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This study presents a method for characterizing the effective incident wavefront in the Fourier plane, 
eliminating the need to decouple measurement and application. The amplitude and phase of this 
wavefront are cumulatively affected by the incident beam, the curvature of the backplane, and the 
defocus introduced by the Fourier lens. Using an iterative camera-in-the-loop approach, this method 
displays square patches of beam deflection phase ramps on the spatial light modulators (SLMs), and 
the resultant spots in the Fourier plane are positionally controlled. The parameters of each patch 
are used to reconstruct the phase and amplitude profiles of the wavefront. These profiles are used 
in hologram computation to correct for SLM aberrations and improve image quality. The proposed 
method has been experimentally verified to work with off-axis and on-axis optical systems, showing 
the versatility of the approach.

Spatial light modulators (SLMs) are devices capable of modulating either phase or amplitude of incident light. 
In this work, we consider phase-only modulation by nematic liquid crystal on silicon (LCoS) SLMs, but the 
presented ideas can be extended to amplitude modulation and other phase modulation devices. The patterns 
displayed on such devices, called holograms, modulate the incident coherent wavefronts to recreate the encoded 
light distributions, called images, through optical diffraction and interference. The process of calculating these 
patterns is termed computer-generated holography (CGH).

CGH by default regards SLMs as perfectly flat devices with ideal pixel responses. However, in practice, 
manufacturing-induced strain introduces curvature in the backplane and cover glass1,2, causing the thickness of 
the liquid crystal (LC) layer to vary across the device and distorting the wavefront phase. Furthermore, SLMs are 
typically designed for planar wavefronts at normal incidence (Fig. 1(a)), but this configuration requires beam 
splitters, introducing unwanted reflections. Off-axis systems (Fig. 1(b)) avoid these reflections, but cause light 
to interact with the LC medium at an angle, leading to unpredictable phase accumulation. Additionally, the 
incident wavefront itself may have non-uniform phase and amplitude profiles, for example due to the Gaussian 
intensity distribution typical of laser sources or imperfections in the optical system. Neglecting any of the 
mentioned aspects leads to unwanted aberrations3, which in severe cases cause the reconstructed images to be 
unrecognizable.

The curvature of the SLM backplane can be measured with standard optical flatness measurement procedures 
such as the Michelson interferometer4 and derivative approaches5,6. These methods are typically limited to on-
axis optical configurations and have several disadvantages, such as reliance on precise alignment of the SLM with 
a reference surface of sub-wavelength flatness. Alternatively, Shack-Hartmann wavefront sensors can be used to 
characterize aberrations but necessitate reconfiguring the optical system, making the process less versatile and 
more time-consuming. However, any change in SLM alignment, such as slight tip/tilt between measurement and 
application, can alter the observed aberrations.

Another common approach to characterize aberrations is to fit Zernike polynomials by minimizing the size 
of the observed point spread function (PSF) in the Fourier plane3,7,8. This involves scanning and fitting the 
Zernike coefficients so that the PSF, observed after reflecting from the SLM and passing through a Fourier lens 
(Fig. 1(c)), approximates the ideal aberration-free case. Typically, the lowest (∼15) Zernike modes suffice for 
effective correction. However, these methods also have several limitations. Zernike polynomials are orthogonal 
on a circular domain, while SLMs are rectangular, requiring either restricting analysis to the central circular 
area of the SLM while neglecting the rest, or implmenting an ad hoc approximation where only the central 
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rectangular portions of the polynomials are used. This issue can be addressed by using rectangular Zernike 
modes, which increases computational complexity9. Additionally, the PSF may be smaller than the camera pixel 
size in systems with high numerical apertures (depends on the size of the aperture and the focal length used), 
reducing accuracy. Also, since most incident light is focused into the PSF, it requires a high dynamic range, 
which can be difficult or time-consuming to capture with a camera. Finally, these approaches do not directly 
measure the incident amplitude distribution.

Our approach realizes that all aberration sources in a Fourier optical system affect the formed images 
collectively, and can be characterized as the phase and amplitude of a single effective complex field at the SLM. 
The method divides the SLM into square segments and sequentially displays phase-ramp beam deflector patterns 
in each segment. The resulting spot positions in the Fourier plane, together with their total power, provide 
enough information to reconstruct the complex reflected wavefront. This approach is conceptually similar to 
the operation of Shack-Hartmann sensors, with the key difference being that the same optical setup can be used 
to first characterize and then test holographic projections using the same field lens instead of swapping in a 
microlens array. This eliminates the need to reconfigure the optics after the measurement. The method is suited 
to operate in both configurations shown in Figs. 1(a) and (b), as it is agnostic to the orientation of the SLM 
relative to the camera.

