
A prospective cohort study 
develops and validates a machine 
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Total knee arthroplasty (TKA) is a standard procedure for end-stage knee diseases, yet perioperative 
bleeding and its complications, such as ecchymosis, remain significant challenges. Predicting 
ecchymosis can guide personalized perioperative blood management, enhancing patient recovery 
and reducing the socioeconomic burden. In this prospective study (June 2023–March 2024), 416 
TKA patients were split into ecchymosis (n = 135) and non-ecchymosis (n = 281) groups. The first 
seven months’ data (312 patients) were used for training, and the next three months’ (104 patients) 
for validation. Feature selection used Least Absolute Shrinkage and Selection Operator (LASSO), 
Random Forest-Recursive Feature Elimination (RF-RFE), and BORUTA to identify key risk factors. The 
model was tested with advanced machine learning: Random Forest (RF), eXtreme Gradient Boosting 
(XGBoost), Support Vector Machines (SVM), and Light Gradient Boosting Machine (LGBM). Major risk 
factors included low prealbumin, reduced coagulation index (CI) and its change (XCI), high fibrinogen 
degradation products (FDP), and postoperative day 1 total blood loss (TBL). The model showed robust 
performance with area under the curve values (AUCs) of 0.927 in training and 0.954 in validation set. 
The model’s superior high performance offers significant guidance for early and accurate prediction, 
enabling personalized anticoagulation therapy and optimizing perioperative blood management in 
TKA patients.

Trial registration: Chinese Clinical Trial Registry (registration No. ChiCTR2400080173). 
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Lgbm	� lightgbm
LM	� logistic regression model
RF	� random forest
SVM	� support vector machine
Xgboost	� extreme gradient boosting

Total knee arthroplasty (TKA) has been recognized as one of the most significant advancements in effectively 
treating end-stage knee diseases since the 20th century1–3. With the increasing number of TKA procedures, 
there is growing attention to perioperative anemia, blood loss and blood transfusion4,5. Therefore, effective 
perioperative blood management is essential for promoting recovery and reducing the social and economic 
burden in TKA patients6,7.

Coagulation and bleeding are the two primary components of perioperative blood management, working 
synergistically to maintain hemostasis balance8. However, the prevention of bleeding risk remains a concern 
among orthopedic surgeons in patients receiving TKA9–11. Although regular adoption of anticoagulants has 
reduced the incidence of perioperative venous thromboembolism (VTE) to as low as 0.5%−1% in TKA patients12. 
However, postoperative blood loss is still posing considerable challenges to its effective management. Statistics 
reveal that perioperative blood loss in major orthopedic surgeries such as TKA could reach up to 1200 ml13, 
with over 53.2% of patients developing moderate or severe hemorrhagic anemia14. Inadequate management of 
perioperative bleeding can result in a series of bleeding-related complications, including ecchymosis, systemic 
hemorrhage, and coagulation disorders, significantly compromising postoperative functional recovery and 
patient satisfaction15,16. Therefore, to better navigate this trade-off, there is an urgent need for surgeons that can 
accurately predict bleeding events in patients undergoing anticoagulation therapy.

As one of the most common signs of postoperative bleeding events, the incidence rate of postoperative 
ecchymosis is as high as 30–40%15,17–19. As subcutaneous bleeding exceeds 3 mm in diameter, ecchymosis often 
accompanies wound or severe swelling and pain in the lower limb, exacerbating local inflammation and signifying 
an increased tendency for further blood loss20–22. Meanwhile, post-operative ecchymosis generally indicates a 
hypocoagulable state18. Failure to promptly detect and intervene may significantly increase the risk of secondary 
bleeding, potentially leading to systemic coagulopathy, major hemorrhage, and even mortality23,24. Therefore, 
the prediction of post-operative ecchymosis can reserve the time window for personalized perioperative 
blood management strategies, decreasing the occurrence rates of postoperative anemia, blood loss and blood 
transfusion. Although several recent research explored the risk factors for postoperative ecchymosis17,19,25, 
the integration of these factors remains incomplete and lacks prospective evidence, necessitating further 
improvements in predictive accuracy and effectiveness.

With the rapid development of Machine Learning (ML), its application in precise clinical diagnostics and 
treatments has gained increasing popularity26–28. Unlike traditional statistical methods, ML combines computer 
technology and artificial intelligence for data organization and mining, offering significant advantages in 
managing complex issues like over-fitting and non-linearity in big data, often resulting in higher predictive 
accuracy29,30. To leverage ML for developing a predictive model for postoperative bleeding, using postoperative 
ecchymosis as an indicator, we designed this prospective cohort study to collect perioperative data from patients 
undergoing TKA for model development. Meanwhile, various ML techniques are employed to validate this 
model and prospectively assess its accuracy. The predictive model offers a critical time window for personalized 
perioperative blood management strategies, enhancing rapid recovery for TKA patients.

Participants and methods
Participants
From June 2023 to March 2024, patients diagnosed with end-stage osteoarthritis and scheduled for TKA at 
our medical center were screened based on strict inclusion and exclusion criteria. Inclusion criteria included: 
(1) Patients who received unilateral primary TKA due to end-stage knee diseases. (2) Age ≥ 18 years. Exclusion 
criteria included: (1) Patients with severe cardiovascular and cerebrovascular diseases (myocardial infarction, 
cerebral infarction, etc.); (2) Patients with significant bleeding tendencies (such as gastrointestinal active 
bleeding, cerebral hemorrhage, etc.); (3) Patients with systemic or local venous thromboembolism (such as deep 
vein thrombosis, pulmonary embolism, etc.); (4) Patients with previously defined coagulation dysfunction; (5) 
Patients with severe neuromuscular system diseases; (6) Patients scheduled for bilateral TKA or revision TKA; 
(7) Pregnant or breastfeeding patients. To maintain the precision of the trial and minimize variation, all surgical 
procedures were performed by the same experienced surgical team.

