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OPEN A novel approach for high
impedance fault detection in
resonant grounding systems based
on statistical characteristics
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High impedance faults (HIF) in the resonant grounding system of distribution networks pose significant

challenges for traditional protection devices, which often fail to detect and eliminate these faults
promptly. The difficulty in setting an appropriate threshold and ensuring reliable detection at low
signal-to-noise ratios further complicates the issue. To overcome these limitations, this paper presents
a novel approach that analyzes the kurtosis and skewness characteristics of the single-phase high-
impedance grounding zero-sequence current waveform, using the Emanuel model as a basis. The
proposed method detects HIF based on a kurtosis threshold and pinpoints the faulted line using the
skewness coefficient, introducing a more reliable and precise detection technique. Simulation and field
tests validate the robustness of this approach, demonstrating strong resistance to noise interference
and enhanced fault detection capabilities.

Keywords Resonant grounding system, Distribution network, Fault detection, Faulty line selection, High

impedance fault

Abbreviations

a Count index of the sampling window in a power-frequency period
fs Sampling frequency of the zero-sequence current (Hz)

1. System grounding capacitive current (A)

io Zero-sequence current (A)

log Zero-sequence current of feeder g (A)

i(N) Sampled zero-sequence current sequence at sample index N (A)

j Cycle index in the observation window

K1 — K4 Kurtosis coeflicients of the zero-sequence current for lines L1 — L4 in a given condition
Kio(Ta/2),q Half-cycle kurtosis of the zero-sequence current of feeder g in sampling window a
Ly — Ly Four feeders (lines) in the studied distribution network

Mo — Moa Mean half-cycle skewness indices of lines L1 — L4

Mog(5) Half-cycle skewness of zero-sequence current of feeder g in cycle j
m Total number of lines/feeders in the network

N Number of samples per power-frequency cycle

Ny, Number of samples per half-cycle

P Kurtosis variance index used for HIF discrimination

Pset Threshold value of the kurtosis variance index

Dog Mean full-cycle skewness of feeder g over the observation window

q Index of a specific feeder or line

Qoq Mean half-cycle skewness of feeder over the observation window
Ry Fault transition resistance between conductor and ground (Q or kQ))
So1 — Soa Mean full-cycle skewness indices of lines
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Soq(4) Full-cycle skewness of zero-sequence current of feeder g in cycle j
T Fundamental power-frequency period (s)

Uy Zero-sequence voltage of the busbar (V)

Uph Phase (line-to-neutral) voltage (V)

V, Negative DC equivalent voltage source in the Emanuel HIF model (V)
Vo Positive DC equivalent voltage source in the Emanuel HIF model (V)
i i-th sampled value of a data sequence

T Mean value of a data sequence

V4 Starting index of the sampling window in a period

i Mean or first central moment of a data sequence

L r-th central moment of a data sequence
o Standard deviation of a data sequence
o2 Variance of a data sequence

Electricity distribution networks often operate in complex environments with various potential hazards. Single-
phase high-impedance grounding faults frequently occur due to non-ideal conductors such as tree branches,
sand, or water bodies like ponds !. If these faults are not promptly addressed, they may escalate into phase-to-
phase or short-circuit faults, endangering the safety of the power system and posing risks to human lives 2™,
Hence, the timely identification and management of high-impedance grounding faults are crucial. In parallel,
advanced condition monitoring strategies in gear transmission systems and power electronic devices have shown
that combining innovative sensing structures with data-driven indicators can significantly enhance early fault
awareness and operational reliability >°. However, detecting these faults proves more challenging compared to
low-impedance faults (LIFs), due to factors such as large transition impedance, weak fault currents, and unstable
fault locations. This challenge is particularly pronounced in resonant grounding systems ”.

Recent years have seen significant advancements in the study of high-impedance grounding fault detection.
Most research can be categorized into three main methodologies: time-domain analysis, frequency-domain
analysis, and time-frequency domain analysis. Based on the non-linear impedance of high-impedance
grounding faults, a study ® analyzed the volt-ampere characteristic curve at fault points and utilized its slope as a
detection criterion. Another study employed the concave-convex pattern resulting from the arc thermal effect of
zero-sequence current near zero-crossing points to detect these faults, though its robustness diminishes under
interference. In %, zero-sequence current was projected onto zero-sequence voltage, while studies 12 extracted
characteristic quantities from irregular signal waveforms using mathematical morphology. These approaches
predominantly analyzed high impedance faults (HIF) zero-sequence current waveforms exhibiting random
properties. However, in resonant grounding systems, the fault characteristic quantities are small and difficult
to measure accurately due to noise interference and instrument limitations, which hinders the extraction of
time-domain features. Another study ' detected faults using the magnitude and phase of the third harmonic,
alongside the magnitude of the second and fifth harmonics. Research ' utilized the discrete Fourier transform to
analyze inter-harmonics close to the fundamental frequency, proposing a detection method based on the root-
mean-square value of the inter-harmonics. Study !° examined the zero-sequence equivalent circuit of HIF and
proposed a line selection method based on differences in transient components and fault current flow direction.