Methods
Motivation
Fourier optical systems can be modeled by unfolding them along the principal axis, as shown in Fig. 1(c). In 
an ideal system, the diffraction of the field E(x, y) from the SLM plane at spatial coordinates (x, y) to the field 
U(u, v) at the focal plane at spatial frequencies (u, v) is given by the Fraunhofer diffraction integral10 (neglecting 
constant amplitude and phase factors):

	
U(u, v) = F {E(x, y)} ≡

¨

R2
E(x, y)e−2πj(xu+yv)dxdy� (1)

where F  represents the Fourier transform. We refer to the focal plane of the lens as the Fourier plane, and for 
a lens of focal length f, its spatial coordinates can be described as (x′, y′) = (fλu, fλv) using the paraxial 
approximation, where λ is the wavelength of light. However, the (u, v) coordinates are used in this section as 
the derived equations are easier to follow. In case of phase-only modulation used here, the complex field E(x, y) 
may be expanded as:

	 E(x, y) = Awav(x, y)ej(ϕwav(x,y)+ϕ(x,y))� (2)

where we define Awav(x, y) = P (x, y)Ainc(x, y) and ϕwav(x, y) = ϕinc(x, y) + ϕaberr(x, y) + ϕlens(x, y) 
for simplicity. P(x, y) is the rectangular aperture of the SLM. Ainc(x, y) and ϕinc(x, y) represent the amplitude 
and phase of the incident wavefront, respectively, ϕaberr(x, y) is the aberrated phase due to the non-flatness of 

Fig. 1.  (a), (b) Schematic diagrams of on-axis and off-axis holographic optical systems, respectively. (c) 
Fourier optical system involving an SLM. Commonly used SLMs are reflective, but here the optical axis was 
“unfolded” for clarity. A wavefront of unknown profile in amplitude and phase is incident on the SLM, and the 
reflected wavefront becomes aberrated because of the non-uniform LC layer. This affects the shape of the PSF 
in the Fourier plane.
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the SLM, ϕlens(x, y) is the defocus between the reconstruction plane and the focal plane of the lens, and ϕ(x, y) 
is the phase displayed at the SLM.

In practice, reflections from the inactive area of the SLM outside P(x, y) and from glass surfaces of optical 
elements, termed undiffracted light, mix with the original wavefront creating complicated, non-ideal interferences. 
However, these fields are static and typically slowly varying, forming a pattern around (u, v) = (0, 0), which we 
refer to as the zeroth (diffraction) order.

This approach divides the surface of the SLM of size P × Q pixels (see Fig. 1(c)) into an array M × N  of 
square patches of side length S in pixels, as shown in Fig. 2. S can be chosen as the greatest common divisor 
S = gcd (P, Q) or its integer factor. In this way M = P/S and N = Q/S, so the tiled patches fill the entire 
SLM. The physical side length of the patch is a = S∆SLM, where ∆SLM is the pixel pitch of the SLM. At any 
given time, one patch (m,  n) is displaying the following phase ramp deflecting light to spatial frequencies 
(u0, v0), away from the zeroth order, while all other patches are set to zero:

	

ϕmn(x, y) = Ppatch(x − xmn, y − ymn) 2π [(x − xmn)u0 + (y − ymn)v0]
where Ppatch(x, y) = 1 if x, y ∈ [−a/2, a/2] , 0 otherwise

� (3)

where Ppatch(x, y) is a square aperture of the patch centered at (xmn, ymn) coordinates. In optimal conditions 
where Awav(x, y) = P (x, y) and ϕwav(x, y) = 0, Eq. (1) gives:

	

U(u, v) = U0sinc[a(u − u0)]sinc[a(v − v0)]e−2πj[xmn(u−u0)+ymn(v−v0)]

where U0 = a2 and sinc(x) = sin (πx)/(πx)
� (4)

This equation neglects the contribution of unmodulated light reflected from outside the patch in the zeroth 
order for simplicity. The camera can only detect intensity I(u, v) = |U(u, v)|2, so:

	 I(u, v) = I0sinc[a(u − u0)]2sinc[a(v − v0)]2, where I0 = U2
0 � (5)

Eq. (5) shows that each patch acts as a beam deflector, diverting light to a point at (u0, v0) with a two-dimensional 
sinc envelope.

