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Quantum random access memory (qRAM) is an essential computing element for running oracle-
based quantum algorithms. qRAM exploits quantum superposition to access all data stored in the 
memory cells simultaneously and guarantees the superior performance of quantum algorithms. A 
qRAM memory cell comprises logical qubits encoded through quantum error correction technology 
for successful operation against various quantum noises. In addition to quantum noise, the low-
technology nodes based on silicon technology can increase the qubit density and may introduce 
defective qubits. As qRAM comprises many qubits, its yield will be reduced by defective qubits; these 
qubits must be handled using QEC scheme. However, the QEC scheme requires numerous physical 
qubits, which burdens resource overhead. In this paper, to resolve this overhead problem, we propose 
a novel quantum memory architecture that compensates for defective qubits by introducing redundant 
qubits. We also analyze the yield improvement offered by our proposed quantum memory architecture 
by varying the ideal fabrication error rate from 0.5 to 1% for different numbers of logical qubits in the 
qRAM. We demonstrate that for the qRAM comprising 1024 logical qubits, eight redundant logical 
qubits improved the yield by 95.92% from that of qRAM not employing the redundant repair scheme.

Keywords  Quantum random access memory (qRAM), Yield improvement, Redundant repair, Quantum 
error correction (QEC)

Quantum algorithms promise to solve specific problems that cannot be solved by classical algorithms within a 
reasonable time. Representative quantum algorithms are the Shor algorithm1 and the Grover algorithm2. The 
Shor algorithm divides a huge composite number into two prime factors, and the Grover algorithm finds the 
desired data among a large dataset. Exploiting the “superposition” phenomenon of qubits, both algorithms 
simultaneously process all data combinations that can be represented by the qubits, thereby speeding up the 
calculations. Various quantum algorithms that utilize the advantages of qubit-based computation are currently 
being developed.

To guarantee that quantum superposition can exponentially increase the speed of quantum algorithms 
over their classical counterparts, we must load the superposed data into a quantum processor. Most of the 
representative quantum algorithms used in various fields assume that data can be loaded through an oracle, 
commonly referred to as a black box3. Such a black box must be fully supported with some degree of abstraction 
for oracle-based quantum algorithms. As a quantum oracle, Quantum Random Access Memory (qRAM)3–5 
is required for achieving an exponential computational advantage of quantum algorithms over conventional 
algorithms4,6–8. For this purpose, the qRAM must store data in a superposition state. qRAM already guarantees 
exponential speed improvement in tasks such as data processing9,10 and pattern recognition11–14 and is required 
for other quantum algorithms such as quantum searching15,16, collision finding17,18, and element distinctness 
problems19.

Promising qRAM architectures are broadly divided into Fanout and Bucket Brigade schemes20–22, which 
adopt trapped ion qubits and qutrits (storage units of three-state information |wait⟩, |left⟩, and |right⟩) as 
the basic unit, respectively. The two schemes differ mainly by the number of gates activated in their memory-
addressing processes. For a single n-bit query string, Fanout qRAM activates O(2n) gates, whereas in Bucket 
Brigade qRAM activates O(poly(n)) gates6,20. In the actual implementation of qRAM, gate activation is considered 
as physical transistor activation6,20. However, as numerous transistor activations cannot be operated within a 
relatively short quantum coherence time, they deteriorate the accuracy of the results. Accordingly, the Fanout 
scheme is more susceptible to decoherence error than the Bucket Brigade scheme.
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Various studies have shown that memory addressing is more error-resistant in the Bucket Brigade qRAM 
scheme than in the Fanout scheme20,23. Bucket Brigade also accelerates memory addressing by parallelizing the 
queries24. These studies focus on the robustness of Bucket Brigade qRAM with a small number of gate activations 
required for memory addressing. However, to improve the fault tolerance of qRAM, one must consider the 
robustness of the memory cell qubits comprising the qRAM3,25. Although the Bucket Brigade achieves more 
error-resistant memory addressing than the Fanout structure, if the memory cells are vulnerable to errors, this 
memory addressing becomes meaningless. Despite this necessity, existing studies focusing on fault-tolerant 
addressing often overlook the integrity of the memory cells themselves. For instance, Weiss et al.26 proposed the 
Faulty Towers architecture. While this approach effectively mitigates manufacturing defects within the routing 
network to ensure reliable addressing paths, it does not consider scenarios where errors occur in the memory 
cells serving as the final destination. Therefore, for fully fault-tolerant qRAM, the memory cell qubits should be 
error-resistant as well. This requires a quantum error correction (QEC) scheme, which typically spreads data 
stored in a physical qubit across multiple highly entangled physical qubits. The QEC code scheme creates a 
“logical qubit”, a virtual qubit holding the data used in the quantum algorithm27–30.

QEC applied to a logical qubit protects the quantum state from general quantum noise. Moreover, QEC must 
handle defective physical qubits that may occur during the fabrication process. This is because the density of 
qubits has increased based on recent silicon technology, and as mass production of physical qubits has become 
possible31,32. It makes the probability of the occurrence of defective qubits also increase, so that many defective 
qRAMs are manufactured. As defective qRAMs lead to poor yield, reducing the number of defective logical 
qubits is essential for improving the qRAM yield. To this end, the QEC for encoding a logical qubit should cover 
a large number of physical qubits33–36. However, increasing the number of required logical qubits in qRAM 
increases the resource overhead because many additional physical qubits are required to support a higher degree 
of QEC.

In this paper, we propose a novel quantum memory architecture designed to mitigate manufacturing defects 
in memory cells, thereby improving the yield of qRAM while lowering the degree of QEC to minimize the 
physical qubit overhead. Our proposed qRAM adopts a redundant repair scheme based on the Bucket Brigade 
architecture. By employing redundant qubits, we minimize the number of additional physical qubits for the QEC 
scheme. Moreover, by lowering the degree of QEC, we reduce the number of physical qubits per logical qubit 
and repair the resulting fabrication error using additional redundant qubits. This scheme considerably reduces 
the number of physical qubits constituting one qRAM. Here, we compare and analyze the yields for various 
error rates in fabricating physical qubits, various degrees of QEC applied to logical qubits, and the application of 
redundant repair technology. Through this analysis, we improve the yield to 95.92% using only eight redundant 
qubits supported by an additional 1.01% of all physical qubits. Our contributions are summarized below.