Surgical procedure
Following patient selection based on defined inclusion and exclusion criteria, all TKA surgeries were consistently 
performed by the same experienced surgical team, which included two senior surgeons with more than 20 
years of experience to ensure standardization. All procedures strictly followed a standardized perioperative 
management protocol that included aspects such as anesthesia, pain control, medication, rehabilitation, and 
nursing. To ensure data integrity, all patients underwent identical blood tests and examinations consistently 
before and after surgery.

Each patient was positioned in a supine posture with a pneumatic tourniquet applied to the thigh of the 
affected leg. The surgeries adhered to standardized TKA protocols, involving precise bone cutting and fitting a 
uniform type of knee joint prosthesis. Intraoperative X-ray imaging ensured accurate positioning of the prosthesis 
before the wound was methodically sutured. A local 1 g dose of tranexamic acid (TXA) was administered, and 
no postoperative drainage tubes were used. Furthermore, each patient received a 1.5 g intravenous dose of TXA 
every 12 h post-surgery to manage bleeding.
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General perioperative management
Anesthesia Protocol: All patients underwent TKA surgery using the same anesthetic agents, which included 
midazolam and propofol for sedation, remifentanil for pain relief, and vecuronium for muscle relaxation.

Pain Management Protocol: Post-surgical pain management for all patients was managed with a patient-
controlled intravenous analgesia pump containing 0.1 mg of sufentanil and 100 mg of flurbiprofen axetil.

Infection Prevention Medication: From postoperative Day 1 to Day 3 (POD1-POD3), all patients received 
1.5 g of cefuroxime every 12 h to prevent infection.

Mechanical and Drug Prophylaxis for VTE: To prevent VTE, intermittent pneumatic compression was 
administered twice daily, with each session lasting 20  min. Meanwhile, each patient received a a once-daily 
postoperative subcutaneous injection of 4,000 IU of low-molecular-weight heparin.

Nursing Care Protocol: All enrolled patients were managed perioperatively by the same nursing team, 
receiving consistent intravenous fluid types and dosages, with meticulous monitoring and recording of input 
and output over 24 h.

Nutritional Management: On the morning of surgery, all patients consumed an equal dose of short peptides 
plus whole protein enteral nutrition. Their intake and output were rigorously monitored, and their nutritional 
status, including albumin and prealbumin levels, was closely observed before and after surgery.

Observation and grouping
All patients who underwent TKA surgery were closely monitored postoperatively for the occurrence of 
ecchymosis around the incision and thigh area and grouped accordingly. If ecchymosis with subcutaneous 
bleeding exceeding 3 mm in diameter was observed, its location and size were precisely documented, and the 
patient was categorized into the ecchymosis group. Patients without ecchymosis were classified into the non-
ecchymosis group. All enrolled patients underwent the same blood tests and other relevant examinations pre-
operatively and on POD1.

Blood loss calculation
The hidden blood loss (HBL) of every patient is calculated according to Nadler et al.31 and Gross formula32:

1): Patient blood volume (PBV, mL) = [k1 × height3 (m) + k2 × weight (kg) + k3] × 1000, where k1 = 0.3669, 
k2 = 0.03219, and k3 = 0.6041 for male, and k1 = 0.3561, k2 = 0.03308, and k3 = 0.1833 for female.

2): Total blood loss (TBL, mL) = PBV × (preoperative Hct - postoperative Hct)/preoperative Hct.
3): Intraoperative blood loss (IBL) = volume collected by suction - volume of irrigation + weight of blood-

soaked gauze, where 1 g of gauze = 1 ml.

Feature selection
Fifty-six features, including patient demographics and surgical details such as age, gender, BMI, surgical 
duration, intraoperative blood loss, and TBL on both preoperative and POD1 were included. Routine hematology 
parameters included hemoglobin (Hb), hematocrit (HCT), platelet count (PLT), mean platelet volume (MPV), 
and platelet distribution width (PDW). Nutritional indicators included total protein, prealbumin, and albumin. 
The coagulation function indicators comprised prothrombin time (PT), activated partial thromboplastin time 
(APTT), thrombin time (TT), international normalized ratio (INR), fibrinogen, fibrinogen degradation products 
(FDP), and D-dimer. Thromboelastography (TEG) measured several critical parameters: reaction time (R), clot 
formation time (K), alpha angle (angle), maximum amplitude (MA), lysis at 30 min (LY30), and the coagulation 
index (CI), a composite measure of overall coagulation status derived from R, K, angle, and MA values33. Change 
in coagulation index was calculated as XCI = CI. POD1 - CI. PAD (postadmission day).

First, in the training set, univariate logistic regression was applied to screen for potential risk factors with a 
significance threshold of P < 0.05. This initial screening identified 15 candidate variables. Subsequently, to refine 
this list and select the most stable and important features, we employed three distinct machine learning-based 
algorithms on the training set: Least Absolute Shrinkage and Selection Operator (LASSO), the Boruta algorithm, 
and Random Forest-Recursive Feature Elimination (RF-RFE). The final set of key risk factors was determined by 
taking the intersection of the variables selected by all three of these methods.

Model development
All TKA patients were randomly assigned to the training and validation sets in a 7:3 temporal ratio at the onset 
of the study (first seven months for training, subsequent three months for validation). This temporal split was 
intentionally chosen over a random split to simulate a real-world clinical application scenario, where a model is 
built on historical data and validated on future patients. This approach provides a more rigorous assessment of 
the model’s generalizability and robustness over time and helps prevent temporal data leakage. It is important 
to note that no variables, including sex, were explicitly matched, or stratified during this split. The distribution 
of all baseline characteristics was a result of the natural variation within these consecutively enrolled temporal 
cohorts.