Experimentally, Awav(x, y) and ϕwav(x, y) will have a different and unknown form, which will affect the 
observed U(u,  v). Both quantities can be approximated as varying smoothly across the SLM, as is the case 
for a Gaussian beam illumination and typical backplane curvatures. This means that if S, consequently a, are 
sufficiently small, Awav(x, y) can be treated as a constant Amn and ϕwav(x, y) approximated to have constant 
gradient gmn over the area of the patch:

	 Awav(x, y) ≈ Awav(xmn, ymn) = Amn � (6)

	 ϕwav(x, y) ≈ gmn · x = 2π(xαmn + yβmn) � (7)

where (αmn, βmn) in the gradient gmn = (2παmn, 2πβmn) corresponds to the displacement of the formed 
spot (see Eq. (8)), x = (x, y), and “ ” denotes the dot product. The gradients gmn can be thought of as the 

Fig. 2.  An illustration of our method of displaying a beam deflector patch (m, n) at the SLM, which projects a 
point in the Fourier plane (green) at position (x′

mn, y′
mn) (where (x′, y′) = (fλu, fλv)). This position differs 

from the reference location (x′
ref, y′

ref) by (δx′
mn, δy′

mn) because of aberrations and misalignment of the 
optical system.
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mean gradient g(x, y) = ∇ϕwav(x, y) over the patch (m, n): gmn = ⟨g(x, y)⟩mn. Thus, by following the same 
reasoning as above, the observed intensity becomes:

	 I(u, v) ≈ I0|Awav(xmn, ymn)|2sinc[a(u − u0 − αmn)]2sinc[a(v − v0 − βmn)]2� (8)

Based on this equation, by displaying different beam deflector patches with equal (u0, v0), we expect the 
observed point to have the same general form but be shifted by a certain (αmn, βmn) relative to (u0, v0) for 
each patch (m, n), and the Gaussian illumination to scale the intensity by |Awav(xmn, ymn)|2. This information 
is used to recover Awav(x, y) and ϕwav(x, y).

Implementation
The SLM enables control over patterns in the first (diffraction) order defined by (u, v) ∈ [−0.5/∆SLM, 0.5/∆SLM]
10. A small value of (u0, v0) ≈ (0.1/∆SLM, 0.1/∆SLM) is chosen so that the deflected point is away from the 
zeroth order and can be clearly identified but is still close to the center. The following procedure is implemented 
(see Fig. 2 for clarification): 

	1.	 Reference point initialization: Display the patch at the center of the SLM (xref, yref) = (0, 0)
. Capture the formed image and select a region of interest (ROI) around the observed point. Then 
use Otsu’s image thresholding method11 to select the point and calculate its center of mass (COM): 
(x′

ref, y′
ref) ←

´
point x′I(x′, y′)dx′dy′/

´
point I(x′, y′)dx′dy′, where x′ = (x′, y′). This will serve as the 

reference to find the phase gradients of other patches.

	▷ Ideally, this COM would lie at coordinates (x′
ref, y′

ref) = (fλu0, fλv0), but experimentally, the camera might 
be offset from the center of the Fourier plane and its sensor may be misaligned with the plane. This potential 
misalignment of the camera is why the COM of the reference point is measured experimentally instead of 
being set manually.

	2.	 Patch scanning: Iterate over all patches (m, n). For each, find the best fit for the gradient ̃gmn = 2π(α̃mn, β̃mn) 
that cancels out the aberration-related gradient (g̃mn + gmn = 0), with the following camera-in-the-loop 
(CITL) approach: 

	 (a)	 Display the phase from Eq. (3) and calculate the COM of the spot in the ROI at coordi-
nates (x′

mn, y′
mn). From this, calculate the separation vector from the reference point: 

δx′
mn = (δx′

mn, δy′
mn) ← (x′

mn − x′
ref, y′

mn − y′
ref).

	 (b)	 Set g̃mn = (2πα̃mn, 2πβ̃mn) ← (2πδx′
mn/(fλ), 2πδy′

mn/(fλ)). Display the phase: 

	 ϕmn(x, y) = Ppatch(x − xmn, y − ymn) 2π[x(u0 − α̃mn) + y(v0 − β̃mn)]� (9)

	 Afterwards, measure the new COM of the spot in the ROI and calculate δx′
mn.

	▷ This causes the spot to shift according to Eq. (8), and sets a root-finding problem δx′
mn = (0, 0) which means 

(α̃mn + αmn, β̃mn + βmn) = (0, 0) → g̃mn = −gmn, where δx′
mn is treated as an unknown function of 

g̃mn.

