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Myopathy is a prevalent and disabling feature of mitochondrial disease, in which skeletal muscle 
accumulates fibres with mitochondrial dysfunction in a variable mosaic pattern. This intra-
individual spatial heterogeneity, a key consideration in longitudinal assessments, remains largely 
uncharacterised, hindering mechanistic studies and clinical trials by obscuring or confounding findings. 
We quantified this variability in m.3243 A > G-related myopathy, a leading cause of adult mitochondrial 
disease. Post-mortem biopsies from quadriceps femoris and tibialis anterior muscles of four patients 
were analysed for single-fibre deficiency in oxidative phosphorylation (OXPHOS) complex I and IV, 
while homogenate mitochondrial DNA (mtDNA) copy number and m.3243 A > G heteroplasmy were 
respectively determined by quantitative PCR and pyrosequencing. Bootstrapped combinatorial 
analyses established thresholds for minimum meaningful change above the 97.5th percentile, while 
accounting for anatomical biopsy distancing. Spatial variability in the proportion of OXPHOS-deficient 
fibres increased with distancing; within the same muscle, this threshold was 13.8% for NDUFB8 
and 9.8% for MT-CO1. Variability in mtDNA copy number modestly increased with distance, while 
m.3243 A > G heteroplasmy remained largely stable, with within-muscle thresholds of 1,136 copies per 
nucleus and 8.2%, respectively. These findings provide assay-specific thresholds and offer mechanistic 
and translational insights for trial design, patient monitoring, and reliable detection of disease 
progression or therapeutic response.
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Myopathy is a common feature of mitochondrial disease, characterised by progressive weakness, fatigue, 
and exercise intolerance1–6. The mitochondrial DNA (mtDNA) mutation m.3243 A > G is the leading cause 
of mitochondrial disease, with an estimated adult prevalence of 3.5–5.7 per 100,0007–9, representing up to 
around half of all adult mitochondrial cases7,10. The m.3243 A > G mutation manifests as a broad multisystemic 
disease4–6,11–16; however, myopathy is reported in 25–89% of cases4–6,11–16, and muscle-related symptoms 
substantially contribute to patient disability, irrespective of central nervous system involvement1–4,6,16. Thus, 
our poor understanding of the pathophysiology of m.3243 A > G-related myopathy has hindered therapeutic 
development and has left patients without effective treatments17.

Individual patient muscle cells, known as fibres, exhibit variable proportions of mutated and wild-type 
mtDNA molecules, known as heteroplasmy18,19. The phenotype is recessive, where a cell-specific heteroplasmy 
threshold must be reached to impair oxidative phosphorylation (OXPHOS) function and manifest disease19–21. 
Over time, mitotic mtDNA segregation, coupled with ongoing post-mitotic replication and degradation, drives 
and sustains fibre-to-fibre shifts in m.3243 A > G heteroplasmy20,21. Alongside other factors of mitochondrial 
dynamics, this heteroplasmy shift produces the mosaic pattern of OXPHOS-deficient and normal fibres that is 
characteristic of mitochondrial myopathy19–21.
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Since 198722, research has relied on heteroplasmy levels and OXPHOS function22–25 to characterise 
mitochondrial myopathy using muscle biopsies19,26–28. Repeat muscle biopsies are often used to monitor 
mitochondrial pathological changes over time22,29–34, particularly in disease progression studies and clinical 
trials25,35–37. However, despite strong phenotypical implications21, the intra-individual variability in muscle 
pathology has never been systematically quantified or consistently addressed by previous studies. Additionally, 
technical variability, especially when assessing OXPHOS, remained uncharacterised. The absence of variability 
thresholds to guide re-sampling strategies and data interpretation limits our ability to accurately distinguish 
disease progression or treatment effects from anatomical variability or assay noise. This gap has also hindered 
our understanding of the pathological mechanisms underlying m.3243 A > G-related myopathy, further delaying 
the development of targeted, disease-modifying therapies.

This study aimed to characterise intra-individual variability in mutation heteroplasmy, mtDNA copy 
number, and OXPHOS within the skeletal muscle of patients with m.3243 A > G-related myopathy. Our primary 
objective was to define assay-specific thresholds and provide methodological guidelines to account for intra-
individual variability in longitudinal studies of disease mechanisms, biomarkers, and clinical trials, ultimately 
aiming to facilitate the translation of reliable findings into patient care. In parallel, by investigating the anatomical 
distribution of molecular pathology, we sought to generate mechanistic insights to improve interpretation 
of patient muscle phenotypes. To achieve these objectives, we systematically analysed multiple post-mortem 
biopsies of quadriceps femoris (QD) and tibialis anterior (TA) muscles from affected individuals. In doing so, 
we identified both biological and technical sources of variation affecting widely used quantification methods, 
particularly for OXPHOS. We developed a novel single-fibre OXPHOS classification method that effectively 
mitigates technical variability and enables detection of biologically meaningful changes. Although focused on 
the most common cause of adult mitochondrial myopathy, this work addresses broader knowledge gaps relevant 
to primary mitochondrial diseases and disorders involving secondary mitochondrial dysfunction37,38, and offers 
a generalisable experimental framework applicable across tissues, assays, and disease contexts.

Materials and methods
Skeletal muscle tissue biopsies
A combined total of 31 post-mortem biopsies from quadriceps femoris (QD) and tibialis anterior (TA) muscles 
across four patients with confirmed m.3243 A > G-related myopathy (Table 1) was obtained from the Newcastle 
Brain Tissue Resource (https://nbtr.ncl.ac.uk/, REC Ref: 19/NE/0008). Tissue sections from biceps femoris muscle 
biopsies, collected during anterior cruciate ligament surgery from individuals without known muscle disease, 
were provided by the Newcastle Biobank (REC Ref: 17/NE/0361) as controls for oxidative phosphorylation 
(OXPHOS) analysis. Control DNA for heteroplasmy assays was provided by the Newcastle Mitochondrial 
Research Biobank (REC Ref: 16/NE/0267). All samples, along with minimal demographic and clinical details, 
were supplied in anonymised form. Using biobank post-mortem tissues enabled us to obtain the multiple 
samples from each muscle that were necessary for a systematic assessment of intra-individual variability.

Cryosectioning
Per biopsy, six 20  μm sections were cut into microfuge tubes for homogenate DNA extraction (Fig.  1). 
Subsequently, another four 10  μm sections were collected onto one glass slide resulting in triplicate serial 
sections (S1-S3) for immunofluorescence staining alongside one no-primary control (NPC). If too long for 
stable mounting for cryo-sectioning (approximately 15 mm), biopsies were split across the fibres’ long (L) axis 
and the resulting biopsy segments (L-split biopsies) mounted on their split faces for sectioning at the original 
biopsy’s extremities. Original biopsies were measured so that anatomical distance between sections from L-splits 
was known. Control tissues were obtained as slides with two sections, including an NPC.