LASSO regression was primarily utilized for feature selection. It identified essential features by modifying 
the optimization objective function with a penalty term to encourage sparsity, thereby reducing many feature 
weights to zero. Meanwhile, LASSO was used to exclude non-significant features, thus constructing sparse and 
interpretable models to prevent overfitting34.

The Boruta algorithm was applied to evaluate feature importance with random forests and compare randomly 
generated “shadow” features, effectively addressing the challenges of feature selection35.

RF-RFE was used to integrate the inherent feature selection capability of Random Forest into a recursive 
feature elimination strategy. By iteratively training the model and eliminating the least important features, RF-
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RFE optimized feature subsets to enhance model performance, reduce computational overhead, and improve 
model interpretability36.

After applying these three primary ML techniques to the training set data for essential variables filtering, 
the final variable results to identify critical risk factors were intersected. Using these risk factors, the predictive 
model was generated by multivariate logistic regression analysis and visualized by using line plots.

Model evaluation and validation
Several key statistical tools were utilized to comprehensively assess our predictive model. The Receiver Operating 
Characteristic (ROC) curve was employed to evaluate the model’s ability to differentiate between two types 
of outcomes—whether or not ecchymosis occurred after TKA. Area Under the Curve (AUC) was applied to 
indicate diagnostic accuracy, reported with 95% confidence intervals (CI). Additionally, calibration curves were 
utilized to test the model’s predictive accuracy. Decision Curve Analysis (DCA) was applied to balance patient 
benefits and risks while assessing the practicality of clinical decisions37.

To benchmark the performance of our primary logistic regression model and validate the robustness of the 
selected features, we also constructed and evaluated four additional prediction models on the validation set 
using the same set of five key features. This selection was deliberate to encompass a range of model architectures 
and strengths: Random Forest (RF) was chosen for its robustness against overfitting, its ability to model complex 
non-linear relationships without strong assumptions about the data distribution, and its inherent provision of 
feature importance measures38. EXtreme Gradient Boosting (XGBoost) was selected due to its high predictive 
performance and efficiency in handling structured/tabular data. Its gradient-boosting framework is particularly 
effective at capturing intricate patterns through sequential model correction39. Support Vector Machines (SVM) 
were employed for their effectiveness in high-dimensional spaces and their ability to find a clear margin of 
separation (hyperplane) between classes, which is beneficial for binary classification tasks like ours40. Light 
Gradient Boosting Machine (LGBM) was utilized for its computational speed and memory efficiency, especially 
on large datasets, while maintaining high accuracy comparable to other boosting algorithms. For comparative 
purposes, a Logistic Regression (LM) model was also included as a well-understood and interpretable baseline, 
against which the performance of the more complex ML models could be benchmarked. The evaluation focused 
on the comparison of ROC curves, the analysis of feature importance distribution, and the assessment of SHAP 
values. Additionally, the performance metrics for each model—AUC, Accuracy, Sensitivity, Specificity, F1 Score, 
Recall, and Precision—were compared and summarized to validate the efficacy of the predictive model and 
identify the optimal ML approach.

Data analyses
Data processing was conducted using R software version 4.2.3 in this study. Missing values were addressed 
using Multiple Imputation by Chained Equations (MICE), and variables with more than 5% missing data 
were excluded from the analysis41. Descriptive analyses were performed on all patients included in the study. 
Continuous variables following a normal distribution were represented by mean ± standard deviation (SD) and 
analyzed using the t-test. For non-normally distributed continuous variables, the median (interquartile range) 
[M (P25, P75)] was used, with group comparisons conducted via the Mann-Whitney U test. Categorical variables 
were presented as n (%) and analyzed using the chi-square test, with Fisher’s exact test applied when chi-square 
conditions were not met. All statistical tests were two-sided, and a P-value of < 0.05 was considered statistically 
significant. Multiple ML methods were implemented in R with packages in the supplementary materials.

Ethical considerations
This prospective cohort study was conducted in accordance with the CONSORT standards42. Ethical approval 
was granted by the local Ethics Committee, and the study was registered with the Chinese Clinical Trial Registry 
(registration No. ChiCTR2400080173) before participants were enrolled. All eligible patients were fully informed 
of the benefits and risks associated with the study before signing the informed consent form to participate. All 
methods were done in accordance with relevant guidelines. They were also advised that they could withdraw 
from the study at any point if they experienced any discomfort.

Results
Baseline data
From June 2023 to March 2024, 468 patients undergoing TKA were included. After excluding 52 patients 
according to the inclusion and exclusion criteria, 416 were prospectively analyzed in this study (Fig. 1). Among 
these patients, 135 developed ecchymosis after TKA, constituting 32.5% of the total cohort. Ecchymosis of 
varying degrees and sizes was observed in areas such as the popliteal fossa, groin, lateral thigh, and around 
the surgical wound (Fig. 2A and F). We found that patients with post-TKA ecchymosis had significantly lower 
American Knee Society (AKS) scores compared to those without ecchymosis (P < 0.001, Fig. 2G), significantly 
higher TBL on POD1 (P < 0.001, Fig. 2H), and a significantly lower CI (P < 0.001, Fig. 2I). These findings indicate 
a hypocoagulable state and a higher risk of postoperative bleeding in patients with post-TKA ecchymosis. 
Consequently, constructing a post-TKA ecchymosis predictive model is necessary.