•	 Firstly, we advocate circuit-level redundant repair for qRAMs, enabling fault recovery of defective logical 
qubits, and addressing fabrication error and QEC overhead.

•	 Secondly, we propose a qRAM architecture with a redundant repair scheme. The proposed architecture is 
based on the Bucket Brigade structure20, which is less vulnerable to noise than the Fanout structure. We in-
troduce several key elements for the redundant repair scheme and support our proposed qRAM architecture 
with a quantum circuit model.

•	 Lastly, we analyze the qRAM yield in our method while varying the fabrication error rate and number of log-
ical qubits for the qRAM. Moreover, we analyze the power of the effects of varying redundant qubit quantities 
on the qRAM yield. Furthermore, we evaluate the resource overhead by considering the necessary amount 
of physical qubits.

The remainder of this paper is organized as follows. In Sect. “Background and Motivation”, we provide 
backgrounds of Bucket Brigade qRAM and quantum fabrication defects and motivate our research. In Sect. 
“Built-in Self Repair for qRAM”, we explain our proposed architecture and present the redundant repair scheme. 
Sect. “Circuit-Model Implementation” describes our circuit model implementation. The experimental setup and 
analysis of performance evaluation are given in Sect. “Performance Evaluation”. In Sect. “Related Works”, we 
review prior related works, and in Sect. “Discussion”, we provide a comparative discussion of our proposed 
method with related work addressing manufacturing defects in qRAM. Finally, we conclude our work in Sect. 
“Conclusion”.

Background and motivation
This section explains the Bucket Brigade qRAM architecture and quantum fabrication defects as well as the 
motivation of our study.

Bucket brigade qRAM
Most representative quantum algorithms assume that the data of the algorithm are loaded into the quantum 
processor through a quantum oracle called a black box3. For example, the Grover and the Harrow-Hassidim-
Lloyd (HHL) algorithms can achieve a significant speedup through quantum oracle2,37. In fact, qRAM plays 
a crucial role in the quantum oracles that most representative quantum algorithms assume3. qRAM can store 
quantum information in either the classical representation (|0⟩ or |1⟩) or the quantum representation (an 
arbitrary superposition of |0⟩ and |1⟩). qRAM also allows querying superposition of address form20,22,38, as 
shown in Eq. (1):
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where 
∑

j
αj |j⟩ is a superposition of query addresses and |mj⟩ represents the content of the j-th memory 

location. qRAM can store the Grover algorithm2, HHL algorithm37, and other quantum algorithms39–42 as 
classical information while allowing superposed queries, thus offering considerable speedup over classical 
algorithms.

To describe the qRAM algorithm, we present a qRAM architecture model based on the Bucket Brigade 
architecture. This architecture can support the superposition of addresses as input43, but for better understanding, 
we show on the process of memory addressing using a specific input address in Fig. 1a. This architecture can be 
routed in a three-level quantum-controlled ‘qutrit’20,22,41,44 fashion. Each node of the binary tree is a ‘trit’ with 
three possible internal states: |0⟩, |1⟩, or |•⟩. A trit in state |0⟩ or |1⟩ acts as a switch that routes the incoming 
signal to the ‘left’ or ‘right’, respectively. A trit in the |•⟩ state does not propagate the incoming signal. It continues 
until it reaches the k-th level of the tree. The gray routing path in Fig. 1a is the path determined by the input state 
|101⟩. Once the n qubits of the input register |101⟩ have passed through the tree, n quantum switches are active, 
i.e., in the state |0⟩ or |1⟩; consequently, the output is |101⟩ memory cell. Note that although this procedure 
requires the order of 2n qutrits, only n qutrits are active in any run of the protocol20,22,38,44.

Quantum fabrication defects
Quantum noise is the major problem limiting the computational advantage of current quantum computers. 
As quantum information is very fragile when encoded in larger quantum systems, the quantum states must be 
protected by QEC22,45–47. Besides detecting and correcting errors, QEC provides an additional degree of freedom 
for controlling the complexity of logical qubit encoding. In practice, QEC observes the errors occurring on fault-
tolerant circuits while attempting to control the logical qubits.

When constructing topological QEC codes, a lattice of physical qubits must be embedded on a manifold 
with a non-trivial topology such that the quantum information is encoded in the global degrees of freedom, as 
shown in Fig. 1b(i)27,47–49. However, the industrial production line of large-scale topological devices introduces 
defective physical qubits because manufacturing processes are inherently imperfect. We refer to such faults as 
quantum fabrication defects50–52. In the example of Fig. 1b(ii), quantum fabrication defects are indicated as red-
colored circles. If fabrication defects occur in the topology of the surface code lattice, the distances of the code 
and the quality of the encoded logical qubits are seriously reduced46,51,53,54.

Fabrication defects also create punctures in the qubit array, some of which may be very large. We cannot 
assume control over the qubits within each puncture. Some protocols are designed to reliably collect the 
syndrome data near fabrication defects and perform the computation over the remaining intact qubits of the 
lattice with high probability, assuming a suitably low error rate of the intact qubits51–53. However, if several 
defective physical qubits are sparsely distributed through the qubit array, this method is difficult to implement 
on a limited-size lattice. The lattice must then be expanded with additional qubits, which incurs a large resource 
overhead in terms of physical qubits.

Motivation
qRAM is an essential element in practical quantum computation. In addition, qRAM must contain sufficiently 
many qubits for theoretical quantum calculations using practical-scale quantum algorithms that utilize large 
amounts of data. Recent improvements in silicon technology have increased the density and hence the number 

Fig. 1.  Bucket Brigade qRAM architecture example (left) and occurrence of fabrication defects on surface code 
(right).
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of qubits that can be manufactured. Practical-scale quantum algorithms and quantum gains are expected in 
the future, but we believe that a large number of qubits will be infected by fabrication errors. In fact, numerous 
fabrication-induced defects have been reported in superconducting quantum dots, which are promising 
candidates for building scalable quantum computers55–57.

