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OPEN A prospective cohort study

develops and validates a machine
learning model for predicting
ecchymosis after total knee
arthroplasty

Xuefeng Luo%23, Wei Bao%>%, YuYe*, Runxing Kang’?, Wei Xu'?*“, Wei Huang?** &
Junyi Liao%2**

Total knee arthroplasty (TKA) is a standard procedure for end-stage knee diseases, yet perioperative
bleeding and its complications, such as ecchymosis, remain significant challenges. Predicting
ecchymosis can guide personalized perioperative blood management, enhancing patient recovery
and reducing the socioeconomic burden. In this prospective study (June 2023-March 2024), 416

TKA patients were split into ecchymosis (n=135) and non-ecchymosis (n=281) groups. The first

seven months’ data (312 patients) were used for training, and the next three months’ (104 patients)
for validation. Feature selection used Least Absolute Shrinkage and Selection Operator (LASSO),
Random Forest-Recursive Feature Elimination (RF-RFE), and BORUTA to identify key risk factors. The
model was tested with advanced machine learning: Random Forest (RF), eXtreme Gradient Boosting
(XGBoost), Support Vector Machines (SVM), and Light Gradient Boosting Machine (LGBM). Major risk
factors included low prealbumin, reduced coagulation index (Cl) and its change (XCI), high fibrinogen
degradation products (FDP), and postoperative day 1 total blood loss (TBL). The model showed robust
performance with area under the curve values (AUCs) of 0.927 in training and 0.954 in validation set.
The model’s superior high performance offers significant guidance for early and accurate prediction,
enabling personalized anticoagulation therapy and optimizing perioperative blood management in
TKA patients.

Trial registration: Chinese Clinical Trial Registry (registration No. ChiCTR2400080173).

Keywo rds Ecchymosis, Machine learning, Perioperative blood management, Predictive model, Total knee
arthroplasty

Abbreviations

TKA total knee arthroplasty

POD postoperative day

PAD postadmission day

TBL total blood loss

FDP fibrinogen degradation products
CI coagulation index

XCI CI. POD1-CI. PAD

ML machine learning
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Lgbm lightgbm

LM logistic regression model
RF random forest
SVM support vector machine

Xgboost  extreme gradient boosting

Total knee arthroplasty (TKA) has been recognized as one of the most significant advancements in effectively
treating end-stage knee diseases since the 20th century!=. With the increasing number of TKA procedures,
there is growing attention to perioperative anemia, blood loss and blood transfusion®”. Therefore, effective
perioperative blood management is essential for promoting recovery and reducing the social and economic
burden in TKA patients®”.

Coagulation and bleeding are the two primary components of perioperative blood management, working
synergistically to maintain hemostasis balance®. However, the prevention of bleeding risk remains a concern
among orthopedic surgeons in patients receiving TKA®-!!. Although regular adoption of anticoagulants has
reduced the incidence of perioperative venous thromboembolism (VTE) to as low as 0.5%—1% in TKA patients'2.
However, postoperative blood loss is still posing considerable challenges to its effective management. Statistics
reveal that perioperative blood loss in major orthopedic surgeries such as TKA could reach up to 1200 ml'3,
with over 53.2% of patients developing moderate or severe hemorrhagic anemia'®. Inadequate management of
perioperative bleeding can result in a series of bleeding-related complications, including ecchymosis, systemic
hemorrhage, and coagulation disorders, significantly compromising postoperative functional recovery and
patient satisfaction!*!°. Therefore, to better navigate this trade-off, there is an urgent need for surgeons that can
accurately predict bleeding events in patients undergoing anticoagulation therapy.

As one of the most common signs of postoperative bleeding events, the incidence rate of postoperative
ecchymosis is as high as 30-40%!>17-1°. As subcutaneous bleeding exceeds 3 mm in diameter, ecchymosis often
accompanies wound or severe swelling and pain in the lower limb, exacerbating local inflammation and signifying
an increased tendency for further blood loss?*-?2. Meanwhile, post-operative ecchymosis generally indicates a
hypocoagulable state'®. Failure to promptly detect and intervene may significantly increase the risk of secondary
bleeding, potentially leading to systemic coagulopathy, major hemorrhage, and even mortality?>?%. Therefore,
the prediction of post-operative ecchymosis can reserve the time window for personalized perioperative
blood management strategies, decreasing the occurrence rates of postoperative anemia, blood loss and blood
transfusion. Although several recent research explored the risk factors for postoperative ecchymosis!”1%%5,
the integration of these factors remains incomplete and lacks prospective evidence, necessitating further
improvements in predictive accuracy and effectiveness.

With the rapid development of Machine Learning (ML), its application in precise clinical diagnostics and
treatments has gained increasing popularity?®-28. Unlike traditional statistical methods, ML combines computer
technology and artificial intelligence for data organization and mining, offering significant advantages in
managing complex issues like over-fitting and non-linearity in big data, often resulting in higher predictive
accuracy”®?. To leverage ML for developing a predictive model for postoperative bleeding, using postoperative
ecchymosis as an indicator, we designed this prospective cohort study to collect perioperative data from patients
undergoing TKA for model development. Meanwhile, various ML techniques are employed to validate this
model and prospectively assess its accuracy. The predictive model offers a critical time window for personalized
perioperative blood management strategies, enhancing rapid recovery for TKA patients.

Participants and methods

Participants

From June 2023 to March 2024, patients diagnosed with end-stage osteoarthritis and scheduled for TKA at
our medical center were screened based on strict inclusion and exclusion criteria. Inclusion criteria included:
(1) Patients who received unilateral primary TKA due to end-stage knee diseases. (2) Age > 18 years. Exclusion
criteria included: (1) Patients with severe cardiovascular and cerebrovascular diseases (myocardial infarction,
cerebral infarction, etc.); (2) Patients with significant bleeding tendencies (such as gastrointestinal active
bleeding, cerebral hemorrhage, etc.); (3) Patients with systemic or local venous thromboembolism (such as deep
vein thrombosis, pulmonary embolism, etc.); (4) Patients with previously defined coagulation dysfunction; (5)
Patients with severe neuromuscular system diseases; (6) Patients scheduled for bilateral TKA or revision TKA;
(7) Pregnant or breastfeeding patients. To maintain the precision of the trial and minimize variation, all surgical
procedures were performed by the same experienced surgical team.