The construction of the predictive model was based on the training and validation sets. According to the 
admission dates, data from 312 patients (non-ecchymosis group: 205, ecchymosis group: 107) from June to 
December 2023 were assigned to the training set, while data from 104 patients (non-ecchymosis group: 76, 
ecchymosis group: 28) from January to March 2024 were allocated to the validation set (Fig. 1). Baseline data 
for patients in the training and validation sets are presented in Table  1, while complete baseline data for all 
participants are available in Table S1. The rationale for the division into training and validation sets is detailed 
in Table S2.
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Feature selection
Based on the training set, 15 potential risk factors were initially identified using univariate logistic regression with 
a significance threshold of P < 0.05; details can be found in Table 2 and Figure S1. The results of variable filtering 
and feature importance selection, using three ML algorithms (LASSO, BORUTA, RF-RFE), are displayed in 
Fig. 3. The results of all three methods were consistent, identifying five key factors: lower prealbumin (P = 0.006), 
CI (P = 0.002), XCI (P < 0.001), elevated levels of FDP (P < 0.001), and TBL (P = 0.009) on POD1, detailed in 
Table 3.

Construction of prediction model
Three ML algorithms, including LASSO, BORUTA, and RF-RFE, were applied to verify the five key variables 
essential for constructing the predictive model. The model’s coefficients were visualized in a nomogram (Fig. 4A), 
which allows clinicians to input a patient’s clinical data and rapidly compute the probability of postoperative 
ecchymosis in TKA patients. The formula for predicting ecchymosis probability is as follows: Ecchymosis 
prediction probability = 1.186066 − 0.017569 × Prealbumin. POD1 + 0.002506 × TBL. POD1 − 0.463744 × CI. 
POD1 − 1.163408 × XCI + 0.112593 × FDP. POD1. Meanwhile, the prediction model has been developed into a 
dynamic nomogram and registered on the website, allowing for real-time online prediction of the probability 

Fig. 1.  The flowchart of this study. TKA, total knee arthroplasty. UKA, unicompartmental knee arthroplasty. 
RF, random forest. SVM, support vector machine. Xgboost, extreme gradient boosting. Lgbm, lightgbm.
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of bruising post-TKA surgery (Fig. 4B). The specific information about the online version of the prediction 
model can be found in Figures S2 & S3. Subsequently, the five variables from the training and validation sets 
were compared with our nomogram (Fig. 4C and D). The ROC curves clearly demonstrate that the nomogram’s 
AUC values are superior to those of individual variables, thereby validating the effectiveness of our prediction 
model. Finally, to internally validate the model’s discriminatory power and consistency, we applied the model’s 
formula to calculate the ecchymosis probability for every patient in both the training and validation sets. The 
results demonstrated that the model-assigned probability scores were significantly higher for patients in the 
observed ecchymosis group compared to those in the non-ecchymosis group (Fig. 4E and F). This consistent 
pattern across both datasets confirms that the model’s predictions are well-calibrated and reliably separate the 
two outcome groups, thereby underscoring its repeatability and clinical utility.

Evaluation of the prediction model
The initial validation of our predictive model demonstrated robust performance. The AUC for the training cohort 
was 0.927 (95% CI, 0.891-0.891 0.962) (Fig. 5A), while the AUC for the validation cohort reached 0.954 (95% 
CI, 0.910–0.998) (Fig. 5B). Calibration plots and Hosmer-Lemeshow tests (P > 0.05) indicated good consistency 
between the predicted probabilities of post-TKA ecchymosis and the observed probabilities in both the training 
and validation sets (Fig.  5C and D). In the clinical application of our nomogram, Decision Curve Analysis 
(DCA) was conducted, revealing that the nomogram provided greater net benefits than other models (Fig. 5E 
and F). This evidence confirmed the model’s accuracy and clinical utility in predicting the risk of ecchymosis 
post-TKA.

Model validation based on multiple ML algorithms
The predictive performance of the five key features was further substantiated by building four independent 
prediction models on the validation set using different ML algorithms. RF, SVM, XGBoost, and LGBM models 
were used to reassess feature importance, draw ROC curves, and create SHAP value plots. These analyses 
consistently confirmed the strong predictive capability of the model (Fig. 6).

Fig. 2.  Appearance of ecchymosis on different body parts and their different scores compared to non-
ecchymosis population. (A-F): Ecchymosis of varying degrees and sizes appeared in different areas. (A): 
Popliteal ecchymosis. (B): Ecchymosis at the base of the thigh. (C): Ecchymosis on the calf. (D): Ecchymosis 
on the lateral thigh. (E): Ecchymosis at the wound site. F: Ecchymosis adjacent to the wound. (G): Lower AKS 
scores in ecchymosis patients. (H): Higher TBL in ecchymosis patients. (I): Lower CI values in ecchymosis 
patients. AKS, American Knee Society. TBL, total blood loss. CI, coagulation index. ***, P < 0.001.
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Characteristic

Training set (n = 312)

P

Validation set (n = 104)

PNon-ecchymosis (n = 205) ecchymosis (n = 107) Non-ecchymosis (n = 76) ecchymosis (n = 28)

Sex: 1.000 1.000

Women (%) 181 (88.29) 95 (88.79) 67 (88.16) 25 (89.29)

Men (%) 24 (11.71) 12 (11.21) 9 (11.84) 3 (10.71)

Age 69.00 [66.00;72.00] 70.00 [66.50;75.50] 0.049 69.00 [64.00;73.00] 69.00 [66.25;70.25] 0.921

Prealbumin.POD1 206.60 (28.11) 182.68 (32.61) < 0.001 203.50 [194.50;226.25] 170.00 [158.00;209.50] <0.001

TBL.POD1 246.16 [143.55;393.01] 347.92 [199.33;505.69] < 0.001 312.81 [193.25;442.40] 429.29 [150.05;729.86] 0.035

Hct.PAD 38.39 (3.40) 39.18 (3.81) 0.071 38.80 [36.38;41.30] 39.25 [37.48;40.65] 0.698