Patient Sex
Age (years) at 
diagnosis

Age (years) 
at death

Phenotype
# OMIM Clinical features

N 
biopsies Het. (%)

QD TA QD TA

P1 M 42 61 MELAS syndrome
# 540000

Blindness (cortical), dysarthria, myopathy, cerebellar 
ataxia, neuropathy, pyramidal signs, cognitive 
impairment

5 5 52 NA

P2 M 38 54 MELAS syndrome
# 540000

Blindness (cortical), ptosis, CPEO, dysarthria, 
myopathy, cerebellar ataxia, pyramidal signs 4 3 83 85

P3 F 34 53 MELAS syndrome
# 540000 Dysarthria, myopathy, neuropathy, pyramidal signs 6 5 72 64

P4 F 37 64 MELAS syndrome
# 540000

Blindness (cortical), CPEO, dysarthria, myopathy, 
cerebellar ataxia, neuropathy, cognitive impairment 1 2 77 86

Table 1.  Summary of patient and muscle biopsy details. Het., historical homogenate m.3243 A > G 
heteroplasmy values from post-mortem tissue. CPEO, chronic progressive external ophthalmoplegia; MELAS, 
Mitochondrial myopathy, Encephalopathy, lLctic Acidosis, and Stroke-like episodes; OMIM, online Mendelian 
inheritance in man with phenotype # code; QD, quadriceps femoris; TA, tibialis anterior; M, male; F, female; N, 
number of biopsies; NA, not available.
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Immunofluorescent staining, microscopy and image processing
Sections underwent quadruple immunofluorescence (QIF) as previously described23, measuring NDUFB8 
(OXPHOS complex I subunit), MT-CO1 (complex IV subunit), VDAC1 (mitochondrial mass marker) and 
LAMA1 (fibre membrane marker). To minimise technical variability, all sections from each patient were stained 
in a single batch. For each tissue biopsy, triplicate serial sections (S1-S3) were stained together on the same 
slide, alongside an NPC (Fig. 2a). Sections were imaged at 20x magnification using a ZEISS Cell Discoverer 7 
microscope at Newcastle University’s Bioimaging Unit. Single fibre mean pixel intensity per OXPHOS protein 
was extracted from images as previously described37. In total, QIF of 31 per-biopsy section triplicates yielded 
120,306 analysable fibre cross-sections, representing 40,102 unique patient fibres analysed over 30 μm. One 
section from each of three controls yielded between 1,836 and 4,818 analysable control fibres per batch.

  

OXPHOS classification of individual muscle fibres
When classifying fibres for OXPHOS status using the frequentist methodology24, the 95% predictive interval of 
a linear regression model fitted to batch-specific OXPHOS–VDAC1 control data defined the normal OXPHOS 
range (Fig. 2b). Patient fibres falling below this range were classified as OXPHOS-deficient. Control fibres were 
bootstrapped with replacement to generate 10,000 linear regression models per OXPHOS protein. Per-fibre 
classification uncertainty was estimated as the mean classification across all models and patient fibres were 
classified as deficient if 95% or more of the models concurred.

During fibre classification by visual inspection of OXPHOS–VDAC1 scatter plots, previously described as 
2D-mitoplots24, three investigators independently identified clusters of OXPHOS-normal patient fibres based 
on their alignment with control data, relying solely on the plots without reference to microscopy images. 
Investigators classified fibres under these clusters as OXPHOS-deficient by directly lassoing data points in 
the plots (Fig. 2c). Per-fibre classification uncertainty was estimated as the mean classification across 10,000 
bootstrapped inter-investigator classifications and patient fibres were classified as deficient if 95% or more of the 
bootstrapped classifications concurred. This method used graphical interfaces created with Python v3.9.13 and 
using the packages skimage v0.19.3, matplotlib v3.7.0, and tkinter v8.6.

The 2D-mitoplot classification method was designed to improve classification reliability while remaining 
accessible, efficient, scalable and transferable. By abstracting the underlying histology images and providing a 
simplified set of classification rules, the method does not require the classifying investigator to be familiar with 
laboratory methods, histological interpretation or detailed disease biology. This abstraction also renders the 
method largely dataset agnostic, provided that similar classification strategies and assumptions are maintained, 
particularly the use of an appropriate normalisation marker (e.g., VDAC1) to generate 2D plots in which datapoint 

Fig. 1.  Post-mortem muscle biopsy processing workflow. Example of a larger muscle biopsy that was split 
transversely across the long (L) axis of fibres into two new biopsy segments, referred to as L-splits (e.g., L1 
and L2). From each segment, six 20 μm serial sections were collected for homogenate DNA analysis. This 
was followed by collection of four 10 μm serial sections onto a glass slide: three grouped for quadruple 
immunofluorescence (QIF) staining, and a fourth used as a no-primary control (NPC). The original biopsy 
was measured along its longitudinal axis prior to splitting, and the resulting segments were mounted by their 
splitting faces, leaving the original extremities exposed for cryosectioning. Consequently, for L-split biopsies, 
the anatomical distance between sections used for mitochondrial DNA and QIF analyses is known. Smaller 
biopsies were directly mounted and cut in the same way.
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clusters can be visually classified using simple rules. Training requirements for investigators are minimal, and 
each classification event was conservatively estimated to take fewer than 5  s. Importantly, classification time 
does not increase with the number of datapoints per plot (e.g., fibres) meaning that large data subsets (e.g., tissue 
sections) can be classified efficiently. A minimum number of datapoints per cluster is nonetheless required for 
visually recognisable and stable clustering, which will depend on the underlying data distribution. Finally, due 
to its technical simplicity, the method can be implemented using widely available open-source software and 
consumer-grade hardware.

Validation of OXPHOS classification of individual muscle fibres
Visual inspection of microscopy images was considered the ‘ground truth’ for single-fibre OXPHOS status 
(Fig. 2d). As an exhaustive classification of all images is impractical, labels were derived from a representative 
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¼ mm² region per section in a subset of 57 sections. This approach yielded ground truth labels for 3,853 fibre 
segments, corresponding to approximately 5% of fibres in each section.

Bootstrapping patient fibres within each section was used to capture the uncertainty present in the proportion 
of OXPHOS-deficient fibres per section according to each method (Fig. 2e). As expected, both methods also 
classified fibres that exceeded the reference range as OXPHOS-overabundant. In keeping with the literature23,24, 
this phenotype was rare (up to 0.03% of all fibre segments according to the visual 2D-mitoplot method), 
precluding further statistical analysis.

