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Remote sensing images used in military reconnaissance contain a large amount of sensitive 
information, and any leakage may pose a serious threat to national security. To address the need for 
high-precision detection of sensitive targets and to mitigate information leakage risks, this study 
proposes a remote sensing image processing framework that integrates multi-object detection with 
hierarchical chaotic encryption. Based on the YOLOv7-tiny architecture, a Multi-branch Enhanced 
Feature Aggregation Block (MEFABlock) is designed, which incorporates multi-scale convolutions 
and attention mechanisms to effectively enhance feature extraction in complex remote sensing 
scenes. In addition, a coordinate convolution module is introduced before the detection head to 
strengthen spatial position modeling, thereby achieving higher detection accuracy while maintaining 
a lightweight network structure.In the encryption stage, a novel two-dimensional chaotic system is 
constructed, and an improved hash-based method is proposed to generate the initial parameters of 
the chaotic system. The Josephus-ring permutation process is further enhanced, and a three-stage 
diffusion–permutation–diffusion encryption structure is employed. The improved detection network is 
first used to precisely locate sensitive regions in the image; the regions inside the detected bounding 
boxes are then locally encrypted and embedded back into the original image to achieve information 
concealment. Finally, global encryption is performed using the chaotic system to ensure end-to-end 
data security.Experiments conducted on the publicly available MAR20 military aircraft remote sensing 
dataset demonstrate that the proposed method improves Precision (P) by 2.4%, Recall (R) by 2.7%, 
mAP@0.5 by 2.7%, and mAP@0.5:0.95 by 2.2% compared with the baseline model. The encrypted 
remote sensing images achieve an information entropy of 7.9997, and meet high security standards in 
key metrics such as NPCR and UACI. Overall, the proposed encryption framework achieves high target 
detection accuracy and strong information protection performance, exhibiting robust potential for 
practical engineering applications.
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In modern warfare and intelligent combat systems, accurately detecting battlefield-sensitive targets plays a 
crucial role in enhancing situational awareness, supporting reconnaissance operations, and assisting in firepower 
allocation1. With the widespread application of high-resolution satellite remote sensing imagery, achieving 
efficient detection of sensitive targets while ensuring information security has become a critical challenge in the 
field of military image processing.

In recent years, with the rapid development of deep learning technologies, convolutional neural network 
(CNN)-based object detection methods have been widely applied in image analysis and processing tasks. 
Currently, CNN-based object detection algorithms can be categorized into two-stage and one-stage methods2. 
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Common two-stage algorithms include Faster R-CNN3 and R-FCN4. Although two-stage algorithms offer high 
detection accuracy, their complex structures and slower inference speeds make them difficult to deploy in real-
time processing and edge devices, which is particularly limiting in scenarios such as remote sensing monitoring 
and aerial reconnaissance where detection speed and efficiency are critical.

Compared with two-stage algorithms, one-stage methods, represented by the YOLO (You Only Look Once) 
series from YOLOv5 onwards5–13, have gradually become mainstream detection solutions in scenarios such 
as remote sensing, traffic monitoring, and security surveillance due to their good detection performance and 
real-time inference capability. For remote sensing object detection, Wang et al.14 proposed the AG-YOLO 
model guided by attention mechanisms, achieving efficient object detection in remote sensing scenarios by 
introducing attention mechanisms and rotation box parameters in the detection head. Wu et al.15, based on 
YOLOv8, improved the recognition accuracy of targets in remote sensing images by integrating the EMA 
attention mechanism and the WIoU loss function. Although these studies contributed to detection accuracy 
under remote sensing backgrounds, their selected targets were not military objects, limiting their applicability 
to military reconnaissance.

For the detection of military vehicles in different scenarios, some scholars have conducted research on YOLO 
algorithms. Hong et al.16 modified the loss function of YOLOv3-tiny and used the K-means clustering algorithm 
to optimize anchor boxes, improving detection accuracy for tanks, infantry fighting vehicles, and other units. Liu 
et al.17 proposed the improved MOKP-YOLO algorithm based on YOLOv8n, enhancing detection performance 
for military targets from drone perspectives through the design of a unified detector and a key component 
feature integration module.

Military aircraft are key aerial assets in modern warfare and national security defense, characterized by 
complex maneuverability and diverse tactical applications. Identifying and classifying military aircraft in remote 
sensing imagery has significant practical value and strategic importance. Xi et al.18 proposed MPS-YOLO, a 
multi-scale information fusion network based on PixelShuffle and YOLO, which improved the recognition 
accuracy of critical targets such as military aircraft in remote sensing scenarios; however, their algorithm 
required substantial computational resources. Liu et al.19 introduced the TripletAttention module and an 
efficient dynamic upsampler into the YOLOv8s baseline model, enabling better detail capture in images, but 
there remains room for further improvement in detection accuracy.

In addition to YOLO-based methods, researchers have also explored alternative algorithms. Xi et al.20 
proposed a novel single-order structure-adaptive object detection (SOOD) network, introducing a new rotation 
angle encoder (RAE) along with structure-adaptive label assignment (SALA) and structure-adaptive confidence 
estimation (SACE) to more accurately localize object positions. Shi et al.21 proposed a novel anchor-free detection 
network that leverages point set representation, integrating a progressive class-aware dual-branch module (PCA-
DB) and an instance-guided enhancement module (IGEM). These models have achieved favorable detection 
results in complex backgrounds. However, dedicated optimizations for military aircraft categories remain 
relatively limited, and there is still a performance gap compared to YOLO-based approaches in balancing real-
time performance and accuracy.

While high-precision object detection methods enable the acquisition of sensitive information in images, 
they also raise concerns about the security of this information. In particular, in military remote sensing imagery, 
unauthorized access or malicious tampering of sensitive targets such as military aircraft can result in severe 
information leakage and security threats. Therefore, it is imperative to integrate efficient object detection with 
information protection technologies, establishing an image processing framework that balances detection 
performance and data security.

Chaotic encryption has become an important research direction in the field of information security. Owing to 
its desirable properties—such as high sensitivity to initial conditions, controllable parameters, and intrinsically 
complex dynamic behavior—it has been widely applied to image encryption and information hiding tasks. With 
the continuous development of computing technologies, emerging paradigms such as neural networks and bio-
inspired computation have also been introduced into chaos-based cryptographic systems. As chaotic systems 
exhibit strong unpredictability and dynamical complexity, they are well suited for secure image encryption 
applications22. Li et al.23 proposed a structurally simple two-dimensional enhanced logistic modular map and 
further designed a vector-level chaotic image encryption algorithm based on this map, achieving promising 
encryption performance. However, exponential-type chaotic maps are prone to numerical degradation due to 
floating-point errors during digital implementation. To address this, Yu et al.24 constructed a six-dimensional 
hyperchaotic system by incorporating a memristor into a five-dimensional chaotic framework, demonstrating 
superior hyperchaotic characteristics.In the domain of chaotic image encryption, the integration of memristors 
with neural networks has also attracted increasing attention. Yu et al.25]– [26 introduced memristive devices into 
Hopfield neural networks to enhance their dynamical properties, and further implemented an image encryption 
circuit using FPGA technology. Ye et al.27 employed discrete wavelet transform for image preprocessing and 
utilized cellular automata and other computational mechanisms to achieve secure image encryption.

In the field of chaotic encryption, researchers have proposed various novel encryption schemes. Wang et 
al.28 designed a block-wise Arnold scrambling and bit-level permutation scrambling method, combined with a 
dual diffusion method involving XOR operations between a chaotic sequence and a secondary hash index chain, 
thereby enhancing the anti-attack capability of remote sensing images. Teng et al.29 encrypted facial information 
using a combination of DNA diffusion and Fisher-Yates shuffling, effectively protecting facial privacy. Kumar et 
al.30 proposed a new hybrid image encryption method combining chaotic maps and genetic algorithms, which 
improved encryption security, complexity, and robustness against various attacks. Ammar Odeh et al.31 presented 
a lightweight secure image encryption algorithm based on the Tent map chaotic system, which achieved high 
encryption strength while maintaining computational efficiency. This lightweight method effectively obscures 
image content and offers good robustness. Alenrex Maity et al.32 proposed an encryption framework integrating 
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a 5D hyperchaotic system, wavelet lifting transform, and Burrows-Wheeler transform, providing enhanced 
protection for images containing sensitive data. Zhang et al.33 proposed a novel image encryption approach 
based on a self-developed chaotic system and DNA coding, introducing a new decimal-to-binary conversion 
method; however, the chaotic system was relatively complex.