Surgical procedure

Following patient selection based on defined inclusion and exclusion criteria, all TKA surgeries were consistently
performed by the same experienced surgical team, which included two senior surgeons with more than 20
years of experience to ensure standardization. All procedures strictly followed a standardized perioperative
management protocol that included aspects such as anesthesia, pain control, medication, rehabilitation, and
nursing. To ensure data integrity, all patients underwent identical blood tests and examinations consistently
before and after surgery.

Each patient was positioned in a supine posture with a pneumatic tourniquet applied to the thigh of the
affected leg. The surgeries adhered to standardized TKA protocols, involving precise bone cutting and fitting a
uniform type of knee joint prosthesis. Intraoperative X-ray imaging ensured accurate positioning of the prosthesis
before the wound was methodically sutured. A local 1 g dose of tranexamic acid (TXA) was administered, and
no postoperative drainage tubes were used. Furthermore, each patient received a 1.5 g intravenous dose of TXA
every 12 h post-surgery to manage bleeding.
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General perioperative management
Anesthesia Protocol: All patients underwent TKA surgery using the same anesthetic agents, which included
midazolam and propofol for sedation, remifentanil for pain relief, and vecuronium for muscle relaxation.

Pain Management Protocol: Post-surgical pain management for all patients was managed with a patient-
controlled intravenous analgesia pump containing 0.1 mg of sufentanil and 100 mg of flurbiprofen axetil.

Infection Prevention Medication: From postoperative Day 1 to Day 3 (POD1-POD?3), all patients received
1.5 g of cefuroxime every 12 h to prevent infection.

Mechanical and Drug Prophylaxis for VTE: To prevent VTE, intermittent pneumatic compression was
administered twice daily, with each session lasting 20 min. Meanwhile, each patient received a a once-daily
postoperative subcutaneous injection of 4,000 IU of low-molecular-weight heparin.

Nursing Care Protocol: All enrolled patients were managed perioperatively by the same nursing team,
receiving consistent intravenous fluid types and dosages, with meticulous monitoring and recording of input
and output over 24 h.

Nutritional Management: On the morning of surgery, all patients consumed an equal dose of short peptides
plus whole protein enteral nutrition. Their intake and output were rigorously monitored, and their nutritional
status, including albumin and prealbumin levels, was closely observed before and after surgery.

Observation and grouping

All patients who underwent TKA surgery were closely monitored postoperatively for the occurrence of
ecchymosis around the incision and thigh area and grouped accordingly. If ecchymosis with subcutaneous
bleeding exceeding 3 mm in diameter was observed, its location and size were precisely documented, and the
patient was categorized into the ecchymosis group. Patients without ecchymosis were classified into the non-
ecchymosis group. All enrolled patients underwent the same blood tests and other relevant examinations pre-
operatively and on PODI1.

Blood loss calculation
The hidden blood loss (HBL) of every patient is calculated according to Nadler et al.>! and Gross formula®%:

1): Patient blood volume (PBV, mL) = [kl x height® (m) + k2 x weight (kg) +k3] x 1000, where k1 =0.3669,
k2=0.03219, and k3=0.6041 for male, and k1 =0.3561, k2=0.03308, and k3 =0.1833 for female.

2): Total blood loss (TBL, mL) =PBV x (preoperative Hct - postoperative Hct)/preoperative Hct.

3): Intraoperative blood loss (IBL) =volume collected by suction - volume of irrigation + weight of blood-
soaked gauze, where 1 g of gauze=1 ml.

Feature selection

Fifty-six features, including patient demographics and surgical details such as age, gender, BMI, surgical
duration, intraoperative blood loss, and TBL on both preoperative and POD1 were included. Routine hematology
parameters included hemoglobin (Hb), hematocrit (HCT), platelet count (PLT), mean platelet volume (MPV),
and platelet distribution width (PDW). Nutritional indicators included total protein, prealbumin, and albumin.
The coagulation function indicators comprised prothrombin time (PT), activated partial thromboplastin time
(APTT), thrombin time (T'T), international normalized ratio (INR), fibrinogen, fibrinogen degradation products
(FDP), and D-dimer. Thromboelastography (TEG) measured several critical parameters: reaction time (R), clot
formation time (K), alpha angle (angle), maximum amplitude (MA), lysis at 30 min (LY30), and the coagulation
index (CI), a composite measure of overall coagulation status derived from R, K, angle, and MA values®*. Change
in coagulation index was calculated as XCI = CI. POD1 - CI. PAD (postadmission day).

First, in the training set, univariate logistic regression was applied to screen for potential risk factors with a
significance threshold of P<0.05. This initial screening identified 15 candidate variables. Subsequently, to refine
this list and select the most stable and important features, we employed three distinct machine learning-based
algorithms on the training set: Least Absolute Shrinkage and Selection Operator (LASSO), the Boruta algorithm,
and Random Forest-Recursive Feature Elimination (RF-RFE). The final set of key risk factors was determined by
taking the intersection of the variables selected by all three of these methods.

Model development

All TKA patients were randomly assigned to the training and validation sets in a 7:3 temporal ratio at the onset
of the study (first seven months for training, subsequent three months for validation). This temporal split was
intentionally chosen over a random split to simulate a real-world clinical application scenario, where a model is
built on historical data and validated on future patients. This approach provides a more rigorous assessment of
the model’s generalizability and robustness over time and helps prevent temporal data leakage. It is important
to note that no variables, including sex, were explicitly matched, or stratified during this split. The distribution
of all baseline characteristics was a result of the natural variation within these consecutively enrolled temporal
cohorts.

