www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Genotyping by sequencing reveals
a chromosome A04 QTL governing
whitefly resistance in upland
cotton
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Cotton plants utilize physical defenses such as trichomes and leaf characteristics to deter insect pests
and environmental stressors, safeguarding their growth and productivity. Cotton insect pests such as
whiteflies, aphids, jassids and boll weevils not only directly damage the crop but also transmit harmful
viruses, leading to substantial yield and quality loss. A GBS study was conducted on 206 cotton plants
from a cross between whitefly resistant and whitefly susceptible varieties to identify genetic markers
linked to whitefly resistance and yield traits. This study identified genetic regions associated with
whitefly resistance and yield traits, including specific genes on chromosomes A04 and D09 linked

to resistance mechanisms and flower number, respectively. This study identified genes involved in
whitefly resistance (At49g27190 and RPPL1) and genes linked to increased flowering and plant vigor
(GUS1, MBDAL), paving the way for the development of molecular marker-assisted breeding to create
resilient cotton cultivars.
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GBS is a powerful technique for efficiently identifying SNPs across large numbers of samples, enabling genome-
wide or tagged genetic analysis". Restriction enzymes are used to cut DNA into specific fragments, which are
then tagged with unique barcodes to identify their origin after being pooled for sequencing®?. Next-generation
sequencing was used to sequence the DNA fragments, and the barcode information was used to identify and
analyze specific SNP variations within the sequenced data®S. GBS is a cost-effective method for identifying
genes linked to disease resistance, yield, and complex traits, as well as for studying genetic variation within
and between populations and assessing gene expression®. GBS employs restriction enzymes to fragment DNA,
targeting specific regions while avoiding repetitive sequences, and attaches unique barcodes to the fragments
for identification after pooling”®. GBS involves fragmenting DNA with restriction enzymes, adding barcodes,
performing PCR amplification, sequencing, and analysis to identify SNPs, making GBS a valuable tool for plant
and animal breeding, genetic studies, and genome-wide association studies®!?. The choice of restriction enzymes
(ApeKI, PstI, and EcoRI) in cotton GBS studies was influenced by their ability to target specific DNA regions
and avoid repetitive sequences, with EcoRI being less commonly used owing to its less frequent cutting!""12.
The selection of restriction enzymes in GBS, such as ApeKI with its recognition sequence GCWTC, is based on
factors such as genome coverage, fragment size, and GC content to optimize the analysis in cotton genotyping
studies®!>14. ApeKI is commonly used in GBS because of its frequent cutting, suitable fragment size, and low
cost, resulting in good genome coverage and informative marker distribution'>. GBS employs adaptors with
specific sequences for different sequencing platforms, including RE overhang, spacer and sequencing primer
sites, to facilitate DNA fragment ligation and sequencing initiation, while barcodes are used to identify and
differentiate between samples during the workflow!®-2°. Barcodes are unique nucleotide sequences assigned
to samples to prevent misidentification during GBS, whereas SNPs are single-nucleotide variations within a
genome, such as a change from C to G in a DNA sequence, occurring at a frequency of approximately one per
1000 nucleotides!?'-2. Millions of SNPs exist in complex organisms such as humans, with some influencing
disease susceptibility and traits, such as plant response to pesticides or disease resistance. Identifying these SNPs
in polyploid cotton can help link them to diseases and yield traits, enabling the selection of resistant genotypes
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with specific SNP alleles?*-2%. SNPs offer more detailed genetic resolution than markers such as SSRs do,
enabling the precise identification of genes linked to traits such as disease resistance and yield. High-throughput
sequencing has made SNP analysis cost-effective, facilitating the discovery of whitefly resistance-related SNPs
and the identification of nearby candidate genes involved in defense mechanisms?’~?°. Identifying whitefly
resistance-related SNPs through GBS enables marker-assisted selection of resistant genotypes, reduces field
exposure and pesticide dependency, and paves the way for developing genetically resilient cotton varieties®.
QTLs are specific chromosomal regions containing multiple genes that contribute to traits such as whitefly
resistance and are identified through statistical analysis of genetic markers and phenotypic data from crosses
between resistant and susceptible parents, revealing the complex genetic architecture of resistance’~**. QTL
mapping identifies chromosomal regions containing multiple genes involved in complex traits such as whitefly
resistance, aiding in the development of marker-assisted selection programs for breeding resistant cotton
varieties by utilizing DNA markers linked to these QTLs**%. Integrating SNP-based association mapping, GBS,
and QTL mapping provides a comprehensive understanding of whitefly resistance genetics in cotton, with QTL
mapping being crucial for developing resistant varieties because of the absence of a complete SNP-mapped QTL
reference map”. GBS can identify whitefly resistance genes by comparing resistant and susceptible genotypes,
and SNP markers can help elucidate the function of genes such as Mi-1.2 in cotton defense. Studying gene
expression in whitefly infested cotton can further reveal resistance mechanisms®-3°. Comparing upregulated
genes in resistant and susceptible cotton genotypes during whitefly infestation, along with identifying resistance
markers using GBS, can lead to the development of new, highly resistant cotton varieties with reduced pesticides
dependency by validating candidate genes and discovering additional resistance genes and pathways.>*%0. By
continuing research on whitefly resistance in cotton, scientists have aimed to develop long-lasting, whitefly
immune varieties and accessible DNA markers for large-scale breeding programs, leading to a more sustainable
cotton production system*!.