Recent studies have demonstrated that many chaotic image encryption schemes still exhibit significant 
security vulnerabilities when evaluated under practical attack models. In particular, several recent advances in 
cryptanalysis have revealed that numerous chaotic encryption algorithms—despite their sophisticated designs 
and seemingly strong statistical performance—can still be successfully compromised through known-plaintext 
attacks, chosen-plaintext attacks, or structural analysis.

For example, Feng et al.34 conducted a comprehensive cryptanalysis of the image encryption scheme based 
on a Feistel network and dynamic DNA encoding (IES-FD). Their analysis revealed severe weaknesses in key 
scheduling, Hill encryption, DNA operations, and the diffusion mechanism, and proposed a chosen-plaintext 
attack capable of fully recovering the plaintext, indicating that the scheme fails to meet practical security 
requirements. Wen et al.35 examined the IEC-BPMC algorithm, which is based on binary bit-plane extraction 
and multiple chaotic maps. By launching a low-complexity chosen-plaintext attack, they successfully recovered 
the equivalent diffusion and permutation keys, thereby completely breaking the cipher and demonstrating that 
the scheme cannot withstand real-world attacks.

Similarly, Feng et al.36 performed a systematic cryptanalysis of the IEA-VJD algorithm, which relies on 
variable-step Josephus traversing and dynamic DNA encoding. They proposed a complete chosen-plaintext attack 
capable of recovering the plaintext, showing that the algorithm is insecure under realistic attack scenarios. Wen 
et al.37 analyzed the CIEA-FOHS image encryption algorithm based on a fractional-order hyperchaotic system 
and identified several critical flaws, including equivalent keys, reducible permutation, and fragile diffusion. Their 
work demonstrated that the algorithm can be fully compromised under chosen-plaintext attacks, supported by 
both theoretical analysis and experimental validation.

Collectively, these studies highlight that many chaotic image encryption schemes—although seemingly 
robust and exhibiting desirable statistical characteristics—still fail to resist practical threats under rigorous 
cryptanalytic evaluation. Therefore, newly developed image encryption schemes must not only exhibit strong 
chaotic dynamical properties but also place emphasis on robustness against various practical attack models.

Although several recent studies have explored the integration of image detection and encryption, most 
existing works primarily focus on global image processing, while effective fusion of sensitive-target detection 
and localized encryption remains relatively underexplored.Within a unified security framework, the design of 
hierarchical data access and differentiated authorization mechanisms is still insufficiently addressed and warrants 
further investigation.To address these issues, this paper proposes an integrated scheme for target detection and 
information protection, tailored to the requirements of military aircraft detection and data security in remote 
sensing scenarios. Built upon the YOLOv7-tiny detection framework and a chaotic encryption architecture, the 
main innovations and contributions of this work are as follows:

	(1) 	 The YOLO-based remote sensing target detection is organically integrated with chaotic encryption, and a 
dual-layer encryption framework is proposed, consisting of sensitive target encryption followed by global 
secondary encryption. This design enables a two-tier hierarchical access mechanism for secured data.

	(2) 	 A three-branch multi-scale enhanced feature extraction module (MEFABlock) is proposed, which com-
bines multi-scale convolutions and multi-level attention mechanisms to effectively improve the feature 
representation capability and detection accuracy of the YOLOv7-tiny framework.

	(3) 	 A novel chaotic system is designed, and its theoretical chaotic properties and randomness are analyzed, 
enhancing the complexity of the chaotic sequences and the size of the key space, thereby strengthening the 
security of the encryption system.

	(4)	  A chaotic initial parameter generation method based on hash scrambling and diffusion is proposed, and 
an efficient three-level encryption scheme combining improved Josephus scrambling and dual diffusion 
structure is constructed, further enhancing encryption performance and security reliability.

The remainder of this paper is organized as follows. "Improvements to the detection network based on YOLOv7-
tiny" section presents the improved YOLOv7-tiny model. "Chaotic system" section introduces the proposed chaotic 
system and its corresponding analyses. "Chaotic encryption method" section discusses the chaotic image encryption 
algorithm. "Experiments and analysis" section reports the experimental results and analysis. "Conclusion" section 
concludes the paper.

Improvements to the detection network based on YOLOv7-tiny
This section introduces the improved YOLOv7-tiny model, including the design of the MEFABlock and the 
incorporation of coordinate convolution.

The YOLOv7 model
As a representative one-stage object detection algorithm, the YOLO (You Only Look Once) series has been 
widely applied in object detection scenarios with high requirements for real-time performance and accuracy, 
such as remote sensing monitoring and traffic surveillance, owing to its end-to-end design and strong detection 
performance. The overall architecture of YOLOv7 mainly consists of three parts: Backbone, Neck, and Head7. 
The Backbone extracts low-, middle-, and high-level feature information through multiple convolutional layers; 
the Neck utilizes multi-scale feature fusion structures (such as FPN and PAN) to efficiently integrate information 
at different scales, thereby enhancing the detection capability for objects of various sizes; the Head outputs object 
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locations, categories, and confidence scores through classification and regression branches, realizing end-to-end 
object detection.

YOLOv7-tiny, as a lightweight version of the YOLOv7 series, further compresses network parameters and 
reduces computational complexity, making it suitable for deployment on resource-constrained devices and 
applications with strict inference speed requirements. While maintaining basic detection accuracy, YOLOv7-
tiny significantly improves inference efficiency through structural pruning and module simplification strategies, 
offering excellent practical deployment value.

However, YOLOv7-tiny still exhibits certain limitations in feature representation capability under complex 
backgrounds, particularly when facing large variations in object scale, dense distributions, and complex 
interference in remote sensing images. Its detection performance leaves room for further improvement. Moreover, 
in military aircraft detection and encryption tasks, accurately detecting aircraft targets is a prerequisite for 
protecting sensitive target information from leakage. Therefore, this paper proposes a Multi-branch Enhanced 
Feature Aggregation module (MEFABlock) based on the YOLOv7-tiny architecture, aiming to strengthen the 
network’s feature extraction ability and multi-scale information fusion performance. The overall performance of 
the model for military aircraft detection in remote sensing scenarios is thereby enhanced. The structure of the 
improved YOLOv7-tiny model is illustrated in Fig. 1.

Multi-branch enhanced feature aggregation block
For aircraft detection tasks in remote sensing imagery, the target datasets present several challenges, including 
diverse object categories, large variations in structural appearance, significant scale changes, and partially blurred 
aircraft contours. To address these issues, this paper designs a Multi-branch Enhanced Feature Aggregation 
Block (MEFABlock) based on the YOLOv7-tiny architecture. The structure of this module is shown in Fig. 2.

The proposed module adopts a parallel convolution structure with 1 × 1, 3 × 3, and 5 × 5 branches to fuse 
spatial features at different scales, thereby enhancing the network’s ability to represent various military aircraft 
with multi-scale and structural differences. In addition, the lightweight Efficient Channel Attention (ECA) 
mechanism38 is introduced to improve the adaptive adjustment of channel-wise feature importance distribution, 
emphasizing key structural information. Furthermore, the Convolutional Block Attention Module (CBAM)39, 
which combines channel and spatial attention, is incorporated to reinforce feature representation from both 
channel and spatial dimensions, thereby improving feature discrimination and target localization in complex 
backgrounds.

To balance network representation capability and inference efficiency, the MEFABlock is embedded at the 
junction between the Backbone and Neck structures in the YOLOv7-tiny architecture. By enhancing deep 
feature fusion and multi-scale information extraction, the proposed design improves detection performance for 
military aircraft of different types and scales in complex remote sensing imagery, leading to overall improvements 
in detection effectiveness and system practicality.

Fig. 1.  The structure of improved YOLOv7-tiny.
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Coordinate convolution
Although YOLOv7-tiny offers good detection speed and basic feature representation capability, conventional 
convolution operations lack direct modeling of spatial positional information, leading to certain limitations in 
target boundary localization and spatial structure representation. In aircraft detection tasks in remote sensing 
imagery, where aircraft types are diverse, contours vary significantly, and scale changes are prominent, network 
structures without explicit positional awareness still have room for improvement in detection accuracy and 
localization precision.