LASSO regression was primarily utilized for feature selection. It identified essential features by modifying
the optimization objective function with a penalty term to encourage sparsity, thereby reducing many feature
weights to zero. Meanwhile, LASSO was used to exclude non-significant features, thus constructing sparse and
interpretable models to prevent overfitting®*.

The Boruta algorithm was applied to evaluate feature importance with random forests and compare randomly
generated “shadow” features, effectively addressing the challenges of feature selection’”.

RF-RFE was used to integrate the inherent feature selection capability of Random Forest into a recursive
feature elimination strategy. By iteratively training the model and eliminating the least important features, RE-
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RFE optimized feature subsets to enhance model performance, reduce computational overhead, and improve
model interpretability®.

After applying these three primary ML techniques to the training set data for essential variables filtering,
the final variable results to identify critical risk factors were intersected. Using these risk factors, the predictive
model was generated by multivariate logistic regression analysis and visualized by using line plots.

Model evaluation and validation

Several key statistical tools were utilized to comprehensively assess our predictive model. The Receiver Operating
Characteristic (ROC) curve was employed to evaluate the model’s ability to differentiate between two types
of outcomes—whether or not ecchymosis occurred after TKA. Area Under the Curve (AUC) was applied to
indicate diagnostic accuracy, reported with 95% confidence intervals (CI). Additionally, calibration curves were
utilized to test the model’s predictive accuracy. Decision Curve Analysis (DCA) was applied to balance patient
benefits and risks while assessing the practicality of clinical decisions®’.

To benchmark the performance of our primary logistic regression model and validate the robustness of the
selected features, we also constructed and evaluated four additional prediction models on the validation set
using the same set of five key features. This selection was deliberate to encompass a range of model architectures
and strengths: Random Forest (RF) was chosen for its robustness against overfitting, its ability to model complex
non-linear relationships without strong assumptions about the data distribution, and its inherent provision of
feature importance measures>®. EXtreme Gradient Boosting (XGBoost) was selected due to its high predictive
performance and efficiency in handling structured/tabular data. Its gradient-boosting framework is particularly
effective at capturing intricate patterns through sequential model correction®®. Support Vector Machines (SVM)
were employed for their effectiveness in high-dimensional spaces and their ability to find a clear margin of
separation (hyperplane) between classes, which is beneficial for binary classification tasks like ours*. Light
Gradient Boosting Machine (LGBM) was utilized for its computational speed and memory efficiency, especially
on large datasets, while maintaining high accuracy comparable to other boosting algorithms. For comparative
purposes, a Logistic Regression (LM) model was also included as a well-understood and interpretable baseline,
against which the performance of the more complex ML models could be benchmarked. The evaluation focused
on the comparison of ROC curves, the analysis of feature importance distribution, and the assessment of SHAP
values. Additionally, the performance metrics for each model —AUC, Accuracy, Sensitivity, Specificity, F1 Score,
Recall, and Precision—were compared and summarized to validate the efficacy of the predictive model and
identify the optimal ML approach.

Data analyses

Data processing was conducted using R software version 4.2.3 in this study. Missing values were addressed
using Multiple Imputation by Chained Equations (MICE), and variables with more than 5% missing data
were excluded from the analysis*!. Descriptive analyses were performed on all patients included in the study.
Continuous variables following a normal distribution were represented by mean + standard deviation (SD) and
analyzed using the t-test. For non-normally distributed continuous variables, the median (interquartile range)
[M (P25, P75)] was used, with group comparisons conducted via the Mann-Whitney U test. Categorical variables
were presented as n (%) and analyzed using the chi-square test, with Fisher’s exact test applied when chi-square
conditions were not met. All statistical tests were two-sided, and a P-value of < 0.05 was considered statistically
significant. Multiple ML methods were implemented in R with packages in the supplementary materials.

Ethical considerations

This prospective cohort study was conducted in accordance with the CONSORT standards*2 Ethical approval
was granted by the local Ethics Committee, and the study was registered with the Chinese Clinical Trial Registry
(registration No. ChiCTR2400080173) before participants were enrolled. All eligible patients were fully informed
of the benefits and risks associated with the study before signing the informed consent form to participate. All
methods were done in accordance with relevant guidelines. They were also advised that they could withdraw
from the study at any point if they experienced any discomfort.

Results

Baseline data

From June 2023 to March 2024, 468 patients undergoing TKA were included. After excluding 52 patients
according to the inclusion and exclusion criteria, 416 were prospectively analyzed in this study (Fig. 1). Among
these patients, 135 developed ecchymosis after TKA, constituting 32.5% of the total cohort. Ecchymosis of
varying degrees and sizes was observed in areas such as the popliteal fossa, groin, lateral thigh, and around
the surgical wound (Fig. 2A and F). We found that patients with post-TKA ecchymosis had significantly lower
American Knee Society (AKS) scores compared to those without ecchymosis (P <0.001, Fig. 2G), significantly
higher TBL on POD1 (P<0.001, Fig. 2H), and a significantly lower CI (P<0.001, Fig. 2I). These findings indicate
a hypocoagulable state and a higher risk of postoperative bleeding in patients with post-TKA ecchymosis.
Consequently, constructing a post-TKA ecchymosis predictive model is necessary.

The construction of the predictive model was based on the training and validation sets. According to the
admission dates, data from 312 patients (non-ecchymosis group: 205, ecchymosis group: 107) from June to
December 2023 were assigned to the training set, while data from 104 patients (non-ecchymosis group: 76,
ecchymosis group: 28) from January to March 2024 were allocated to the validation set (Fig. 1). Baseline data
for patients in the training and validation sets are presented in Table 1, while complete baseline data for all
participants are available in Table S1. The rationale for the division into training and validation sets is detailed
in Table S2.
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Fig. 1. The flowchart of this study. TKA, total knee arthroplasty. UKA, unicompartmental knee arthroplasty.
RE, random forest. SVM, support vector machine. Xgboost, extreme gradient boosting. Lgbm, lightgbm.

