positional trajectories of three distinct filtering algorithms, e.g., 
Fourier-Hermite Kalman Filter (FHKF)9, Multiple Distribution Estimation-based Particle Filter (MDEPF)7 
and the proposed method. During the nominal operation phase, all filters generally track the true trajectory 
with varying levels of accuracy. However, a notable divergence occurs during the “Attack Period,” where both 
MDEPF and FHKF estimators show substantial deviations from the true path, highlighting their vulnerability 
to adversarial interference. In contrast, the proposed method remains closely aligned with the true trajectory 
throughout this period, demonstrating superior robustness and estimation consistency even under attack. 
Although the strategically placed RSS anchors contribute to the localization process, their presence does not 
prevent the performance degradation observed in the conventional filters during the attack interval. The 
superior performance of the proposed method emphasizes its ability to effectively resist malicious perturbations, 
positioning it as a more reliable solution for secure navigation in adversarial environments.

Figure 3 provides a comparative analysis of estimation errors under multi-modal sensor fusion scenarios, 
defined by distinct operational modes. Mode 1 corresponds to the integration of GPS and DR, while Mode 2 
relies solely on DR and RSS-based measurements. The transitional phase, labeled “Mode 1–2,” represents the 
shift between these two configurations. Throughout the simulation, MDEPF, FHKF, and the proposed method 
perform consistently during Mode 1, where GPS availability ensures stable positional accuracy. However, once 
transitioning to Mode 2, where GPS is either unavailable or degraded, both the MDEPF and FHKF estimators 
exhibit a significant increase in error, highlighting their limited adaptability to changes in sensor modalities. 
In contrast, the proposed DKF maintains a lower and more stable error profile across the entire simulation, 
including the transition phase. This stability demonstrates its ability to effectively integrate heterogeneous 
sensor inputs and mitigate error propagation in GPS-denied environments. The results validate the superior 
adaptability and estimation consistency of the DKF framework in dynamic multi-modal navigation contexts.

Fig. 2.  Localization architecture, where Fx~ and Fy~ denote the wheel-ground interactions, vx and vy for 
velocities, vL and vR for wheel speeds, vG is the vehicle center velocity, lf and lr are the distances to the front and 
rear axles, while δfψ, dr, and β represent the steering angle, yaw angle, and slip angle, respectively.
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In addition, the performance assessment was also carried out in terms of the Root Mean Square Error 
(RMSE), a standard statistical metric formally defined below,

RMSE =

√
1
N

N∑
n=1

(Mp
n(Xn) − Mn(Xn))2

where Mn(Xn) is the actual measurement in state Xn, M p n (Xn) is the predicted one, and N is the prediction 
times. Figure 4 illustrates the system’s transition between operational modes in response to a GPS spoofing attack 
and evaluates the corresponding positioning performance of the proposed DKF framework. The upper timeline 
outlines the mode-switching strategy: initially, the system operates in the default GPS/DR mode, transitions 
to DR/RSS mode when GPS spoofing begins, temporarily switches to DR-only mode, and then returns to the 
integrated GPS/DR operation once the attack subsides. To statistically validate the performance differences, we 
employed bootstrap resampling with 1000 iterations to compute 95% confidence intervals for the RMSE values. 
Hypothesis testing (t-test) was also conducted to confirm the significance of the improvements over benchmark 
methods. The lower subplot provides a quantitative summary of the Root Mean Square Error (RMSE) of the DKF 
estimator across the different operational modes. During the GPS/DR mode, positioning accuracy is maintained 
at 0.490 m. More notably, when the system operates under the DR/RSS mode during the GPS spoofing attack, 
the DKF achieves an RMSE of 0.446  m. This result demonstrates that the proposed fusion strategy, which 
utilizes RSS measurements to supplement the compromised GPS, not only ensures continuous operation but 
also enhances positioning accuracy under adversarial conditions. The RMSE values are accompanied by 95% 
confidence intervals derived from bootstrap resampling with 1000 iterations. This statistical validation ensures 
the robustness of the performance claims. For instance, the proposed DKF achieved an RMSE of 0.476  m 
with a confidence interval of [0.452, 0.501] m under nominal conditions, indicating statistically significant 
improvement over benchmarks.

During spoofing periods, the posterior credible intervals for position estimates were computed using the 
Kalman filter covariance, demonstrating bounded uncertainty even under attack. In addition to the FHKF and 
MDEPF, we included comparisons with three classical nonlinear filtering approaches: the Unscented Kalman 
Filter (UKF), a Particle Filter with adaptive resampling (PF-AR), and a Bayesian Adaptive Filter (BAF) to provide 
a more comprehensive performance benchmark. The UKF was configured with standard parameters (α = 1e-3, 
β = 2, κ = 0), while the PF-AR employed 1000 particles with systematic resampling to maintain diversity. The BAF 
implementation followed a variational Bayesian framework with adaptive noise estimation. Table 1 summarizes 
the comparative performance across all methods under both nominal and spoofing conditions.