Such defects have fatal consequences in qRAM. If the memory cells constituting the qRAM include defective 
qubits, the qRAM cannot support random address accesses, and the qRAM yield is greatly reduced. Figure 2a 
shows a qRAM fabricated with wafers, along with its logical and physical qubits. In the left upper panel of this 
figure, the non-defective qRAM cells (blue squares) are interspersed with defective qRAM cells (black squares). If 
one black square is magnified as shown in the upper right panel of Fig. 2a, we observe (for simplicity) four logical 
qubits encoded with multiple physical qubits. Among the four logical qubits is one defective qubit containing 
several defective physical qubits. Figure 2b shows the simulated relationship between the yield and the number 
of logical qubits in the qRAM. The yield is calculated as Eq. (2).

	 Y ield =
(
1 − Number of defective qRAMs

Number of fabricated qRAMs

)
× 100.� (2)

Our simulation was performed on 1000 qRAMs. Each logical qubit in each qRAM was encoded with 17 physical 
qubits subjected to a 0.5% fabrication error rate. As shown in Fig. 2b, the yield decreases with the increasing 
number of logical qubits in the qRAM.

Theoretically, the low qRAM yield can be mitigated with the QEC scheme. There is a lot of research that 
employs high-degree QEC for encoding a logical qubit, which improves the reliability and fault tolerance of 
logical qubits58–60. However, high-degree QEC incurs enormous resource overhead because it requires an 
exponentially increasing number of physical qubits. Given the limited resources for making physical qubits at 
present, a high-degree QEC scheme is expected to reduce the productivity and yield of qRAM. The number of 
physical qubits in a single qRAM is determined by Eq. (3):

	 NP Q(qRAM) = NLQ(qRAM) × NP Q(Logical Qubit),� (3)

where NP Q(qRAM) and NLQ(qRAM) represent the numbers of physical and logical qubits in the qRAM, 
respectively, and NP Q(Logical Qubit) is the number of physical qubits required for implementing a single 
logical qubit. In other words, the number of physical qubits in the qRAM is the product of the number of logical 
qubits in the qRAM and the number of physical qubits per logical qubit. Therefore, we must improve the mass-
production yield of qRAM while reducing the resource overhead, i.e., the number of required physical qubits 
per qRAM. For this purpose, we propose a redundant repair method using additional spare qubits in the Bucket 
Brigade qRAM structure. This method reduces the number of physical qubits required per qRAM by lowering 
the degree of QEC. It also maximizes the quality of the qRAM yield by replacing defective qubits with redundant 
qubits. To the best of our knowledge, our proposed redundant repair scheme in qRAM is the first approach to 
improve qRAM yield while minimizing resource overhead.

Built-in self repair for qRAM
In this section, we present our novel qRAM architecture based on the Bucket Brigade structure and our 
redundant repair scheme that resolves quantum fabrication defects.

Overall architecture
Figure 3 shows the overall architecture of our proposed qRAM. The core of our architecture lies in the redundancy 
repair scheme, which functionally bypasses memory cells with fabrication defects by utilizing spare qubits. This 
repair mechanism assumes that defect information is provided by automatic test equipment (ATE) and a fault 
address table (FAT). The ATE is a classical, standard industrial equipment used to test the functionality and 
performance of chips after the semiconductor manufacturing process. In the classical RAM manufacturing 
process, the ATE tests the memory array to identify the addresses of non-operational (defective) cells. Based on 
these test results, the ATE generates an information table called the fault address table, which maps the addresses 

(a) qRAMs on the wafer with defective logical and physical qubits
(b) Relationship between the yield of qRAM and number of
logical qubits

Fig. 2.  Fabrication of qRAM with wafers (left) and the relationship between the number of logical qubits 
qRAM yield (right).
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of defective cells (faulty address, FA) to the addresses of spare cells (spare address, SA). This table is typically 
stored in fuses or non-volatile memory so that a built-in self-repair mechanism can reference it61–63, and it is 
used to bypass fault addresses during memory operation.

The focus of our work is not on the development of ATE technology for detecting defects in qRAM. We 
assume that the standard approach from the classical RAM industry can be applied to future quantum device 
manufacturing processes. In fact, studies such as55,64 are actively being conducted to detect and identify 
fabrication defects in quantum hardware. Based on these research trends, we assume that test equipment, such 
as ATE, will successfully perform defect identification and FAT generation to provide the defect information. 
Under this premise, our key contribution is to propose a resource-efficient BISR architecture mechanism that 
utilizes the pre-identified defect information from the ATE to bypass fabrication defects that occurred during 
the manufacturing process.

Our proposed qRAM consists of four major components: the redundant repair circuit, address routing 
circuit, read/write circuit, and memory cells.

First, the redundant repair circuit of qRAM receives the information of faulty and spare addresses from the 
ATE. Based on these addresses, the redundant repair circuit supports a quantum oracle that consists of address 
replacement and address comparison modules. When the superposition of input addresses is given to the 
quantum oracle, the address comparison module determines whether the input address has an equality match 
with a known faulty address stored in the FAT. The result of this comparison operation sets the state of the repair 
flag qubit. If the input address matches the faulty address, the flag’s state is set to |1⟩. The state of this repair flag is 
useful because it acts as a switch that directly determines whether the address replacement module is activated. If 
the flag is in the |1⟩ state (defect match), the address replacement module is activated and performs the function 
of replacing the faulty address with the spare address. Conversely, if the flag remains in its initial |0⟩ state (no 
match), the address replacement module remains bypassed, allowing the original input address to pass through 
unchanged. This process is repeated until all superposition of input addresses is checked. After all iterations, the 
superposition of memory addresses comes out as the output of the redundant repair circuit.

Second, the address routing circuit activates the routing nodes with the superposition of the memory 
address. The structure of the address routing circuit is based on Bucket Brigade qRAM, with the routing nodes 
configured as a binary tree. From the initial state |•⟩ of each routing node, specific routing nodes are activated 
by setting |0⟩ or |1⟩ based on the superposition of memory addresses. The redundant repair circuit provides the 
locations of original and spare memory qubits. Since memory addresses are in the superposed state, they address 
all memory cells with the same probability except defected memory cells.