Feature selection

Based on the training set, 15 potential risk factors were initially identified using univariate logistic regression with
a significance threshold of P<0.05; details can be found in Table 2 and Figure S1. The results of variable filtering
and feature importance selection, using three ML algorithms (LASSO, BORUTA, RF-RFE), are displayed in
Fig. 3. The results of all three methods were consistent, identifying five key factors: lower prealbumin (P=0.006),
CI (P=0.002), XCI (P<0.001), elevated levels of FDP (P<0.001), and TBL (P=0.009) on PODI, detailed in
Table 3.

Construction of prediction model

Three ML algorithms, including LASSO, BORUTA, and RF-RFE, were applied to verify the five key variables
essential for constructing the predictive model. The model’s coefficients were visualized in a nomogram (Fig. 4A),
which allows clinicians to input a patient’s clinical data and rapidly compute the probability of postoperative
ecchymosis in TKA patients. The formula for predicting ecchymosis probability is as follows: Ecchymosis
prediction probability=1.186066—0.017569 x Prealbumin. PODI1 +0.002506 x TBL. POD1-0.463744 x CI.
POD1-1.163408 x XCI+0.112593 x FDP. POD1. Meanwhile, the prediction model has been developed into a
dynamic nomogram and registered on the website, allowing for real-time online prediction of the probability
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Fig. 2. Appearance of ecchymosis on different body parts and their different scores compared to non-
ecchymosis population. (A-F): Ecchymosis of varying degrees and sizes appeared in different areas. (A):
Popliteal ecchymosis. (B): Ecchymosis at the base of the thigh. (C): Ecchymosis on the calf. (D): Ecchymosis
on the lateral thigh. (E): Ecchymosis at the wound site. F: Ecchymosis adjacent to the wound. (G): Lower AKS
scores in ecchymosis patients. (H): Higher TBL in ecchymosis patients. (I): Lower CI values in ecchymosis
patients. AKS, American Knee Society. TBL, total blood loss. CI, coagulation index. ***, P<0.001.

of bruising post-TKA surgery (Fig. 4B). The specific information about the online version of the prediction
model can be found in Figures S2 & S$3. Subsequently, the five variables from the training and validation sets
were compared with our nomogram (Fig. 4C and D). The ROC curves clearly demonstrate that the nomogram’s
AUC values are superior to those of individual variables, thereby validating the effectiveness of our prediction
model. Finally, to internally validate the model’s discriminatory power and consistency, we applied the models
formula to calculate the ecchymosis probability for every patient in both the training and validation sets. The
results demonstrated that the model-assigned probability scores were significantly higher for patients in the
observed ecchymosis group compared to those in the non-ecchymosis group (Fig. 4E and F). This consistent
pattern across both datasets confirms that the model’s predictions are well-calibrated and reliably separate the
two outcome groups, thereby underscoring its repeatability and clinical utility.

Evaluation of the prediction model

The initial validation of our predictive model demonstrated robust performance. The AUC for the training cohort
was 0.927 (95% CI, 0.891-0.891 0.962) (Fig. 5A), while the AUC for the validation cohort reached 0.954 (95%
CI, 0.910-0.998) (Fig. 5B). Calibration plots and Hosmer-Lemeshow tests (P> 0.05) indicated good consistency
between the predicted probabilities of post-TKA ecchymosis and the observed probabilities in both the training
and validation sets (Fig. 5C and D). In the clinical application of our nomogram, Decision Curve Analysis
(DCA) was conducted, revealing that the nomogram provided greater net benefits than other models (Fig. 5E
and F). This evidence confirmed the model’s accuracy and clinical utility in predicting the risk of ecchymosis
post-TKA.

Model validation based on multiple ML algorithms

The predictive performance of the five key features was further substantiated by building four independent
prediction models on the validation set using different ML algorithms. RE, SVM, XGBoost, and LGBM models
were used to reassess feature importance, draw ROC curves, and create SHAP value plots. These analyses
consistently confirmed the strong predictive capability of the model (Fig. 6).
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Training set (n=312)

Validation set (n=104)

Characteristic Non-ecchymosis (n=205) | ecchymosis (n=107) P Non-ecchymosis (n1=76) | ecchymosis (n=28) P

Sex: 1.000 1.000
Women (%) 181 (88.29) 95 (88.79) 67 (88.16) 25 (89.29)

Men (%) 24 (11.71) 12 (11.21) 9(11.84) 3(10.71)