To enhance the network’s capability to represent spatial positional information, this paper introduces the 
Coordinate Convolution (CoordConv) structure40 into the YOLOv7-tiny detection framework, replacing the 
conventional convolution layers preceding all three YOLOv7-tiny detection heads with CoordConv modules. 
The structure of CoordConv is illustrated in Fig. 3. CoordConv introduces explicit spatial coordinate information 
encoded from row and column positions into the feature channels, enabling convolution operations to 
simultaneously integrate local texture features and global spatial positional information, thereby compensating 
for the limitations of traditional convolution.

The high-level features before the detection heads contain stronger semantic information and directly affect 
the final target localization and classification performance. Embedding CoordConv at this position significantly 
enhances the network’s ability to express target positions, scales, and boundary contours while maintaining the 
overall lightweight architecture. This is particularly beneficial for improving detection accuracy and localization 
performance for military aircraft of different types and scales in remote sensing scenarios.

Chaotic system
This section presents the proposed 2D-MTCM chaotic system, including its formulation, performance 
evaluation, and related discussions.

2D-MTCM
The classical one-dimensional Logistic and Sine maps have been widely used in the field of encryption due to 
their simple structures and basic chaotic properties. However, one-dimensional systems often exhibit periodic 
windows, have limited key space, and fail to meet the requirements of high-security applications. Therefore, in 
recent years, researchers have gradually adopted multidimensional coupling and trigonometric functions to 
enhance the chaotic behavior of systems.

In this paper, inspired by the core principles of Logistic and Sine maps, a novel two-dimensional trigonometric 
coupled chaotic map, named the 2D Multi-Trigonometric Chaotic Map (2D-MTCM), is proposed, as defined 
in Eq. (1).

Fig. 3.  The structure of CoordConv.

 

Fig. 2.  The structure of MEFABlock.
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{
xn+1 = [a sin(πxn) + b cos(2πxn(1 − yn)) + 0.5(a + b) sin(yn)] mod 1
yn+1 = [b sin(πyn) cos(πxn+1) + a cos(πyn(1 − xn+1)) + 0.5(a + b) sin(xn)] mod 1. � (1)

To validate the chaotic properties of the proposed system, this paper conducts experiments including Lyapunov 
exponent analysis, phase diagram analysis, and 0–1 test, demonstrating that the proposed system meets the 
requirements for chaotic encryption applications.

Lyapunov exponent analysis
The Lyapunov Exponent (LE) is a key metric used to characterize the sensitivity to initial conditions and the 
chaotic behavior of a dynamical system. When LE > 0, the system exhibits good chaotic properties41. Suppose 
the chaotic system is represented by Xk+1 = F (Xk), Xk = (xk, yk).Then, the Jacobian can be computed using 
Eq. (2).

	
Jk =

[
∂f1
∂x

(xk, yk) ∂f1
∂y

(xk, yk)
∂f2
∂x

(xk, yk) ∂f2
∂y

(xk, yk)

]
.� (2)

At the k-th iteration, the Jacobian matrix possesses two eigenvalues, denoted by λ1,k  and λ2,k .
Accordingly, the Lyapunov exponents of the two-dimensional chaotic system can be evaluated following the 

formulations given in Eqs. (3)–(4).

	
LE1 = lim

n→∞

1
n

n−1∑
k=0

ln |λ1,k|.� (3)

	
LE2 = lim

n→∞

1
n

n−1∑
k=0

ln |λ2,k|.� (4)

In this study, Lyapunov exponent tests are conducted for the 2D-MTCM system. Since the initial parameters 
generated by the hash-based initialization method proposed in this paper are guaranteed to be no less than 1, the 
evaluation of LE1 is conducted over the parameter range a, b ⩾ 1. Based on the evaluation results, the Lyapunov 
exponent surfaces LE1 and LE2 are illustrated in Fig. 4. As shown in Fig. 4, when the initial parameters a and 
b are greater than 1, the LE1 becomes positive, indicating that the system exhibits strong chaotic behavior and 
is suitable for chaos-based encryption. Moreover, the LE2 surface reveals that within a certain range of the 
parameter space, both LE1 and LE2 remain positive simultaneously, demonstrating that the proposed system 
possesses hyperchaotic characteristics.

In addition to the 2D-MTCM system, the chaotic systems proposed in42–46, as well as the traditional Logistic 
and Sine chaotic systems, are selected for comparison. The experiment is initialized with specified initial values, 
and parameters a and b vary within the range [0.1, 4]. The experimental results are shown in Fig. 5.

As shown in Fig. 5, the LE of the 2D-MTCM system remains greater than 0 and is higher than that of the 
other systems used for comparison. The 2D-MTCM system consistently maintains a relatively large LE value 
over a wide parameter range, demonstrating superior chaotic performance and providing a solid theoretical 
foundation for subsequent encryption applications.

Phase diagram analysis
To verify the ergodicity and chaotic trajectory distribution of the proposed two-dimensional trigonometric 
coupled chaotic map (2D-MTCM), the phase portraits of the system are plotted under a set of typical parameters, 

Fig. 4.  The LE results.
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as shown in Fig.  6. It can be observed that the system state points uniformly cover the entire phase space, 
exhibiting good ergodicity and chaotic characteristics.

Bifurcation diagram analysis
To further analyze the dynamical characteristics of the proposed two-dimensional trigonometric coupled 
chaotic map (2D-MTCM) under parameter variations, bifurcation diagrams of xnwith respect to parameters 
a and b are plotted, as shown in Fig. 7. It can be observed that the system exhibits strong chaotic behavior and 
good ergodicity across a wide range of parameter values, with trajectories densely distributed in the interval [0, 
1], and no obvious periodic windows or stable attractors appearing. Compared with traditional chaotic systems, 

Fig. 6.  The phase diagram of 2D-MTCM system.

 

Fig. 5.  LE comparison results.
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the proposed system demonstrates higher unpredictability and superior parameter adaptability, providing a 
sufficiently large key space and enhanced security assurance for encryption applications.

0–1Test
To further verify the chaotic behavior of the proposed two-dimensional trigonometric coupled chaotic map 
(2D-MTCM), the classical 0–1 test for chaos is employed. The 0–1 tests are performed separately on the chaotic 
sequences of the x-component and y-component, and their diffusion trajectories are shown in Fig. 8. For the 0–1 
test, the definitions of the variables are provided in Eqs. (5)–(8).

Given the sequence xn,the phase is defined as shown in Eq. (3),where r = π
4 .

	
θ(n) = r · n +

n∑
j=1

xj .� (5)

Subsequently, two cumulative sums, A(n) and B(n), are constructed.

Fig. 8.  0–1 Test results of the 2D-MTCM system.

 

Fig. 7.  Bifurcation Diagrams of the 2D-MTCM System.
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A(n) =

n∑
j=1

xj cos(θ(j)).� (6)

	
B(n) =

n∑
j=1

xj sin(θ(j)).� (7)

The mean square displacement M(n) is then defined.

	 M(n) = A(n)2 + B(n)2.� (8)

The results show that the trajectories of (A(n), B(n)) exhibit obvious diffusion-like random walk characteristics 
in phase space, without periodicity or convergence phenomena. This Brownian motion-like trajectory pattern 
indicates that the system possesses good chaotic diffusion properties.

In addition, the 0–1 test K-values for the x-component and y-component chaotic sequences are calculated 
to be K = 0.8996 and K = 0.7613, respectively, with the corresponding linear slopes of M(n) being 0.0644 and 
0.0210. A K-value closer to 1 indicates stronger chaotic behavior. The experimental results demonstrate that the 
chaotic sequences generated by the proposed system exhibit high unpredictability and complexity, meeting the 
requirements of encryption algorithms for high chaos and security of keystreams.

NIST SP800-22 test
To further validate the statistical properties of the keystreams generated by the proposed two-dimensional 
trigonometric coupled chaotic map (2D-MTCM), NIST SP800-22 standard randomness tests were performed 
on 20 million bits of keystreams from both the x-component and y-component. As shown in Table 1, all main 
test items and their sub-tests yielded P-values significantly greater than 0.01, and the pass rates met or exceeded 
the minimum requirements specified by NIST.

Both the x-component and y-component demonstrated excellent performance in all statistical tests, indicating 
that the proposed system can reliably generate high-strength, highly uniform pseudorandom keystreams, fully 
meeting the randomness and security requirements for practical encryption applications.

Chaotic encryption method
This section provides a detailed description of the proposed chaotic encryption algorithm, including its 
implementation procedure and technical details.