The R package irr v0.84.1 was used to calculate per-section inter-investigator agreement of visual 2D-mitoplot 
classifications, using Fleiss’ kappa (kappam.fleiss), and to calculate agreement of each classification method with 
the ground truth, using Cohen’s kappa (kappa2). Both classification methods were benchmarked against available 
ground truth classifications. Whenever appropriate, statistical estimates were weighted by fibre count per section 
and bootstrapped 1  million times per method and OXPHOS protein to derive means and 95% confidence 
intervals (CI), comparing classification performance between methods. Benchmarking results are summarised 
and described in Supplementary Table S1. F1-score summarised methods’ performance as the harmonic mean 
of Positive Predictive Value (PPV) and Sensitivity: F1-score = 2 × (PPV × Sensitivity)/(PPV + Sensitivity)39.

DNA extraction
Tissue was kept frozen before DNA extraction using QIAamp DNA Micro kits and following QIAGEN’s 
instructions for genomic DNA isolated from tissue samples under 10  mg. Biopsies from each patient were 
extracted in the same batch.

Homogenate m.3243 A > G quantification by pyrosequencing
An amplicon spanning m.3162–3182 was generated by PCR using primers at positions m.3324−3304 and 
m.3222–3239 (GenBank Accession NC_012920.1). m.3243 A > G heteroplasmy was estimated in triplicate 
by pyrosequencing, as previously described40. As controls, mtDNA with 0% (wild type), 16% (low), 52% 
(intermediate) and 92% (high) heteroplasmy was measured alongside patient biopsies. Per-biopsy heteroplasmy 
is reported as the mean of each triplicate.

Measuring mitochondrial DNA copy number
Mitochondrial DNA copy number (mtDNAcn) was estimated by quantitative PCR (qPCR), as described 
previously41, here using a B2M-p7D1 pcDNA3.1(+) plasmid construct (Invitrogen), containing one copy of the 
target sequences for MT-ND1 and B2M, to generate qPCR standard curves42. All samples were measured using 
six replicates. qPCR is susceptible to target-specific assay variation, which can be magnified when calculating 
mtDNAcn per nucleus from quantification cycle (Cq) values (i.e., by normalising mitochondrial MT-ND1 to 
nuclear B2M). Point-estimate methods that generate qPCR standard curves by fitting linear regression models 
to dilution replicate means42 overlook this critical source of variability. Staged bootstrapping of standard 
mtDNAcn calculations42 was used to capture uncertainty around mtDNAcn values. Standard curve models were 
first bootstrapped by randomly sampling Cq values within each dilution’s replicates, with replacement, across 
100,000 iterations. Models were then randomly paired, over 100,000 iterations, with within-biopsy and per-
target Cq values to calculate B2M and MT-ND1 copy number. These values were used to generate distributions 
of mtDNAcn per nucleus that capture both the combinatorial uncertainty of B2M–MT-ND1 pairing and Cq 
variability per biopsy. Results are reported as the median of per-biopsy combinatorial distributions of MT-
ND1/(B2M/2) copies to represent mtDNA copies per nucleus.

Fig. 2.  Methods for muscle fibre OXPHOS classification based on quadruple immunofluorescent staining. 
(a) Tissue sections were stained using quadruple immunofluorescence (QIF). Fibres were segmented by 
intensity thresholding of the membrane marker as previously described37. Example microscopy image shows 
one OXPHOS protein (blue) overlaid with the mitochondrial marker (red, VDAC1); the corresponding 
segmentation mask is shown in white. Scale bar: 100 μm. Mean per-fibre QIF signal was extracted for 
classification. (b) Frequentist linear regression method: fibres classified using 95% predicted intervals (PI, grey 
lines) from linear regressions (LR, red lines) fitted to bootstrapped control data (n = 10,000 iterations). Colour 
scale represents per fibre classification certainty as the mean across models. (c) Visual 2D-mitoplot method: 
investigators manually lassoed fibres with relatively high or low OXPHOS signal compared to control-like 
or ‘normal’ patient fibres. The superimposed polygon outline illustrates how one investigator could visually 
classify fibres as OXPHOS-deficient. Colour scale represents per fibre classification certainty as the mean label 
across investigators. Control data was displayed to anchor classifications. (d) Ground truth: fibres classified 
by direct visual inspection of representative ¼ mm² regions from images. b-d) In all 2D-mitoplots24, fibres 
are shown in OXPHOS–VDAC1 space: control fibres (black); patient fibres classified for OXPHOS status as 
high (green), normal (blue), low (red), or not classified (cyan). Under the 2D-mitoplot of each classification 
effort, OXPHOS-deficient fibres are highlighted on the segmentation mask shown in (a), with the colour 
scale representing classification certainty. (e) For both classification methods in (b) and (c), distributions 
of proportions of fibres high (overabundant) or low (deficient) in each OXPHOS protein per section were 
generated by bootstrapping patient fibres. Stripchart shows an example of these per-section distributions for 
patient 1 according to the frequentist method in (b), where each dot (black) represents one bootstrapped 
value of proportion of NDUFB8-deficient fibres. Dashes are per-distribution median (red), median absolute 
deviation (cyan) and full range (black).
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Assessing variability in OXPHOS status and mitochondrial DNA genetics
Intra-individual variability was assessed by generating probabilistic distributions of between-biopsy differences 
through subtraction of random pairs of values between biopsies within a patient. Pairing biopsies from the 
same muscle assessed intra-muscle variability, while pairing between different muscles assessed inter-muscle 
variability. For m.3243 A > G heteroplasmy, replicate values were directly paired between biopsies. Conversely, 
for OXPHOS deficiency and mtDNAcn, pairing was done using bootstrapped estimates from per-biopsy 
distributions generated as described herein. Variability in OXPHOS deficiency was also assessed between 
adjacent sections with pairing at section level for all comparisons. Distributions of absolute differences were 
used to derive medians with 2.5th − 97.5th percentile values as interpretable estimates of expected variability.
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Statistical analysis
Unless otherwise stated, data analyses and plotting were performed using base R v4.5.0 and Cairo v1.6.2 for 
R. Equally, images of in-situ OXPHOS classifications of QIF images were generated using Python v3.9.13 with 
PIL (Pillow) v9.4.0, NumPy v1.26.4, pandas v1.5.3, SciPy v1.10.0, Shapely v2.0.5, and OpenCV v4.7.0. Whenever 
appropriate, a p value of less than 0.05 was considered statistically significant. No custom algorithms, automation, 
machine learning, or code packages were developed for this work. Analysis scripts are available from the authors 
upon reasonable request.