Hct.POD1 35.52 (3.33) 35.11 (3.27) 0.300 35.58 (3.57) 33.86 (4.72) 0.089

CI.POD1 1.17 (1.24) −0.49 (1.51) < 0.001 1.04 (1.18) −1.22 (0.95) <0.001

XCI 1.02 (1.13) −0.93 (1.45) < 0.001 1.16 (1.31) −1.42 (1.28) <0.001

FDP.POD1 5.60 [3.30;10.10] 9.40 [5.90;16.15] < 0.001 6.20 [3.98;8.93] 10.10 [5.50;18.12] 0.016

BMI 26.00 [23.40;28.10] 25.60 [23.45;27.40] 0.324 26.00 [23.40;28.30] 26.20 [23.92;28.13] 0.939

Operation time 85.00 [75.00;100.00] 85.00 [75.00;100.00] 0.761 85.00 [70.00;100.00] 90.00 [72.50;100.00] 0.672

IBL 44.00 [34.00;50.00] 41.00 [37.50;50.00] 0.268 50.00 [35.50;50.00] 42.00 [38.00;47.25] 0.250

Prealbumin.PAD 220.00 [198.00;242.00] 213.00 [189.00;232.50] 0.049 227.00 [207.25;243.75] 208.50 [182.00;241.00] 0.033

Totalalbumin.PAD 67.00 [65.00;71.00] 68.00 [63.50;72.00] 0.996 67.78 (4.82) 68.68 (4.34) 0.366

Albumin.PAD 42.00 [41.00;44.00] 42.00 [40.00;44.00] 0.562 42.00 [41.00;43.00] 42.00 [41.00;43.00] 0.571

Albumin.POD1 38.00 [37.00;40.00] 38.00 [36.00;39.00] 0.012 38.00 [37.00;40.00] 36.50 [34.75;38.00] 0.002

Totalalbumin.POD1 62.00 [59.00;66.00] 61.00 [57.00;64.00] 0.004 61.54 (4.13) 59.89 (5.18) 0.138

Hb.PAD 125.78 (11.85) 127.06 (14.05) 0.422 126.50 [117.00;135.00] 125.00 [121.75;133.00] 0.814

Hb.POD1 115.74 (11.57) 113.65 (12.06) 0.144 115.21 (12.60) 109.71 (15.08) 0.093

PBV 3605.36 [3361.48;4002.32] 3575.46 [3277.74;3997.83] 0.342 3683.33 [3375.14;4036.88] 3460.11 [3183.22;3968.08] 0.192

TBL.POD3 552.58 [362.41;748.35] 592.80 [417.09;858.15] 0.061 593.93 (279.22) 727.54 (374.23) 0.093

PLT.PAD 201.00 [172.00;233.00] 203.00 [178.00;245.00] 0.555 205.89 (62.62) 207.14 (54.53) 0.921

PDW.PAD 13.60 [11.90;15.60] 13.40 [11.80;15.40] 0.685 12.95 [11.78;15.22] 13.00 [11.47;14.72] 0.657

MPV.PAD 11.10 [10.40;11.80] 11.10 [10.40;11.85] 0.949 10.80 [10.47;11.43] 10.95 [10.43;11.45] 0.840

PLT.POD1 192.00 [162.00;224.00] 194.00 [162.00;221.50] 0.909 191.20 (50.80) 187.89 (49.16) 0.764

PDW.POD1 13.80 [12.00;15.50] 13.10 [11.85;15.00] 0.360 13.05 [11.78;14.50] 14.00 [12.42;14.85] 0.344

MPV.POD1 11.22 (1.12) 11.23 (1.09) 0.960 10.90 [10.40;11.70] 11.15 [10.67;11.72] 0.179

FDP.PAD 1.30 [0.90;2.90] 1.50 [1.00;2.70] 0.525 1.35 [0.80;3.20] 1.45 [0.80;2.90] 0.962

DD.PAD 0.50 [0.30;1.03] 0.60 [0.40;1.10] 0.183 0.49 [0.30;1.06] 0.52 [0.30;1.65] 0.744

DD.POD1 3.19 [1.84;6.80] 4.50 [2.56;8.20] 0.002 2.92 [1.87;6.58] 4.95 [2.10;7.95] 0.113

PT.PAD 12.70 [12.40;13.20] 13.00 [12.60;13.20] 0.004 12.80 [12.40;13.00] 12.95 [12.38;13.50] 0.284

PTR.PAD 1.00 [0.95;1.00] 1.00 [0.97;1.00] 0.091 1.00 [0.95;1.00] 1.00 [0.92;1.00] 0.871

INR.PAD 0.98 [0.91;1.00] 1.00 [0.94;1.00] 0.007 0.99 [0.93;1.00] 1.00 [0.90;1.00] 0.832

PTA.PAD 107.00 [98.00;114.00] 104.00 [99.50;111.00] 0.499 106.00 [98.00;113.00] 103.00 [96.50;115.75] 0.679

APTT.PAD 34.50 [31.90;36.20] 34.40 [32.30;36.60] 0.463 33.10 [31.70;35.82] 34.45 [31.80;38.02] 0.253

TT.PAD 17.50 [16.60;18.40] 17.40 [16.70;18.10] 0.393 17.55 [16.70;18.30] 17.55 [16.82;18.60] 0.663

Fgb.PAD 3.26 [2.90;3.80] 3.03 [2.70;3.67] 0.012 3.20 [2.74;3.63] 2.92 [2.68;3.42] 0.205