Encryption workflow
To effectively protect key information in images, this paper proposes a chaotic encryption algorithm based on a 
diffusion–permutation–diffusion structure. The overall workflow is shown in Fig. 9. The algorithm employs the 
two-dimensional trigonometric coupled chaotic system (2D-MTCM) as its core and significantly enhances the 
security and attack resistance of the ciphertext through a three-stage progressive process.

First, the algorithm applies SHA-512 and SHA-256 hash functions to the original image and its individual 
channel information to dynamically generate the initial parameters and control variables of the chaotic 
system, thereby achieving an “image-dependent + key-dependent” chaotic sequence driving mechanism. This 

No. Test item X-sequence P-value X pass rate Result Y-sequence P-value Y pass rate Result

1 Frequency 0.276 0.95 Pass 0.911 1.00 Pass

2 Block frequency 0.122 1.00 Pass 0.213 1.00 Pass

3 Cumulative sums F/B 0.122/0.213 0.95 Pass 0.637/0.834 1.00 Pass

4 Runs 0.534 1.00 Pass 0.911 0.95 Pass

5 Longest run 0.350 1.00 Pass 0.534 1.00 Pass

6 Rank 0.350 0.95 Pass 0.049 1.00 Pass

7 FFT 0.964 1.00 Pass 0.276 1.00 Pass

8 Non-overlapping template 0.421 1.00 Pass 0.421 1.00 Pass

9 Overlapping template 0.163 0.95 Pass 0.638 0.95 Pass

10 Universal 0.437 1.00 Pass 0.834 0.95 Pass

11 Approximate entropy 0.911 1.00 Pass 0.049 1.00 Pass

12 Serial 0.534/0.834 1.00 Pass 0.834/0.637 1.00 Pass

13 Linear complexity 0.534 1.00 Pass 0.911 1.00 Pass

14 Random excursions 0.521 1.00 Pass 0.521 1.00 Pass

15 Random excursions variant 0.439 1.00 Pass 0.439 1.00 Pass

Table 1.  NIST SP800-22 test results. The P-values represent typical or average values, and all sub-test pass rates 
meet the NIST standards.
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mechanism significantly increases the key space and unpredictability of the algorithm, enhancing its resistance 
to attacks.

Next, the encryption process is carried out in three steps: The first diffusion stage employs chaotic sequences 
to globally perturb pixel values, achieving high diffusion of pixel intensities.The second stage adopts the Josephus 
ring scrambling strategy to permute pixel positions, disrupting spatial correlations.The third stage performs a 
second diffusion operation, further increasing the complexity of the correlation between plaintext and ciphertext.

This encryption framework not only effectively prevents conventional statistical and differential analysis 
attacks but also exhibits good parallelism and scalability, making it suitable for protecting various types of 
sensitive image data.

Hash-based chaotic parameter generation method
First, the algorithm performs SHA-512 and SHA-256 hash operations on the original image data and its 
individual channel information to obtain high-strength, collision-resistant hash digests. Then, the obtained hash 
values are segmented and concatenated using a fixed-length window, and mixed through bitwise XOR and other 
operations to generate multiple parameter seeds K1 to K8.

These K1–K8 parameter seeds are used to generate the initial parameters for chaotic sequences X10, Y10, 
X20, and Y20. After generating two groups of chaotic sequences using the chaotic system, iterative operations 
are performed on these sequences, and the sum of the first 3,000 digits of X10, Y10, X20, and Y20 is computed 
to produce a new SHA-512 hash.

This new SHA-512 hash is then processed in the same manner to obtain another set of parameter seeds K1–
K8. These second-round seeds are normalized and used to generate the initial values and control parameters for 
the two-dimensional chaotic system that participates in the encryption process.

Taking X10 and Y10 as examples, the initial parameter generation formulas are given in Eqs. (9)–(12).

	
X10 = SumHex(K1 ⊕ K2 ⊕ K3) + SumHex(K4)

1024 .� (9)

	
Y 10 = SumHex(K5 ⊕ K6 ⊕ K7) + SumHex(K8)

1024 .� (10)

	
a10 = max

(
SumHex(K1 ⊕ K2 ⊕ K3) + SumHex(K4 ⊕ K5)

256 , 1
)

.� (11)

	
b10 = max

(
SumHex(K5 ⊕ K6 ⊕ K7) + SumHex(K8 ⊕ K1)

256 , 1
)

.� (12)

Here, SumHex(·) denotes the operation of converting each hexadecimal character of the hash string into decimal 
and summing them, and⊕represents the bitwise XOR operation. For generating the initial parameters of 
subsequent chaotic sequences, taking Eq. (9) as an example, for X20, the K seed group is circularly left-shifted by 
one position, i.e., X20 is generated using K2, K3, K4, and K5, and so on for the others.The pseudocode for this 
step is shown in Table 2.

Fig. 9.  Overall encryption workflow.
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As a result, three groups of chaotic sequences, X1, Y1, X2, Y2, X3, and Y3, are finally obtained and are used to 
guide the encryption operations for the first diffusion, permutation, and second diffusion, respectively.

Pixel diffusion
In the first diffusion process, two chaotic sequences X1 and Y1, each with a length equal to the number of pixels, 
are used to perturb the pixel values. The specific steps are as follows:

First, for each pixel position i, the chaotic perturbation amounts are calculated as shown in Eqs. (13) and (14).

	 X_mod = ((x[i] + y[i]) × 1018) mod 256.� (13)

	 Y _mod = ((x[i] − y[i]) × 1018) mod 256.� (14)

Then, the original pixel value is XORed with the two perturbation values to obtain the intermediate diffusion 
result, as shown in Eq. (15).

	 N = Original P ixel[i] XOR X_mod XOR Y _ mod.� (15)

To further enhance the nonlinearity and security of the diffusion process, an additional perturbation is 
introduced using Eq. (16).

	
Z = ( (x[i] + y[i])

(|x[i] − y[i]| + ε) × 1018) mod 256.� (16)

Here, ε is set as a very small positive value to avoid division by zero. The final diffusion output is defined as shown 
in Eq. (17).

	 E = (N + Z) mod 256.� (17)

Improved Josephus ring permutation
The Josephus ring was originally a mathematical problem, and applying the Josephus ring to chaotic image 
encryption can enhance the resistance of the encryption scheme against brute-force attacks47. In the second step 
of the proposed method, an improved Josephus ring permutation mechanism driven by chaotic sequences is 
introduced to achieve global rearrangement of pixel positions.

The specific procedure is as follows: First, the input channel is flattened into a one-dimensional array with 
a total length of N. A position index queue of length N is then constructed, initialized as [0,1,2,…,N − 1], to 
simulate a circular structure. In this scrambling process, at each step, a jump length is generated from the chaotic 
sequence X2. Starting from the current position, the index queue is traversed circularly to select a position, and 
the pixel at the selected position is added to the output sequence, while the corresponding element is removed 
from the queue. This procedure is repeated until all pixels are selected. The scrambled pixel sequence is then 
reshaped back to the original channel dimensions. The computation of the jump length J is given in Eq. (18), 
where M = max(rows, columns), M′=ceil⌈M/2⌉, and M′′=floor[M/2]. Here, Ceil denotes the ceiling operation, 
and floor denotes the floor operation. After every M selections, Eq. (18) is recalculated to obtain a new J. To 
avoid overflow, 1 is subtracted from J after each update. If J = 0, it is reassigned to 1 to prevent infinite loops; if a 
negative value occurs, the absolute value of J is taken before proceeding.

	
J = floor(chaotic_seq[i] × 1016 + chaotic_seq[i]

2 × 1018) mod M ′′ + M ′.� (18)

Table 2.  Pseudocode for generating chaotic system initial parameters from hash values.
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Second pixel diffusion
To further enhance the security of the encrypted image and increase the strength of pixel perturbation, a second 
diffusion process based on chaotic sequences and XOR/XNOR operations is applied after the first diffusion 
and permutation. This process effectively breaks the correlations between pixels and enhances the statistical 
properties of the ciphertext.

Let the input be the permuted single-channel image C of size H × W, with a total of N pixels. The second 
pixel diffusion uses chaotic sequences X3 and Y3, whose elements are denoted as x[i] and y[i], respectively. The 
operations are performed as defined in Eqs. (19) and (20).

	
Ai =

(
(x[i] + y[i])

2 × 1010
)

mod 256.� (19)

	
Bi =

(√
x[i] + y[i] × 1010

)
mod 256.� (20)

For each pixel Ci (flattened into a one-dimensional sequence), if A[i] ≥ B[i], the operation defined in Eq. (21) is 
performed; otherwise, the operation defined in Eq. (22) is executed. In Eqs. (21)-(22), ⊕represents the bitwise 
XOR operation,⊙represents the bitwise XNOR operation.