Results
Frequentist OXPHOS classification methods often misclassify fibres
The frequentist classification method, based on linear regression predictive models, produced median 
bootstrapped differences in OXPHOS deficiency between serial sections of 5.1% (0.2–38.6: 2.5th − 97.5th 
percentile) for NDUFB8 and 3.0% (0.1–18.0) for MT-CO1 (Fig. 3a). Inter-biopsy differences within the same 
muscle and patient were larger, at 11.0% (0.5–50.2) and 5.5% (0.2–23.7), respectively.

  
Bootstrapped per-section Cohen’s kappa values comparing single-fibre classifications to the ground truth 

indicated moderate mean agreement, with mean(κ) = 0.569 for NDUFB8 and 0.524 for MT-CO1, weighted 
by per-section fibre count. Despite negligible False Negative Rates, the bootstrapped weighted mean False 
Positive Rate for NDUFB8 was 33.2%, with a classification precision of 58.3%, indicating a consistent tendency 
to overestimate deficiency. For MT-CO1, these values were 7.6% and 43.5%, respectively. Accordingly, the 
mean weighted F1-score39 was 69.9% for NDUFB8 and 58.3% for MT-CO1. Detailed statistics on classification 
performance are provided in Supplementary Table S1. We identified systematic overall signal disparities between 
control and patient samples that contribute to recurrent fibre misclassification, while signal variation accounts 
for inconsistent classifications even between adjacent sections (Fig. 3b–d). Inspection of OXPHOS–VDAC1 
scatter plots, also known as 2D-mitoplots24, further revealed dense clusters of patient fibres, as illustrated by Fig. 
3c, which were confirmed to be OXPHOS-normal in the ground truth dataset; these clusters formed the basis 
for our improved classification method below.

The 2D-mitoplot pipeline generated reliable single-fibre classifications leading to consistent 
estimations of OXPHOS-deficiency across tissues
In the visual 2D-mitoplot classification method, inter-investigator consistency was confirmed by per-section 
Fleiss’ kappa statistics, yielding mean(κ) = 0.921 (95% Confidence Interval (CI): 0.907–0.935) for NDUFB8 
and 0.810 (95% CI: 0.787–0.833) for MT-CO1, with p < 1 × 10− 16. Bootstrapped per-section Cohen’s kappa 
values comparing single-fibre classifications to the ground truth yielded high agreement, with mean(κ) = 0.908 
for NDUFB8 and 0.799 for MT-CO1, weighted by per-section fibre count. The bootstrapped weighted mean 
False Positive Rate was 4.0% for NDUFB8, with a classification precision of 93.4%, higher than the frequentist 
approach (58.3%). For MT-CO1, these values were 0.6% and 86.7%, respectively. However, although False 
Negative Rates remained low for NDUFB8, with a mean of 5.5%, this was 20.2% for MT-CO1. This is potentially 
due to the small numbers of MT-CO1-deficient fibres which affected classification and statistical stability. For 
instance, while all sections had ≥ 5 NDUFB8-deficient fibres in the ground truth dataset, for MT-CO1 this was 
only observed in 14/57 sections, with up to 7 sections having insufficient data to complete statistical analysis. 
Detailed statistics on classification performance are provided in Supplementary Table S1. The visual 2D-mitoplot 
classification method successfully overcame signal disparities between control and patient samples, and between 
serial sections, to generate consistent and biologically relevant results (Fig. 4).

Fig. 3.  Intra-individual variability in OXPHOS deficiency using the frequentist linear regression classification 
method. a) Schematic overview of tissue sampling and processing from post-mortem (PM) quadriceps femoris 
(QD) and tibialis anterior (TA) muscles. OXPHOS variability was estimated by randomly pairing values from 
per-section distributions of proportions of OXPHOS-deficient fibre (see Fig. 2e) and computing their absolute 
differences across 1 million iterations. Plots display iteration density (y-axis) of absolute differences (x-axis), 
with dashed lines indicating the median (red) and 2.5th − 97.5th percentiles (black). All fibre segments 
included. (1) Estimate differences between serial section triplets evaluated per-biopsy inter-replicate variability, 
independent of muscle or patient. (2) Estimate differences between sections from different biopsies within 
the same muscle and patient evaluated intra-muscle variability. Curved white arrows indicate intra-group 
pairing. b) Example of single-fibre microscopy image cut-outs of equivalent regions across a serial section 
triplet (S1-S3) displaying overlaid NDUFB8 (blue) and VDAC1 (red) signals. NDUFB8-deficient fibres appear 
red due to absence of blue signal, while normal fibres appear cyan due to blue–red signal overlay. Scale bar: 
100 μm. c) NDUFB8 2D-mitoplots24 display all analysed fibres corresponding to the section triplet shown 
in (b), illustrating sensitivity of the linear regression classification method to inter-replicate signal variation 
and patient–control disparity, which reduces classification consistency and precision. Individual fibres are 
plotted by mean NDUFB8–VDAC1 signal, with a colour scale indicating mean classification across 10,000 
bootstrapped models: green = higher than control [+ 1], blue = as control [0], red = lower than control [–1]. 
Linear regression fits (LR, red lines) and 95% prediction intervals (PI, grey lines) are superimposed. Fibres with 
mean classification ≤ − 0.95 were considered as deficient to compute the reported per-section proportions of 
deficiency. d) Segmentation masks corresponding to images in (b) show deficient fibres highlighted in a colour 
scale indicating classification certainty across models. These examples illustrate inconsistent classifications 
across sections and low precision relative to microscopy images.

◂
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Despite offering substantially improved classification reliability over the frequentist method, the 2D-mitoplot 
approach remained highly efficient. In our study, we conservatively estimated that classifying all 93 sections 
for both deficiency and overabundance across two proteins took approximately 20 to 25 min per investigator, 
corresponding to 372 classification events encompassing 120,306 fibres.