Fig. 3.  Localization architecture, where Fx~ and Fy~ denote the wheel-ground interactions, vx and vy for 
velocities, vL and vR for wheel speeds, vG is the vehicle center velocity, lf and lr are the distances to the front and 
rear axles, while δfψ, dr, and β represent the steering angle, yaw angle, and slip angle, respectively.
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The performance comparison during the spoofing attack period, as detailed in Table I, provides the most 
critical evaluation of the proposed framework’s resilience. The results unequivocally demonstrate the superior 
robustness of the proposed method against GPS spoofing attacks. While all benchmark filters experienced 
significant performance degradation due to the malicious injections, the proposed method maintained a 
remarkably low RMSE of 0.446  m. This performance is approximately 79%, 76%, and 77% lower than that 
of the UKF (2.145 m), PF-AR (1.893 m), and BAF (1.967 m), respectively. This stark contrast underscores a 
fundamental advantage of the proposed architecture. The conventional filters, despite their sophisticated 
approaches to handling nonlinearities (the UKF), non-Gaussian noise (the PF-AR), or time-varying statistics 
(the BAF), lack an inherent mechanism to identify and isolate a structured spoofing attack. Consequently, they 
continue to fuse the biased GPS measurements, leading to catastrophic and unbounded error growth. In contrast, 
the proposed framework’s integrated spoofing detection module successfully identified the attack, triggering a 
seamless transition to the secure DR/RSS fusion mode. This adaptive reconfiguration effectively removed the 
compromised GPS data from the estimation process, allowing the proposed method to maintain high accuracy 
by relying on the spoofing-resistant combination of inertial sensors and cooperative ranging. The analysis of 
computational efficiency further highlights the practicality of the proposed one. With a processing time of 2.51 s, 
it is not only the most accurate but also among the most efficient methods. It is marginally faster than the UKF 
(2.85 s) and significantly more efficient than the BAF (3.42 s). Most notably, it achieves its superior robustness at 
a computational cost that is nearly six times lower than the PF-AR (14.23 s), which, while slightly more accurate 
than the UKF and BAF during the attack, remains prohibitively expensive for real-time applications in large-
scale systems.

Figure 5 presents a rigorous comparative analysis of the localization performance, evaluating the proposed 
method against two established algorithms, the MDEPF and the FHKF. The evaluation is conducted under two 

Filter method Attack period RMSE (m) Computational time (s)

Proposed 0.446 2.51

UKF 2.145 2.85

PF-AR 1.893 14.23

BAF 1.967 3.42

Table 1.  Comparative performance of different filtering approaches.

 

Fig. 4.  Localization architecture, where Fx~ and Fy~ denote the wheel-ground interactions, vx and vy for 
velocities, vL and vR for wheel speeds, vG is the vehicle center velocity, lf and lr are the distances to the front and 
rear axles, while δfψ, dr, and β represent the steering angle, yaw angle, and slip angle, respectively.
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critical scenarios: (a) overall performance across the entire operational envelope, and (b) performance specifically 
during a GPS spoofing attack period. The box plots in subplot (a) provide a statistical summary of the Root Mean 
Square Error (RMSE) for each algorithm, revealing profound differences in their accuracy and consistency. The 
proposed DKF demonstrates a paramount advantage, achieving a median RMSE of 0.476 m. This performance 
is substantially superior to both the FHKF (1.180 m) and the MDEPF (1.427 m), corresponding to a remarkable 
accuracy improvement of approximately 60% and 67%, respectively. Furthermore, the DKF’s box plot is 
exceptionally compact, featuring the lowest median, a minimal interquartile range, and the absence of significant 
outliers. This signifies not only unparalleled accuracy but also exceptional estimation stability and reliability across 
diverse and potentially uncertain operational conditions. In contrast, the larger and more dispersed box plots 
of the MDEPF and FHKF indicate higher variance and susceptibility to environmental perturbations or model 
uncertainties. Subplot (b) isolates the performance during a targeted GPS spoofing attack, a scenario of critical 
importance for security-resilient navigation. Here, the superiority of the DKF becomes even more pronounced. 
It maintains a remarkably low RMSE of 0.446 m, effectively neutralizing the impact of the malicious attack. 
Astoundingly, its performance during the attack is marginally better than its overall performance, underscoring 
its specialized robustness against integrity threats. Conversely, the competing algorithms suffer catastrophic 
degradation. The RMSE of the FHKF escalates to 1.921  m, while the MDEPF’s error soars to 2.211  m. This 
indicates that these conventional methods are fundamentally vulnerable to such cyber-physical attacks, as they 
lack the dynamic trust-weighting and adaptive mechanisms inherent to the DKF architecture. The performance 
gap between the DKF and the next best filter (FHKF) widens from ~ 0.7 m in overall conditions to over 1.475 m 
during the attack, highlighting the DKF’s decisive advantage in high-stakes adversarial environments. The 
collective results lead to two definitive conclusions. First, under nominal conditions, the proposed DKF sets a 
new benchmark for localization accuracy and estimation consistency, significantly outperforming state-of-the-
art alternatives. Second, and most critically, the DKF exhibits an unprecedented level of resilience, capable of 
sustaining its high-fidelity performance under a sophisticated GPS spoofing attack where other estimators fail.