PT.POD1 13.30 [12.90;13.70] 13.60 [12.90;14.10] 0.131 13.20 [12.80;13.70] 13.40 [12.95;14.22] 0.166

PTR.POD1 1.00 [0.99;1.04] 1.00 [1.00;1.10] 0.222 1.00 [0.99;1.03] 1.00 [1.00;1.10] 0.078

INR.POD1 1.00 [0.98;1.06] 1.00 [1.00;1.10] 0.137 1.00 [0.99;1.06] 1.02 [1.00;1.10] 0.102

PTA.POD1 98.00 [92.00;105.00] 95.00 [88.50;106.00] 0.212 98.50 [91.00;106.25] 95.00 [85.75;103.25] 0.117

APTT.POD1 32.90 [30.80;35.10] 33.60 [31.55;35.40] 0.203 32.90 [30.22;35.25] 32.95 [30.08;36.72] 0.578

TT. POD1 17.40 [16.40;18.20] 17.00 [16.20;18.30] 0.165 17.20 [16.30;18.20] 17.10 [16.08;18.22] 0.852

Fgb.POD1 3.17 [2.67;3.51] 3.10 [2.70;3.55] 0.919 3.12 [2.80;3.62] 2.82 [2.48;3.20] 0.020

R.PAD 6.40 [6.00;7.00] 6.40 [5.65;6.80] 0.512 6.40 [6.00;6.90] 6.40 [5.20;7.55] 0.865

K.PAD 1.50 [1.30;1.70] 1.50 [1.30;1.80] 0.772 1.50 [1.48;1.80] 1.50 [1.30;1.72] 0.258

Angle.PAD 67.40 [64.80;69.40] 67.40 [62.85;69.75] 0.815 67.40 [64.05;67.80] 67.60 [64.00;69.88] 0.307

MA.PAD 63.80 [61.60;66.20] 63.80 [61.00;66.55] 0.643 63.80 [62.38;65.08] 63.80 [60.43;65.40] 0.457

EPL.PAD 0.40 [0.00;1.00] 0.40 [0.00;0.80] 0.351 0.40 [0.00;0.62] 0.40 [0.00;1.00] 0.695

LY30.PAD 0.40 [0.00;1.00] 0.40 [0.00;0.80] 0.332 0.40 [0.00;0.60] 0.40 [0.00;0.88] 0.675

CI.PAD 0.00 [−0.40;1.00] 0.40 [−0.30;1.60] 0.058 0.00 [−0.72;0.90] 0.30 [−0.90;1.20] 0.411

R.POD1 5.91 (1.09) 6.42 (1.41) 0.001 6.00 [5.20;6.43] 6.80 [5.97;7.62] <0.001

K.POD1 1.30 [1.20;1.60] 1.40 [1.20;1.80] 0.001 1.30 [1.20;1.40] 1.75 [1.37;2.20] <0.001

Continued
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Among the different ML methods, all demonstrated AUC values exceeded 0.9, indicating excellent model 
performance. Specifically, the AUC scores were as follows: LGBM: 0.949 (95% CI, 0.907–0.992); LM: 0.954 (95% 
CI, 0.910–0.998); RF: 0.954 (95% CI, 0.913–0.996); SVM: 0.959 (95% CI, 0.919–0.998); XGBoost: = 0.969 (95% 
CI, 0.939–0.999). Details comparing the effectiveness of each ML method were shown in Table  4; Fig.  6. In 
summary, the predictive model achieved satisfactory results across various ML validations, demonstrating its 
robustness and effectiveness in clinical settings.

Discussion
Osteoarthritis is one of the most debilitating diseases worldwide, and TKA remains one of the most effective 
treatments for end-stage osteoarthritis43. Recently, researchers have long been exploring and experimenting 
with bleeding and coagulation management after TKA. It is well-known that maintaining a delicate balance 
between coagulation and bleeding is challenging. Hence, personalized perioperative blood management was 
implemented to decrease blood loss without increasing the risk of VTE10,12,17,44,45. As a representative clinical 
sign of minor bleeding, newly formed ecchymosis also indicates a hypocoagulable state and should be paid 
attention to when establishing blood management schemes15,18,45. In the present study, taking ecchymosis as 
the “barometer” of postoperative bleeding, we constructed a post-TKA-ecchymosis predictive model using 
ML procedures, which would be applied to predicting postoperative bleeding and devising postoperative 
anticoagulation and hemostasis therapeutic strategies.

The clinical significance of predicting ecchymosis extends beyond its appearance. As our results showed, 
patients with ecchymosis had significantly lower early postoperative AKS scores (Fig.  2G). This suggests 
that ecchymosis, often accompanied by swelling and pain, can directly impede early functional recovery by 
discouraging active participation in physical therapy and limiting joint mobilization. Furthermore, extensive 
ecchymosis can cause significant patient anxiety and dissatisfaction, potentially affecting the overall perception 
of surgical success. Therefore, the ability to predict ecchymosis is not merely about anticipating a cosmetic 
issue, but about proactively managing a factor that can compromise early rehabilitation and patient-reported 
outcomes.

Characteristics B SE OR CI Z P

Angle. POD1 −0.093 0.02522 0.911 0.911(0.866–0.957) −3.675 < 0.001

K. POD1 1.241 0.32517 3.46 3.46(1.851–6.656) 3.818 < 0.001

R. POD1 0.347 0.10296 1.415 1.415(1.162–1.742) 3.375 0.001

APTT.PAD 0.045 0.02205 1.046 1.046(1.007–1.099) 2.06 0.039

INR.PAD 2.803 1.31209 16.497 16.49(1.668–300.3) 2.136 0.033

PT.PAD 0.342 0.14813 1.408 1.408(1.113–1.965) 2.308 0.021

TBL.POD3 0.001 0.00039 1.001 1.001(1–1.002.002) 2.563 0.01

Totalalbumin.POD1 −0.086 0.02771 0.918 0.918(0.868–0.968) −3.088 0.002

Albumin.POD1 −0.12 0.0447 0.887 0.887(0.811–0.967) −2.675 0.007

FDP.POD1 0.099 0.01976 1.104 1.104(1.064–1.149) 5.002 < 0.001

XCI −1.453 0.17526 0.234 0.234(0.162–0.322) −8.29 < 0.001

CI.POD1 −0.91 0.11725 0.402 0.402(0.316–0.5.316.5) −7.765 < 0.001

TBL.POD1 0.003 0.00063 1.003 1.003(1.001–1.004) 4.173 < 0.001

Prealbumin.POD1 −0.028 0.00478 0.972 0.972(0.963–0.981) −5.919 < 0.001

Age 0.039 0.01797 1.039 1.039(1.004–1.078) 2.144 0.032

Table 2.  Single factor logistic regression analysis in training set. Abbreviations: POD, postoperative day. PAD, 
PAD, postadmission day. Angle, alpha angle. K, clot formation time. R, reaction time. APTT, activated partial 
thromboplastin time. INR, international normalized ratio. PT, prothrombin time. TBL, total blood loss. FDP, 
fibrinogen degradation products. CI, coagulation index. XCI, CI. POD1-CI. PAD.