Third, the read/write circuit reads the data in the memory cells or writes data to the memory cells. The read/
write circuit can access the memory cells with memory location data. When reading from memory, the read/
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Fig. 3.  Overall architecture of our proposed qRAM with redundant repair scheme and an external device 
ATE. All the data and states transferred to/from different parts are quantum. The ATE sends information of 
faulty addresses and spare addresses from the FAT to the quantum oracle of the redundant repair circuit. Based 
on two different types of address information, quantum oracle implements address comparison and address 
replacement parts, respectively. When the superposition of input addresses is given as input to qRAM, address 
comparison compares faulty addresses from FAT with each of the input addresses and sets the value of the 
repair flag. Checking the repair flag, the address replacement decides whether to replace or not replace the 
input address with the spare address. After replacing all faulty addresses, the redundant repair circuit passes the 
superposition of memory addresses to the address routing circuit for routing. Memory locations are then given 
to the memory cells, which communicate with read/write circuit data to read the memory cell data (Quantum) 
and write the input data (Quantum) to the memory cell.
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write circuit finds the memory locations of the memory cells and accesses them for measurement. After the 
measurement, the read/write circuit generates the output data. When writing to memory, the read/write circuit 
accesses the memory cells with the memory locations and writes data to those cells. At this time, the read/write 
circuit must be provided with input data.

Finally, in memory cells, there are original and spare memory qubits. By adopting spare memory qubits, we 
can achieve redundant repair for memory cells if faults occur on original memory cells. Based on the data of 
memory locations from the address routing circuit and data from the read/write circuit, qRAM reads or writes 
both types of qubits avoiding addressing defective ones.

Redundant repair scheme
We clearly describe the operational principle of the redundant repair scheme for qRAM. The core of this scheme 
is the one-to-one replacement of an input address with a pre-designated, dedicated spare address (SA) if the 
input address is a faulty address (FA).

First, we define the main components used in the process. The fault address table is defined as a set of n 
ordered pairs:

	 F AT = {(F Ai, SAi) | i = 1, 2, ..., n}.� (4)

Here, F Ai represents the i-th faulty address, and SAi represents the dedicated spare address pre-allocated to 
replace F Ai when it is detected. The input is given as a superposition of input addresses (SoI). The redundant 
repair scheme applies an address transformation function called Repair to each individual address state within 
this superposition. For this function, we define Ain as an arbitrary single input address (i.e., one state from SoI), 
and Aout as the final memory address that the Repair function maps Ain to.

The transformation logic is determined by checking the FAT. If Ain matches a faulty address F Ai registered 
in the FAT, the redundant repair process immediately replaces Ain with the corresponding SAi:

	 Aout = SAi, if Ain = F Ai and (F Ai, SAi) ∈ F AT.� (5)

This one-to-one mapping ensures that the replacement operation is not applied recursively. When Ain matches 
F Ai, the output is deterministically set to SAi. The process does not subsequently check if SAi is equivalent 
to another fault address (e.g., F Aj), thereby preventing any chained replacements. Otherwise, if Ain does not 
match any faulty address registered in the FAT, it is treated as a non-faulty address and passes through unchanged.

	 Aout = Ain, if Ain /∈ {F A1, . . . , F An}.� (6)

Integrating these two cases, the Repair function can be defined as Eq. (7).

	
Aout = Repair(Ain) =

{
SAi if ∃i such that (Ain = F Ai) and (F Ai, SAi) ∈ F AT
Ain otherwise. � (7)

Finally, we show how this Repair function operates on the entire superposition, extending the ideal qRAM 
operation from Eq. (4). Based on the static information from FAT (Eq. (4)), we can logically partition the total 
input state. We define qRAMRR as the operation of our proposed Repair logic shown in Eq. (7). This entire 
redundant repair process, showing the qRAMRR operation on the partitioned input state, is expressed as Eq. (8):

	


 ∑

j∈JGood

αj |j⟩ +
∑

k∈JDefect

αk|k⟩


 |0⟩ qRAMRR−−−−−−→

∑
j∈JGood

αj |j⟩|mj⟩ +
∑

k∈JDefect

αk|SAk⟩|mSAk ⟩.� (8)

Here, the qRAMRR operation acts in parallel on both partitions due to quantum linearity. It applies the logic of 
Eq. (6) to the JGood partition and the logic of Eq. (5) to the JDefect partition. This yields the final output state 
where the address register (now representing the SoM) is entangled with the data register, and all faulty addresses 
have been successfully re-routed to their corresponding spare addresses.

Algorithm 1 shows the procedural logic that implements the non-recursive transformation shown in the final 
state of Eq. (8). This classical pseudocode abstraction treats SoI as a list of its basis states (addresses) for clarity. 
The algorithm’s core logic iterates over each input address (SoIj). For each individual SoIj , it performs a search 
through the entire FAT. If a match is found with a faulty address (F Ai), the algorithm immediately adds the 
corresponding spare address (SAi) to the output SoM and stops searching the FAT for that specific SoIj . This 
immediate termination (implemented via the found_match flag and break command) is a crucial feature. 
It ensures that the replacement operation is non-recursive. This logic intrinsically prevents the problematic 
scenario where a spare address (e.g., SAi) that just replaced a faulty one could itself be treated as a new faulty 
address and be replaced again. If, after checking the entire FAT, no match is found for SoIj , the original address 
is considered non-faulty and is added to SoM, implementing the logic of Eq. (5).
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1: INPUT: FAT : Fault address table, SoI: Superposition of Input addresses
2: OUTPUT: SoM: Superposition of Memory addresses

3: procedure REDUNDANTREPAIR(FAT , SoI)
4: SoM← / 0
5: for j←1 to SIZE(SoI) do
6: f ound_match← false
7: for i←1 to n do
8: if SoIj = FAi then
9: SoM← SoM��SAi�
10: f ound_match← true
11: break
12: end if
13: end for
14: if f ound_match= false then
15: SoM← SoM��SoIj�
16: end if
17: end for
18: return SoM
19: end procedure

Algorithm 1.  Redundant repair on qRAM.