Road tests
Road tests Field experiments were conducted on urban route in Shenyang. The test platform comprised a Hyundai 
ix35 passenger vehicle outfitted with a suite of navigation and sensing equipment, including a standalone GPS 
receiver, a low-cost Micro-Electro-Mechanical Systems (MEMS)-based Inertial Measurement Unit (IMU), and 
ancillary sensors such as a wheel speed sensor. The IMU and GPS operated at sampling frequencies of 100 Hz 
and 10  Hz, respectively, ensuring high temporal resolution in capturing vehicle dynamics and positioning 
information. Data acquisition was facilitated through the vehicle’s CAN bus, providing seamless integration of 
measurements from the IMU, GPS, and in-vehicle sensors. All sensor data streams were synchronized and logged 
via the KT700 system configuration, enabling comprehensive multi-sensor data fusion. Detailed specifications 
of the sensing modalities and their calibration protocols are documented in our prior publication2.

Figure 6 provides a comparative evaluation of the proposed method against two state-of-the-art localization 
methods, MDEPF and FHKF, under GPS spoofing conditions. The two-dimensional trajectory plot highlights 
the performance divergence of the estimators during both nominal and attack phases. During the nominal 
operation period, all three estimators track the reference trajectory with reasonable accuracy. However, during 
the spoofing attack interval, shown in the local zoomed-in view, significant deviations are observed in both 
the MDEPF and FHKF trajectories, indicating their vulnerability to malicious measurement corruption. 

Fig. 5.  (a) overall performance across the entire operational envelope; (b) performance specifically during a 
GPS spoofing attack period.
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Specifically, the FHKF exhibits noticeable drift in the northerly direction, while the MDEPF shows oscillatory 
divergence. In contrast, the proposed method remains closely aligned with the true path, demonstrating its 
consistent resilience against spoofing interference. The embedded subplot further underscores this performance 
advantage, revealing that the proposed method maintains sub-meter-level accuracy with the reference path, 
even through curvilinear segments during the attack. This robust behavior is attributed to the adaptive 
multi-modal fusion strategy within the proposed method, which dynamically reweights sensor inputs based 
on integrity monitoring. The results confirm that the proposed framework not only preserves localization 
accuracy under nominal conditions but also ensures operational reliability in adversarial environments—a 
critical requirement for safety-critical navigation systems. Figure  6(b) presents the temporal evolution of 
position estimation errors for three localization algorithms. Throughout the experiment, the proposed method 
consistently achieves the lowest positioning error, demonstrating exceptional stability and accuracy. Its error 
profile remains tightly bounded near zero, with minimal oscillations even during prolonged operation. In 
contrast, both the FHKF and MDEPF exhibit significantly larger errors and greater temporal variability. The 
MDEPF, in particular, shows considerable error fluctuations, particularly during the latter half of the simulation, 
with peak deviations several times larger than those of the proposed method. While the FHKF maintains better 
error containment than the MDEPF, it still fails to match the sustained accuracy and stability of the proposed 
method. Figure  6(c) provides a quantitative comparison of the computational efficiency of MDEPF, FHKF, 
and the proposed method, by evaluating their respective processing times. The proposed method exhibits a 
significant reduction in computational time compared to both benchmark approaches. Specifically, it achieves 
approximately a 70% decrease in computational load relative to the MDEPF and a 45% reduction compared 
to the FHKF. This substantial improvement in efficiency is attributed to the optimized filter structure and the 
effective decomposition strategy employed in the proposed framework, which lowers algorithmic complexity 
while maintaining estimation accuracy.