	 (c)	 Use one step of the Brent’s root-finding method12 to update g̃mn, which solves δx′
mn = (0, 0) based on 

the previous values of g̃mn and δx′
mn. Display the phase in Eq. (9) and measure the new COM of the 

spot in the ROI and calculate δx′
mn.

	▷ Brent’s method was chosen because it achieved the fastest convergence in experiments. Secant method was also 
tested to work successfully.

	 (d)	 Repeat step 2(c) until δr′
mn = |δx′

mn| =
√

|δx′
mn|2 + |δy′

mn|2 ≤ ε, where ε is a tolerance parameter, 
or a maximum number of iterations NI  is reached.

	 (e)	 Find the total power Pmn within the ROI as Pmn =
´
ROI I(x′, y′)dx′dy′. Calculate the local amplitude 

as Amn ←
√

Pmn.

	▷ In an ideal scenario, the obtained g̃mn could approximate −gmn in a single step 2(b). However, even a slight 
optical misalignment of the lens or the camera away from the focal plane will make this formula imprecise, so 
in this way, the subsequent steps are more effective. The final g̃mn is a good approximation to −gmn and both 
terms are further used interchangeably as gmn = −g̃mn.

	3.	 Wavefront reconstruction: Once all gmn and Amn are found, ϕwav(x, y) and Awav(x, y) are calculated 
across all the pixels of the SLM. Awav(x, y) is approximated by first normalizing Amn ← Amn/ max(A)
, and then applying cubic interpolation across the patches. Recovery of ϕwav(x, y) from gmn involves two 
main steps (see SI, “Wavefront reconstruction” for details). First, the discrete gradients are interpolated to 
obtain a smooth gradient field g(x, y) across the SLM, using a bilinear interpolation scheme that ensures 
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continuity between patches. Second, the phase ϕwav(x, y) is recovered by solving the Poisson equation 
∇2ϕwav = ∇ · g, which is performed in the Fourier domain as: 

	
ϕwav(x, y) = −F −1

{
F [∇ · g] (u, v)
(2π)2(u2 + v2) · 1(u,v) ̸=(0,0)

}
.� (10)

1(u,v)̸=(0,0) is an indicator function that is zero at the origin to avoid division by zero, effectively setting the 
mean phase to zero. This approach yields a smooth phase profile consistent with the measured gradients, 
while avoiding error accumulation over large areas. This equation can be implemented using Fast Fourier 
Transforms (FFTs).

Once the reflected complex wavefront is characterized, the results are included in the hologram generation 
process. For this, a modified implementation of the Gerchberg-Saxton (GS) algorithm13 is used to generate 
Fourier holograms, presented in Fig.  3. The method incorporates the measured Awav(x, y) and ϕwav(x, y) 
and fixes the target intensity T(u, v) in the Fourier plane (corrected for the sinc envelope from the square SLM 
pixels) to generate the optimized hologram H(x, y) quantized to grayscale values displayed on the SLM. The 
combined phase accumulated on the SLM is: ϕ(x, y) + ϕwav(x, y) − ϕwav(x, y) = ϕ(x, y), so the aberrations 
are removed. In the calculations, the fields on the SLM are zero-padded to ensure that no aliasing occurs when 
calculating the fields in the Fourier plane and are cropped when projecting back to the SLM plane10.

Results
The proposed wavefront characterization method was tested with the off-axis optical system shown in Fig. 4(a), 
with the SLM at a tilt angle of θ ≈ 25◦. This angle is unusually large for SLM operation, but it was chosen to 
demonstrate the adaptability of our approach. Fourier lens L2 of focal length f = 6 cm was used in conjunction 
with a laser source of wavelength λ = 658 nm. This was to ensure that the full range of the first diffraction order 
fell within the camera sensor of size 1440 × 1080 pixels, with pitch ∆cam = 3.45µm. The deflected points were 
sufficiently separated from the zeroth order, so no blocking filter was required.

The SLM has size of P × Q = 1920 × 1200 pixels, with pitch ∆SLM = 8µm. Thus, a factor of 
gcd (1920, 1200) = 240 was chosen for the patch size, S = 120, which gives M × N = 16 × 10 patches in 
total. The following parameters were used: (u0, v0) = (0.1/∆SLM, −0.1/∆SLM), NI = 6, and ε = 0.1 pixels, 
which were sufficient for most patches in the experiments. The results presented in this section have the y-axis 
oriented downwards.