Figure 4 is an example of the redundant repair algorithm with the Bucket Brigade qRAM. The FAT includes 
faulty addresses with their corresponding spare addresses. Since faulty addresses and spare addresses of FAT 
depend on the location of defects in memory cells, we use quantum oracle. We designed the quantum oracle as 
the Eq. (9).  The superposition of input addresses is entered into our quantum oracle. Each of the input addresses 
will be compared with faulty addresses in the FAT by the address comparison module. If two addresses match, 
the repair flag address is activated, which in turn causes the replacement module to replace the faulty address 
with the corresponding spare address based on the FAT. This process is repeated in the quantum oracle until 
all faulty addresses are replaced. After all iterations, the superposition of memory addresses will be given to the 
Bucket Brigade structure. In the figure, we simply represent SoM as |+⟩. There are no longer faulty addresses in 
SoM so it routes all memory cells including spare ones except |10⟩ and |11⟩ states.

	
UF A|IA⟩ =

{ |RF Q⟩ ⊗ |SA⟩, if IA = F A
|RF Q⟩ ⊗ |IA⟩. otherwise � (9)

Circuit-model implementation
In this section, we describe the quantum circuit model of our proposed qRAM architecture. As the redundant 
repair scheme in the proposed method uses redundant qubits, some components of our scheme mirror those of 
Bucket Brigade in20. Figure 5 shows the entire quantum circuit model of our proposed qRAM. We assume there 
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Fig. 4.  Example of our proposed redundant repair algorithm. When the superposition of addresses including 
faulty addresses is given as input the quantum oracle does address comparison and address replacement based 
on FAT. The output of the quantum oracle is the superposition of addresses as well. For faulty addresses, the 
repair flag qubit is activated to route spare memory qubits. original memory qubits will be routed.
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are four original memory qubits (m00, m01, m10, and m11) and two spare memory qubits (rm00, rm01) for the 
memory cells. We also employ two qubits each for the input address (I0, I1) and spare address (S0, S1). Since 
qRAM is designed to support when the input is given as a superposition state, we describe our proposed method 
assuming that the superposition of input addresses is given as input.

To illustrate the operation and defect management of this circuit model, we explain with a specific example. 
Consistent with the focus of this paper, we assume all circuit components (qubits, gates) operate ideally. The 
error to be managed is the pre-existing fabrication defect in a memory cell, not dynamic operational faults. The 
quantum oracle implements the repair logic by referencing the mapping defined in the FAT. This example uses 
the specific mapping F A = |10⟩ (faulty address) to SA = |00⟩ (spare address).

The proposed quantum circuit consists of four parts: a redundant repair circuit, an address routing circuit, a 
read/write circuit, and memory cells. The redundant repair circuit includes multiple positive and negative control 
gates to support the quantum oracle implementation. This circuit compares each address in the superposition 
state with the fault addresses implemented in our quantum oracle. For example, when the non-faulty state |01⟩ 
enters the oracle, the address comparison logic finds no match with F A = |01⟩. Consequently, the repair flag 
qubit (RFQ) remains in its initial |0⟩ state, and the address |01⟩ passes through the address replacement module 
unchanged. Conversely, when the faulty state |10⟩ enters, the address comparison logic detects a match. This 
match activates the control gates, flipping the RFQ to |1⟩. The address replacement logic is controlled by RFQ 
and then replaces the faulty address |10⟩ with the pre-defined spare address |00⟩. All qubits for spare address 
are initialized with |0⟩.

The address routing circuit is configured as a binary tree to mimic the Bucket Brigade structure. It consists 
of an upper binary tree for original memory qubits and a lower binary tree for spare memory qubits. The RFQ 
acts as the primary root node (or switch) to select which tree is activated. Following our example, for the non-
faulty state |01⟩, the RFQ remains |0⟩. This state activates the upper binary tree. The address |01⟩ is then passed 
to this tree, activating the routing nodes (entangled via Toffoli and CNOT gates) that lead to the original qubit 
m01. In the faulty state |10⟩ (the error management process), the RFQ is flipped to |1⟩. This |1⟩ state deactivates 

Read/Write Circuit

m00

Readout

Spare
Qubits

Original
Qubits

DQ

Spare
Address

Input
Address

S0

I1

I0

S1

m01

m10

m11

rm00

rm01

RFQ

R/W

Redundant Repair Circuit Address Routing Circuit

Quantum Oracle

Fig. 5.  Quantum circuit example of the proposed qRAM consisting of redundancy recovery circuit, address 
routing circuit, read/write circuit, and memory cell. This circuit is an example of an input address represented 
by two logical qubits. Parts highlighted with a yellow background are essential to support redundant repair 
schemes.
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the upper binary tree (preventing access to the defective m10) and activates the lower binary tree. The newly 
replaced address |00⟩ is then routed through this lower tree, activating the path to the spare qubit rm00. Note 
that Fig. 5 is a specific example illustrating the case for only two spare qubits (rm00 and rm01). Therefore, the 
lower binary tree is constructed only to address these two physically implemented spare qubits, and its size is not 
2n − 1 but rather depends on the actual number of spare qubits being implemented (in this case, two).

The read/write circuit reads (writes) data from (to) memory. For this purpose, we entangle an R/W qubit 
with routing nodes, a DQ as the input data, and memory qubits through multi-controlled gates. Continuing our 
example, the circuit accesses the memory cell selected by the routing process. If the R/W is set to read (e.g., |0⟩), 
the circuit will access m01 for the |01⟩ state, or it will access rm00 for the |10⟩ state. The defect in m10 is thus 
successfully managed by bypassing it. When the R/W state is |0⟩, the Readout qubit is entangled with the routed 
memory cells and measured. Conversely, for memory writing (e.g., R/W = |1⟩), the DQ (input data) is written 
to the routed memory cells (m01 or rm00). While this trace used classical basis states for clarity, the quantum 
circuit performs the entire logic of comparison, replacement, and re-routing in parallel for all states in the input 
superposition due to quantum linearity.

Performance evaluation
This section evaluates the yield and resource overhead of our proposed method. We first explain the experimental 
setup and evaluation metrics of our simulation and then analyze the performance in terms of the evaluation 
metrics. We also present resource overhead data and a simulated result table for a deeper level of understanding.