 

Characteristic

Training set (n = 312)

P

Validation set (n = 104)

PNon-ecchymosis (n = 205) ecchymosis (n = 107) Non-ecchymosis (n = 76) ecchymosis (n = 28)

Angle.POD1 69.00 [66.40;71.70] 67.50 [63.15;70.50] 0.001 68.65 [67.50;71.23] 62.90 [57.25;68.55] <0.001

EPL.POD1 0.40 [0.00;1.10] 0.70 [0.10;1.65] 0.029 0.50 [0.00;1.22] 0.70 [0.30;1.40] 0.236

LY30.POD1 0.40 [0.00;1.10] 0.60 [0.10;1.65] 0.027 0.50 [0.00;1.20] 0.65 [0.30;1.18] 0.386

Table 1.  Comparison results of general clinical characteristics on training set and validation set. 
Abbreviations: POD, postoperative day. PAD, PAD, postadmission day. Angle, alpha angle. K, clot formation 
time. R, reaction time. APTT, activated partial thromboplastin time. INR, international normalized ratio. PT, 
prothrombin time. TBL, total blood loss. FDP, fibrinogen degradation products. CI, coagulation index. XCI, 
CI. POD1-CI. PAD. BMI, Body Mass Index. IBL, intraoperative blood loss.
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Postoperative anemia is still one of the most common complications following TKA44,46. Increased hidden 
blood loss is a primary cause of postoperative anemia; therefore, balancing coagulation and bleeding is essential 
to decrease postoperative blood loss. Clinically, anticoagulation therapy in the early postoperative period remains 
controversial for ecchymosis patients, as it undoubtedly increases the risk of bleeding-related complications15. 
In a study from Germany, 42.9% of patients experienced bleeding complications after using anticoagulants, 
with 6.1% suffering from major bleeding, posing significant challenges for clinicians47. Similarly, for patients 
prone to bleeding, such as those with ecchymosis, anticoagulation raises the risk of developing bleeding, while 
discontinuing it in the short term raises concerns about an increased risk of thrombosis. Therefore, earlier and 

Fig. 3.  Three machine learning methods for variable selection. (A&B): Log (λ) value and the five variables 
selected by LASSO. (C&D): The results selected using the Boruta. (E&F): The RF-RFE selected five variables 
with the minimum error, and the final distribution of variable importance.
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accurate prediction of ecchymosis and intervention in risk factors can significantly benefit postoperative blood 
management and maintain the balance between coagulation and bleeding.

The rapid development of artificial intelligence has promoted advancements across various industries. Machine 
learning (ML), a branch of artificial intelligence, excels at managing, processing, and analyzing multidimensional 
data from large datasets efficiently and accurately, which can be beneficial in in clinical practice48. Unlike 
traditional statistical methods, ML adeptly identifies complex, multidimensional, and nonlinear relationships 
between clinical features in larger datasets, enhancing predictive performance. Consequently, it has achieved 
considerable success across various medical fields49.

In the field of perioperative blood management after orthopedic surgery, abundant scoring systems and 
scales have been developed to assess the risk of VTE50–52. However, predictive models that can anticipate and 
manage bleeding tendencies remain rare. To address this gap, this prospective observational cohort study was 
designed to predict postoperative ecchymosis in patients undergoing TKA. The study precisely monitors, and 
groups patients based on the presence of ecchymosis around the surgical wound and thigh, ensuring accurate 
data collection. Furthermore, the data were divided into a training set and a validation set in a 7:3 ratio based on 
chronological order. This setup enables us to build the predictive model using the training set and subsequently 
conducted a temporal validation using the held-out future cohort. This setup allows us to evaluate the model’s 
performance in a manner that closely mimics a prospective clinical application, thereby guaranteeing a realistic 
estimate of the model’s accuracy upon deployment.

In selecting features of the predictive model, a comprehensive range of perioperative indicators were included, 
encompassing patient demographics, surgical details, nutritional status, coagulation profiles, TEG data, etc. Three 
sophisticated variable selection techniques — LASSO, RF-RFE, and BORUTA—were employed and identified 
five critical risk factors, enhancing the reliability and persuasiveness of the predictive model. To further validate 
the predictive model, multiple ML algorithms were employed, achieving strong results across key performance 
metrics such as AUC, sensitivity, specificity, F1 score, and recall. These outcomes not only validate the accuracy 
and feasibility of our predictive model but also highlight its potential applicability in clinical decisions.