Materials and methods

First, during the cropping season of 2021-22, we screened both resistant and susceptible parents for whitefly
resistance??. Two resistant parents, namely, CA-12 and AGC-555, and two susceptible parents, namely,
GOMAL-105 and SLS-87/175, were screened for whitefly resistance and susceptibility. In the next cropping
season, 2022-23, these selected parents were crossed such that CA-12 was crossed with GOMAL-105, and AGC-
555 was crossed with SLS-87/175%. After that, the F1 generation was grown in a glasshouse to obtain seeds to
grow F2 in the next cropping season**. In the next cropping season, 2023-24, the F2 generation was grown in the
field and evaluated for phenotypic data and genotypic data. The F2 generation obtained from a cross between
CA-12 and GOMAL-105 was subjected to further studies, and the F2 generation obtained from a cross between
AGC-555 and SLS-87/175 was discarded because more than 50% sterile plants were present*>*°. The F2
germplasm was cultivated during the 2023-24 cropping season on 200 m? at the research farms of Patron Seeds
(71°21’30” E, 29°59’30” N). Cotton beds measuring 60 cm in length with 30 cm furrows were prepared via a bed
planter. Seeds were manually sown (Chopa method) in a zigzag pattern along both edges of the beds at a spacing
of 30 cm per plant?’. Since non-delinted cottonseeds were used, 3-4 seeds were sown per chopa to increase
germination rates*. Following sowing, standard agronomic practices were implemented to ensure optimal crop
growth, except for pesticide application for whitefly control’. Young leaves from 30-day-old plants were
collected, frozen, and stored for DNA extraction via the CTAB method to identify genetic variations.
Phenotypic data was recorded as follows: Days to First Flower (DTF) data was collected daily after 35 days of
sowing and continued until 47 days post-sowing®'. Data regarding Flowers/plants (FP) was collected daily over
a period of three weeks, commencing 35 to 47 days following sowing, for all genotypes®’. We collected
morphological data for Nodes to 1st monopodia (NTM), Monopodia/Plant (MP), Sympodia/plant (SP), Leaf
Length (LL), Leaf Width (LW), and Petiole Length (PL) after 90 days of sowing. Additionally, we calculated Leaf
Area (LA) using the Grid Method of Leaf Area Measurement®?. The tolerance data for Whitefly adults and
nymphs, commonly known as the Whitefly count (WC), were taken from the field 60 days after sowing. The data
was obtained three times, each with a 30-day interval. Whitefly data was acquired by randomly selecting three
plants and counting whitefly adults and nymphs on the upper leaf of the first plant, the middle leaf of the second
plant, and the lower leaf of the third plant®. The data for plant height (PH) and yield parameters were recorded
at maturity, including Bolls/plant (BP), Bolls weight (BW), Yield/plant (YP)>. Fibre attributes were calculated
following crop picking, including seed index (SI), lint index (LI), ginning outturn (GOT), and staple length
(SL)*°. DNA purity was assessed via spectrophotometry and gel electrophoresis, and the DNA samples were
subsequently sent for GBS analysis following the protocol of Elshire®” (USA)*%. Library preparation for GBS
was carried out by using high-quality DNA extracted from plant tissues, and the ApeKl1 enzyme with the
GCWTC recognition site was used to cut DNA!*°%57:60, Frequent cutting, suitable fragment size and low cost
were the causes of ApeKI selection in GBS. Adapters having primer sites and barcodes were ligated with DNA
fragments for sample identification and PCR amplification'® Sequencing was performed on Illumina platforms
using 50-150 bp reads, with sequencing-by-synthesis chemistry detecting fluorescently labeled nucleotides to
generate raw FASTQ data®"¢%. After sequencing, barcodes were used to identify sample origins and reads aligned
to a reference genome to identify SNPs and other genetic variations®®*-¢°. Bioinformatics tools were used to