Figure 5 shows an example convergence of the position for the patch (1, 1). Fig. 5(a) shows the reference spot 
and Fig. 5(b) the resulting spot for the patch (1, 1) with the initial gradient, g̃11 = (0, 0), after step 2(a) of the 
procedure described in “Implementation”. The CITL process converges in only three iterations. The step 2(b) of 
the procedure in the second iteration moves the point nearly to the reference position, and step 2(c) only adds 
a marginal improvement in the third iteration. In Fig. 5(c) small red and green portions can be seen around 
the yellow overlap area, indicating that δx′

11 is not optimized, but in Fig. 5(d), the spots overlap completely, 
as reflected in small values of δx′

11. The final δr′
11 = 0.09 < ε, so the loop is stopped before the number of 

iterations, NI , is reached. The quick convergence in this case was due to the good approximation in step 2(b) in 
the plane where the measurement was taken, but more iterations could be necessary for different planes.

To demonstrate versatility of this approach, the experiments were conducted for two different camera 
placements: with the sensor in the focal plane, and shifted by ∆z ≈ 1 mm away from the focal plane. Figs. 6(a) 
and (b) show the measured values of Amn and gmn for the first case, and Figs.  6(c) and (d) present the 
reconstructed Awav(x, y) and ϕwav(x, y). The amplitude distribution appears Gaussian, as expected from a 

Fig. 3.  Gerchberg-Saxton algorithm taking into account the measured amplitude and phase to generate the 
hologram H. Here ϕrand has values ∈ [−π, π), ∠E represents the phase of the complex field E, and quant() is 
a function that quantizes continuous values to integer grayscale values that can be displayed at the SLM.
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single-mode fiber laser. Figs. 6(e) and (f) show the same results but for the second configuration. The amplitude 
distribution is again Gaussian and similar to that of Fig. 6(c). The small discrepancies can be attributed to the 
coarseness of the used array (set by the chosen S = 120), which may violate the assumptions of flatness and 
constant gradients, and optical noise that appear in the ROIs of the different measurements that affect the 
measured Pmn. The phase in Fig. 6(f), calculated with the camera sensor displaced by ∆z ≈ 1 mm, shows a 
pronounced parabolic component compared to Fig. 6(d), where the sensor lies in the focal plane of the lens. 
This is caused by a significant defocus aberration ϕlens(x, y) introduced by this displacement, which is known 
to be quadratic10. This confirms that the method “inferred” that a compensating defocus phase term needs to be 
present in the wavefront to counteract ϕlens(x, y), in effect bringing the image in focus despite the offset from 
the focal plane of the Fourier lens.

To verify that the wavefront characterization is correct and usable, a spoke wheel target image shown in 
Fig.  7(a) was used in Fourier holography. The holograms displayed on the SLM were generated using the 
modified GS algorithm (see “Implementation” and Fig. 3). The experiments were performed in the exact same 
configurations as used in the characterization experiments. Due to the tilt of the SLM relative to the camera, the 
projected plane is compressed along the x′-axis by cos θ (see Fig. 4(b)). This causes the image to appear elongated 
by 1/ cos θ along the x′-axis. To compensate for this, the target pattern was compressed by cos 25◦ = 0.91 of 
its original width, as shown in Fig. 7(b). Accurate analysis of the observed images was done through an affine 
transformation, based on four registration points placed along the edges of the pattern in the target image. 
Four different holograms were calculated, with imax = 300 iterations of the modified GS algorithm for each, to 
observe the particular effects of the measured wavefront on image reconstruction: without any correction, with 
only the amplitude correction, with only the phase correction, and with both amplitude and phase corrections. 
The images were captured with a camera and aligned using the affine transform calculated with reference to the 
target image. Then, four metrics were used to measure the change in their quality: mean squared error (MSE), 
contrast (C), contrast-to-noise ratio (CNR) and the structural similarity index measure (SSIM)14. The first three 
are defined as follows:

Fig. 5.  Point shifting process for the patch (1, 1) in an example measurement. The colors were modified in 
post-processing. (a) ROI with the reference point. (b)-(d) ROI with the observed point shown in green and the 
reference point superimposed in red: (b) visible after the first iteration when g̃11 = (0, 0), (c) after the second 
iteration (step 2(b)), and (d) after the third (step 2(c)). The yellow area indicates the overlap between the two 
spots. The exact values of the used gradients g̃11 in units of rad/patch and the observed separation δx11 in 
units of rad/pixel are showed at the bottom of the images.