Variability in OXPHOS deficiency increases with anatomical distance between samples
In keeping with visual inspection of images, the visual 2D-mitoplot classification method confirmed low 
variability in the proportion of OXPHOS-deficient fibres between adjacent sections with median bootstrapped 
differences of 1.1% (0.0–6.2: 2.5th − 97.5th percentile) for NDUFB8 and 0.8% (0.0–4.4) for MT-CO1 (Fig. 4a). 
Inter-biopsy differences within the same muscle and patient were only slightly higher at 3.9% (0.2–13.8) for 
NDUFB8 and 2.2% (0.1–9.8) for MT-CO1. Of note, variability across L-split biopsies was modestly higher than 
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between any biopsy, with mean differences of 5.3% (2.3–14.8) for NDUFB8 and 1.8% (0.1–11.9) for MT-CO1 
(Fig. 5), despite comparing sections anatomically separated by only 14.4 ± 3.6 mm (mean ± standard deviation). 
These findings should be interpreted cautiously, as only four pairs of L-split biopsies were included in the dataset, 
and precise anatomical distances were otherwise unknown. Restricting biopsy pairings to either muscle revealed 
higher variability in tibialis anterior (TA), especially for NDUFB8. Mean differences in quadriceps femoris (QD) 
were 3.4% (0.2–11.3) for NDUFB8 and 2.5% (0.1–9.2) for MT-CO1, while in TA, they were 5.3% (0.2–14.4) 
and 2.0% (0.1–10.5), respectively. Finally, pairing sections between muscles within a patient led to median 
differences of 6.8% (0.3–15.3) and 4.8% (0.2–12.7), respectively. MT-CO1 deficiency was substantially lower 
than NDUFB8 deficiency, averaging 9.4 ± 5.8% (mean ± standard deviation) compared to 29.7 ± 8.7%, across 
all sections. This could explain the tendency for higher variability for NDUFB8 deficiency, compared to MT-
CO1; however, this difference became less marked when comparing sections between muscles. For comparison, 
these results are summarised in Fig. 5b; Table 2, alongside corresponding variability results according to the 
frequentist classification method.

Variability in homogenate mitochondrial DNA copy number modestly increases with 
anatomical distance between samples
From bootstrapped mtDNA copy number (mtDNAcn) distributions per biopsy, we estimated a mean mtDNAcn 
per nucleus of 1,476 ± 517 copies (mean ± standard deviation), ranging from 608 to 2,788, across the 31 biopsies 
from all patients, which is in keeping with previous findings43,44. Bootstrapping the differences in mtDNAcn, as 
previously described for OXPHOS deficiency, resulted in modestly less variability across biopsies of the same 
muscle and patient, with a median difference of 349 copies (15–1,136: 2.5th − 97.5th percentile), compared 
to that of pairing biopsies from different muscles, which was 409 (19–1,244) copies (Fig. 6a, b). Therefore, a 
variability increase linked to anatomical distancing was modest and the observed wide variability ranges 
were in accordance with the much higher technical noise of qPCR data compared to OXPHOS quadruple 
immunofluorescence (QIF) or m.3243 A > G pyrosequencing. Restricting biopsy pairings to either muscle 
showed a narrower variation range for TA, with 380 (19–1,022) copies, but a lower median variability for QD, 
with 305 (12–1,237) copies.

Homogenate m.3243 A > G heteroplasmy was mostly stable across biopsies within patients
Within each patient, m.3243 A > G heteroplasmy was consistent between muscles, with a pooled standard 
deviation of 2.9% across all patients and appearing consistent with historical measurements as shown in 
Table 1. Whilst the high heteroplasmy estimates observed in P2-4 are in keeping with their Mitochondrial 
myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like episodes (MELAS) phenotype, P1 exemplifies the 
well-established weak correlation between m.3243 A > G heteroplasmy and clinical severity11,45.

Bootstrapping differences in heteroplasmy between biopsies, like with mtDNAcn, suggests that m.3243 A > G 
heteroplasmy is slightly less variable within muscle than between muscles within each patient, with estimated 
median differences of 2.3% (0.1–8.2: 2.5th − 97.5th percentile) and 3.5% (0.2–9.3), respectively (Fig.  6a, c). 
Therefore, a variability increase linked to anatomical distancing was modest for heteroplasmy despite low 
technical noise between pyrosequencing replicates. Restricting biopsy pairing to either muscle revealed a 
narrower variation range for QD, 3.2% (0.1–7.7), but a lower median variability for TA, 1.6% (0.1–8.7).

Fig. 4.  Intra-individual variability in OXPHOS deficiency classification using the visual 2D-mitoplot method. 
a) Schematic overview of tissue sampling and processing from post-mortem (PM) quadriceps femoris (QD) 
and tibialis anterior (TA) muscles. OXPHOS variability was estimated by randomly pairing values from per-
section distributions of proportions of OXPHOS-deficient fibre and computing their absolute differences 
across 1 million iterations. Plots display iteration density (y-axis) of absolute differences (x-axis), with dashed 
lines indicating the median (red) and 2.5th − 97.5th percentiles (black). All fibre segments included. (1) 
Estimate differences between serial section triplets evaluated per-biopsy inter-replicate variability, independent 
of muscle or patient. (2) Estimate differences between sections from different biopsies within the same muscle 
and patient evaluated intra-muscle variability. Curved white arrows indicate intra-group pairing. b) Example 
of single-fibre microscopy image cut-outs of equivalent regions across a serial section triplet (S1-3) displaying 
overlaid NDUFB8 (blue) and VDAC1 (red) signals. NDUFB8-deficient fibres appear red due to absence of 
blue signal, while normal fibres appear cyan due to blue–red signal overlay. Scale bar: 100 μm. c) NDUFB8 
2D-mitoplots display all analysed fibres from the section triplet shown in (b), illustrating the robustness of the 
visual 2D-mitoplot method, which enables consistent and precise classification of fibres across triplet sections, 
regardless of inter-replicate signal variation or patient-control disparity. Individual fibres are plotted by mean 
NDUFB8–VDAC1 signal, with a colour scale indicating their mean classification across 10,000 bootstrapped 
inter-investigator classifications: green = higher than normal [+ 1], blue = normal [0], red = lower than normal 
[–1]. Fibres with mean classification ≤ − 0.95 were considered as deficient to compute the reported per-section 
proportions of deficiency. d) Segmentation masks corresponding to images in (b) show deficient fibres 
highlighted in a colour scale indicating classification certainty across bootstrapped investigator classifications. 
These examples illustrate consistent classification across sections and high precision when compared to 
microscopy images and the frequentist method in Fig. 3.

◂
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Discussion
For decades, skeletal muscle biopsy has remained the gold standard for histochemical and genetic assays 
for confirmation of mitochondrial disease22–28, assessing the progression of pathology in mitochondrial 
myopathy22,29–34, and measuring outcomes in clinical trials25,35–37.