identify and confirm SNPs across the samples, enabling the analysis of genetic diversity, population structure,
and trait associations within the cotton germplasm®. Raw sequence data from GBS, consisting of millions of
short DNA fragments (50-150 bp) in Fastq format, were processed via bioinformatics tools to identify barcodes
and differentiate reads from different pooled cotton samples®”-8. Fragment size distribution was measured, and
GBS data were aligned to a reference cotton genome to identify SNPs and other genetic variations, enabling the
analysis of genetic diversity, population structure, and trait associations within the cotton germplasm®-7!.
Comparing identified SNPs with phenotypic data helps identify those associated with yield-related traits and
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whitefly resistance. Aligning SNPs to the genome determines their exact location and predicts their functions,
whereas variation in alignment across samples reveals individual differences. Specialized software is used for
accurate GBS data alignment because of the complexity of the cotton genome’?7%. Burrows wheeler aligner
(BWA) was used to align GBS data, followed by quality control using variant calling tools to identify and filter
low-quality SNPs, which were then annotated to understand their potential functions’>’®. Annotation tools
associate SNPs with specific genomic regions, including coding, regulatory, and noncoding regions, to predict
their potential impact on gene expression, protein function, and cellular processes, aiding in the identification of
disease-related SNPs and understanding their functional significance’’”°. Annotation in GBS adds biological
context to SNPs, pinpointing their exact location and linking them to specific genes to understand their potential
impact on phenotypes and diseases, aiding in prioritizing SNPs for further analysis and improving reference
genomes and annotation databases®’-33. Bioinformatics tools such as TASSEL-GBS, TASSEL, JOINMAP, Win
QTL Cartographer, and MAPCHART were used for preprocessing, quality control, demultiplexing, alignment,
variant calling (SNP detection), and downstream analysis, including QTL detection®-3¢. TASSEL is a
bioinformatics tool used for analyzing GBS data, including SNP calling, database building, barcode processing,
read alignment, SNP discovery, quality filtering, population structure analysis, GWAS, and MAS, and requires
computational resources for large datasets®’%°. TASSEL-GBS, a specialized tool for plant breeding, uses SNP
calling algorithms to identify SNPs from aligned reads in its database, with alignment to a reference genome
being a crucial step in the SNP discovery process®®®!. TASSEL-GBS uses its own internal alignment engine for
SNP calling, unlike other pipelines, which offer choices such as BWA, which is a tool for aligning reads to a
reference genome®. SNP filtering was performed via TASSEL on the basis of minor allele frequency, missing
data rate, coverage depth, segregation distortion, and heterozygosity to improve data quality and reduce the
computational burden. The remaining 8,889 SNPs were imputed via LD-kNNi in TASSEL, with imputation
accuracy assessed by masking known genotypes and comparing them to predicted alleles®®. Highly filtered SNP
data in VCF format were used to construct a linkage map by calculating recombination frequencies between
linked markers via algorithms such as the Kruskal-Wallis test and regression, which were used to assess their
separation during meiosis?*~®. JOINMAP was used to construct a linkage map via high-quality SNP data and
pedigree information; this map represents the linear order of markers within linkage groups on the basis of
recombination frequencies; facilitates assessments of map length, marker distribution, and potential genotyping
errors; and serves as a foundation for QTL studies and marker-assisted selection®” . A high-density linkage
map was constructed using recombination frequencies (Kruskal-Wallis test) and visualized (MapChart),
enabling marker-assisted selection.