	 Ei = Ci ⊕ (Ai ⊙ Bi).� (21)

	 Ei = (Ci ⊙ Ai) ⊕ Bi.� (22)

All E[i] values are then reshaped into an H × W two-dimensional matrix to obtain the image after the second 
diffusion. The above process is performed independently for the R, G, and B channels, and the final encrypted 
image is obtained by merging the three encrypted channels.

Through this three-step diffusion–permutation–diffusion process, the image is encrypted. The decryption 
process involves inputting the encrypted ciphertext image, reading the hash-based key, and performing the 
inverse operations of the three steps described above to ultimately recover the decrypted image. During 
decryption, the hash key is input, and the chaotic system generates the same chaotic sequence based on the key. 
The process then applies inverse second diffusion, inverse permutation, and inverse first diffusion sequentially, 
thereby restoring the encrypted pixels to the original image pixels.

Experiments and analysis
This section presents the experiments and analyses of the proposed method, including the evaluation of the 
improved YOLOv7-tiny model and the performance tests of the chaotic encryption algorithm.

Dataset and experimental settings
The dataset used in this study is the MAR20 military aircraft recognition dataset developed by Northwestern 
Polytechnical University48. This dataset contains a total of 3842 images and is divided into training and testing 
subsets. The training set consists of 1,331 images and 7870 target instances, while the testing set contains 2,511 
images and 14,471 target instances.

The MAR20 dataset includes 20 categories of military aircraft models, which are labeled A1 through A20 
by the authors. Example images from the dataset are shown in Fig. 10, and the distribution of categories in the 
MAR20 dataset is illustrated in Fig. 11.

The experimental environment and configurations used in this study are summarized in Table 3.
In the experiments of this study, the main hyperparameter settings for training the YOLOv7-tiny model are 

as follows: the initial learning rate (lr0) is set to 0.01, the final learning rate factor (lrf) is 0.1, the momentum is 
0.937, and the weight decay is 0.0005.

Fig. 10.  Example image from the MAR20 dataset.
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Model comparison experiments
Precision (P), recall (R), F1-score, and mean average precision (mAP) are selected as evaluation metrics in this 
study. The specific calculation formulas are provided in Eqs. (23)–(27).

	
P = T P

T P + F P
× 100%.� (23)

	
R = T P

T P + F N
× 100%.� (24)

	
F 1 = 2 × (P × R)

P + R
.� (25)

	

AP =
1ˆ

0

P (r)dr.� (26)

	
mAP =

∑C

i−1 APi

C
.� (27)

In the given equations, TP (true positives) denotes the number of correctly identified positive instances, while 
FP (false positives) represents cases where negative samples were mistakenly classified as positive. FN (false 
negatives) accounts for the positive instances that the model failed to identify. The average precision (AP) 
measures the area under the precision-recall curve for a specific class, and the mean average precision (mAP) 
summarizes the overall detection accuracy by averaging AP values across all categories.

Item Specification

Operating system Win10

CPU Intel(R)Core(TM)i5-14600KF

RAM 32GB

GPU NVIDIA GeForce RTX 4080super

CUDA 12.1

Python 3.9

Pytorch 2.2.2

Epoch 400

Batch-size 16

optimizer SGD

Table 3.  Experimental configurations in this study.

 

Fig. 11.  Category distribution of the MAR20 dataset.
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The proposed improved algorithm is compared with other mainstream YOLO series algorithms, and the 
experimental results are shown in Table 4. From the results in Table 4, it can be observed that the improved 
algorithm achieves the best performance in terms of precision (P), recall (R), F1-score, and mean average 
precision (mAP@0.5 and mAP@0.5:0.95).

As shown in Table 4, in addition to comparing various YOLO series algorithms (YOLOv5n to YOLOv13n), 
this study also introduces RT-DETR49, a representative detection model in recent years, as well as the latest 
YOLOv13 model, forming a comprehensive performance comparison framework covering multiple versions 
and structural types.

Compared to the baseline YOLOv7-tiny model, the proposed improved model achieves significant 
improvements in all evaluation metrics: precision (P) increases from 83.6% to 86.0%, recall (R) increases from 
80.2% to 82.9%, F1-score improves to 84.4%, mAP@0.5 improves to 90.0%, and mAP@0.5:0.95 reaches 66.6%, 
ranking first among all evaluated models. In addition, we evaluated the real-time capability of the improved 
network. With only 6.7 M parameters and 21.2 GFLOPs, the model achieves an end-to-end speed of 149 FPS, 
meeting the real-time demands.

Table 5 presents the comparison of different algorithms on the 20 military aircraft categories, with mAP@0.5 
as the primary metric to assess overall detection accuracy. The bold numbers in the table indicate the best-
performing algorithm for each category.

RE-DETR v5n v6n v7-tiny v8n v9t v10n v11n v12n v13n Ours

ALL 77.7 85.3 80.9 87.3 85.7 82.6 85.9 86.1 85.0 80.7 90.0

A1 73.9 82.4 76.1 80.7 78.4 75.4 86.7 81.4 74.1 72.9 88.0

A2 81.3 93.6 91.8 97.1 94.5 90.7 94.0 93.9 93.2 90.8 98.2

A3 86.9 89.8 89.0 95.9 92.9 89.7 93.2 90.0 93.2 88.0 98.2

A4 82.6 88.5 87.0 93.1 91.6 87.9 88.6 90.2 91.1 86.8 95.6

A5 69.8 70.2 66.3 68.8 76.4 67.2 71.4 72.6 73.5 65.8 75.1

A6 91.0 96.4 92.7 96.7 96.6 94.5 95.9 97.5 95.5 89.5 96.0

A7 90.9 95.9 90.3 95.4 96.2 94.7 94.2 96.4 97.2 94.9 96.5

A8 87.1 94.7 92.8 90.0 92.8 94.3 94.1 93.0 94.7 93.4 94.5

A9 76.1 90.0 81.7 91.7 91.6 83.7 87.2 88.8 88.0 80.9 94.8

A10 95.0 97.0 95.4 98.2 97.6 94.9 96.9 97.4 97.6 95.2 98.8

A11 70.8 83.2 75.1 81.6 78.1 79.0 84.7 86.8 83.3 81.8 83.3

A12 75.1 89.0 81.5 90.3 88.0 83.4 89.0 90.0 82.5 74.9 93.2

A13 62.5 76.5 76.4 80.8 79.2 74.3 80.2 79.9 80.6 74.8 82.7

A14 82.9 93.3 90.3 92.9 93.3 92.0 93.3 92.7 92.0 90.9 94.1

A15 39.3 45.7 28.3 58.0 47.7 48.8 45.3 50.6 63.5 49.5 57.6

A16 76.9 92.1 94.1 94.1 93.6 88.1 93.2 94.1 91.7 88.7 93.8

A17 88.1 93.9 94.0 97.1 96.3 92.4 95.2 95.9 93.2 90.7 98.0

A18 72.2 77.4 60.4 82.4 76.1 71.6 77.4 71.9 69.8 62.0 87.0

A19 75.0 77.0 75.4 78.4 76.5 73.9 77.6 79.8 72.7 68.6 85.5

A20 77.0 79.0 79.4 83.6 77.1 76.0 80.6 79.5 72.1 74.1 89.6

Table 5.  Class-wise performance comparison of different models on subcategories A1–A20 and the overall 
average (ALL).  Significance value bold.

 

Algorithm P/% R/% F1-score mAP@0.5 mAP@0.5:0.95

RT-DETR49 83.1 78.5 80.7 77.7 58.7

YOLOv5n5 81.6 78.0 79.8 85.3 64.4

YOLOv6n6 77.9 74.9 76.4 80.9 60.8

YOLOv7-tiny7 83.6 80.2 81.9 87.3 64.4

YOLOv8n8 82.5 78.9 80.7 85.7 64.2

YOLOv9t9 77.6 75.6 76.6 82.6 62.3

YOLOv10n10 82.8 78.5 80.6 85.9 65.2

YOLOv11n11 82.1 79.0 80.5 86.1 64.7

YOLOv12n12 79.9 78.5 79.2 85.0 64.0

YOLOv13n13 77.9 73.3 75.5 80.7 60.6

Ours 86.0 82.9 84.4 90.0 66.6

Table 4.  Comparison of different object detection models.  Significance value bold.
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To more intuitively illustrate the differences in detection accuracy for the 20 categories of military aircraft, 
a radar chart is plotted as shown in Fig. 12. Combined with Table 5; Fig. 12, it can be seen that the proposed 
algorithm achieves the highest accuracy in identifying 14 categories of military aircraft.