Here, we assess intra-individual variation in OXPHOS deficiency, mtDNA copy number (mtDNAcn), and 
m.3243 A > G heteroplasmy at a single timepoint, both within and between two commonly biopsied muscles, 
quadriceps femoris (QD) and tibialis anterior (TA). We provide systematic variability threshold estimates as 
practical benchmarks for distinguishing genuine chronological change from technical or anatomical variability. 
We propose guidelines for optimising timepoint re-biopsy strategies and introduce a novel single-fibre OXPHOS 
classification method to mitigate unwanted sources of variability in these metrics. Together, these efforts aim 
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Fig. 5.  Variability in OXPHOS deficiency with increasing anatomical distance, comparing classification 
methods. (a) Schematic overview of tissue sampling and processing from post-mortem (PM) quadriceps 
femoris (QD) and tibialis anterior (TA) muscles. OXPHOS variability was estimated by randomly pairing values 
from per-section distributions of proportions of OXPHOS-deficient fibre (see Fig. 2e) and computing their 
absolute differences across 1 million iterations. Six pairing strategies were defined by increasing anatomical 
distance as follows: (1) Between section triplets: involved pairing sections within the same biopsy, with 
differences pooled across all muscles and patients to estimate intra-biopsy variability; (2) Between L-split 
equivalents: paired sections between corresponding L-split biopsies (i.e., L1 and L2), with differences pooled 
across all L-split groups to estimate short-range intra-muscle variability; (3) Between biopsies within QD 
or TA: paired sections across different biopsies within the same muscle, with differences from both muscles 
pooled to estimate overall intra-muscle variability; (4) Between biopsies within QD and (5) Between biopsies 
within TA: followed the same approach as (a3) but were restricted to QD or TA, respectively; and (6) Between 
different muscles: paired sections between QD and TA to estimate inter-muscle variability. All comparisons 
were performed within the same patient, with results pooled across patients. Curved white arrows indicate 
intra-group pairing and the black straight double arrow indicates inter-group pairing. b) Distributions of 
absolute differences in proportions of OXPHOS-deficient fibres organised by OXPHOS protein (rows, right 
labels), pairing strategies, as described in (a1–6), representing increasing anatomical distance (columns, top 
labels), and per classification method (x-axis labels): Linear regression (LR) in blue and visual 2D-mitoplot 
(2Dmt) in yellow. Vertical density plots display iteration densities (x-axis) of absolute differences in deficiency 
(y-axis) showing full range of differences, while box plots show medians and interquartile ranges (IQR) with 
whiskers representing the 2.5th − 97.5th percentiles. Axis scaling uses x ↦ sign(x) ⋅ ∣x∣0.7 for display only; raw 
values were preserved. Gridlines are spaced at 10% intervals. Patient and biopsy details are provided in Table 1.

◂

NDUFB8 Linear regression classification Visual 2D-mitoplot classification

Comparison Median [IQR] (%) 2.5th − 97.5th centiles (%) Full range (%) Median [IQR] (%) 2.5th − 97.5th centiles (%) Full range (%)

1. Intra-biopsy 5.1
[2.4–12.6] 0.2–38.6 0.0–57.0 1.1

[0.4–2.2] 0.0–6.2 0.0–12.5

2. Intra-L-split 8.6
[4.4–15.1] 0.4–31.7 0.0–44.0 5.3

[3.7–7.2] 2.3–14.8 1.0–20.6

3. Intra-muscle 11.0
[5.2–19.9] 0.5–50.2 0.0–73.5 3.9

[1.8–7.6] 0.2–13.8 0.0–19.8

4. Intra-QD 9.3
[4.7–15.8] 0.5–45.2 0.0–62.3 3.4

[1.6–6.0] 0.2–11.3 0.0–14.3

5. Intra-TA 13.6
[5.9–24.1] 0.6–56.7 0.0–74.8 5.3

[2.0–9.4] 0.2–14.4 0.0–20.4

6. Inter-muscle 12.7
[5.9–25.2] 0.6–58.9 0.0–76.3 6.8

[3.5–10.3] 0.3–15.3 0.0–22.5

MT-CO1 Linear regression classification Visual 2D-mitoplot classification

Comparison Median [IQR] (%) 2.5th − 97.5th centiles (%) Full range (%) Median [IQR] (%) 2.5th − 97.5th centiles (%) Full range (%)

1. Intra-biopsy 3.0
[1.3–7.0] 0.1–18.0 0.0–29.3 0.8

[0.4–1.8] 0.0–4.4 0.0–9.3

2. Intra-L-split 4.3
[2.0–11.0] 0.2–20.4 0.0–35.3 1.8

[0.9–4.1] 0.1–11.9 0.0–18.2

3. Intra-muscle 5.5
[2.1–12.3] 0.2–23.7 0.0–38.1 2.2

[1.2–3.9] 0.1–9.8 0.0–17.6

4. Intra-QD 5.3
[1.9–11.8] 0.2–20.9 0.0–33.8 2.5

[1.2–4.3] 0.1–9.2 0.0–13.7

5. Intra-TA 5.6
[2.3–13.1] 0.2–25.5 0.0–37.4 2.0

[1.2–3.3] 0.1–10.5 0.0–17.3

6. Inter-muscle 5.7
[2.1–12.8] 0.2–27.2 0.0–39.8 4.8

[1.9–8.9] 0.2–12.7 0.0–19.5

Table 2.  Variability estimates summaries of the variability distributions shown in Fig. 5, estimated by 
randomly pairing values from per-section distributions of proportions of OXPHOS-deficient fibres (see 
Fig. 2e) and computing their absolute differences across 1 million iterations. Six pairing strategies were defined 
by increasing anatomical distance as follows: (1) Intra-biopsy (between section triplets): involved pairing 
sections within the same biopsy, with differences pooled across all muscles and patients to estimate intra-
biopsy variability; (2) Intra-L-split (between L-split equivalents): paired sections between corresponding 
L-split biopsies (i.e., L1 and L2), with differences pooled across all L-split groups to estimate short-range 
intra-muscle variability; (3) Intra-muscle (between biopsies within QD or TA): paired sections across 
different biopsies within the same muscle, with differences from both muscles pooled to estimate overall intra-
muscle variability; (4) Intra-QD (between biopsies within QD) and (5) Intra-TA (between biopsies within 
TA): followed the same approach as (3) but were restricted to QD or TA, respectively; and (6) Inter-muscle 
(between different muscles): paired sections between QD and TA to estimate inter-muscle variability. All 
comparisons were performed within the same patient, with results pooled across patients and presented as 
percentages. QD, quadriceps femoris; TA, tibialis anterior; IQR, interquartile range.
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Fig. 6.  Variability in mitochondrial DNA copy number and m.3243 A > G heteroplasmy with increasing 
anatomical distance. a) Schematic overview of tissue sampling and processing from post-mortem (PM) 
quadriceps femoris (QD) and tibialis anterior (TA) muscles. Variability in mtDNA copy number per nuclear 
genome (mtDNAcn) was estimated by randomly drawing pairs of values from per-biopsy mtDNAcn 
distributions and computing their absolute differences across 100,000 iterations. The same approach 
was applied to estimate variability in m.3243 A > G heteroplasmy, based on triplicate pyrosequencing 
measurements per biopsy. Four pairing strategies were defined by increasing anatomical distance as follows: 
(1) Between biopsies within QD or TA: paired biopsies within the same muscle, with differences from both 
muscles pooled to estimate overall intra-muscle variability; (2) Between biopsies within QD and (3) Between 
biopsies within TA: followed the same approach as (a1) but were restricted to QD or TA, respectively; and 
6. Between different muscles: paired biopsies between QD and TA to estimate inter-muscle variability. All 
comparisons were performed within the same patient, with results pooled across patients. Curved white arrows 
indicate intra-group pairing and the black straight double arrow indicates inter-group pairing. b) Variability 
in mtDNAcn across the four biopsy pairing strategies (a1–4; column labels). Vertical density plots display 
iteration densities (x-axis) of absolute differences in mtDNAcn (y-axis) showing full range of differences, while 
box plots show medians and interquartile ranges (IQR) with whiskers representing 2.5th − 97.5th percentiles. 
c) Variability in m.3243 A > G heteroplasmy using the same four biopsy pairing strategies. Density plots and 
boxplots as in (b) but showing iteration densities (x-axis) plotted against absolute differences in m.3243 A > G 
heteroplasmy (y-axis). Patient and biopsy details are provided in Table 1.
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to enhance the detection of longitudinally meaningful changes and increase confidence that positive findings 
reflect true time-dependent changes.