WinQTL Cartographer2.5_011 (https://brcwebportal.cos.ncsu.edu/qtlcart/ WQTLCart.htm) was used
to perform composite interval mapping (CIM) analysis on a genetic linkage map (constructed from SNP
information) to identify QTLs associated with the traits of interest, utilizing phenotypic data!®®!%!. QTLs
were designated and prioritized for further analysis on the basis of their highest LOD scores and phenotypic
variances (R2) and were named via a convention (e.g., qPH for plant height, qFP for flowers per plant, and gWC
for whitefly count) after being identified via a 1000-iteration permutation procedure to determine the LOD
threshold for each trait*®1%2, QTLs were designated via a naming convention (e.g., qPH for plant height, qFP for
flower per plant, and qWC for whitefly count) and prioritized for further analysis on the basis of their highest
logarithm of odds (LOD) scores and phenotypic variations (R2). Genes within identified quantitative trait loci
(QTLs) were positioned on the basis of genetic distances on the map, followed by gene mining with Cotton FGD
(https://cottonfgd.org/) to identify 377 candidate genes in detail in Supplementary Tables 1 & 2. Prioritization
of these candidates for whitefly resistance was achieved via TAIR (https://www.arabidopsis.org/), and relevant
literature was used to assess their predicted functional roles'®. The Mi 1.2 genes in Solanum lycopersicum, which
were identified as key factors in tomato whitefly resistance, suggested that their cotton orthologs may also play a
role in whitefly resistance!**195. The mRNA sequence of the Mi 1.2 gene (NM_001247134.1) was used in a BlastX
search against the TAIR 10 protein database to identify homologous genes in A. thaliana, followed by a similar
BlastX search of 211 G. hirsutum genes to identify homologs of known whitefly resistance genes.

Results

Genetic linkage map

A total of 3375 SNPs were identified in the F2 population via GBS, with 1793 SNPs selected on the basis of missing
data and heterozygosity. After 996 SNPs were converted to the ABH genotype, a linkage map was constructed
via JOINPAM 4.0'%. The groups were established with a minimum logarithm of odds (LOD) threshold of 10.0
marker orders and were estimated via the regression mapping algorithm. The recombination fractions were
converted to map distances via the Kosambi mapping function!?”. The strongest cross-link (SCL) information in
combination with the known mapped locations of the ungrouped SNPs was used to merge these markers with
the clearly identified linkage groups of G. hirsutum.'%.

These 996 SNPs were analyzed via JOINMAP 4.0 software. The linkage group output and map position were
subsequently determined through MapChart 2.2 for Windows, and the process was used to compute and display
3-D map-based marker distances!®!'%. One hundred thirty (130) SNPs were distributed in 19 linkage groups.
The remaining 866 SNPs were not linked and were excluded from the maps or linkage groups. The LGs were
numbered (1-19) on the basis of the assigned chromosome numbers!!!.

The LODs of the markers/loci ranged from 2 to 10. The basic information of the linkage groups (LGs) is
presented in (Table 1). The current map spanned only 3213.3 cM, with an average marker density of 2.28 cM!12.
The genetic length of the LGs ranged from 10.1 cM (Chr/LG A3, Chr/LG A13) to 1265 ¢cM (Chr/LG D06). On
average, one linkage group presented approximately 38 SNP markers that covered an average of 34.2 cM. The
most common marker-covered linkage group was 38 (Chr/LGDO06), which had 38 markers with an average
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Subg Chr Marker count | Map length (cM) | Marker density (markers/cM) | Average interval (cM) | Maximum gap (cM)
A A01 4 37.8 0.11 12.6 21.5
A A03 2 12.8 0.16 12.8 12.8
A A05 2 10.1 0.2 10.1 10.1
A A06 3 17.2 0.17 8.6 9.8
A A07 5 50.8 0.1 12.7 17.4
A A09 2 10.1 0.2 10.1 10.1
A Al0 3 36.3 0.08 18.1 21