 

Fig. 4.  (a) Schematic diagram of the experimental optical system. The single-mode fiber laser source, S, emits 
light at wavelength λ = 658 nm. The polarizing beam splitter, PBS, is used to select the polarization of light 
along the LC director of the SLM. Lens L1 is used to collimate the beam, and Fourier lens L2 focuses the light 
onto the camera, C. (b) Compressed projection of the SLM plane onto the observation direction (other optical 
elements are omitted for clarity).
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Fig. 7.  (a) Target spoke pattern. (b) Pre-compressed target pattern, shown together with reference points used 
for the affine transformation. (c)-(f) Reconstructions without any correction, with only amplitude correction, 
with only phase correction, with amplitude and phase corrections, respectively, with the camera placed at the 
focal plane. (g)-(j) Reconstructions for the same parameters as (c)-(f), but at the displaced camera. In (g)-(j), 
the zeroth order is visible in the top right corners of the images. The values of MSE, SSIM, C, and CNR are 
shown at the bottom of each corresponding image.

 

Fig. 6.  (a), (b) Measured normalized amplitudes and gradients at each patch. (c), (d) Amplitude and phase 
across the area of the SLM recovered from the patch data in (a) and (b). (e), (f) Recovered amplitude and phase 
for a displaced camera.
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MSE =

〈∣∣∣ I
⟨I⟩ − T

⟨T ⟩

∣∣∣
2
〉

and C = ⟨IB⟩ − ⟨ID⟩
⟨IB⟩ + ⟨ID⟩ and CNR = ⟨IB⟩ − ⟨ID⟩√

σ2
B + σ2

D

� (11)

where ⟨X⟩ denotes the mean value of X over all pixels, ⟨IB⟩ and ⟨ID⟩ are the mean pixel values of the bright and 
dark regions determined by comparison to the target image, respectively, and σB  and σD  are the corresponding 
standard deviations.

The results for both experimental arrangements are shown in Figs. 7(c)-(f) and 7(g)-(j), respectively. The 
four metrics show a systematic improvement as the measured wavefront properties are introduced in the CGH 
process: C, CNR and SSIM go up, and the MSE is reduced. Correcting for only the amplitude is not sufficient 
to obtain recognizable images under the present aberrations, but combining amplitude and phase correction 
does improve the uniformity of the observed images. This is because the value of Awav(x, y) within different 
areas (x,  y) of the SLM determines how much power different spatial frequencies contribute to the formed 
image. An improved estimate of these values enables the CGH algorithm to better use these frequencies in the 
reconstruction process. However, to see these improvements, the aberrations determined by ϕwav(x, y) must 
first be corrected. The reconstruction of the image in the case of the displaced camera appears slightly worse, 
confirmed by worse metric values, because it is more difficult to correct small relative errors when stronger 
aberrations are present. Using a finer array of the patches might improve the results, but because the SLM is 
pixelated while the fields are continuous, even an ideal wavefront characterization could not fully correct for 
the aberrations. Nevertheless, the results prove that our method significantly improves the quality of the formed 
images in Fourier holography.

Discussion
The results shown in the previous section prove that the proposed method accurately measures the effective 
incident wavefront and corrects aberrations in the focal plane. The method inherently accounts for aberrations 
ϕlens(x, y) arising from any displacement of the camera from the true focal plane. This ensures that the formed 
image is in focus in the sensor plane, which is advantageous for Fourier-plane applications such as holographic 
lithography. The method also measures the incident amplitude, which is important in CGH because Fourier 
holography effectively treats SLM pixels as frequency components of the encoded image. The otherwise assumed 
flat wavefront incorrectly assigns equal weight to all spatial frequencies, which is not generally true. This is the 
case for commonly used Gaussian beams produced by single-mode lasers unless the beam is greatly expanded 
during preparation, wasting a large portion of their power.

The maximum spatial frequency that can be resolved with this method in either Awav(x, y) or ϕwav(x, y) 
is limited by the Nyquist frequency of patch sampling, 1/(2a)15. Variations above this limit remain local to each 
patch, distorting the ideal sinc-like spot and biasing estimates of the local gmn or Amn, which reduces the 
reconstruction accuracy of both fields (see SI, “Reconstruction errors”). The shape of the spot can practically 
indicate whether such aberrations are significant: if it maintains the expected sinc profile, the patch size a is 
sufficient; otherwise, it should be reduced. However, a cannot be made arbitrarily small, as very small patches 
produce sinc spots that are too broad and faint (see Eq. (8)) to be reliably captured due to camera sensitivity, 
shot noise, or sensor size. Fortunately, high-frequency contributions, such as those caused by dust, are usually 
localized and have minimal impact on gmn. Although the method cannot resolve them, this is acceptable in 
most applications, as such aberrations have little effect on the focal plane due to the Fourier relationship between 
the SLM and the focal plane.