Disscussion
The computational complexity of the proposed method is formally analyzed. For a state dimension n, the 
proposed method with a third-order Empirical Fourier-Hermite expansion exhibits O

(
n3)

 complexity, similar 
to UKF and CKF, but with a higher constant factor due to Hermite polynomial evaluations. Empirical profiling 
confirms real-time feasibility, with average execution times of 2.51  s for the proposed, compared to 12.77  s 
for MDEPF and 2.37 s for FHKF. This makes DKF suitable for large-scale vehicular networks. The proposed 
framework exhibits robustness to parameter uncertainties through multiple mechanisms. While parameters 
like mass and inertia are embedded in the dynamic model, the Kalman filter’s inherent structure and process 
noise covariance provide tolerance to inaccuracies. Continuous measurement updates from IMU, GPS, and RSS 
sensors further compensate for model discrepancies. For critical parameters affecting kinematic transformations 
(e.g., wheel speed scaling), two protection mechanisms exist: periodic GPS corrections prevent unbounded DR 

Fig. 6.  (a) Localization results; (b) Position errors; (c) Time consumptions.
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error growth, while the spoofing detector identifies persistent biases that may indicate recalibration needs. The 
multi-mode architecture provides additional resilience by transitioning to alternative operational modes when 
parameter-dependent performance degradation is detected. Road tests with nominal parameters validate the 
system’s practical robustness. The proposed Kalman filter’s performance relies on proper tuning of process noise 
covariance Q and measurement noise covariances RGPS and RRSS. Tuning followed a systematic procedure: Q 
was initialized based on vehicle dynamics (e.g., maximum acceleration for position states), while RGPS and RRSS 
were set using sensor specifications. Offline optimization minimized RMSE across various driving scenarios to 
balance responsiveness and stability. Sensitivity analysis revealed greatest sensitivity to RGPS (± 20% variation 
caused ~ 12% RMSE increase in GPS/DR mode), though the multi-mode architecture automatically transitions 
to less sensitive DR/RSS mode when GPS degrades. Q showed robustness to ± 50% variations (< 8% RMSE 
change). Final values: Q = diag([0.1, 0.1, 0.05]) for [x, y, φ] states, RGPS = diag([4.0, 4.0]), and RRSS = diag([1.0, 
1.0]). The DR/RSS fusion mode mitigates inertial drift through complementary sensing: DR provides high-
frequency motion estimates but accumulates error, while RSS offers drift-free geometric constraints between 
vehicles. In the Kalman filter framework, RSS measurements (Eq.  6) correct DR-predicted states via update 
equations (Eq.  22a-22d), resolving discrepancies between predicted and measured inter-vehicle distances. 
The Kalman gain prioritizes RSS corrections as DR uncertainty grows, effectively compensating IMU biases. 
This approach maintains positioning accuracy during GPS outages, significantly outperforming DR-only 
operation. A sensitivity analysis was conducted to evaluate the impact of noise covariance tuning on localization 
performance. Variations in RGP S  by ± 20% resulted in an RMSE change of ~ 12%, while Q showed robustness 
to ± 50% variations (< 8% RMSE change). This analysis confirms that the filter performance is stable under 
reasonable parameter uncertainties, though adaptive covariance estimation could further enhance robustness. 
The computational complexity of the proposed DKF is O

(
n3)

 for a state dimension n, comparable to UKF 
and CKF but with a higher constant factor due to Hermite polynomial evaluations. Empirical profiling confirms 
real-time feasibility, with average execution times of 2.51 s, significantly lower than particle-based methods.

Conclusions
This paper presents a novel vehicle localization framework designed to function effectively under GPS spoofing 
attacks. The proposed system integrates a multi-mode localization approach, combining GPS/DR fusion, DR/
RSS fusion, and DR-only modes to ensure continuous and secure localization even in adversarial conditions. 
A decomposition-based Kalman filter is introduced to address nonlinear dynamics, significantly improving 
the accuracy and robustness of state estimation compared to existing methods. Additionally, the framework 
uniquely integrates spoofing detection and resilient estimation, enabling seamless transitions between different 
localization modes in real-time. The effectiveness of the method is validated through extensive numerical 
simulations and real-world experiments, which demonstrate its superior performance in urban environments 
under GPS spoofing. This approach offers a practical solution for ensuring reliable vehicle positioning, 
particularly for applications in intelligent transportation systems and autonomous driving. Despite its robustness, 
the proposed framework has limitations. The Gaussian noise assumption may not hold in all environments, and 
the RSS model simplifies complex propagation effects. Future work will incorporate adaptive noise modeling 
and log-normal fading for RSS, as well as explore scalability in large-scale networks.

Future research will extend this work toward the integration of richer multi-sensor fusion schemes for 
reliable positioning in unknown or GNSS-denied environments, advancement of self-driving technologies, 
and cooperative localization leveraging vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 
communications. Additionally, further emphasis will be placed on enhancing the integrity, safety, security, and 
privacy of vehicular localization systems, ensuring their suitability for deployment in next-generation intelligent 
transportation systems and autonomous mobility platforms.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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