Studying per-biopsy serial section replicates led us to conclude that frequentist methods of determining 
single-fibre OXPHOS status23,24 are highly susceptible to deviations in quadruple immunofluorescence (QIF) 
data, despite best technical practice. This susceptibility led to unreliable classifications and non-biologically 
determined variability in OXPHOS deficiency across replicates. This variability likely masks genuine biological 
differences or may be misinterpreted as real chronological change. Along individual fibres, OXPHOS-deficient 
segments are interspersed with normal regions but do not spatially align across fibres24,46, and OXPHOS status 
switching could not have caused the wide variability observed between intra-biopsy section replicates by the 
frequentist method (Fig. 3). Although matching control and patient tissues would be best practice to reduce 
control-patient QIF disparity, our data indicate that additional latent factors substantially undermine the 
reliability of frequentist classification models based on strict normality thresholds derived from control data. 
Our visual 2D-mitoplot24 manual classification method effectively addresses these challenges by using clusters 
of patient fibres identified as OXPHOS-normal as internal classification references within the same tissue 
section (Fig. 2c). This approach successfully minimises latent factors between the reference and abnormal fibre 
populations, enabling reliable fibre classification aligned with microscopy observations (Fig. 4), and offering an 
efficient means of analysing large numbers of tissues and fibres.

Importantly, the 2D-mitoplot method does not impose specific tissue size requirements; however, a 
minimum number of datapoints (e.g., fibres) is needed for the visual recognition of data clusters that underpin 
the classification logic. We did not encounter sections with insufficient fibre numbers in our dataset but based on 
our experience with 2D-mitoplot outputs, and assuming all other variables are comparable, we would consider 
a minimum of around 100 fibres sufficient for confident OXPHOS deficiency classification. This threshold will 
vary with disease genotype, protein target, and imaging technique, all of which influence cluster density and 
separation and therefore affect classification performance. The expected prevalence of each fibre phenotype is 
also relevant, as rarer OXPHOS states, such as overabundant fibres, require larger fibre counts to ensure both 
reliable classification and adequate sampling for meaningful variability estimates.

Our variability analysis confirms that OXPHOS deficiency varies minimally between replicate sections and 
increases with greater anatomical separation between compared sections (Fig. 5b). The largest increase occurs 
between intra-biopsy variability and other intra-muscle variability estimates, with only a modest additional 
increase seen in inter-muscle variability. The effect of anatomical proximity on variation in mtDNAcn and 
m.3243 A > G heteroplasmy was even more modest (Fig. 6). In practice, sampling the exact same muscle region 
across follow-up biopsies is not feasible, and our intra-biopsy comparisons (i.e., section replicates and L-splits) 
cannot be replicated in real-word longitudinal studies. The minimum feasible anatomical proximity is to 
compare biopsies within the same muscle, for which we provide variability thresholds essential for interpretation 
of longitudinal data in m.3243 A > G-related myopathy.

For OXPHOS deficiency using QIF and our reliable visual 2D-mitoplot classification method, we propose 
that, when comparing biopsies within the same muscle, only absolute timepoint differences exceeding 13.8% 
for NDUFB8 and 9.8% for MT-CO1 may be interpreted as time-dependent, as these values exceed the 97.5th 
percentile of the observed variability. Additionally, due to its size and modestly lower variability in our data, 
QD may be a more suitable candidate than TA for QIF OXPHOS studies involving repeated biopsies (Table 2).

Homogenate mtDNAcn varied substantially across biopsies, likely reflecting its known high technical 
variability43,44, as well as the presence of mtDNAcn extremes observed in our data both within and between 
muscles. We estimate that, when comparing biopsies within the same muscle, only absolute timepoint differences 
in mtDNAcn exceeding 1,136 copies per nuclear genome may be interpreted as time-dependent, as they surpass 
the 97.5th percentile of observed mtDNAcn variability (Fig. 6b). This threshold was lower within TA than QD 
(1,022 vs. 1,237 copies), with that of QD only marginally below the threshold of 1,244 copies observed for 
inter-muscle comparison. However, median differences indicate that QD was overall less variable than TA (305 
vs. 380 copies). In contrast, m.3243 A > G heteroplasmy levels were consistent across replicates and biopsies, 
showing low variation even between different muscles (Fig. 6c). We estimated that only absolute differences 
exceeding 8.2% between biopsies within the same muscle may be interpreted as time-dependent changes, as they 
surpass the 97.5th percentile of observed m.3243 A > G heteroplasmy variability. Here, the threshold was lower 
within QD than TA (7.7 vs. 8.7%), with that of TA only marginally below the 9.3% threshold for inter-muscle 
comparisons. However, median differences indicate that TA was overall less variable than QD (1.6 vs. 3.2%).