However, the harmonic content of HIF current varies considerably with the grounding medium, making
it challenging to define a precise threshold, especially under low signal-to-noise (SNR) conditions. Detection
methods in the time-frequency domain, such as wavelet transform, integrate time and frequency domain
information, helping to mitigate interference. Wavelet transform is the most commonly used time-frequency
domain method. More recently, chirplet-transform-based and reassigned time-frequency techniques have been
employed to extract weak and time-varying fault indicators in complex rotating machinery and gearboxes,
further underscoring the importance of high-resolution time-frequency representations for nonstationary
fault signatures 1%, In 18, wavelet transformation was applied to obtain the energy spectrum of high- and low-
frequency components of zero-sequence voltage signals, enabling the detection of HIFs based on a threshold.
Study !° utilized the wavelet transform results of zero-sequence voltage and current to develop a line selection
criterion, while % introduced a new feature for HIF detection by analyzing zero-sequence current using wavelet
transform. Further research ?! differentiated HIFs from other transient signals by comparing the high-frequency
energy spectrum of zero-sequence current. Despite its effectiveness in representing local features in both time
and frequency domains, wavelet transform-based HIF detection relies on high-frequency components, making
it less reliable in environments with a low SNR ratio.

Although significant strides have been made in detecting HIF, existing methods frequently face challenges
related to computational efficiency and accuracy, especially in noisy environments. In addition, learning-
based fault diagnosis frameworks, including interval type-2 fuzzy neural networks and physically interpretable
wavelet-guided networks, have been proposed to model complex nonlinear degradation behaviors, but they
typically require extensive labeled data and higher computational resources ?>?%. This paper seeks to overcome
these challenges by introducing a novel decision-making approach that improves both the reliability and speed
of fault detection. By leveraging kurtosis and skewness coeflicients, the proposed method achieves precise fault
classification while keeping computational demands low. The following sections provide an in-depth analysis of
this approach, validated through simulations and field tests.

Key contributions of this work include:

1) A new approach utilizing kurtosis and skewness coefficients for diagnosing single-phase high-
impedance grounding faults, ensuring accurate fault characteristic identification.
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2) The introduction of a decision-making method that uses zero-sequence current data to accurately
classify faults and identify the faulted line with minimal computational cost.

3) Demonstration of the method’s superior performance through simulations and field tests, highlighting
its strong anti-noise capability and reduced computational complexity compared to existing algorithms.

The remaining paper is organized as follows: Section 2 provides an analysis of HIE, discussing the resonant
grounding system, fault characteristics, and the proposed kurtosis-based method. Section 3 covers the
simulation analysis, including model setup, threshold setting, and validation under noise. Section 4 presents
field test results, and Section 5 concludes with key findings and future directions.

Decision-making analysis of HIF

Resonant grounding system

In a resonant grounding system, the neutral point is grounded via an arc suppression coil. When a fault occurs,
the residual current from the system’s capacitive current, post-compensation, becomes minimal 8 effectively
suppressing arc overvoltage. As a result, the grounding arc does not meet the conditions for resignation and
extinguishes naturally. Additionally, the system can remain operational during a fault, continuing to supply
power for up to two hours, which enhances the reliability of the power supply. However, since the arc suppression
coil typically operates in an over-compensation mode, the fault current becomes significantly weakened, and the
zero-sequence current direction can change abruptly at certain points. This renders traditional line selection
methods, which rely on amplitude and polarity, ineffective. Therefore, fault line selection and accurate location
in resonant grounding systems remain a focus for power engineers.

HIF characteristics

When a high-impedance ground fault occurs in a distribution network, an arc forms. Due to the non-linearity
of the grounding medium, the transition impedance fluctuates as the arc burns, leading to diverse fault current
characteristics. The key features of this type of fault are as follows:

1) Non-linearity: The volt-ampere characteristic curve of the voltage and current is not linear due to the
non-linear nature of the fault impedance.

2) Asymmetry: The waveforms of the fault current’s positive and negative half cycles differ.

3) Intermittency: The fault current is temporarily interrupted at the zero-crossing point due to unstable
arc combustion and non-linearity in the grounding medium.

4)Weak fault current: The high transition impedance in HIF results in a very low fault current, making it
difficult for conventional protection systems to detect and operate.

Accurate detection of HIF requires an appropriate fault model. Given the complex and variable nature of
distribution network operations, HIF are influenced by numerous random factors. In recent years, extensive
research has been conducted on HIF modeling. The high-impedance model used in this study is based on the
work 24, developed through arc fault experiments on sand. The model includes two anti-parallel DC voltage
sources, V}, and Vi, to replicate the asymmetry and intermittent nature of the fault current. When the phase
voltage exceeds V},, current flows to the ground. When the phase voltage falls below —V/, current flows in the
reverse direction. No current flows when the phase voltage is between these values. Additionally, to simulate
non-linear impedance, the model includes two resistors of different sizes in series with the voltage sources,
producing fault currents of varying magnitudes.

Analysis of kurtosis coefficient-based decision-making method

The kurtosis coefficient is a statistical measure that characterizes the distribution of random variables. It is highly
sensitive to signal variations, allowing it to detect high-frequency spikes in a signal independent of its absolute
magnitude. The discrete fourth-order central moment, used to compute the kurtosis coefficient, is expressed by
the following formula 2

K=1/nY (@~ )/ )" (1)

In (1), n represents the number of data points in the group, z; is the value of each sampled signal point, T is
the mean value of the signal, and ois the standard deviation of the signal, which is calculated using the formula
shown in (2).