Another important consideration in the characterization process is the ROI size, which must be large enough 
to capture all deflected spot positions. If a spot for the patch (m, n) appears outside the ROI, the CITL algorithm 
fails for that patch, and then gmn and Amn have incorrect values, typically Amn ≈ 0. However, the ROI cannot 
be too large because other orders of the beam deflector or the zeroth order can enter the ROI, thus making the 
calculations of the COM incorrect and leading to wrong results. This problem could potentially be avoided by 
using more advanced computer vision tracking algorithms. Similarly, the laser power and the saturation time 
must be chosen so that the spots are visible but do not over-saturate the camera pixels. Otherwise, the measured 
values of Pmn and consequently Amn and Awav(x, y) will be incorrect, and the phase measurement will be 
affected.

Even without such characterization errors, the method is inherently biased toward global tip/tilt (see 
SI, “Reconstruction errors”), which affects the measured ϕwav(x, y) (SI, Fig.  S5). This is also the case for 
interferometric methods and occurs because all observed points, including the reference, may be shifted. 
Subtracting the mean gradient from gmn partially mitigates but does not remove this bias. In practice, the 
remaining tip/tilt only shifts the image in the focal plane and can be compensated by pre-shifting the target 
pattern. Absolute tip/tilt correction requires an objective reference point at the ideal location (fλu0, fλv0), 
which in practice can be determined relative to the zeroth-order spot that defines the optical axis and is generally 
unaffected by aberrations.

While this text focuses on the off-axis configuration, the proposed method is not limited to such systems. 
We also tested it in on-axis Fourier systems, which are simpler to characterize since they are the intended SLM 
configuration. We tested different laser wavelengths (405 nm and 635 nm), different SLMs (Santec SLM-250 
and Holoeye LUNA) and different lenses (see SI, “Other experiments”). The results of these experiments are 
consistent with those presented in “Results”. The comparable performance across different wavelengths and 
hardware configurations validates the versatility of our approach. This is expected because the wavelength only 
changes the rate of phase variation, but not its overall shape, as the underlying physics remains unchanged. 
Likewise, most LCoS SLMs share similar fabrication processes and therefore exhibit similar types of aberrations.
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The main time-limiting bottleneck in our current implementation is the SLM LC response. For the Santec 
device, this leads to an average measurement time of 12.5 min, whereas Holoeye LUNA requires only 50 s due to 
its much faster response. Although the Santec SLM is specified with an LC response time of 200µs, we observed 
that a delay of about 1.5 s was needed between displaying a pattern and capturing the image (only 100 ms for 
LUNA). Otherwise, the phase appeared unstable, likely due to communication latency. Each patch typically 
requires three iterations of the beam deflectors, resulting in about 4.5 s per patch on a 16 × 10 grid. The method 
itself is not inherently slow and could be further accelerated by parallelizing the scan over multiple patches, 
provided that interference between the projected spots is avoided. However, even with such improvements, 
real-time correction of rapidly varying aberrations such as those induced by air turbulence remains unlikely for 
nematic LCoS SLMs using this technique, but could be within reach for much faster digital micromirror devices.

To see how the method compares with an alternative technique, we compared holograms generated using 
the proposed method with the ones generated using the phase measurement obtained using a Shack-Hartmann 
wavefront sensor, provided by the SLM’s manufacturer16 and shown in Fig. 8(a). The provided phase contains 
a quadratic component, which slightly shifts the Fourier plane, so the comparison required moving the camera 
away from the focal plane of the lens to find the best plane where the holograms form focused images. This 
process is tedious, and determining the optimal camera position is difficult even when using translation stages, 
highlighting a limitation of methods that require reconfiguring the optical system for measurement. This is not 
the case for the proposed approach, which finds the corrected wavefront for the exact position of the camera.

The phase and amplitude for the optimal location are shown in Figs. 8(b) and (c). The phase in Fig. 8(b) 
was measured at the camera position where the images formed using the phase correction pattern from (a) 
appear most in focus. This position was determined by first applying the correction from (a), then adjusting 
the camera to minimize aberrations, and finally calculating the correction at that plane using our method. 
The smooth discrepancy between the measured and provided phases shown in Fig. 8(d) is likely caused by the 
aforementioned tip/tilt bias, a slight defocus because the positions of the planes are not exactly matched, or by the 
fact that the provided phase was measured in an on-axis configuration. As explained earlier, tilting the SLM after 
measurement may affect aberrations as the incident light interacts with the LC layer of the SLM, the glass cover, 
and the backplane at an angle. Fig. 8(e) shows the observed uncorrected image, and Figs. 8(f) and (g) show the 
comparison between the corresponding corrected images. The tested quality metrics indicate that the proposed 