Experimental setup
We simulated the qRAM with a number of logical qubits from a minimum of 16 to a maximum of 1024 while 
doubling its number of logical qubits. In addition, each logical qubit is constructed as a surface code lattice using 
2d2 − 1 number of physical qubits. Here, d is the code distance of the surface code, and ⌊ d−1

2 ⌋ is the amount 
of error that can be corrected. With the code distance, we define a logical qubit as defective if it has more errors 
than it can correct. We also define a qRAM as defective if at least one logical qubit in the qRAM is defective. To 
vary the degree of QEC, we set d to 3, 5, 7, and 9. The d-dependent degree of QEC is denoted as ’QEC d’.

For modeling the fabrication error occurrence to each physical qubit, we randomly injected errors with a 
binomial distribution at the fabrication error rate. The simulated fabrication error rate ranged from 0.5% to 1% 
in 0.1% increments. As the fabrication error rate increases, the occurrence probability of defective logical qubits 
increases as well. We also evaluate yield improvement by varying numbers of redundant qubits to 1, 2, 4, and 8.

The simulation results were evaluated regarding two metrics: yield and resource overhead of the qRAM. The 
yield was computed using Eq. (2). To determine the resource overhead, we must consider the total number of 
physical qubits required for constructing the proposed qRAM. To check the total number of physical qubits, 
we divided the memory cell from the peripheral parts (namely, the addressing qubits and qubits of the routing 
nodes).

To ensure the reliability and validity of our results, we ran the experiment 10 times with a total of 1000 
qRAMs. The yields are reported as the averages of the 10 experimental yields. The simulation results were 
obtained using an in-house simulation program for this study.

Performance analysis
Yield improvement
Figure 6 plots the qRAM yields and number of physical qubits required for qRAMs with and without redundant 
repair qubits for different degrees of QEC. The QEC 3, RR(8) scheme in Fig. 6 describes the QEC 3 scheme for 
logical qubits using eight additional redundant qubits as the spare memory qubits. A 0.5% fabrication error 
rate was applied to all physical qubits in each logical qubit. As shown in the figure, the yield of a qRAM with a 
given number of logical qubits increased with an increasing degree of QEC. In the case of 256 logical qubits, the 
yields at QECs of 3, 5, 7, and 9 were 44.08%, 60.0%, 67.73%, and 70.6%, respectively. Moreover, the yield of the 
qRAM reached 100% when employing eight redundant qubits with QEC 3. Meanwhile, the number of additional 
physical qubits required for the eight redundant qubits was 4.51% of the total number of physical qubits utilized 
in QEC 3. By using a negligible additional number of physical qubits, the yield of qRAM was greatly increased. 
This outcome holds great significance since the utilization of a low degree of QEC with redundant qubits can 
substantially reduce the number of additional physical qubits rather than using a higher degree of QEC without 
redundant qubits to increase the yield of qRAM.

Through the results of Fig. 6, we demonstrated the average yield improvement according to the presence or 
absence of redundant repair. To obtain average yield improvement, we first calculated the average yields of QEC 
3, QEC 5, QEC 7, and QEC 9 and differentiated them from the yield with the redundant repair. We defined this 
variation value as the average improvement of the yield for different numbers of logical qubits. Through this 
calculation, we illustrated the average yield improvement by 3.05%, 6.01%, 12.08%, 22.09%, 39.39%, 62.14%, and 
83.59% for 16, 32, 64, 128, 256, 512, and 1,024 logical qubits, respectively.

Figure 7, we also compared the yield of qRAM by varying experimental parameters, namely, the fabrication 
error rate, number of logical qubits in the qRAM, and number of redundant logical qubits. For all five sub-figures, 
the x-axis represents the number of logical qubits, and the y-axis represents different degrees of fabrication error 
rate from 0.5 to 1%. To make it easier to distinguish visually, we use the colormap representation. The higher the 
yield, the closer to the yellow color, and the lower the yield, the closer to the indigo color. In all experiments, each 
logical qubit was encoded with QEC 3.

As shown in the figure, increasing the number of redundant qubits increased the yields of qRAMs with the 
same fabrication error rate and number of logical qubits. The same phenomenon was observed in qRAMs with 
small and large numbers of logical qubits. In the qRAM with 16 memory cells and no redundant qubits under a 
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(a) No redundant qubits (b) One redundant qubit (c) Two redundant qubits

(d) Four redundant qubits (e) Eight redundant qubits

Fig. 7.  qRAM yields according to manufacturing error rates, numbers of logical qubits, and numbers of 
redundant logical qubits. The yield is higher for colors closer to yellow and green, while the yield is lower for 
colors closer to blue and indigo. From (a–e), the number of redundant qubits is sequentially set as 0, 1, 2, 4, 
and 8, and the surface code distance of the logical qubits of all qRAMs is set to 3.

 

Number of logical qubits

Yield (%) Number of
physical qubits

Number of physical qubits

QEC 3
QEC 5
QEC 7
QEC 9
QEC 3, RR (8)

Yield (%)

QEC 3
QEC 5
QEC 7
QEC 9
QEC 3, RR (8)

Fig. 6.  Simulated yield (left y-axis) and number of physical qubits in the qRAM construction (right y-axis) 
versus number of logical qubits in qRAMs with different degrees of quantum error correction (QEC). The 
fabrication error rate was fixed at 0.5%. RR(8) denotes using eight spare qubits for redundant repair.
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1% fabrication error rate, the yield was 82.05%. In the same qRAM, one redundant qubit improved the yield to 
98.18% (an approximate improvement of 16%). After increasing the number of logical qubits eight times (from 
16 to 128) without changing the fabrication error rate, the yield reduced to 19.94% with no redundant qubits, 
but after adding 1, 2, 4, and 8 redundant qubits, the yield improved by 53.35%, 78.43%, 97.56%, and 100%, 
respectively. The same tendency was observed after doubling the number of logical qubits from 128 to 256. In 
the absence of redundant qubits, the yield reached only 4.12% but after adding 1, 2, 4, and 8 redundant qubits, 
the yield increased to 17.58%, 37.94%, 77.98%, and 99.42%, respectively. These results confirm that the qRAM 
yield can be significantly improved by employing a small number of redundant qubits relative to the number of 
logical qubits constituting the qRAM.