2)

In the case of a low impedance ground fault within a resonant grounding system, the zero-sequence current
waveform typically consists of power frequency components and attenuated DC components. The attenuation of
the DC component over one cycle is minimal, resulting in a nearly sinusoidal current waveform. The positive and
negative half-cycles of this waveform maintain symmetry throughout the cycle. When considering the absolute
value of the sampling time, the waveform’s cycle equals half of the power frequency cycle. The kurtosis values for
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both half-cycle and full-cycle data are generally consistent. As a result, when a LIF continues for multiple cycles,
the kurtosis magnitude, calculated at intervals of half the power frequency cycle, remains relatively constant.

In contrast, when a high-impedance grounding fault occurs, the non-linear variation of the transition
impedance causes asymmetry in the zero-sequence current waveform. The waveforms of the positive and
negative half-cycles differ, leading to varying kurtosis coefficient values when calculated for each half-cycle.

To minimize the impact of abnormal data and random outliers, the zero-sequence current waveform is
sampled after all line transient processes have settled, and the kurtosis index is formed by averaging multiple
consecutive half-cycle calculations so that the decision is driven by persistent distortion rather than isolated
spikes. Let N represent the number of sampling points per power frequency, m be the total number of lines, g
denote a specific line among m, « be the count value for the sampling period, and Z represent the total count
for the sampling period. Finally, 4 (V)refers to the sampled zero-sequence current sequence. The kurtosis
calculation is performed as follows:

ZNZZ(LHX) [i(N)] NTQ& a4

N:L; 0 Ta

_ 2 9 (3)
Kio(zp-).a = x

2 N=T(+a«) N=T(1+a) 5
WhereHTa/z,q: NZN:T% i (N)[?and 0Tw/2,q = \/ ZNiTa ‘I(N)|*HT0¢/2,q) .

The preceding analysis indicates that the half-cycle kurtosis of the zero-sequence current fluctuates in high-
impedance grounding faults, while it remains relatively constant in LIFs. A noticeable difference in the variance
of these fluctuations is expected between the two fault types. As a result, the average value P of the zero-sequence
current kurtosis variance can serve as a characteristic value for identifying high-impedance grounding faults.
The calculation process is provided in (4) and (5).

1 a=Z
T i0(Ta /2),q = \/M(Z o Kiora /21,4 — 1 k) (4)
> gzt O i0(Ta /2).q
p === A (5)
m

1 « =7
where Hk,q = (a+1>Z o« =0 Ki0(Ta /2),q.

Analysis of skewness coefficient-based decision-making method

The skewness coefficient is a statistical measure used to describe the symmetry of a data set’s overall value
distribution. If the distribution follows a normal shape, the skewness is 0. When the data distribution is skewed
to the right compared to the normal distribution, the skewness is greater than 0. Conversely, if the distribution
is left-skewed, the skewness is less than 0. The skewness is calculated using the discrete third-order central
moment, as expressed by the following formula:

1 i=n (g; — 5)3

5= n—1 =1 o3 ©
When a high-impedance grounding fault occurs in the distribution network, the zero-sequence current signal
of the healthy lines remains nearly sinusoidal. If the absolute value is considered, the skewness coefficient is left-
skewed, with a value close to -0.5, and the waveforms for both half-cycle and full-cycle are almost identical. Thus,
the skewness coeflicients for the half-cycle and full-cycle remain similar. However, for the faulty line, the zero-
sequence current waveform becomes distorted near the zero-crossing point. Once the absolute value is taken,
the probability distribution of the sampled values becomes asymmetrical and skewed to the right. By computing
skewness over several cycles and combining full-cycle and half-cycle values, the proposed scheme suppresses the
influence of occasional measurement noise while enhancing the directional asymmetry introduced by HIF. The
expression for calculating skewness is as follows:

N=F(+a) FITE za 4

S ZN:TTQ 7 Lo g (7)
i0(15=).q N/2 -1

Decision-making process of fault diagnosis

Based on the analysis above, the novel decision-making process for diagnosing HIF is illustrated in Fig. 1. To
enhance sensitivity to early-stage or incipient HIE, the decision-making framework incorporates an initial
physical triggering mechanism before applying the statistical analysis. Even when the fault arc is weak and the
kurtosis or skewness characteristics are not yet fully developed, the zero-sequence voltage typically experiences
a measurable rise due to grounding asymmetry. This early indication is used as a preliminary fault-suspicion
signal, ensuring that the subsequent kurtosis-skewness evaluation is performed only once the waveform
distortion becomes sufficiently observable for reliable statistical discrimination.
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Fig. 1. Novel Fault Diagnosis Decision-Making Process Flowchart.

Step 1 Begin by sampling and recording the zero-sequence voltage Upof the bus. If the effective value exceeds
0.15 times the phase voltage and the zero-sequence voltage protection of the system has not yet been triggered,
a HIF is suspected in the system 2°.

Step 2 Set the sampling frequency of the zero-sequence current io,for each feeder to 10 kHz. Record the zero-se-
quence current o4 for each line over 20 power frequency cycles, and using half-cycle sampling data, calculate the
kurtosis of the zero-sequence current for each line as per (3).