YOLOv7-tiny still has room for improvement in detection accuracy due to its lack of efficient multi-scale 
feature fusion and spatial perception capabilities. In contrast, YOLOv8n–YOLOv13n show continuous evolution 
in feature modeling and architectural optimization but still fail to outperform the proposed model on the MAR20 
military aircraft dataset.

Although RT-DETR possesses end-to-end detection capabilities and strong global modeling ability, it suffers 
from insufficient boundary clarity and inadequate spatial detail capture in remote sensing tasks, resulting in 
significantly lower mAP@0.5:0.95 compared to the YOLO series.

By introducing the MEFABlock module to enhance feature representation and incorporating CoordConv 
before the detection heads to improve spatial information modeling, the proposed model achieves a significant 
performance improvement in military aircraft detection tasks under remote sensing backgrounds, demonstrating 
the effectiveness and adaptability of the architectural design.

To further illustrate the effectiveness of the improved YOLOv7-tiny in military aircraft detection, comparative 
experiments on military aircraft target detection in remote sensing images were conducted, with results shown 
in Table 6.

As seen from Table 6, in actual comparison image (a), structurally advanced models such as YOLOv11n 
and YOLOv13n failed to detect the aircraft, whereas the proposed improved model successfully detected it with 
correct classification. In actual comparison image (b), the YOLOv11n model exhibited a missed detection, and 
both YOLOv11n and YOLOv13n incorrectly identified the aircraft as category A20, while according to manually 
annotated ground truth, the true category was A13; the improved model successfully detected and classified it 
correctly. In actual comparison image (c), all models performed relatively well, but the improved model achieved 
higher overall detection confidence than YOLOv11n and YOLOv13n.

Ablation experiments
To investigate the contribution of the proposed modules to the improvement in model accuracy, ablation 
experiments were conducted. The results of the ablation experiments are shown in Table 7. In Table 7, Module A 
represents MEFABlock, Module B represents coordinate convolution (CoordConv), and “✓” indicates that the 
corresponding module is included in the experimental setting.

As shown in Table 7, the baseline YOLOv7-tiny model, without any structural improvements, achieves an 
mAP@0.5 of 87.3% and an mAP@0.5:0.95 of 64.4%. When only MEFABlock is introduced, precision increases 
to 85.9%, mAP@0.5 improves to 89.3%, and mAP@0.5:0.95 reaches 66.1%, indicating that the incorporation 
of the three-branch convolution fusion structure and attention mechanisms significantly enhances multi-scale 
feature extraction capability.

When only coordinate convolution is introduced, recall increases from 80.2% to 82.5%, demonstrating that 
explicit positional information improves the model’s ability to capture aircraft edge contours, which is particularly 
suitable for the large scale variations among different types of aircraft in the MAR20 dataset. mAP@0.5 improves 
to 88.7% and mAP@0.5:0.95 rises to 65.5%, also showing positive gains.

When both modules are used together, the model achieves the best performance across all metrics: precision 
increases to 86.0%, recall increases to 82.9%, mAP@0.5 reaches 90.0%, and mAP@0.5:0.95 improves to 66.6%. 
These results indicate that the proposed feature enhancement module and spatial perception mechanism exhibit 
good structural complementarity, collaboratively improving target detection accuracy and boundary localization 
in military aircraft remote sensing images.

To further investigate the contributions of each component within the MEFABlock, ablation experiments 
were conducted on its individual structures. The experimental results are presented in Table 8.

Fig. 12.  Radar chart comparing model accuracy on the MAR20 dataset.
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As shown in Table 8, adding the ECA attention mechanism on top of the three-branch structure leads to 
improvements in both Recall (R) and mAP, indicating that ECA enhances the response of key semantic feature 
channels and provides a mild yet positive optimization effect on the model. When introducing the CBAM 
module alone, the recall decreases slightly by 0.3% compared with the standalone three-branch structure; 
however, the Precision (P) exhibits a substantial increase. This suggests that CBAM effectively selects informative 
semantic channels and suppresses background noise in the spatial domain, thereby highlighting target regions. 
When both ECA and CBAM attention mechanisms are incorporated simultaneously, the model achieves the 
highest F1 score, attaining an optimal balance between P and R. Furthermore, this configuration yields the best 

Baseline Three-branch +ECA +CBAM P/% R/% F1-score mAP@0.5 mAP@0.5:0.95

✓ 83.6 80.2 81.8 87.3 64.4

✓ ✓ 85.1 82.8 83.9 89.1 65.7

✓ ✓ ✓ 85.3 83.2 84.2 89.4 65.9

✓ ✓ ✓ 86.0 82.5 84.2 89.3 66.0

✓ ✓ ✓ ✓ 85.9 82.8 84.3 89.3 66.1

Table 8.  MEFABlock ablation experiments.  Significance value bold.

 

Baseline A B P/% R/% F1-score mAP@0.5 mAP@0.5:0.95

✓ 83.6 80.2 81.9 87.3 64.4

✓ ✓ 85.9 82.8 84.3 89.3 66.1

✓ ✓ 84.1 82.5 83.3 88.7 65.5

✓ ✓ ✓ 86.0 82.9 84.4 90.0 66.6

Table 7.  Ablation experiments.  Significance value bold.

 

Table 6.  Actual detection comparison on remote sensing images.
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performance in mAP@0.5:0.95, demonstrating that the combination of the three-branch structure with both 
attention mechanisms offers the most favorable overall performance.

The ablation experiment results fully validate the independent and combined effectiveness of MEFABlock 
and CoordConv in improving detection performance, and demonstrate the rationality of the architectural 
design proposed in this paper.

Chaotic encryption method tests
Key space analysis and key sensitivity analysis
The key used in this study is derived from SHA-512 computation, with a key length of 21280 bits, which exceeds 
the 2100 requirement50. Therefore, the proposed algorithm possesses a large key space, enabling it to resist brute-
force attacks.

A key sensitivity analysis of the encryption algorithm was performed as follows:
The original key A is:
5ee3a198052db72355dc174cd56cb6297e9cb85c02897d936cb89b77
c78cbd7eee9cf4166b43f951576e32ac2393390e1907229d430305ea7e147ed74aa1d23f.
By changing the first bit, key B is obtained:6ee3a198052db72355dc174cd56cb6297e9cb85c02897d936cb89b77c 

78cbd7eee9cf4166b43f951576e32ac2393390e1907229d430305ea7e147ed74aa1d23f.
By changing the last bit, key C is obtained:5ee3a198052db72355dc174cd56cb6297e9cb85c02897d936cb89b77c 

78cbd7eee9cf4166b43f951576e32ac2393390e1907229d430305ea7e147ed74aa1d23e.
During decryption, the original key, key B, and key C were used respectively to attempt decryption. The 

results are shown in Table 9.
As shown in Table  9, although the key was altered only slightly (by a single bit), the decrypted images 

remained ciphertext. Therefore, the proposed encryption algorithm exhibits good key sensitivity.

Histogram analysis
To evaluate the proposed encryption algorithm’s ability to obfuscate the pixel value distribution of images, 
histogram analysis was performed on both the original and encrypted images. Histograms can intuitively reflect 
the distribution patterns of pixel intensity values in an image and are one of the commonly used methods for 
evaluating encryption effectiveness.

The pixel value distributions were computed for each channel (R, G, and B) of both the original and encrypted 
images. For each channel, the frequency of pixel values in the range 0–255 was counted and the corresponding 
histograms were plotted. The histogram results are shown in Table 10.

As shown in Table 10, the histogram of the original image exhibits obvious statistical patterns, with a large 
number of pixels concentrated at specific gray levels, reflecting the structural characteristics of the original image 
content. In contrast, the histogram of the encrypted image shows a nearly uniform distribution, with pixel values 
evenly spread over the range 0–255 and almost equal frequency for all gray levels, indicating that the encryption 
process effectively disrupts the statistical properties of the original image.

The histogram analysis results demonstrate that the proposed encryption algorithm can significantly enhance 
the uniformity of pixel values and effectively conceal the statistical information of the original image.