A All 5 58.7 0.09 14.7 17

A Al2 2 34.7 0.06 34.7 34.7
A Al3 2 10.1 0.2 10.1 10.1
D Do1 4 175.3 0.02 58.4 80.5
D D02 2 242 0.08 242 242
D D03 3 61.5 0.05 30.7 39.9
D D04 3 39.4 0.08 19.7 21.5
D D05 4 100.1 0.04 334 39.9
D Do6 38 1265 0.03 34.2 115.1
D Do7 2 17.8 0.11 17.8 17.8
D D08 32 968.2 0.03 31.2 94.9
D D09 2 29.9 0.07 29.9 29.9
D D10 2 11.2 0.18 11.2 11.2
D D11 5 87 0.06 21.8 255
D D12 2 34.7 0.06 347 34.7
D D13 5 120.4 0.04 30.1 45.8
Total 134 3213.3 2.22 22.69 115.1

Table 1. Summary statistics of the genetic linkage map of G. hirsutum. This table provides an over view of the
genetic linkage map constructed for G. hirsutum. Each row represents a specific linkage group (chromosome),
and the columns provide the following information: group: the chromosome identifier. Marker_num: the
number of markers mapped to the chromosome. Map_Len(cM): the total genetic length of the chromosome in
centimorgans (cM). Marker_Density (markers/cM) Ave_Interval (cM): the average distance between adjacent
markers on the chromosome. Max_Gap(cM): the maximum genetic distance between any two adjacent
markers on the chromosome.

marker density of 0.03 cM. In contrast, linkage groups A09, A12, A13, D02, D07, D09, D10 and D12 each had
the lowest number of SNP markers (only 2; Table 1; Fig. 1).

QTL analysis

Five QTLs for Nodes to 1st Monopodia were identified on chromosomes 1, 7, 13, 19 and 21, designated as
gNTMI1_A01, QNTM2_A07, QNTM3_A13, qNTM4_D06, and QNTM5_DO08, respectively!!*-16 (Table 2). QTLs
for whitefly count (QWC1_A04), flower per plant (QFP1_D09), nodes to 1st monopodia (QNTM5_D08), and
plant height (QPH1_A09) were identified on chromosomes A04, D09, D08 and A10, respectively, with LOD
scores of 4.980, 5.944, 11.560 and 6.202 and phenotypic variances of 0.250, 0.298, 0.263 and 0.211'!7:118 (Fig.
2). The QTLs qWC1_A04 and qFP1_DO09 were further investigated to identify genes associated with whitefly
resistance and flowers per plant, respectively (Fig. 3).

Candidate genes

A total of 211 and 166 genes were identified for whitefly resistance and flowers per plant, respectively, and only a
subset was directly associated with these traits, leading to the use of BlastX searches with TAIR to identify genes
homologous to known whitefly resistance genes in Arabidopsis thaliana within the identified gene set!!®. The
mRNA sequence of the Mi 1.2 gene (NM_001247134.1) was depicted via BLASTX search against the TAIR 10
protein database to identify homologous genes in A. thaliana, followed by a similar BLASTX search of 211 G.
hirsutum genes to identify homologs of known whitefly resistance genes, revealing 10 potential candidate genes
for whitefly resistance Supplementary Table 1. Additionally, 10 of the 166 genes were directly associated with
flowers per plant'? (Supplementary Table 2).