Step 3 Apply (4) to calculate the kurtosis variance for each line, then use (5) to determine the overall average
value P. If P exceeds the preset threshold Pset, proceed to Step 4 and classify the fault as a HIF; otherwise, it is
considered a common fault, and the process returns to Step 1.

Step 4 Take 200 samples of zero-sequence current data within one cycle and compute the full-cycle skewness
value Soq (j)for each line using (7). Then, with 100 samples of half-cycle data, calculate the half-cycle skewness
value Moq (7).

Step 5 Once the skewness values stabilize, calculate the full-cycle skewness average poq and the half-cycle skew-
ness average qgoqfor each line as follows:

10 .
oy = 22z ) (®)
? 10
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Fig. 2. Model of the Resonant Grounding System.
Impedance (Q/km) Inductance (mH/km) Capacitance to ground (uF/km)
Type of line Positive seq e | Zero seq e | Positive seq e | Zero seq e | Positive seq e | Zero seq e
Overhead lines | 0.178 0.25 1.21 0.54 0.01 0.006
Cable lines 0.27 2.7 0.255 1.02 0.339 0.28
Table 1. Line parameters of the simulation model.
Kurtosis variance
Type of line Short-circuit position/km
100Q2 500Q2 1000Q2
1 1.93e-8 1.97e-9 | 6.02e-7
3 1.81e-7 | 1.04e-7 | 1.03e-6
Overhead lines
5 1.35e-7 | 4.71e-8 | 9.76e-7
7 5.33e-8 |2.27e-8 | 6.14e-7
3.59%-9 3.12e-10 | 3.57e-7
Cable lines
2.74e-10 | 3.25e-11 | 5.29e-7

Table 2. Mean kurtosis variance for LIFs.

Z ?0:11M0q (]) (9)
dog =
20

Step 6 If a line g exhibits both poq and goq greater than 0, the line g is identified as the HIF line. If not, the fault
is located at the bus.

Simulation analysis of single-phase grounding fault

Simulation model

The HIF diagnosis for the resonant grounding system is verified using MATLAB/Simulink for the distribution
network depicted in Fig. 2. The 10 kV medium voltage distribution system consists of two overhead lines (L,,
L,) and two cable lines (L,, L,), with the corresponding line parameters provided in Table 1. The switch S is
closed, and the arc suppression coil is over-compensated by 10%. The active power of the load is set at 1 MW,
with a power factor of 0.89, and the load model is three-phase symmetrical. The system sampling frequency is
configured to 10 kHz %’. Following a fault occurrence, the zero-sequence current for each feeder is recorded
through sampling. In the simulations, fault locations are set on different outgoing lines with line lengths and
parameters given in Table 1, and the transition resistance is varied from 5 kQ to 20 kQ with multiple initial fault
phase angles so that a broad range of realistic HIF scenarios can be examined, consistent with the parameter
ranges reported in %7,

Threshold setting of kurtosis coefficient

In general, a fault is classified as low impedance if the transition impedance of a single-phase short circuit is
below 1 kQ. Considering the zero-sequence voltage protection configured for medium-voltage distribution
networks, the critical fault impedance threshold for traditional protection systems is approximately 100 %%, In
this study, we define the range between 100Q2 and 1 kQ) as low impedance. The mean kurtosis variance values
for different line types and various short-circuit locations are calculated accordingly, with the results presented
in Table 2.

In Table 2, it is evident that the mean kurtosis variance of the cable line is significantly smaller than that
of the overhead line. Specifically, for the overhead line, the kurtosis variance mean value is notably higher for
short circuits occurring at the 3 km mark. Figs. 3(a)-(d) illustrates the typical mean kurtosis variance for LIFs
under varying impedance values and initial phases. The largest mean kurtosis variances for LIFs are observed
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around 1 kQ. As the impedance increases, the mean kurtosis variance declines with some fluctuations. It was
determined that when the kurtosis variance of the zero-sequence current exceeds le-4, the fault is classified as
high impedance. If the value is lower, it is considered a LIE To account for a margin of safety, the threshold Pset
is set to 0.002.

Simulation verification of decision-making method

Using the simulation model of the resonant grounding system shown in Fig. 2, the following parameters are
applied: Rp= 1500Q, R,= 1000Q, V= 2000 V, and V;,= 1500 V. At 0.04 s, a single-phase high-impedance
ground fault occurs on feeder L,, located 2 km from the bus, with a fault clearing angle of 0°.

The half-cycle kurtosis coeflicients of the zero-sequence current, calculated for all lines, are shown in Fig. 4(a),
while Fig. 4(b) presents the same for a fault on L,. Each subfigure includes curves K; to K, corresponding to all
four feeders.

Approximately one cycle after the fault, the kurtosis value for the faulted feeder spikes and then stabilizes
around a certain level. The average variance of these kurtosis values across all lines is computed and found to
be P=0.0028 for L, and 0.0025 for L, respectively, both exceeding the defined threshold. These results confirm
the presence of HIE To identify the specific faulted line, full-cycle skewness and half-cycle skewness of the zero-
sequence current are analyzed.