Information entropy analysis
Information entropy is an important metric for measuring the randomness and uncertainty of image 
information, with a theoretical maximum value of 8. For encrypted images, the closer the information entropy is 
to this theoretical maximum, the more random the pixel distribution, the higher the security of the encryption 
algorithm, and the stronger its resistance to statistical attacks. The formula for calculating information entropy 
is given in Eq. (28). In Eq. (28), P (i) denotes the probability that the pixel takes the gray level.

In this study, five images were selected for information entropy testing: Baboon (512 × 512), Pepper 
(512 × 512), Airplane (512 × 512), and Remote sensing image1(RSimage1,825 × 799), Remote sensing 
image2(RSimage2800 × 800).The RSimage1 and RSimage2 are the actual remote sensing military aircraft 
detection image used in this paper. The results of the information entropy tests are presented in Table 11.

Table 9.  Experimental results of key sensitivity analysis.
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H = −

255∑
i=0

P (i)log2P (i).� (28)

As shown in Table 11, after encryption, the information entropy of all images exceeds 7.999 and is close to the 
theoretical value of 8, indicating that the pixel distributions of the encrypted images are uniform and that the 
algorithm has strong resistance to statistical attacks.

Image R G B Mean

Baboon 7.9992 7.9992 7.9994 7.9993

Pepper 7.9993 7.9993 7.9994 7.9993

Airplane 7.9993 7.9994 7.9993 7.9993

RSimage1 7.9998 7.9997 7.9997 7.9997

RSimage2 7.9997 7.9997 7.9998 7.9997

Table 11.  Information entropy test results.

 

Table 10.  Histogram analysis Results.
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To further demonstrate the superiority of the proposed encryption algorithm, the Baboon (256 × 256) image 
was encrypted and compared with methods proposed in other studies. The comparison results are presented in 
Table 12.

As shown in Table 12, the information entropy achieved by the proposed encryption algorithm is superior to 
other comparison algorithms, demonstrating the effectiveness of the proposed algorithm and confirming that its 
information entropy meets the requirements of mainstream encryption algorithms.

Pixel correlation analysis
Pixel correlation is one of the key metrics for evaluating the security of image encryption algorithms. For natural 
images, adjacent pixels in the horizontal, vertical, or diagonal directions typically exhibit strong correlation. A 
highly secure encryption algorithm should effectively break this correlation, reducing the correlation coefficients 
between adjacent pixels in the encrypted image to near zero.

By randomly selecting pairs of adjacent pixels in the horizontal, vertical, and diagonal directions in the 
encrypted image, the correlation coefficients can be calculated using Eq. (29).

	
r = Cov(x, y)√

D(x)
√

D(y)
.� (29)

In Eq. (23), x and y represent adjacent pixel pairs, Cov(x, y) denotes the covariance, and D(x) represents the 
variance. The correlation coefficient results for different directions are presented in Table 13.

As can be seen from Table 13, the correlation between adjacent pixels in the encrypted images is close to 
0, demonstrating that the proposed encryption algorithm can effectively eliminate pixel correlation, thereby 
enhancing the security of the encrypted images.

 Chi-square test
The chi-square test is a statistical method used to evaluate whether the pixel value distribution of an encrypted 
image approximates a uniform distribution. Ideally, an encrypted image should exhibit a uniform distribution of 

Original image Encryption image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

R channel

  RSimage1 0.9187 0.9223 0.8431 – 0.0004 – 0.0002 – 0.0015

  Baboon 0.9231 0.8660 0.8543 – 0.0015 – 0.0014 0.0020

  Pepper 0.9635 0.9663 0.9564 – 0.0011 0.0035 – 0.0020

  Airplane 0.9726 0.9568 0.9343 0.0037 0.0020 0.0011

  RSimage2 0.9893 0.9817 0.9730 0.0001 – 0.0022 0.0012

G channel

  RSimage1 0.9221 0.9257 0.8498 – 0.0007 – 0.0004 – 0.0016

  Baboon 0.8655 0.7650 0.7348 0.0035 – 0.0001 0.0024

  Pepper 0.9811 0.9818 0.9687 – 0.0010 0.0011 – 0.0010

  Airplane 0.9578 0.9678 0.9326 0.0062 0.0020 0.0029

  RSimage2 0.9893 0.9817 0.9730 0.0001 – 0.0022 0.0012

B channel

  RSimage1 0.9804 0.9134 0.8238 0.0004 – 0.00001 0.0007

  Baboon 0.9073 0.8809 0.8399 0.0007 0.0036 – 0.0022

  Pepper 0.9665 0.9664 0.9478 0.00004 0.0020 0.0013

  Airplane 0.9640 0.9353 0.9146 0.0036 0.0019 0.0075

  RSimage2 0.9901 0.9830 0.9749 0.0002 – 0.0021 0.0012

Table 13.  Statistical results of correlation coefficients.

 

Image R G B Average

Ours 7.9972 7.9974 7.9972 7.9973

Ref51 7.9965 7.9963 7.9967 7.9965

Ref52 7.9967 7.9931 7.9939 7.9946

Ref53 7.9974 7.9969 7.9973 7.9972

Ref54 7.9977 7.9969 7.9969 7.9972

Ref55 7.9973 7.9967 7.9967 7.9969

Table 12.  Comparison of information entropy results for different methods.
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pixel values in the range 0–255 to resist statistical attacks. The chi-square test quantifies the degree of deviation 
between the actual pixel distribution and the theoretical uniform distribution.

For single-channel images with pixel values ranging from 0 to 255, the chi-square valueχ2is calculated using 
Eq. (30). In Eq. (30), Oi denotes the number of pixels whose gray level equals i, and Ei represents the expected 
frequency of each gray level under an ideal uniform distribution.

	
χ2 =

256∑
i=0

(Oi − Ei)2

Ei
.� (30)

At a significance level of α = 0.05, when χ2 ⩽ 293.2478, the pixel distribution of the image is considered 
uniform56. The chi-square test results for the proposed encryption algorithm are shown in Table 14.

As shown in Table  14, the encrypted images processed by the proposed algorithm exhibit uniform pixel 
distributions.

NPCR and UACI analysis
To evaluate the proposed encryption algorithm’s resistance to differential attacks, NPCR (Number of Pixels 
Change Rate) and UACI (Unified Average Changing Intensity) metrics are used to test the sensitivity of the 
encrypted images. For an image of size M × N, NPCR and UACI are calculated using Eqs. (31)–(33), respectively.

	
NP CR = 1

M × N

M∑
m=1

N∑
n=1

T (m, n).� (31)

	
T (m, n) =

{ 1, if V1(m, n) ̸= V2(m, n)
0, if V1(m, n) = V2(m, n). � (32)

	
UACI = 1

M × N

M∑
m=1

N∑
n=1

[V1(m, n) − V2(m, n)]
255 .� (33)

In Eqs. (31)–(33), V1(m, n) and V2(m, n) represent the pixel values of the images before and after encryption, 
respectively. NPCR and UACI tests were conducted on five images, and the results are shown in Tables 15 and 
16, respectively.

Using the Baboon (256 × 256) image, a comparison between the proposed method and other methods was 
performed, with the results presented in Table 17.

For 8-bit grayscale or color images, the theoretical NPCR is 99.6094% and the theoretical UACI is 33.4635%. 
It is generally accepted that NPCR should exceed 99.5% and UACI should be close to the theoretical value 
(around 33%) for an algorithm to demonstrate strong resistance to differential attacks.

The experimental results in Tables 15, 16 and 17 show that the NPCR of the images encrypted by the proposed 
algorithm all exceed 99.6% and the UACI values are close to the theoretical value of 33.4635%, outperforming or 
meeting the security standards of mainstream encryption algorithms. This indicates that the proposed method 
exhibits excellent sensitivity and security.

image R channel G channel B channel overall

RSimage1 99.6081 99.6098 99.6131 99.6104

Baboon 99.6391 99.6208 99.6120 99.6240

Pepper 99.6078 99.6021 99.6136 99.6078

Airplane 99.6151 99.6162 99.6120 99.6145

RSimage2 99.6034 99.6212 99.6200 99.6149

Table 15.  NPCR test results.

 

Image R channel G channel B channel

RSimage1 251.84 276.30 210.92

Baboon 276.10 285.17 234.86

Pepper 256.32 247.87 227.73

Airplane 252.53 235.94 264.77

RSimage2 226.05 233.67 270.26

Table 14.  Chi-square test results.
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Robustness analysis
To verify the robustness of the proposed encryption algorithm, this study performed salt-and-pepper noise 
attack and cropping attack tests on encrypted images, and analyzed the recoverability and anti-interference 
capability of the decrypted images.