Ecchymosis is regarded as a manifestation of subcutaneous hematoma, with current studies confirming 
that increased perioperative blood loss is linked to a higher likelihood of ecchymosis15,17. Correspondingly, 
postoperative ecchymosis could serve as a window of systemic coagulation status, as evidenced by authoritative 
research18. CI, a parameter in TEG that reflects the overall systemic coagulation index, is more sensitive than 
traditional coagulation profiles and is widely used33. A lower CI typically indicates a tendency for bleeding, which 
aligns with our findings. Moreover, our findings suggest that the higher XCI from preoperative to postoperative 
is also a risk factor for postoperative ecchymosis. This could be attributed to XCI’s capacity to objectively reflect 
changes in coagulation states, thus influencing perioperative blood loss. Additionally, as a nutritional marker 
closely related to nutritional reserves and liver function, reduced prealbumin levels were observed to occur more 
frequently in patients with ecchymosis. It has been reported that insufficient nutrient reserves can impair the 
synthetic function of liver cells, directly leading to lowered levels of prealbumin and coagulation function53,54. 
Overall, the nutritional status of patients offers new insights into the treatment and management of ecchymosis. 
Blood clot formation and fibrinolysis are two complementary actions of coagulation55. Maintaining a balance 
between fibrinolysis and coagulation is crucial for hemostasis without excessive thrombosis risk. Excessively 
high-level activation of fibrinolysis generally indicates a bleeding tendency56. In the present study, we found that 
patients with ecchymosis exhibited higher levels of FDP on POD1, indicating heightened fibrinolysis. Certainly, 
these results further validate the rationale of our model, as its ROC values exceed those of each individual risk 
factor (Fig. 4C and D), consistently demonstrated across both the training and validation sets.

Regarding the natural history of this condition, postoperative ecchymosis typically follows a self-limiting 
course. Based on clinical observation and previous reports, the visible bruising often begins to fade within 1–2 
weeks and usually resolves completely within 2–4 weeks, following the natural process of hemoglobin breakdown 
and reabsorption. However, the impact of its initial presence on the critical early recovery phase remains a 
concern. While our model effectively identifies patients at risk, the critical next step is to investigate how this 
early postoperative event influences long-term functional outcomes and overall prognosis after TKA. Future 
prospective studies with longer follow-up periods are essential to determine if ecchymosis is an independent 
risk factor for slower recovery, reduced range of motion, or lower patient satisfaction scores at 6 or 12 months. 
Such research would definitively establish the full clinical importance of our predictive model and guide the 
development of targeted interventions for high-risk patients.

This study has some limitations. Firstly, as a single-center study, there is potential bias in patient selection, 
and external validation with data from other medical institutions could strengthen our predictive model’s 

Characteristics B SE OR CI Z P

(Intercept) 1.186 1.38029 3.274 3.274 (0.223–51.81) 0.859 0.39

Prealbumin.POD1 −0.018 0.00643 0.983 0.982 (0.969–0.994) −2.734 0.006

TBL.POD1 0.003 0.00095 1.003 1.002 (1.000–1.004.000.004) 2.628 0.009

CI.POD1 −0.464 0.15194 0.629 0.628 (0.461–0.839) −3.052 0.002

XCI −1.163 0.2083 0.312 0.312 (0.201–0.457) −5.585 < 0.001

FDP.POD1 0.113 0.028 1.119 1.119 (1.061–1.185) 4.022 < 0.001

Table 3.  Multiple logistic regression analysis in training set. Abbreviations: POD, postoperative day. TBL, 
total blood loss. FDP, fibrinogen degradation products. CI, coagulation index. XCI, CI.POD1-CI.PAD.
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Fig. 4.  Construction of the nomogram. (A): The nomogram for predicting ecchymosis. (B): The registration 
on the website for the dynamic nomogram. (C): The ROC curves of the nomogram and other variables in 
the training set. (D): The ROC curves of the nomogram and other variables in the validation set. (E): The 
nomoscore between non-ecchymosis group and ecchymosis group in the training set. (F): The nomoscore 
between non-ecchymosis group and ecchymosis group in the validation set.
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credibility. Secondly, the TBL for each patient was calculated using a formula, which could be influenced by the 
volume of perioperative fluids administered. To mitigate this, a uniform fluid regimen was implemented for all 
participants, with daily fluid intake and output meticulously recorded. Despite these limitations, this study is 
still a carefully designed prospective cohort study. All enrolled patients underwent consistent blood testing and 

Fig. 5.  Evaluation of the prediction model in the training and validation sets. (A): The ROC curve of the 
training set. CI, confidence interval. (B): The ROC curve of the validation set. (C): The calibration plot of the 
training set. (D): The calibration plot of the validation set. (E): The DCA curve of the training set. (F): The 
DCA curve of the validation set.
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Fig. 6.  Validation of the prediction model using multiple machine learning methods. (A): Variable importance 
of the validation set by Random Forest. (B): ROC curve of the validation set by Random Forest. (C): SHAP 
diagram of the validation set by Random Forest. (D): Variable importance of the validation set by Support 
Vector Machine. (E): ROC curve of the validation set by Support Vector Machine. (F): SHAP diagram of the 
validation set by Support Vector Machine. (G): Variable importance of the validation set by Extreme Gradient 
Boosting. (H): ROC curve of the validation set by Extreme Gradient Boosting. (I): SHAP diagram of the 
validation set by Extreme Gradient Boosting. (J): Variable importance of the validation set by Lightgbm. (K): 
ROC curve of the validation set by Lightgbm. (L): SHAP diagram of the validation set by Lightgbm. (M): 
Comparison of ROC curves among various machine learning methods. (N): Model performance of the various 
machine learning methods.
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related examinations, and were closely monitored for the occurrence of ecchymosis, ensuring the accuracy and 
reliability of our data.

Conclusion
In the present study, three ML algorithms were employed to screen features, and identified five independent 
risk factors contributing to ecchymosis: reduced prealbumin, CI and XCI levels, increased FDP, and TBL on 
POD1. Based on these factors, a predictive model for the occurrence of ecchymosis after TKA was developed 
and validated using various ML techniques. The implementation of this model in clinical practice may enable a 
more precise assessment of postoperative bleeding risks and thereby improve blood management and facilitate 
recovery through early intervention of identified risk factors.

Data availability
Data will be made available from the corresponding author Dr JYL on reasonable request.
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