Fig. 4(c) and Fig. 4(d) present the full-cycle skewness coeflicients So; to Sos, while Fig. 4(e) and Fig. 4(f) show
the half-cycle skewness coefficients Mo, to Mo, for faults on L, and L, respectively. It is observed that after three
cycles, the full-cycle skewness for the faulted feeder (L, in one case, L, in another) stabilizes above zero (e.g.,
around 0.35 for L, and 0.3077 for Ll), whereas other lines remain below zero. Similarly, the half-cycle skewness
for the faulted lines fluctuates near 0.3 (e.g., 0.1927 for L1)> and again, other lines remain below zero. These
contrast patterns enable accurate faulted-line identification.

Without changing the line parameters or location, a LIF is introduced at 0.04 s on feeder L, with a
grounding resistance of 100 Q. The kurtosis coefficients for this scenario are shown in Fig. 5. The threshold
was further verified through extensive parameter sweeping under different impedances, sampling frequencies,
and background noise levels to confirm its adaptability to varying network conditions. The sampling rate of 10
kHz and the use of a 20-cycle observation window follow the recommendations in 27 which demonstrate that
such settings provide sufficient resolution for identifying arc-induced nonlinearity while ensuring acceptable
detection latency. After three cycles, kurtosis values across all lines stabilize, but the calculated variance is only
1.9 x 1078, significantly below the 0.002 threshold.

This result clearly demonstrates that the proposed kurtosis-based variance threshold effectively distinguishes
between high-impedance and low-impedance ground faults.

Reliability verification
To further validate the reliability of the proposed method, Table 3 presents simulation results for multiple single-
phase grounding faults occurring on different outgoing lines, with varying conditions of random fault locations,
transition impedance, and initial fault phase angles. The table clearly shows that the mean kurtosis variance
effectively captures the characteristics of HIE. Moreover, accurate fault line selection is achieved by combining
the mean full-cycle and half-cycle skewness values. This trend is consistent with recent work on incipient fault
detection in inverter systems, where intensive multiorder feature extraction is used to highlight subtle deviations
from healthy operation before they evolve into severe faults?®. The cases in Table 3 are obtained by combining
several fault positions on lines L1,-L,, transition resistances within 5-20 kQ and different initial fault phase
angles. A summary row has been added at the bottom of Table 3 to report the total numbers of correct and false
detections across all scenarios.

The cases in Table 3 are generated by combining multiple fault locations, transition resistances and initial
phase angles. The table now includes the total number of correct and false detections to summarize the overall
performance.

Test of the robustness under noise
As the SNR ratio decreases, noise imposes greater interference on the waveform. Fig. 6 illustrates the kurtosis
curve obtained by introducing white noise at SNR ratios of 30 dB and 20 dB, respectively, into the zero-sequence
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Fig. 3. Dependence of LIF Kurtosis on Initial Phase: (a) initial phase: 0°, (b) initial phase: 30°,. (c) initial
phase: 60°, (d) initial phase: 90°.
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Fig. 4. Characteristic Coefficients of Zero-Sequence Current under HIF Conditions in L, and L,: (2) kurtosis
coefficients of the zero-sequence current in L,, (b) kurtosis coefficients of zero-sequence current in L , (c) full-
cycle skewness coefficients in L,, (d) full-cycle skewness coefficients in L,, (e) half-cycle skewness coefficients
in L,, (f) half-cycle skewness coefficients in L,.
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Fig. 5. Kurtosis Coefficients of Zero-Sequence Current (LIF in L,).

current signal during high- and low-impedance grounding faults on line L,. It is evident that the fluctuation
range of the half-cycle kurtosis value for LIFs is significantly narrower compared to HIE. When the white noise
level is 30 dB, the mean kurtosis variance for the HIF is 0.0026, while for the LIE, it is 5.7e-6. At a white noise level
of 20 dB, the mean kurtosis variances are 0.0046 and 4.46e-5, respectively. Despite the noise, the set threshold
can still reliably identify HIE.

To comprehensively evaluate the robustness of the proposed detection method under realistic noise
interference, six representative HIF detection approaches were selected for comparison under the same single-
phase high-impedance ground fault conditions analyzed earlier. These approaches span time-domain, frequency-
domain, time-frequency domain, and Al-based techniques. Table 4 examines whether the characteristic
quantities extracted by each method continue to satisfy their respective threshold criteria when subjected to
multiple SNR levels, thereby revealing the sensitivity of each algorithm to noise-induced distortion.