Discussion

Our comprehensive QTL mapping study offers significant insights into the genetic architecture of whitefly
resistance and agronomic traits in Gossypium hirsutum'?!. By conducting an extensive composite interval
mapping analysis on an F, segregating population, we identified multiple stable QTLs that exhibit significant
phenotypic effects!?2. This includes five loci responsible for NTM and two primary QTLs (QWC1_A04 and
qFP1_D09) linked to WC and FP respectively. The statistical robustness of these findings is substantiated by
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Genetic Linkage Map of Cotton Genome
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Fig. 1. Genetic linkage map of tetraploid cotton. (A) Chromosomes are ordered vertically with the D
subgenome (orange, left) and A subgenome (green, right). (B) Scale bar indicates genetic distance in cM.
(C) Filled circles represent molecular markers with positions determined by recombination frequency. (D)
Absence of A02, A04, and A08 chromosomes reflects insufficient marker coverage for these linkage groups.

rigorous permutation testing (1000 iterations), with qNTM_DO08 standing out as particularly significant due
to its high LOD score (8.67) and substantial contribution to phenotypic variance (27.93%). These results
significantly advance our understanding of cotton genetics, with the chromosomal distribution patterns
of identified QTLs both confirming known gene clusters for defense responses and revealing novel genetic
associations!?*. Of particular interest is the qWC1_A04 locus on chromosome A04, which contains homologs
of the well-characterized Mi-1.2 resistance gene from tomato, suggesting evolutionary conservation of defense
mechanisms against sap-sucking insects across divergent plant species!?*.

The biological interpretation of our candidate gene analysis reveals a sophisticated, multi-tiered defense
system in cotton. The presence of LRR domain-containing proteins (At4g27190 and RPPL1) within QTL intervals
strongly suggests the operation of pathogen-associated molecular pattern (PAMP)-triggered immunity'%’, while
XA21-like genes likely participate in intracellular kinase signaling cascades that amplify defense responses!'?®.
Furthermore, the co-localization of secondary metabolism genes with resistance QTLs indicates probable
biosynthesis of antixenosis compounds such as terpenoids and flavonoids, which may deter whitefly feeding and
oviposition'?’. For floral development traits, the identification of GUS1 within qgFP1_D09 provides compelling
evidence for hormonal regulation of flowering, as this gene’s known functions in auxin and cytokinin metabolism
directly influence floral meristem initiation and differentiation!?®. Similarly, MBDL4’s critical role in managing
oxidative stress likely protects developing reproductive tissues from pest-induced physiological damage, thereby
maintaining yield potential under infestation pressure!%.

All these findings about whitefly resistance genes are in line with previous results including, WRKY
40 and Copper protein genes plays role as hub genes against whitefly in cotton!*® secondary metabolites!!
defense protein like CYS6 in tobacco'®?, B-glucosidase in squash plants'3®, upregulation of B-1,3-glucanase,
chitinase and peroxidase in tomato'*, up regulation of polyphenol oxidase in cucumber!®> and peroxidase and
polyphenol oxidase in tomato and soybean plants!*®. While these findings represent significant advances, several
methodological considerations warrant discussion. The F, population design, while valuable for initial QTL
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Comprehensive QTLs information