First, in the salt-and-pepper noise attack test, noise with intensities of 0.001, 0.005, and 0.1 was added to the 
encrypted images. The attacked images were then decrypted, and the subjective visual quality of the decrypted 
images was examined. The experimental results are shown in Table 18. The results indicate that even under 
relatively high noise density, the main content of the decrypted images remains recognizable, and the noise 
points are uniformly distributed, demonstrating good resistance to noise interference.

Next, in the cropping attack test, encrypted images were partially cropped at areas of 6.25%, 25%, and 50%, 
and the cropped encrypted images were then decrypted. The results are presented in Table 19. As shown in 
Table 19, despite the information loss, the visible structures of the decrypted images are still well preserved, the 
overall recognizability remains high, and the noise points are uniformly distributed, proving that the algorithm 
has strong resistance to cropping attacks.

Cryptographic attack testing
This study conducts chosen-plaintext attack (CPA) analysis and known-plaintext attack (KPA) analysis on the 
proposed encryption method. The experimental results are shown in Tables 20 and 21. The KPA experiment 
yields an MSE of 8096.31 and a PSNR of 9.05 dB between P2 and P2_hat.

As shown in Table 20, in the chosen-plaintext attack (CPA) experiments, the ciphertexts generated from 
typical plaintexts—including all-zero, all-255, single-pixel, and checkerboard patterns—exhibit uniformly 
distributed noise without any visible structure or plaintext-related features. The corresponding difference images 
also appear as random noise. Although the ciphertext difference produced by the single-pixel perturbation is 
relatively weak—indicating that the diffusion strength under extremely small perturbations is limited—the 
proposed dual-level encryption framework effectively eliminates this minor structural deficiency in the diffusion 
stage. Overall, the CPA results demonstrate strong confusion and diffusion properties.

According to Table 21, in the known-plaintext attack (KPA) experiment, the attacker constructs an equivalent 
key stream using one plaintext–ciphertext pair. However, the visualized equivalent key stream still appears as 

Table 18.  Decryption results under salt-and-pepper noise attack.

 

NPCR UACI

R channel G channel B channel R channel G channel B channel

Ours 99.6201 99.6307 99.6353 33.4094 33.4108 33.4760

Ref52 99.5809 99.5992 99.5975 33.4076 33.1655 33.2769

Ref55 99.5880 99.5880 99.5880 33.4273 33.4635 33.7951

Ref57 99.6002 99.6017 99.6002 29.7053 28.0979 30.8363

Table 17.  Comparison of NPCR and UACI results for different algorithms.

 

image R channel G channel B channel overall

RSimage1 33.5055 33.5069 33.4958 33.5027

Baboon 33.4325 33.4321 33.4326 33.4324

Pepper 33.4554 33.5057 33.4364 33.4658

Airplane 33.5195 33.4607 33.5014 33.4938

RSimage2 33.4903 33.4881 33.4852 33.4879

Table 16.  UACI test results.
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random noise. Furthermore, when using this key stream to recover another ciphertext, the output is a completely 
meaningless noise image with no resemblance to the true plaintext.

Combining the results of both attack scenarios, it can be concluded that the proposed algorithm does not leak 
any structural information in the ciphertext and does not allow valid key extraction from plaintext–ciphertext 
pairs, thus exhibiting strong security against both CPA and KPA.

A framework for sensitive target detection and encryption
In this work, the improved YOLOv7-tiny is combined with a modified Josephus-ring-based chaotic encryption 
algorithm to construct a security framework for military aircraft detection and encryption in remote sensing 
images. The operational flow of the framework is illustrated in Fig. 13.

Although the proposed method further improves the detection accuracy of YOLOv7-tiny for military aircraft 
in remote sensing scenes, misdetections and missed detections may still occur in practical applications. In the 
case of a missed detection, the corresponding aircraft target would not be encrypted; conversely, a false detection 
would lead to unnecessary consumption of encryption resources. However, in real deployment scenarios where 
the detected targets are of high importance, the proposed detection module is intended to function as an 
auxiliary tool in conjunction with manual verification. Any missed or incorrect detections can be manually 

Table 20.  Results of the chosen-plaintext attack (CPA).

 

Table 19.  Decryption results under cropping attack.
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corrected by authorized personnel at higher security levels. After this verification stage, secondary encryption 
is applied, and the processed data are subsequently distributed to lower-level departments. Therefore, potential 
misdetection or missed-detection issues can be effectively mitigated through human intervention in actual 
operational workflows.

At the application level, only organizations with high-level security clearance are granted simultaneous access 
to Key1 and Key2, enabling full-resolution viewing of the image, including sensitive target details. In contrast, 
lower-level security units are permitted to access only Key2, which ensures that they can analyze the encrypted 
images while preventing the disclosure of sensitive aircraft information embedded within them.

If a lower-level unit requires access to sensitive target details for operational purposes, it may submit a request 
to the higher-level authority that originally issued the data. Upon approval, Key1 can be provided in a controlled 
manner, thereby maintaining strict information security throughout the entire workflow.

Conclusion
At present, research on the integration of sensitive-target detection and localized encryption in remote sensing 
imagery remains limited, and there is still room for exploration regarding hierarchical data access within a 
unified security framework. To address these gaps, this paper proposes a security framework for military aircraft 
detection combined with dual-level encryption. By integrating a YOLO-based object detection algorithm with a 
chaos-driven encryption scheme, the proposed framework achieves high-precision detection and classification 
of military aircraft while ensuring sensitive information protection and enabling hierarchical data access control.

Fig. 13.  Overall operational flow of the proposed framework.

 

Table 21.  Results of the known-plaintext attack (KPA).
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To enhance detection accuracy under complex remote sensing backgrounds, the YOLOv7-tiny model 
is adopted and improved through the introduction of a novel Multi-branch Enhanced Feature Aggregation 
Block (MEFABlock). MEFABlock employs a three-branch convolutional architecture with different kernel 
sizes to capture multi-scale receptive fields. After convolutional operations, an Efficient Channel Attention 
(ECA) mechanism is incorporated to strengthen the perception of key features, and a Convolutional Block 
Attention Module (CBAM) is embedded at the output to optimize both channel-level and spatial-level feature 
representations. These enhancements collectively improve the model’s sensitivity to aircraft targets in challenging 
remote sensing environments. In addition, coordinate convolution is integrated into the detection head to 
further enhance spatial modeling capability. Through the synergy of these modules, the improved detector 
achieves notable performance gains. Compared with the baseline, Precision (P) increases by 2.4%, Recall (R) by 
2.7%, mAP@0.5 by 2.7%, and mAP@0.5:0.95 by 2.2%.

Furthermore, a chaotic encryption algorithm consisting of pixel diffusion, an improved Josephus-ring-based 
permutation, and a second diffusion stage is proposed. The encryption procedure is designed hierarchically: 
detected aircraft regions are first encrypted locally, followed by global encryption of the entire image to reinforce 
overall security. Different hash-based keys are used in the two encryption stages to achieve hierarchical access 
control, allowing users of different authorization levels to decrypt content according to their permissions. A 
novel two-dimensional multi-trigonometric chaotic map (2D-MTCM) is developed as the chaotic system, 
along with a hash-based method for computing its initial parameters. Chaos characteristics of 2D-MTCM 
are validated through Lyapunov exponent analysis, bifurcation diagrams, and the 0–1 test, demonstrating its 
favorable dynamical properties. Experimental results show that the encrypted remote sensing images achieve an 
information entropy of 7.9997. Additional experiments—including pixel correlation and robustness evaluations—
further confirm the strong encryption performance and attack resistance of the proposed algorithm.

The proposed method employs an improved lightweight YOLOv7-tiny model, which enables effective 
detection of military aircraft targets while meeting real-time processing requirements. However, considering the 
hardware constraints commonly encountered in practical engineering deployments, there is still room to further 
reduce the computational cost of the model. In addition, chaos evaluations indicate that the chaotic behavior 
of the 2D-MTCM system can be further enhanced, and the CPA results reveal minor structural weaknesses in 
the diffusion stage of the encryption algorithm. Future work will therefore focus on optimizing the encryption 
process to eliminate diffusion deficiencies and enhance the chaotic dynamics of the system. Moreover, additional 
research will be conducted to further lightweight the detection model to better suit resource-constrained 
deployment scenarios.

Data availability
The original contributions presented in this study are included in the article. Further inquiries can be directed 
to the corresponding author.
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