Age 69.00 [66.00;72.00] 70.00 [66.50;75.50] 0.049 69.00 [64.00;73.00] 69.00 [66.25;70.25] 0.921
Prealbumin.POD1 206.60 (28.11) 182.68 (32.61) <0.001 | 203.50 [194.50;226.25] 170.00 [158.00;209.50] <0.001
TBL.POD1 246.16 [143.55;393.01] 347.92 [199.33;505.69] <0.001 | 312.81[193.25;442.40] 429.29 [150.05;729.86] 0.035
Hct.PAD 38.39 (3.40) 39.18 (3.81) 0.071 38.80 [36.38;41.30] 39.25 [37.48;40.65] 0.698
Hct.POD1 35.52 (3.33) 35.11 (3.27) 0.300 35.58 (3.57) 33.86 (4.72) 0.089
CL.POD1 1.17 (1.24) —0.49 (1.51) <0.001 1.04 (1.18) —1.22 (0.95) <0.001
XCI 1.02 (1.13) —-0.93 (1.45) <0.001 1.16 (1.31) —-1.42(1.28) <0.001
FDPPOD1 5.60 [3.30;10.10] 9.40 [5.90;16.15] <0.001 6.20 [3.98;8.93] 10.10 [5.50;18.12] 0.016
BMI 26.00 [23.40;28.10] 25.60 [23.45;27.40] 0.324 26.00 [23.40;28.30] 26.20 [23.92;28.13] 0.939
Operation time 85.00 [75.00;100.00] 85.00 [75.00;100.00] 0.761 85.00 [70.00;100.00] 90.00 [72.50;100.00] 0.672
IBL 44.00 [34.00;50.00] 41.00 [37.50;50.00] 0.268 50.00 [35.50;50.00] 42.00 [38.00;47.25] 0.250
Prealbumin.PAD 220.00 [198.00;242.00] 213.00 [189.00;232.50] 0.049 | 227.00 [207.25;243.75] 208.50 [182.00;241.00] 0.033
Totalalbumin.PAD 67.00 [65.00;71.00] 68.00 [63.50;72.00] 0.996 67.78 (4.82) 68.68 (4.34) 0.366
Albumin.PAD 42.00 [41.00;44.00] 42.00 [40.00;44.00] 0.562 42.00 [41.00;43.00] 42.00 [41.00;43.00] 0.571
Albumin.POD1 38.00 [37.00;40.00] 38.00 [36.00;39.00] 0.012 38.00 [37.00;40.00] 36.50 [34.75;38.00] 0.002
Totalalbumin.POD1 62.00 [59.00;66.00] 61.00 [57.00;64.00] 0.004 61.54 (4.13) 59.89 (5.18) 0.138
Hb.PAD 125.78 (11.85) 127.06 (14.05) 0.422 | 126.50 [117.00;135.00] 125.00 [121.75;133.00] 0.814
Hb.POD1 115.74 (11.57) 113.65 (12.06) 0.144 | 115.21 (12.60) 109.71 (15.08) 0.093
PBV 3605.36 [3361.48;4002.32] | 3575.46 [3277.74;3997.83] 0.342 | 3683.33 [3375.14;4036.88] | 3460.11 [3183.22;3968.08] 0.192
TBL.POD3 552.58 [362.41;748.35] 592.80 [417.09;858.15] 0.061 593.93 (279.22) 727.54 (374.23) 0.093
PLT.PAD 201.00 [172.00;233.00] 203.00 [178.00;245.00] 0.555 | 205.89 (62.62) 207.14 (54.53) 0.921
PDW.PAD 13.60 [11.90;15.60] 13.40 [11.80;15.40] 0.685 12.95 [11.78;15.22] 13.00 [11.47;14.72] 0.657
MPV.PAD 11.10 [10.40;11.80] 11.10 [10.40;11.85] 0.949 10.80 [10.47;11.43] 10.95 [10.43;11.45] 0.840
PLT.POD1 192.00 [162.00;224.00] 194.00 [162.00;221.50] 0.909 | 191.20 (50.80) 187.89 (49.16) 0.764
PDW.POD1 13.80 [12.00;15.50] 13.10 [11.85;15.00] 0.360 13.05 [11.78;14.50] 14.00 [12.42;14.85] 0.344
MPV.POD1 11.22 (1.12) 11.23 (1.09) 0.960 10.90 [10.40;11.70] 11.15 [10.67;11.72] 0.179
FDPPAD 1.30 [0.90;2.90] 1.50 [1.00;2.70] 0.525 1.35 [0.80;3.20] 1.45 [0.80;2.90] 0.962
DD.PAD 0.50 [0.30;1.03] 0.60 [0.40;1.10] 0.183 0.49 [0.30;1.06] 0.52 [0.30;1.65] 0.744
DD.POD1 3.19 [1.84;6.80] 4.50 [2.56;8.20] 0.002 2.92 [1.87;6.58] 4.95 [2.10;7.95] 0.113
PT.PAD 12.70 [12.40;13.20] 13.00 [12.60;13.20] 0.004 12.80 [12.40;13.00] 12.95 [12.38;13.50] 0.284
PTR.PAD 1.00 [0.95;1.00] 1.00 [0.97;1.00] 0.091 1.00 [0.95;1.00] 1.00 [0.92;1.00] 0.871
INR.PAD 0.98 [0.91;1.00] 1.00 [0.94;1.00] 0.007 0.99 [0.93;1.00] 1.00 [0.90;1.00] 0.832
PTA.PAD 107.00 [98.00;114.00] 104.00 [99.50;111.00] 0.499 | 106.00 [98.00;113.00] 103.00 [96.50;115.75] 0.679
APTT.PAD 34.50 [31.90;36.20] 34.40 [32.30;36.60] 0.463 | 33.10 [31.70;35.82] 34.45 [31.80;38.02] 0.253
TT.PAD 17.50 [16.60;18.40] 17.40 [16.70;18.10] 0.393 17.55 [16.70;18.30] 17.55 [16.82;18.60] 0.663
Fgb.PAD 3.26 [2.90;3.80] 3.03 [2.70;3.67] 0.012 3.20 [2.74;3.63] 2.92 [2.68;3.42] 0.205
PT.PODI 13.30 [12.90;13.70] 13.60 [12.90;14.10] 0.131 | 13.20 [12.80;13.70] 13.40 [12.95;14.22] 0.166
PTR.POD1 1.00 [0.99;1.04] 1.00 [1.00;1.10] 0.222 1.00 [0.99;1.03] 1.00 [1.00;1.10] 0.078
INR.POD1 1.00 [0.98;1.06] 1.00 [1.00;1.10] 0.137 1.00 [0.99;1.06] 1.02 [1.00;1.10] 0.102
PTA.PODI 98.00 [92.00;105.00] 95.00 [88.50;106.00] 0.212 |  98.50 [91.00;106.25] 95.00 [85.75;103.25] 0.117
APTT.POD1 32.90 [30.80;35.10] 33.60 [31.55;35.40] 0.203 32.90 [30.22;35.25] 32.95 [30.08;36.72] 0.578
TT. POD1 17.40 [16.40;18.20] 17.00 [16.20;18.30] 0.165 17.20 [16.30;18.20] 17.10 [16.08;18.22] 0.852
Fgb.POD1 3.17 [2.67;3.51] 3.10 [2.70;3.55] 0.919 3.12 [2.80;3.62] 2.82 [2.48;3.20] 0.020
R.PAD 6.40 [6.00;7.00] 6.40 [5.65;6.80] 0.512 6.40 [6.00;6.90] 6.40 [5.20;7.55] 0.865
K.PAD 1.50 [1.30;1.70] 1.50 [1.30;1.80] 0.772 1.50 [1.48;1.80] 1.50 [1.30;1.72] 0.258
Angle.PAD 67.40 [64.80;69.40] 67.40 [62.85;69.75] 0.815 67.40 [64.05;67.80] 67.60 [64.00;69.88] 0.307
MA.PAD 63.80 [61.60;66.20] 63.80 [61.00;66.55] 0.643 |  63.80 [62.38;65.08] 63.80 [60.43;65.40] 0.457
EPL.PAD 0.40 [0.00;1.00] 0.40 [0.0050.80] 0.351 0.40 [0.00;0.62] 0.40 [0.00;1.00] 0.695
LY30.PAD 0.40 [0.00;1.00] 0.40 [0.0050.80] 0.332 0.40 [0.0050.60] 0.40 [0.0050.88] 0.675
CLPAD 0.00 [~0.40;1.00] 0.40 [~0.30;1.60] 0.058 0.00 [~0.72;0.90] 0.30 [~0.90;1.20] 0.411
R.POD1 5.91 (1.09) 6.42 (1.41) 0.001 6.00 [5.206.43] 6.80 [5.97;7.62] <0.001
K.POD1 1.30 [1.20;1.60] 1.40 [1.20;1.80] 0.001 1.30 [1.20;1.40] 1.75 [1.37;2.20] <0.001
Continued
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Training set (n=312)