QTLs Chr | Position(cM) | Start bp End bp No of genes | LOD | R2 Additive_effect | Dominant_effect
qQNTM1_AO1 |1 101.01 3,740,119 | 4,720,876 | 65 15.048 | 0.262 | 2.647 2.928
qWC1_A04 4 211.01 7,893,523 | 19,131,988 | 211 4.980 | 0.250 | 15.691 -0.043
qNTM2_A07 |7 1577.01 20,409,573 | 20,908,643 | 16 7.294 |0.279 | 4213 -3.632
qDFF 1_A07 |7 1675.02 20,409,573 | 20,908,643 | 16 5485 |0.265 | 1.141 -2.796
qSI1_A07 7 1741.02 20,409,573 | 20,908,643 | 16 2243 | 0.329 | -0.944 0.964
qPHI1_A09 9 316.01 7,600,106 | 7,941,626 13 6.202 | 0.211 | 7.322 14.342
qMP1_A09 9 389.01 7,600,106 | 9,325,666 |53 3.109 | 0.355 | 0.590 -0.479
qWC2_A09 9 21.01 1,797,372 | 1,797,391 |0 4175 |0.139 | -13.131 29.548
qNTM3_A13 | 13 403.01 27,648,445 | 27,648,458 | 0 6.999 |0.279 | 4.213 -3.613
qLA1_A13 13 405.01 25,062,362 | 36,817,044 | 93 6.080 |0.070 | -3.979 -0.776
qGOT1_A13 |13 453.01 30,387,450 | 32,522,284 | 36 2.854 | 0.090 | -0.786 -1.760
qSL1_D04 16 176.01 17,437,498 | 17,437,519 | 0 3.660 | 0.087 | -0.520 -0.858
qPH2_D06 18 1333.01 51,440,011 | 52,190,178 | 25 4.860 | 0.146 | 7.251 12.881
qNTM4_D06 | 18 883.01 20,169,089 | 31,782,006 | 286 7.073 | 0.279 | 4213 -3.634
qSL2_D06 18 1054.01 25,802,573 | 27,002,904 | 42 5.010 |0.198 | -0.846 -0.447
qS12_Do6 18 1101.01 17,853,772 | 28,059,537 | 301 5.350 |0.341 | -0.952 0.122
qNTM5_D08 | 20 170.01 4,036,376 | 23,854,991 | 636 11.560 | 0.263 | -4.090 5.870
qLA2_D08 20 165.01 14,189,758 | 16,109,080 | 31 4.694 | 0.108 | -5.654 7.207
qLI1_D08 20 325.01 28,201,413 | 28,201,423 | 0 3.055 |0.176 | 0.233 0.004
qFP1_D09 21 79.01 662,187 5,281,519 166 5.944 | 0.298 | -2.204 -0.684

Table 2. Quantitative trait loci (QTLs) associated with yield and fiber quality traits in Gossypium hirsutum.
This table presents a comprehensive list of QTLs identified for yield and fiber quality traits in G. hirsutum.
Each QTL is characterized by the following information: chr: chromosome number position (cM): the genetic
position of the QTL in centimorgans start bp; the starting base pair position of the QTL end bp; the ending
base pair position of the QTL No. of genes; the number of genes within the QTL interval LOD; the logarithm
of the odds ratio, indicating the strength of the QTL effect R2; and the proportion of phenotypic variance
explained by the QTL Additive_effect: the additive effect of the QTL allele Dominant_effect: the dominant
effect of the QTL allele. QNTM1_AO01 nodes to 1st monopodia 1, qWC1_A04 whitefly count, QNTM2_A07
nodes to 1st monopodia 2, gDFF 1_A07 days to 1st flowering, qSI1_A07 seed index, qPH1_A09 plant height
1, gMP1_A09 monopodia per plant 1, qWC2_A09 whitefly count 2, qNTM3_A13 nodes to 1st monopodia
3,qLA1_A13 leafarea 1, qGOT1_A13 ginning outturn 1, qSL1_DO04Staple length 1, gPH2_DO06 plant height
2, QNTM4_D06 nodes to 1st monopodia 4, qSL2_D06 staple length 2, qSI2_D06 seed index 2, qNTM5_D08
nodes to 1st monopodia 5, QLA2_D08 leaf area 2, qLI1_DO08 Lint index 1, qgFP1_DO09 flowers per plant 1.

detection, presents certain limitations regarding effect size estimation accuracy due to residual heterozygosity'*’.

Additionally, our single-environment study design precludes assessment of QTL stability across different
growing conditions, an important consideration for breeding applications'*. The relatively large physical
intervals of some QTLs, particularly the 19.1 Mb span of qWC1_A04, necessitate future fine-mapping efforts to
distinguish true causal variants from linked neutral polymorphisms'*. These limitations notwithstanding, our
results provide a strong foundation for subsequent research and practical applications.