y y

x x

y

x

y

x

Fig. 8.  (a) Phase correction pattern provided by the SLM manufacturer, obtained using an interferometer. (b), 
(c) Phase correction pattern and measured amplitude obtained using the proposed method. (d) Unwrapped 
phase of the difference between phases in (a) and (b). (e)-(g) Reconstructed images generated without any 
correction, using the phase from (a), and using the phase from (b) and amplitude from (d), respectively. (h) 
and (i) Observed images using the phase from (a) observed in the two experimental configurations examined 
in “Results”.
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method achieves better results. The new method also has the advantage that it uses the measured Awav(x, y) 
in the CGH process, while the other method can only assume a flat wavefront. This leads to a smoother image 
in Fig. 8(g). To complete the comparison, Figs. 8(h) and (i) show the images obtained when the provided phase 
is used in the two experimental arrangements described in “Results” rather than in its matched configuration. 
In both cases, the quality metrics are worse than if no correction is used at all. This is not a completely fair 
comparison, as the provided phase was measured in a different plane, but it does indicate the versatility of our 
approach.

The results above show again that our method works reliably in both off-axis and on-axis systems. In contrast, 
the interferometric characterization methods are difficult to adapt to off-axis systems because the SLM-reflected 
beam must be recombined with a reference beam, which is much easier in an on-axis geometry such as Fig. 1(a).

A similar approach, treating the SLM as a Shack-Hartmann wavefront sensor, was previously proposed 
in17. However, that implementation relied on fitting Zernike polynomials to the captured images, whereas the 
method presented here employs an automated iterative CITL process. As a result, it is not constrained to low-
order Zernike modes, which are also ill-suited for the rectangular aperture of the SLM. Furthermore, we provide 
a formal and comprehensive procedure for recovering both the phase and amplitude profiles from the measured 
gradients and intensities, thereby extending and reinforcing the concept.

The method also resembles those presented in18,19, where small square beam deflector patches are used. 
However, these approaches rely on interference between two beams from different regions at the SLM, and 
retrieving the phase requires fitting the observed fringes in the Fourier plane to a model function. This only 
gives a constant phase across each patch (as opposed to the local gradient measurement in our method which 
provides more information), which means the patches must be much smaller to get an accurate measurement. 
This requirement of smaller size reduces the amount of light that is deflected by the patches, which reduces the 
signal-to-noise ratio in the observed fringe pattern. Additionally, the fitting process relies on placing the camera 
sensor accurately in the focal plane because it requires the specific values of the parameters of the experimental 
optical system. The proposed method does not require such specific alignment and information.

Conclusion
This work presents a thorough theoretical framework for a new method to simultaneously measure the amplitude 
and phase of the wavefront reflected from SLMs, which is further verified in experiments. The method operates 
by sequentially displaying square patches of a beam deflectors on the SLM and inferring the wavefront profile 
from the position and power of the associated spots in the Fourier plane by an iterative CITL approach. This 
process does not rely on fitting Zernike polynomials or using any additional optical components, is simple to 
implement, and is shown to be versatile. We analyze the reconstruction errors of such approach in simulations 
and verify the method experimentally by generating corrected holograms using the Gerchberg-Saxton algorithm 
with the measured phase and amplitude.

The proposed method is well suited for Fourier-plane holography and remains effective in nearby 
parallel planes, allowing it to correct defocus from potential misalignments. The wavefront characterization 
is performed in the exact alignment of the optical system as used for Fourier holography, thus removing the 
necessity for reconfiguring the system between experiments. Reconfiguring the optical system after measuring 
the aberrations may introduce new aberrations, and this issue is avoided with the proposed method. Finally, the 
method eliminates the need for additional optical components, such as a Shack-Hartmann wavefront sensor or 
high-precision reference mirrors, reducing system complexity and operational costs.

Data availability
The datasets generated and/or analyzed during the current study are available in the Apollo - University of Cam-
bridge repository, ​h​t​t​p​s​:​​/​/​w​w​w​.​​r​e​p​o​s​i​​t​o​r​y​.​c​​a​m​.​a​c​​.​u​k​/​h​a​​n​d​l​e​/​1​​8​1​0​/​3​8​​9​4​8​0.

Code availability
The code used to generate the results in this work is available on GitHub, ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​a​n​t​o​n​i​-​w​o​j​c​i​k​/​h​o​
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