Optimally, anatomical proximity between follow-up biopsies should be prioritised, and independent 
experimental replicates (e.g., serial sections) are recommended to confirm technical and classification 
consistency. With patient comfort and safety in mind, time between biopsies should allow sufficient healing 
to ensure that obtaining follow-up samples from the same area becomes ethically and scientifically acceptable. 
However, it is important to note that the overall increase in variability between intra-muscle and inter-muscle 
comparisons was modest for OXPHOS deficiency and marginal for mtDNA experiments. Therefore, if short 
follow-up intervals are unavoidable, increasing the anatomical distance between biopsy sites to avoid regenerative 
changes is not expected to substantially introduce additional spatial variability. Previous interventional studies 
using similar mitochondrial assays to assess the effect of exercising in muscle mitochondrial function in other 
myopathic conditions, have reported good results with follow-up biopsies taken at least 2 cm apart and after a 
minimum interval of 12 weeks25,37. In our study, differences in variability between TA and QD were also modest 
and inconsistent across assays, not strongly supporting the choice of either muscle. Biopsy strategies should 
instead be guided by other experimental requirements, considering that QD is a larger muscle ideal for repeated 
biopsies, while TA biopsy procedures are less invasive.

Altogether, our findings further provide valuable insights into m.3243 A > G-related myopathy suggesting 
that real-world variability in OXPHOS dysfunction, mtDNAcn and heteroplasmy tends to be relatively similar 
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within muscle tissues and at least between QD and TA. To our knowledge, no other studies have comprehensively 
assessed intra-individual variability in widely used genetic and histochemical assays for mitochondrial disease 
and dysfunction. Most published data are either restricted to small series or case reports33,34, or involved limited 
sampling or assays not comparable to ours25,36,47–49, precluding meaningful direct comparisons with our data. 
Noticeably, one study using the same QIF OXPHOS assay reported a reduction in the proportion of OXPHOS-
deficient fibres following 12 weeks of resistance exercise training in individuals with myotonic dystrophy type 
137. Biopsies were obtained from the same QD but intentionally spaced ≥ 2 cm apart to avoid regenerative 
changes induced by the first biopsy. Nonetheless, even studies that considered sound re-biopsy strategies25,37 
paid limited attention to the impact of intra-muscle variability and employed insufficient experimental replicates 
to assess methodological reliability or define tolerance thresholds for interpreting findings.

Evidence suggests that QIF against NDUFB8 and MT-CO1 correlates well with both traditional COX/SDH 
histochemical assays23 and modern, spatially resolved, antibody-based assays, such as imaging mass cytometry24, 
when assessing OXPHOS function in skeletal muscle. Likewise, fibres’ OXPHOS status based on these protein 
markers often correlates with their status for other OXPHOS proteins, particularly within the same complex24. 
Yet, these studies revealed that this is not always the case and that the threshold for deficiency20 can be specific 
for genotype, OXPHOS complex and even protein23,24. Therefore, while our results provide valuable insights 
for inferring thresholds to interpret existing and future data, they are limited by our small patient cohort and 
only directly applicable to studies on m.3243 A > G using equivalent targets and methodologies, and are not 
directly applicable to other diseases, techniques or molecular markers. Ideally, similar studies should be repeated 
across a range of diseases that share comparable mitochondrial pathology, using equivalent assays across a 
range of molecular markers to define appropriate disease-, tissue-, assay- and marker-specific threshold values. 
Similar conclusions may be drawn from our genetic data; however, these are further limited by our use of tissue 
homogenate. In future studies, single-fibre approaches should be employed to better capture the mosaic pattern 
of muscle pathology in these conditions. Additionally, homogenate assays unavoidably include other cell types 
besides fibres, which may particularly skew mtDNAcn per nucleus measurements, an issue avoided by single-
fibre approaches. However, although our study focused on muscle pathology in mitochondrial myopathy, the 
methodology is tissue agnostic and could be applied to tissues that are more relevant for investigating non-
myopathic mitochondrial phenotypes.

While we were able to obtain multiple samples from each patient’s muscle, yielding a substantial number of 
fibres from a diverse set of sections and enabling robust estimation of intra-individual variability, identifying 
cases with sufficient material of adequate quality proved challenging. As a result, our study includes a limited 
number of cases. Larger cohorts will be required to more comprehensively characterise intra-individual 
variability across target patient populations and to increase confidence in the generalisability of these thresholds.

Although our methodologies could be validated to increase precision of diagnostic studies of muscle 
biopsies, due to the widespread availability of fast, cost-effective genetic testing using minimally invasive samples 
(e.g., blood, urine or buccal swab), muscle biopsy is now a rare diagnostic requirement, even in mitochondrial 
myopathy50. However, clinical prognostication remains a challenge in mitochondrial myopathies in part 
due to methodological unreliability and lack of reference data. Our work directly addresses these limitations 
by providing a methodology to both develop and apply benchmarks for interpreting natural variability and 
longitudinal change in clinical studies elucidating disease heterogeneity and mechanisms, validating non-
invasive biomarkers, or testing therapies, all using OXPHOS, mtDNAcn or variant heteroplasmy as reference 
measures of target-tissue pathology. Therefore, our work has the potential to support the development of more 
robust disease models, stratification and prognostication tools, as well as the implementation of new treatments.

In conclusion, we demonstrate that traditional frequentist OXPHOS classification methods are unreliable 
due to assay- or spatial-dependent variability and propose our validated 2D-mitoplot method as a reliable, 
efficient, and scalable alternative that requires minimal resources and expertise. Provided that the data 
structure, classification logic, and overarching objectives remain similar, our method is agnostic to the 
source of data, including laboratory technique, tissue type, disease context, or spatial unit, making it readily 
adaptable for datapoint classification across a wide range of experimental settings. We also demonstrate that 
longitudinal studies should prioritise spatial proximity of follow-up biopsies to mitigate spatial-dependent 
variability, increasing the chances of detecting meaningful time-dependent changes. However, our data also 
suggests that intra-individual variability in m.3243 A > G-related muscle pathology is relatively homogeneous 
across skeletal muscle tissues, in keeping with the relatively generalised myopathic phenotype of patients. We 
provide the most detailed characterisation of variability in widely used assays measuring OXPHOS-deficiency, 
mtDNAcn and m.3243  A > G heteroplasmy in skeletal muscle and propose tolerance thresholds to aid in 
interpretation of these results in clinical studies into disease progression, ageing or clinical trials. Nevertheless, 
we acknowledge the limitations of our work, particularly the small number of cases and the inherent challenges 
of establishing comprehensive reference values in mitochondrial diseases due to their remarkable genotype-
phenotype heterogeneity and rarity, especially when considering individual clinical entities. Consequently, a 
more comprehensive understanding of the expected natural variability of molecular markers will require the 
replication of similar studies on larger cohorts across a broad spectrum of mitochondrial myopathies.

Data availability
The data that support the findings of this study are available upon reasonable request and if in accordance with 
the respective research ethics boards policies.
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