Looking forward, several promising research directions emerge from this work. Development of recombinant
inbred line populations will enable more precise QTL validation and effect size estimation, while CRISPR-Cas9
genome editing of prioritized candidate genes (particularly At4g27190 and RPPL1) can establish definitive proof
of function®®. Comprehensive field trials across multiple environments and growing seasons will be essential to
evaluate QTL stability and genotype-by-environment interactions'*’. Complementary transcriptomic analysis
comparing resistant and susceptible lines under infestation conditions will further elucidate the gene regulatory
networks underlying these traits'*!. From a practical breeding perspective, these findings immediately enable
marker-assisted selection using the robustly identified qgWC1_A04 and qFP1_D09 loci, while also informing
strategic pyramiding of complementary resistance mechanisms'#2. The well-supported candidate genes
identified here also provide excellent targets for precision breeding approaches, including both transgenic
and cisgenic strategies'*’. The integration of these genomic tools with conventional breeding methodologies
promises to accelerate the development of whitefly-resistant cotton cultivars with improved yield stability and

reduced pesticide dependence, addressing a critical need in sustainable cotton production systems worldwide!*4.

Conclusion

Our study reveals the complex genetic architecture underlying whitefly resistance and yield in cotton. By utilizing
GBS, we identified significant QTLs and candidate genes associated with these traits. Genes such as At4g27190
and RPPL1, which are involved in biological processes such as ADP binding, protein binding, LRR-mediated
signal transduction, cell adhesion, DNA repair, transcription, and immune responses in Arabidopsis, suggest
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Fig. 2. This figure presents a genetic map of cotton (Gossypium hirsutum) for chromosomes A01, A04, A07,
A09, A13, D04, D06, D08 and D09. The map was constructed via MapChart. The following markers associated
with specific traits are highlighted: chromosome A01: black marker: nodes to 1st monopodia 1 (NTM1)
chromosome A04: purple marker: whitefly count (WC) chromosome A07: yellow marker: nodes to 1st
monopodia 2 (NTM2); pink marker: days to 1st flowering (DFF); green marker: seed index (SI) chromosome
A09: blue marker: monopodia per plant 1 (MP1) pink marker: plant height 1 (PH1) chromosome A13: white
marker: leaf area 1 (LA1) blue marker: nodes to 1st monopodia 3 (NTM3) yellow marker: beginning 1 (GOT1)
chromosome D04: light green marker: staple length 1 (SL1); chromosome D06: Burgundy marker: seed index
2 (SI2) cyan marker: staple length 2 (SL2) olive marker: nodes to 1st monopodia 4 (NTM4) chromosome D08:
yellow marker: nodes to 1st monopodia 5 (NTM5) pink marker: leafy area 2 (LA2) olive marker.
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Fig. 3. Genome-wide association study (GWAS) Manhattan plot of Cotton genome variants. The plot displays
-log10 (p-values) of genetic associations across chromosomes (x-axis) with phenotypic traits of interest.
Chromosomes are alternately colored for clarity (odd-numbered in blue, even-numbered in orange). The
horizontal red line indicates the genome-wide significance threshold (p <5x 10/-8). Several peaks above the
threshold suggest potential candidate loci for further investigation. Note: Some chromosomal positions show
missing data points due to technical limitations in variant calling.

their potential importance in cotton defense against sucking pests such as whiteflies. The genes associated with
flower development, GUSI, and stress tolerance, MBDA4L, contribute to increased flower production and overall
plant vigor. The identification of these genes provides valuable insights for developing whitefly resistant cotton
cultivars with improved yield potential. Marker-assisted selection and gene editing techniques can be employed
to introduce these beneficial traits into elite cotton cultivars. To confirm the precise role of candidate genes in
whitefly resistance and yield-related traits, further functional validation, such as gene expression analysis and
overexpression and knockout experiments, is necessary. A deeper understanding of their molecular mechanisms,
including gene and protein interactions, is essential. Combining whitefly resistance with other desirable traits,
such as drought tolerance, heat stress tolerance and fiber quality, can lead to the development of multitrait-
resistant cotton varieties. The research presented here provides a strong foundation for developing sustainable
and high-yielding cotton cultivars that can effectively combat whitefly infestations and adverse environmental
conditions.

Data availability

Sequence data that support the findings of this study have been deposited in BankIt (NCBI) with the following
accession: Numbers: BankIt2913398 Gh_A04G053800 PQ878369, BankIt2913398 Gh_A04G054700 PQ878370,
BankIt2913398 Gh_D09G003400 PQ878371, BanklIt2913398 Gh_D09G007300 PQ878372.
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