Validation set (n=104)

Characteristic Non-ecchymosis (n=205) | ecchymosis (n=107) P Non-ecchymosis (n=76) | ecchymosis (n=28) P

Angle. POD1 69.00 [66.40;71.70] 67.50 [63.15;70.50] 0.001 68.65 [67.50;71.23] 62.90 [57.25;68.55] <0.001
EPL.POD1 0.40 [0.00;1.10] 0.70 [0.10;1.65] 0.029 0.50 [0.00;1.22] 0.70 [0.30;1.40] 0.236
LY30.POD1 0.40 [0.00;1.10] 0.60 [0.10;1.65] 0.027 0.50 [0.00;1.20] 0.65 [0.30;1.18] 0.386

Table 1. Comparison results of general clinical characteristics on training set and validation set.
Abbreviations: POD, postoperative day. PAD, PAD, postadmission day. Angle, alpha angle. K, clot formation
time. R, reaction time. APTT, activated partial thromboplastin time. INR, international normalized ratio. PT,
prothrombin time. TBL, total blood loss. FDP, fibrinogen degradation products. CI, coagulation index. XCI,
CI. POD1-CI. PAD. BMI, Body Mass Index. IBL, intraoperative blood loss.

Characteristics B SE OR CI z P
Angle. POD1 -0.093 | 0.02522 | 0.911 | 0.911(0.866-0.957) -3.675 | <0.001
K. POD1 1.241 | 0.32517 | 3.46 | 3.46(1.851-6.656) 3.818 | <0.001
R.POD1 0.347 | 0.10296 | 1.415 | 1.415(1.162-1.742) 3.375 0.001
APTT.PAD 0.045 | 0.02205 | 1.046 | 1.046(1.007-1.099) 2.06 0.039
INR.PAD 2.803 | 1.31209 | 16.497 | 16.49(1.668-300.3) 2.136 0.033
PT.PAD 0.342 | 0.14813 1.408 | 1.408(1.113-1.965) 2.308 0.021
TBL.POD3 0.001 | 0.00039 | 1.001 |1.001(1-1.002.002) 2.563 0.01
Totalalbumin.POD1 | -0.086 | 0.02771 | 0.918 | 0.918(0.868-0.968) —-3.088 0.002
Albumin.POD1 -0.12 | 0.0447 0.887 | 0.887(0.811-0.967) -2.675 0.007
FDP.POD1 0.099 | 0.01976 | 1.104 | 1.104(1.064-1.149) 5.002 | <0.001
XCI —1.453 | 0.17526 | 0.234 | 0.234(0.162-0.322) -8.29 | <0.001
CIL.POD1 -0.91 0.11725 | 0.402 | 0.402(0.316-0.5.316.5) | —7.765 | <0.001
TBL.POD1 0.003 | 0.00063 1.003 | 1.003(1.001-1.004) 4.173 | <0.001
Prealbumin.POD1 -0.028 | 0.00478 | 0.972 | 0.972(0.963-0.981) -5.919 | <0.001
Age 0.039 | 0.01797 | 1.039 | 1.039(1.004-1.078) 2.144 0.032

Table 2. Single factor logistic regression analysis in training set. Abbreviations: POD, postoperative day. PAD,
PAD, postadmission day. Angle, alpha angle. K, clot formation time. R, reaction time. APTT, activated partial
thromboplastin time. INR, international normalized ratio. PT, prothrombin time. TBL, total blood loss. FDP,
fibrinogen degradation products. CI, coagulation index. XCI, CI. POD1-CI. PAD.

Among the different ML methods, all demonstrated AUC values exceeded 0.9, indicating excellent model
performance. Specifically, the AUC scores were as follows: LGBM: 0.949 (95% CI, 0.907-0.992); LM: 0.954 (95%
CI, 0.910-0.998); RF: 0.954 (95% CI, 0.913-0.996); SVM: 0.959 (95% CI, 0.919-0.998); XGBoost: = 0.969 (95%
CI, 0.939-0.999). Details comparing the effectiveness of each ML method were shown in Table 4; Fig. 6. In
summary, the predictive model achieved satisfactory results across various ML validations, demonstrating its
robustness and effectiveness in clinical settings.