In Table 4, the detection methods are indexed from 1 to 6 according to their order of appearance. The suffix
‘exceed’ indicates that a value above the threshold is interpreted as a fault, while ‘below’ denotes that a value
falling below the threshold triggers a fault decision. The comparative results demonstrate that the time-domain
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Transition
impedance Fault Mean Full-cycle skewness Pog Mean half-cycle skewness 4o Fault
@/° Rp R, Kurtosis variance | type | p,, Po Pos Pos o 9y o3 ' line | Correct or false
90 | 550 |500 |0.0037 HIF | 0.5060 |-0.3346 | -0.3342 | -0.3337 | 0.4450 | -0.3222 | -0.3219 | -0.3215 | L, Correct
90 | 1500 | 1000 | 0.0281 HIF | 0.6562 | -0.3970 | -0.3972 | -0.3965 | 0.5035 | -0.3798 | -0.3801 | -0.3795 | L, Correct
90 | 2000 | 1500 | 0.0026 HIF |0.3505 |-0.3939 |-0.3943 | -0.3939 | 0.2254 | -0.3811 | -0.3816 |-0.3812 | L, Correct
60 | 550 | 500 |0.0044 HIF | -0.3502 | 0.6716 | -0.3487 | -0.3489 | -0.3341 | 0.4467 | -0.3326 | -0.3328 | L, Correct
60 | 1500 | 1000 | 0.0285 HIF | -0.3970 | 0.6564 | -0.3973 | -0.3966 | -0.3798 | 0.5019 | -0.3802 | -0.3796 | L, Correct
60 | 2000 | 1500 | 0.0060 HIF | -0.4100 | 0.4509 | -0.4110 | -0.4104 | -0.3938 | 0.3400 | -0.3946 | -0.3941 | L, Correct
30 | 550 |500 |0.005 HIF |-0.3529 |-0.3529 | -0.3508 |-0.3506 | -0.3389 |-0.3389 | -0.3371 | -0.3365 | bus Correct
30 | 1500 | 1000 | 0.0028 HIF -0.3983 | -0.3984 | -0.3980 | -0.3976 | -0.3821 | -0.3821 | -0.3820 | -0.3811 | bus Correct
30 | 2000 | 1500 | 0.0021 HIF |-0.4124 |-0.4125 | -0.4129 |-0.4105 | -0.3956 | -0.3956 | -0.3961 | -0.3952 | bus Correct
0 500 3e-8 LIF -0.5496 | -0.5490 | -0.5491 | -0.5491 | -0.5273 | -0.5267 | -0.5268 | -0.5267
30 | 1000 6e-7 LIF -0.5501 | -0.5494 | -0.5492 | -0.5490 | -0.5278 | -0.5270 | -0.5269 | -0.5268
Table 3. HIF diagnosis results under various factors.
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Fig. 6. Test Results Under Different Noise Levels: (a) kurtosis coefficient of HIF with 30db of white noise,
(b) kurtosis coefficient of LIF with 30db of white noise, (c) kurtosis coefficient of HIF with 20db of white
noise,. (d) kurtosis coefficient of LIF with 20db of white noise.
Values of feature quantities v s
Method | Detection method 30db | 20db 15db | 10db | Set threshold | (s) Correct or false
1 Based on fault phase voltage polarization (time domain)*° 0.224 |0.173 ]0.256 |0.249 | 0.3 (exceed) 23.16 False
2 Interharmonic-based (frequency domain)*® 0.378 ]0.405 |0.573 |0.699 | 0.4 (exceed) 129.57 False
3 Based on zero-sequence voltage spectrum (frequency domain)' | 0.0257 | 0.0216 | 0.0204 | 0.0187 | 0.02 (below) 167.55 False
4 Hybrid wavelet algorithm (time-frequency domain)* 0.198 0.210 |0.262 |0.293 |0.15(exceed) |205.38 Correct
5 Based on wavelet energy moments (time-frequency domain)® 2.147 | 4.268 |5.36 5.57 0 (exceed) 303.92 Correct
6 D-S fusion judgment (artificial intelligence) 0.59 0.677 | 0.725 |0.839 | 0.5 (exceed) 497.13 Correct
Proposed method 0.0026 | 0.0046 | 0.0052 | 0.0055 | 0.002 (exceed) | 100.18 Correct

Table 4. Detection methods affected by different SNRs.

voltage polarization method (Method 1) is highly sensitive to noise, with its extracted feature values fluctuating
near the threshold across all SNR conditions, resulting in unstable or incorrect HIF identification. Among the
frequency-domain methods, the interharmonic-based approach (Method 2) exhibits stronger noise tolerance,
consistently maintaining a detectable margin at 20 dB, whereas the zero-sequence spectrum method (Method 3)
shows significant degradation as the SNR decreases, indicating limited robustness to high noise.

The proposed kurtosis—skewness method maintains a significantly more stable margin between the
characteristic feature and the threshold, even at 30 dB, and achieves substantially shorter recognition time. The
hybrid wavelet algorithm and wavelet energy moment method (Methods 4 and 5), which fuse time-domain and
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frequency-domain information, demonstrate higher resilience against noise; however, they incur considerable
computational cost, with the longest processing time reaching 303.92 s, which is 203.37% higher than that
of the proposed approach (100.18 s). Similarly, the Al-based D-S fusion method (Method 6) maintains good
convergence margins but suffers from an even higher computation time of 497.13 s, corresponding to a 392.24%
increase relative to the proposed algorithm.

For broader methodological context, recent learning-based reliability frameworks such as**>> employ deep
neural architectures to extract features, assess degradation and forecast reliability in capacitor-bank applications.
These approaches integrate analog and digital measurements and require training datasets to build their
reliability models. The present study pursues a different objective, focusing on real-time high-impedance fault
detection in resonant grounding systems using directly computed kurtosis and skewness indices. Because the
proposed method operates without a training phase or reliability-forecasting modules, its structural complexity
and data dependency remain low, while still providing stable detection performance under noise and load-
imbalance conditions.

Opverall, the proposed detection framework achieves a favorable balance between computational efficiency
and robustness against noise interference. It delivers fast response, reliable threshold separation, and accurate
fault identification even in challenging low-SNR environments, demonstrating its practicality for real-world
resonant grounding applications.