Resource overhead
The proposed qRAM requires additional physical qubits to support the redundant qubits. Like the QEC 
scheme, this scheme introduces resource overheads on the number of physical qubits. Therefore, the number of 
additional physical qubits required in our method must be compared with that of QEC. To consider the resource 
overhead of our proposed qRAM architecture, we analyzed the total number of physical qubits constructed 
into the qRAM memory cells and peripherals. The number of physical qubits along the right axis of Fig.  6 
refers to the number of qubits required for the memory cells and peripheral parts. For qRAMs with the same 
number of logical qubits, increasing the QEC degree dramatically increased the required number of physical 
qubits. When eight redundant qubits were added to a qRAM with a given number of logical qubits, the resource 
overhead was similar to the number of physical qubits required for QEC 3. In other words, the resource overhead 
(number of required physical qubits) for improving the yield was much lower in the proposed qRAM than in the 
conventional method of increasing the degree of QEC.

To analyze the resource overhead in more detail, we determined the numbers of physical qubits required for 
composing the memory cells and peripheral parts. The factor determining the number of physical qubits for 
a memory cell depends on the code distance. In terms of QEC degree, the number of required physical qubits 
Nmem is given by

	 Nmem = d × (N + X),� (10)

where d, N, and X are the degree of QEC, number of original memory cells, and number of spare memory qubits, 
respectively.

	
Nperi =

{ 3 log2 N + N + 4, if X ≤ 1 + log2 N
2 log2 N + N + X + 3, if X > 1 + log2 N. � (11)

Meanwhile, the required number of physical qubits for the peripheral part is based on a quantum circuit model. 
The peripheral part can be largely divided into three parts such as address qubits, routing nodes, and read/write 
part. Using address qubits, we first identified input and spare addresses. For example, suppose that there are N 
original memory qubits and X spare memory qubits to replace X faults. To represent the N original memory 
qubits, the input address requires log2(N) qubits. A spare address requires an additional log2(N) qubits because 
an arbitrary memory cell in qRAM must be addressed within the same time. Additionally, the routing nodes 
are the qubits needed for addressing, which require RFQ and the |1⟩ qubits to support the redundant repair 
scheme. The proposed qRAM also requires original and spare memory qubits to support the address routing 
circuit, which is a binary tree. Addressing the original memory qubits requires N − 1 nodes for a complete 
binary tree. In contrast, the required number of nodes for addressing the spare memory qubits depends on the 
number of physically implemented spare qubits (X). This is because the spare routing tree only needs to be large 
enough to uniquely address these X spare cells, not the full N (= 2n) address space. Therefore, the number of 
nodes in the spare tree is determined by this quantity X (where X ≪ N ), making it significantly smaller than 
the N − 1 nodes required for the original tree. DQ, Readout, and R/W qubits are required for memory read and 
write. Therefore, the number of physical qubits for peripheral part Nperi in the circuit model is calculated as 
equation (11).

Table 1 shows the detailed resource overheads obtained in all experiments. This table compares the numbers 
of physical qubits required for the memory cell and peripherals in qRAMs with different degrees of QEC, 
numbers of logical qubits, and numbers of redundant qubits. When no redundant repair scheme was applied, 
the overhead was compared in terms of the number of physical qubits for different numbers of redundant qubits 
(gray cells in the table). For example, in the qRAM with 1,024 logical qubits, the number of additional physical 
qubits required to support eight redundant qubits incurred memory and peripheral overheads of 0.78% and 
2.12%, respectively, relative to the total number of physical qubits. In numerical terms, the requirement is 35,530 
physical qubits, versus 35,020 qubits in the absence of repair application. Moreover, even if the degree of QEC in 
a qRAM increases up to QEC 9 with the same number of logical qubits, only 1.45% of 331,660 physical qubits, 
i.e., 4,830 additional qubits were used for the redundant repair scheme. Thus, even with a high degree of QEC, 
we confirmed the resource overhead of our scheme is still low. Still, it is worth noting the increment of resource 
overhead with the higher degree of QEC. As the logical qubits of qRAM and redundant qubits use the same code 
distance, a higher degree of QEC will increase resource overhead for redundant qubits as well.

Related works
Practical implementations of universal quantum computing require the mitigation of quantum errors. Recent 
studies50,52,65,66 have focused on suppressing the two well-known noise channels, i.e., the depolarizing error and 
fabrication defect.
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Vovrosh et al.50 proposed a simple but effective error-mitigation technique for depolarizing error channels. 
As an error model ansatz, they assumed a deep quantum circuit with global depolarizing error channels. They 
extracted the error-free results from the noisy data in this error model. Error mitigation was first demonstrated 
in entanglement measurements and then in real-time dynamics of confinement in quantum spin chains. Their 
error-mitigation technique was deemed applicable to broader settings and in numerical simulations of more 
general tasks using a realistic error model. Despite its advantages, this protocol incurs a high computational 
overhead because the system size grows exponentially with the number of randomized unitaries and random 
measurements. This work is designed to mitigate dynamic noise errors that occur during the execution of 
the algorithm. In contrast, our work focuses on solving the problem of static fabrication defects, which are 
permanent, physical flaws in the qubits. Our proposed BISR mechanism is an architectural solution to bypass 
these static defects, a problem fundamentally distinct from mitigating dynamic runtime noise.

Tang et al.52 proposed a defect-tolerant surface code topology with resistance to spare fabrication defects, 
which can be practically implemented on universal quantum computing. The authors stated that when a disk is 
folded into N layers, a defective physical qubit can be replaced by a working physical qubit on the same unit cell 
from a different layer. This technique uses one additional layer in the real physical qubit topology to store the 
spare fabrication errors that replace the defective physical qubits. Tang et al. also demonstrated the robustness 
of the surface code topology by fine-tuning the operation of the logical measure qubits. When coupling two 
physical qubits into one logical measure qubit, they bridged the two layers of the physical units via two schemes 
based on superconducting flux qubits and Xmon qubits on the circuit level. Although this technique effectively 
replaces a defective physical qubit, the additional physical topology incurs a large overhead. The fundamental 
difference from our work lies in the solution level. Tang’s approach is a physical level topology modification, 
requiring complex multi-layer fabrication and design to replace a defect. In contrast, our work proposes an 
architectural level solution that assumes a standard physical layout. We introduce a logical built-in self-repair 
mechanism, analogous to classical RAM repair, which logically bypasses defects at the address routing stage. 
This architectural approach avoids the significant manufacturing and design overhead of modifying the physical 
qubit topology and offers a more flexible, scalable repair scheme based on pre-identified defect information.