Discussion

Osteoarthritis is one of the most debilitating diseases worldwide, and TKA remains one of the most effective
treatments for end-stage osteoarthritis?®. Recently, researchers have long been exploring and experimenting
with bleeding and coagulation management after TKA. It is well-known that maintaining a delicate balance
between coagulation and bleeding is challenging. Hence, personalized perioperative blood management was
implemented to decrease blood loss without increasing the risk of VTE!®12174445 Ag a representative clinical
sign of minor bleeding, newly formed ecchymosis also indicates a hypocoagulable state and should be paid
attention to when establishing blood management schemes!>!#%. In the present study, taking ecchymosis as
the “barometer” of postoperative bleeding, we constructed a post-TKA-ecchymosis predictive model using
ML procedures, which would be applied to predicting postoperative bleeding and devising postoperative
anticoagulation and hemostasis therapeutic strategies.

The clinical significance of predicting ecchymosis extends beyond its appearance. As our results showed,
patients with ecchymosis had significantly lower early postoperative AKS scores (Fig. 2G). This suggests
that ecchymosis, often accompanied by swelling and pain, can directly impede early functional recovery by
discouraging active participation in physical therapy and limiting joint mobilization. Furthermore, extensive
ecchymosis can cause significant patient anxiety and dissatisfaction, potentially affecting the overall perception
of surgical success. Therefore, the ability to predict ecchymosis is not merely about anticipating a cosmetic
issue, but about proactively managing a factor that can compromise early rehabilitation and patient-reported
outcomes.
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Fig. 3. Three machine learning methods for variable selection. (A&B): Log (A) value and the five variables
selected by LASSO. (C&D): The results selected using the Boruta. (E&F): The RF-RFE selected five variables
with the minimum error, and the final distribution of variable importance.

Postoperative anemia is still one of the most common complications following TKA*#%¢. Increased hidden
blood loss is a primary cause of postoperative anemia; therefore, balancing coagulation and bleeding is essential
to decrease postoperative blood loss. Clinically, anticoagulation therapy in the early postoperative period remains
controversial for ecchymosis patients, as it undoubtedly increases the risk of bleeding-related complications'.
In a study from Germany, 42.9% of patients experienced bleeding complications after using anticoagulants,
with 6.1% suffering from major bleeding, posing significant challenges for clinicians?’. Similarly, for patients
prone to bleeding, such as those with ecchymosis, anticoagulation raises the risk of developing bleeding, while
discontinuing it in the short term raises concerns about an increased risk of thrombosis. Therefore, earlier and
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Characteristics B SE OR |CI z P
(Intercept) 1.186 | 1.38029 | 3.274 | 3.274 (0.223-51.81) 0.859 0.39
Prealbumin.POD1 | -0.018 | 0.00643 | 0.983 | 0.982 (0.969-0.994) -2.734 0.006
TBL.POD1 0.003 | 0.00095 | 1.003 | 1.002 (1.000-1.004.000.004) | 2.628 0.009
CI.POD1 —-0.464 | 0.15194 | 0.629 | 0.628 (0.461-0.839) -3.052 0.002
XCI -1.163 | 0.2083 | 0.312 | 0.312 (0.201-0.457) —-5.585 | <0.001
FDP.POD1 0.113 | 0.028 1.119 | 1.119 (1.061-1.185) 4.022 | <0.001

Table 3. Multiple logistic regression analysis in training set. Abbreviations: POD, postoperative day. TBL,
total blood loss. FDP, fibrinogen degradation products. CI, coagulation index. XCI, CLPOD1-CLPAD.

accurate prediction of ecchymosis and intervention in risk factors can significantly benefit postoperative blood
management and maintain the balance between coagulation and bleeding.

The rapid development of artificial intelligence has promoted advancements across various industries. Machine
learning (ML), a branch of artificial intelligence, excels at managing, processing, and analyzing multidimensional
data from large datasets efficiently and accurately, which can be beneficial in in clinical practice*®. Unlike
traditional statistical methods, ML adeptly identifies complex, multidimensional, and nonlinear relationships
between clinical features in larger datasets, enhancing predictive performance. Consequently, it has achieved
considerable success across various medical fields*.

In the field of perioperative blood management after orthopedic surgery, abundant scoring systems and
scales have been developed to assess the risk of VTE**->2, However, predictive models that can anticipate and
manage bleeding tendencies remain rare. To address this gap, this prospective observational cohort study was
designed to predict postoperative ecchymosis in patients undergoing TKA. The study precisely monitors, and
groups patients based on the presence of ecchymosis around the surgical wound and thigh, ensuring accurate
data collection. Furthermore, the data were divided into a training set and a validation set in a 7:3 ratio based on
chronological order. This setup enables us to build the predictive model using the training set and subsequently
conducted a temporal validation using the held-out future cohort. This setup allows us to evaluate the model’s
performance in a manner that closely mimics a prospective clinical application, thereby guaranteeing a realistic
estimate of the model’s accuracy upon deployment.

In selecting features of the predictive model, a comprehensive range of perioperative indicators were included,
encompassing patient demographics, surgical details, nutritional status, coagulation profiles, TEG data, etc. Three
sophisticated variable selection techniques — LASSO, RF-RFE, and BORUTA—were employed and identified
five critical risk factors, enhancing the reliability and persuasiveness of the predictive model. To further validate
the predictive model, multiple ML algorithms were employed, achieving strong results across key performance
metrics such as AUC, sensitivity, specificity, F1 score, and recall. These outcomes not only validate the accuracy
and feasibility of our predictive model but also highlight its potential applicability in clinical decisions.