34,35

The impact of three-phase load imbalance on the detection results

In this section, a simulation of three-phase load imbalance in the transmission line is conducted. By adjusting
the active power of the three-phase load, the imbalance degree is varied between 10% and 50%, while keeping the
source voltage, transformer, and line parameters unchanged. The simulation results of the proposed algorithm
are summarized in Table 5. For this simulation, the grounding resistance was set at 1 k(Q, and the fault was
positioned 7 km along Line L,.

As indicated in Table 5, under conditions of three-phase load imbalance, the kurtosis value consistently
increases with the growing imbalance, and the magnitude of this change far exceeds the detection threshold.
This suggests that kurtosis is a key feature for the identification of HIE. The underlying cause can be attributed
to load imbalance, which introduces asymmetry in the three-phase line voltages, thereby causing the zero-
sequence voltage to exhibit a significantly larger amplitude sinusoidal characteristic, ultimately resulting in
elevated kurtosis values. Although the skewness value does not show a clear trend, the skewness for Line L,is
notably positive, thereby identifying L, as the faulted line. In summary, the proposed method proves effective
in detecting HIF under conditions of three-phase load imbalance. These results indicate that the statistical
thresholds remain valid over a wide range of load imbalance degrees, and that the kurtosis—skewness features
continue to distinguish the faulted feeder without requiring re-tuning for each operating condition.

Scalability verification

Real distribution network laboratory testing

To further validate the effectiveness of the proposed method, experiments were conducted in a laboratory setup
using a 10 kV distribution network. In the experimental configuration, the 10 kV busbar is connected to four
feeders, with the neutral point grounded via an arc suppression coil. The wiring diagram of the experimental
system is shown in Fig. 7, with specific parameters outlined in Table 6. In this setup, CT denotes the current
transformer used for zero-sequence current acquisition, and PT refers to the potential transformer used for
measuring the zero-sequence voltage of the bus. It is worth noting that the topology, line parameters and
grounding configuration of this experimental network differ from those used in the simulation model, yet the
same kurtosis—skewness indices and threshold settings are applied without re-tuning, which demonstrates that
the proposed method can be transferred across different systems with only limited offline adjustment. After a
single-phase ground fault occurs in the detection system, the control system of the setup sends commands to the
controllable voltage source. This allows for regulation of the input voltage on the secondary side of the injection
transformer, which, after being stepped up, is connected to the neutral point of the distribution network, enabling
control over both the amplitude and phase of the zero-sequence voltage.

Mean Full-cycle skewness Pog Mean half-cycle skewness q,, .
Imbalance degree | Kurtosis variance | p,, P> Pos Pos 90 dy, qys ' Correct or false
Normal 0.0033 -0.3886 | 0.6562 | -0.3663 | -0.3517 | -0.2996 | 0.4915 | -0.3539 | -0.3668 | Correct
10% 0.0037 -0.3457 | 0.6213 | -0.3544 | -0.3359 | -0.3002 | 0.5226 | -0.3497 | -0.3572 | Correct
15% 0.00281 -0.3596 | 0.6668 | -0.3541 | -0.3442 | -0.3163 | 0.4523 | -0.2651 | -0.3668 | Correct
20% 0.0026 -0.2966 | 0.6039 | -0.3554 | -0.3226 | -0.3026 | 0.4539 | -0.2518 | -0.3233 | Correct
25% 0.0029 -0.3056 | 0.5699 | -0.3441 | -0.3236 | -0.3066 | 0.4882 | -0.3217 | -0.3537 | Correct
30% 0.0031 -0.3122 | 0.6017 | -0.3541 | -0.3228 | -0.2773 | 0.4786 | -0.3326 | -0.3531 | Correct
35% 0.0035 -0.3284 | 0.5774 | -0.3596 | -0.3429 | -0.3234 | 0.4883 | -0.3417 | -0.3546 | Correct
40% 0.0035 -0.3546 | 0.6067 | -0.3541 | -0.3623 | -0.3001 | 0.4826 | -0.3425 | -0.3531 | Correct
45% 0.0037 -0.3283 | 0.6132 | -0.3503 | -0.3627 | -0.3026 | 0.4739 | -0.3235 | -0.3113 | Correct
50% 0.0039 -0.3756 | 0.5992 | -0.3183 | -0.3427 | -0.3376 | 0.4835 | -0.3037 | -0.2988 | Correct

Table 5. The impact of three-phase load imbalance on the detection results.
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Fig. 7. Topological Structure of the 10 kV Distribution Network System.

Parameter Value
System rated voltage (kV) 10.5
Injection transformer capacity (kVA) 2500

Grounding transformer capacity (kVA) | 100

System grounding capacitive current (A) | 97.5

Damping ratio (%) 2.6

Table 6. Experimental parameters of typical 10kVdistribution network.