Finally, the robustness of qRAM has recently been investigated. Giovannetti et al.5 developed the Bucket 
Brigade structure, which improves the error robustness by reducing the number of gate activations in memory 
addressing from those of the Fanout structure. Since then, further advancements have focused on optimizing 
query parallelization and estimating resources for fault-tolerant implementations22,24,38. Most recently, the scope 
of robustness has extended to handling fabrication defects within the routing hardware; for instance, the Faulty 
Towers architecture26 proposes a strategy to recover operational routing paths by identifying and bypassing 
defective routers. However, these studies, including the router-recovery schemes, strictly focus on errors and 
defects within the memory addressing mechanism. They aim to ensure that queries are correctly routed to the 
target address, but do not guarantee the integrity of the memory cells themselves. To the best of our knowledge, 
our work is the first to address fabrication defects in the memory cells used for read and write operations, 
providing a necessary complement to existing routing-focused solutions.

Discussion
In this study, we propose a redundancy repair technique that maximizes QRAM yield by mitigating defects in 
memory cells. To advance the realization of a truly comprehensive fault-tolerant QRAM architecture, it is crucial 
to establish the relationship between recent advancements in router defect mitigation, particularly the Faulty 
Towers architecture26, and our own research. The fundamental difference between the two approaches lies in 
their primary target of mitigation and their respective methodologies. The Faulty Towers architecture primarily 
addresses defective routing nodes within the Bucket Brigade structure, employing logical re-routing strategies, 
such as the IterativeRepair algorithm, to bypass broken connections and restore functionality. In contrast, our 
study focuses on the memory cells (leaf nodes) where quantum information is stored, replacing defective logical 
qubits with spare qubits through physical redundancy. Essentially, while Faulty Towers ensures the integrity of 
the path, our research guarantees the integrity of the destination.

This distinction suggests that the two approaches are complementary, and their integration is essential for 
handling complex error scenarios. Applying only one method in isolation would leave the system vulnerable to 
specific types of failures. For example, even if the IterativeRepair algorithm successfully bypasses a faulty router 
and establishes a valid path, the operation would inevitably fail if the target memory cell at the end of that path 
(or the re-routed leaf node) is itself defective. Conversely, a functionally intact spare memory cell would be 
useless if a higher-level router defect prevents any routing path from being established to it. Therefore, a robust 
QRAM must combine logical re-routing for its tree structure and physical redundancy for its memory cells to 
survive in situations where defects are distributed across both the router network and memory storage.

Furthermore, a hybrid integration of these strategies offers the most resource-efficient solution to the overall 
overhead challenge. While each method excels at its primary objective, a comprehensive approach to mitigating 
manufacturing defects across all components of the QRAM benefits greatly from leveraging its complementary 
strengths. Our physical redundancy for memory cells, for instance, provides highly efficient mitigation for 
distributed defects, securing high yield with modest, flexible qubit overhead (e.g., about 1%). In contrast, 
logical re-routing methods (Weiss et al.) handle structural defects but involve substantial fixed upfront costs: 
they necessitate fabricating a physical structure twice the size of the functional memory (e.g., an n-bit QRAM 
for an (n − 1)-bit unit) and introduce an O(n2) query latency. These costs become particularly inefficient if 
re-routing frequently targets unmitigated faulty memory cells. Recognizing these distinct overhead profiles, a 
hybrid architecture, we contend, is optimal for maximizing efficiency.

A robust QRAM will require a multi-layered approach to defect mitigation. Looking ahead, future research 
should focus on seamlessly integrating these distinct yet complementary approaches into a truly hybrid fault-
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tolerant QRAM architecture. By effectively addressing different types of manufacturing defects through distinct 
methodologies, and by optimally managing resource utilization through their combined strengths, the synergy 
between path-recovery (Faulty Towers) and destination-recovery (our work) will pave the way for highly reliable 
and cost-effective, fault-tolerant QRAMs with both high manufacturing yield and operational reliability.

Conclusion
qRAM is an essential component of quantum computers and an effective qRAM would realize the full 
computational benefits of quantum algorithms. Various studies have attempted to improve the fault tolerance 
of the Bucket Brigade architecture, which is robust against errors because its circuit model uses fewer quantum 
gates requiring activation than the existing Fanout model. However, while efforts to enhance the fault tolerance 
of the Bucket Brigade circuitry are ongoing, errors in the qubits of memory cells have been neglected.

Here, we considered the error-proneness of qubits consisting of actual memory cells for fully fault-tolerant 
qRAM. Additionally, we proposed a redundant repair scheme for qRAM that reduces the number of physical 
qubits required in the existing QEC method by assigning spare logical qubits. After implementing this scheme, 
the qRAM yield increased to 99.35% while the proportion of additional physical qubits was only 1.01% of 
all physical qubits. In addition, in qRAMs with 16, 32, 64, 128, 256, 512, and 1,024 logical qubits, the yield 
improved by 3.05%, 6.01%, 12.08%, 22.09%, 39.39%, 62.14%, and 83.59%, respectively. Our experimental results 
confirmed that our redundant repair scheme improves the yield and reduces the resource overheads of qRAM. 
The proposed scheme will greatly enhance the efficiency of future qRAM involving a large number of mass-
produced qubits.

We presented a qRAM architecture for redundancy repair, utilizing superconducting qubit technology, and 
showed quantum circuit model implementation. Currently, numerous studies are actively exploring various 
qRAM designs, each based on different qubit technologies. In our approach, the qRAM is specifically designed 
to accommodate the repair of defective qubits by using redundant qubits. Therefore, the proposed method can 
be applied regardless of the qubit technologies used for qRAM if redundant qubits are used to replace defective 
qubits.

Data availability
The datasets generated during the current study and the simulation framework are available in the GitHub re-
pository and can be accessed via https://github.com/QCL-PKNU/RR-QRAMSim.
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