Ecchymosis is regarded as a manifestation of subcutaneous hematoma, with current studies confirming
that increased perioperative blood loss is linked to a higher likelihood of ecchymosis'>!”. Correspondingly,
postoperative ecchymosis could serve as a window of systemic coagulation status, as evidenced by authoritative
research!®. CI, a parameter in TEG that reflects the overall systemic coagulation index, is more sensitive than
traditional coagulation profiles and is widely used®*. A lower CI typically indicates a tendency for bleeding, which
aligns with our findings. Moreover, our findings suggest that the higher XCI from preoperative to postoperative
is also a risk factor for postoperative ecchymosis. This could be attributed to XCI’s capacity to objectively reflect
changes in coagulation states, thus influencing perioperative blood loss. Additionally, as a nutritional marker
closely related to nutritional reserves and liver function, reduced prealbumin levels were observed to occur more
frequently in patients with ecchymosis. It has been reported that insufficient nutrient reserves can impair the
synthetic function of liver cells, directly leading to lowered levels of prealbumin and coagulation function®*>%.
Opverall, the nutritional status of patients offers new insights into the treatment and management of ecchymosis.
Blood clot formation and fibrinolysis are two complementary actions of coagulation®. Maintaining a balance
between fibrinolysis and coagulation is crucial for hemostasis without excessive thrombosis risk. Excessively
high-level activation of fibrinolysis generally indicates a bleeding tendency®. In the present study, we found that
patients with ecchymosis exhibited higher levels of FDP on POD1, indicating heightened fibrinolysis. Certainly,
these results further validate the rationale of our model, as its ROC values exceed those of each individual risk
factor (Fig. 4C and D), consistently demonstrated across both the training and validation sets.

Regarding the natural history of this condition, postoperative ecchymosis typically follows a self-limiting
course. Based on clinical observation and previous reports, the visible bruising often begins to fade within 1-2
weeks and usually resolves completely within 2—-4 weeks, following the natural process of hemoglobin breakdown
and reabsorption. However, the impact of its initial presence on the critical early recovery phase remains a
concern. While our model effectively identifies patients at risk, the critical next step is to investigate how this
early postoperative event influences long-term functional outcomes and overall prognosis after TKA. Future
prospective studies with longer follow-up periods are essential to determine if ecchymosis is an independent
risk factor for slower recovery, reduced range of motion, or lower patient satisfaction scores at 6 or 12 months.
Such research would definitively establish the full clinical importance of our predictive model and guide the
development of targeted interventions for high-risk patients.

This study has some limitations. Firstly, as a single-center study, there is potential bias in patient selection,
and external validation with data from other medical institutions could strengthen our predictive model’s
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Fig. 4. Construction of the nomogram. (A): The nomogram for predicting ecchymosis. (B): The registration
on the website for the dynamic nomogram. (C): The ROC curves of the nomogram and other variables in
the training set. (D): The ROC curves of the nomogram and other variables in the validation set. (E): The
nomoscore between non-ecchymosis group and ecchymosis group in the training set. (F): The nomoscore
between non-ecchymosis group and ecchymosis group in the validation set.
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Fig. 5. Evaluation of the prediction model in the training and validation sets. (A): The ROC curve of the
training set. CI, confidence interval. (B): The ROC curve of the validation set. (C): The calibration plot of the
training set. (D): The calibration plot of the validation set. (E): The DCA curve of the training set. (F): The
DCA curve of the validation set.

credibility. Secondly, the TBL for each patient was calculated using a formula, which could be influenced by the
volume of perioperative fluids administered. To mitigate this, a uniform fluid regimen was implemented for all
participants, with daily fluid intake and output meticulously recorded. Despite these limitations, this study is
still a carefully designed prospective cohort study. All enrolled patients underwent consistent blood testing and
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Fig. 6. Validation of the prediction model using multiple machine learning methods. (A): Variable importance
of the validation set by Random Forest. (B): ROC curve of the validation set by Random Forest. (C): SHAP
diagram of the validation set by Random Forest. (D): Variable importance of the validation set by Support
Vector Machine. (E): ROC curve of the validation set by Support Vector Machine. (F): SHAP diagram of the
validation set by Support Vector Machine. (G): Variable importance of the validation set by Extreme Gradient
Boosting. (H): ROC curve of the validation set by Extreme Gradient Boosting. (I): SHAP diagram of the
validation set by Extreme Gradient Boosting. (J): Variable importance of the validation set by Lightgbm. (K):
ROC curve of the validation set by Lightgbm. (L): SHAP diagram of the validation set by Lightgbm. (M):
Comparison of ROC curves among various machine learning methods. (N): Model performance of the various
machine learning methods.
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Model | AUC | Sensitivity | Specificity | F1 Recall | Precision | Auccuracy
Lgbm 0.949 | 0.929 0.842 0.788 1 0.929 | 0.684 0.885
LM 0.954 | 0.929 0.882 0.825 | 0.929 |0.743 0.905
RF 0.954 | 0.893 0.934 0.862 | 0.893 | 0.833 0.914
SVM 0.959 | 0.929 0.895 0.839 1 0.929 |0.765 0.912
Xgboost | 0.969 | 0.857 0.961 0.873 | 0.857 | 0.889 0.901

Table 4. All the ML prediction models’ outcomes in the validation set. Abbreviations: ML, machine learning.
Lgbm, lightgbm. LM, logistic regression model. RE, random forest. SVM, support vector machine. Xgboost,
extreme gradient boosting.

related examinations, and were closely monitored for the occurrence of ecchymosis, ensuring the accuracy and
reliability of our data.

Conclusion

In the present study, three ML algorithms were employed to screen features, and identified five independent
risk factors contributing to ecchymosis: reduced prealbumin, CI and XCI levels, increased FDP, and TBL on
PODI1. Based on these factors, a predictive model for the occurrence of ecchymosis after TKA was developed
and validated using various ML techniques. The implementation of this model in clinical practice may enable a
more precise assessment of postoperative bleeding risks and thereby improve blood management and facilitate
recovery through early intervention of identified risk factors.
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