Mean full-cycle skewness p, Mean half-cycle skewness q,,
Impedance (kQ2) | Kurtosis variance | Fault type | p,, Po Pos Pos o1 9y, o3 '™ Fault line selection | Correct or false
5 0.0355 HIF -0.3396 | -0.4569 | -0.4779 | 0.5639 | -0.3689 | -0.3775 | -0.4936 | 0.3789 | L, Correct
10 0.0309 HIF -0.3674 | -0.4237 | -0.4055 | 0.6126 | -0.3551 | -0.3160 | -0.3899 | 0.3953 | L, Correct
20 0.0287 HIF -0.3662 | -0.4537 | -0.3767 | 0.5716 | -0.3549 | -0.3941 | -0.3854 | 0.3569 | L, Correct

Table 7. Zero-sequence current kurtosis and skewness calculation results for three branch Lines.

@ ¢Ll Ouﬂei - ¢L3>

Substation

Fig. 8. Primary Wiring Diagram of a Substation Line Side.

Single-phase ground faults of 5 kQ, 10 kO, and 20 kQ occurred on line L, at 0.1 s. After filtering the zero-
sequence current data for each line, the corresponding kurtosis and skewness values are summarized in Table 7.
Once ground fault, the kurtosis of the line steadily decreases as the fault transition resistance rises from 5 kQ
to 20 kQ. Despite this reduction, the kurtosis remains above the predefined threshold. Moreover, regardless of
varying operating conditions, the proposed method reliably identifies the faulted line using skewness.

Field test
Field recording data confirm the effectiveness of the proposed method. A 10 kV substation is selected as a
representative example of a resonant grounding system, with the wiring diagram shown in Fig. 8.

The zero-sequence current distribution of L, during a single-phase high-impedance grounding fault is
recorded and depicted in Fig. 9. The zero-sequence currents for L,L, and L, are denoted as i , and iy
respectively.

In this instance, the kurtosis variance calculated using the proposed method, along with the zero-sequence
current skewness values for each line, is presented in Table 8.

Following the fault diagnosis procedure in Fig. 1, the mean value of the zero-sequence current kurtosis
variance is calculated as 0.0318, significantly exceeding the threshold of 0.002. The zero-sequence current
deviation for each branch is also determined, with only the second branch showing a positive value for both
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Scientific Reports | (2026) 16:3188 | https://doi.org/10.1038/s41598-025-33118-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

-100 :
T 0% 0.1 02

Time (s)

Fig. 9. Zero-Sequence Current Waveform for Three Outgoing Lines.

Mean full-cycle skewness | Mean half-cycle skewness

P 0q q“‘l
Kurtosis variance | Fault type | p,, Py Pos dy 9y, 93 Fault line selection | Correct or false
0.0318 HIF -0.3267 | 0.5038 | -0.5335 | -0.3145 | 0.3576 | -0.5174 | L, Correct

Table 8. Zero-sequence current kurtosis and skewness calculation results for three branch lines.

Mean full-cycsle skewness | Mean half-cycle skewness
Pog oq
Kurtosis variance | Fault type | p,, Po Pos qo 9y, 93 Fault line selection | Correct or false
0.0036 HIF 0.4562 | -0.2781 | -0.3042 | 0.3271 | -0.2761 | -0.4123 | L, Correct
0.0041 HIF -0.4853 | -0.2314 | 0.5721 |-0.2734 | -0.2385 | 0.4382 | L, Correct
2e-5 LIF -0.2076 | -0.3092 | -0.4378 | -0.5394 | -0.5783 | -0.5842 | / Correct

Table 9. Zero-sequence current kurtosis and skewness calculation results.

full-cycle and half-cycle deviations, while the rest are negative. This clearly identifies a HIF on the L, branch.
Verified by actual substation data, the proposed method is effective for identifying HIF in branch lines of
outgoing feeders. The preset kurtosis threshold can easily distinguish HIF, further demonstrating the accuracy
and reliability of the method.

To further validate this approach, additional recorded wave data from other substations with grounding
faults were analyzed. The results, shown in Table 9, confirm that both high- and low-resistance faults can still be
identified accurately. These field results are in line with the broader evolution of reliability-oriented monitoring,
where statistically derived health indicators are embedded into remaining useful life prediction and long-term
reliability assessment frameworks for safety-critical components.

Conclusion

This paper introduces a novel statistical approach for high-impedance fault detection in resonant-grounded
distribution networks by jointly analyzing the kurtosis and skewness characteristics of zero-sequence current
waveforms. Building on the Emanuel arc model, the method identifies HIFs through a kurtosis-variance index
and then locates the faulted feeder using full-cycle and half-cycle skewness indicators. Simulation studies
show that the kurtosis variance of HIFs increases significantly compared to normal conditions, achieving
values around 0.0318 while remaining clearly above the detection threshold. The method demonstrates strong
robustness under low SNR conditions, maintaining stable detection margins even at 20 dB and 30 dB noise
levels. Compared with existing time-domain, frequency-domain, and wavelet-based techniques, the proposed
scheme achieves reliable detection with substantially lower computation time, making it suitable for practical
engineering applications.

Laboratory testing on a 10 kV resonant-grounded network and field measurements further confirm
the method’s adaptability under real operating conditions, including different feeder types and grounding
configurations. Although early-stage faults with weak distortion and rapidly changing operating states in
active distribution networks may still challenge detection, these limitations can be addressed through adaptive
thresholds and enhanced feature extraction. The proposed framework therefore offers a simple, noise-resilient,
and computationally efficient alternative to traditional HIF detection techniques, providing a strong basis
for future extensions incorporating distributed generation, data-driven adaptability, and large-scale system
validation.
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