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The integration of Internet of Things (IoT) devices in e-learning systems necessitates robust, scalable, 
and secure authentication procedures to provide dependable sharing of academic records among 
remote educational institutions. Conventional centralized systems experience scalability limitations, 
singular points of failure, and heightened susceptibility to hackers, especially in resource-limited 
IoT settings. This paper presents a decentralized authentication framework based on Hedera 
Hashgraph and Knowledge Graphs (KGs) to tackle these issues. The architecture incorporates a GAN-
based cryptography module for the generation of dynamic symmetric keys, enhancing resistance 
against predictive and inference-based attacks. Knowledge Graphs facilitate semantic validation of 
identification features and improve interoperability among institutions via the Hedera Consensus 
Service (HCS). The quantitative assessment indicates that the Hedera + KG + GAN model attains 
a 17.1% increase in throughput, an 11–12% reduction in processing time, up to a 20% decrease 
in execution time for substantial data volumes, a 6–15% decline in energy consumption, and an 
approximate 23% reduction in authentication delay during periods of high network utilization 
relative to the leading competing frameworks. The suggested method provides a scalable, safe, and 
semantically enriched authentication mechanism for IoT-enabled e-learning ecosystems, creating a 
solid foundation for next-generation decentralized educational platforms.
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The incorporation of IoT technologies with e-learning systems has become a revolutionary model in the modern 
digital age, reshaping the educational environment. The expansion of networked smart devices has enabled the 
establishment of intelligent learning environments, allowing real-time access to educational resources, dynamic 
interactions, and customized learning experiences1. The increasing demand for distributed educational platforms 
propels the integration of IoT in education2.

This technological breakthrough presents substantial technical and security challenges, as traditional 
authentication methods, typically dependent on centralized architectures, are insufficient for the scale and 
complexity of IoT-driven ecosystems3. Distributed ledger technologies, including Hedera Hashgraph, provide 
effective solutions via decentralized consensus and fault-tolerant processes, guaranteeing scalability and security4. 
Simultaneously, Knowledge Graphs (KGs) improve semantic interoperability by organizing educational data 
with relational metadata, an essential characteristic for resource-limited IoT settings5.

The importance of IoT integration in e-learning transcends simple technology implementation; it cultivates 
an interactive, data-driven, and inclusive educational environment. IoT-enabled gadgets, including wearable 
sensors and smart tablets, provide real-time monitoring of learning progress, performance evaluation, 
and immersive experiences via augmented reality6. In higher education, these technologies enable global 
collaboration, permitting students to securely exchange academic credentials among schools7. From a societal 
standpoint, the IoT has the capacity to mitigate educational inequalities in underprivileged areas, where 
access to conventional classrooms is restricted, thus fostering educational equity8. However, the lack of strong 
authentication systems presents considerable concerns, including eroding trust in digital educational platforms 
due to susceptibility to cyber threats9.
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Notwithstanding its transformative promise, the implementation of IoT in e-learning encounters significant 
hurdles and constraints. A key issue is the scalability of authentication systems; centralized architectures, 
dependent on individual servers, are vulnerable to single points of failure, which become more evident as the 
user and device count rises10. Moreover, IoT devices are limited by restricted computational power, energy 
resources, and storage capacity, making the implementation of modern cryptographic algorithms difficult11.

Security concerns, including man-in-the-middle attacks, data eavesdropping, and privacy breaches, are 
especially significant in educational environments where sensitive information, such as academic records, is 
maintained12. Additional challenges stem from the diversity of IoT communication protocols and the absence 
of semantic interoperability among institutions, which obstructs smooth credential transfer13. Recent studies 
indicate that IoT applications in education often encounter security problems, emphasizing the necessity for 
new solutions14.

This research is motivated by the pressing necessity to tackle these difficulties. Distributed solutions like 
Hedera Hashgraph, utilizing the Gossip-about-Gossip consensus algorithm for enhanced throughput and 
minimal latency, offer a feasible foundation for decentralized authentication in IoT settings15. Moreover, 
Knowledge Graphs provide the semantic modeling of intricate interactions among learners, courses, and 
certificates, hence improving robustness against adversarial attacks16. The incorporation of machine learning-
driven cryptography, namely GANs, which produce dynamic and attack-resistant cryptographic keys, enhances 
this methodology17. The increasing necessity for secure and scalable authentication frameworks in IoT-based 
educational environments justifies this research18.

The main aim of this project is to provide a decentralized semantic authentication system for IoT-based 
e-learning, utilizing Hedera Hashgraph and Knowledge Graphs. Specific objectives encompass the formulation 
of protocols for user registration, authentication, and the semantic transfer of credentials; the evaluation of 
performance metrics including throughput, response time, and energy consumption; and the assessment of 
security resilience against sophisticated cyber threats. The principal innovation is the amalgamation of GAN-
based encryption with Hedera’s asynchronous Byzantine Fault Tolerance (aBFT) consensus and KG-driven 
semantic analysis, resulting in a harmonious equilibrium of security and efficiency.

This research advances the subject by proposing a distributed educational architecture in which institutions 
function as nodes within a Hedera network, enhanced with Knowledge Graphs to guarantee semantic 
interoperability and reduce single points of failure. It formulates registration and authentication algorithms 
employing GANs to produce attack-resistant cryptographic keys, in conjunction with a secure credential 
transfer protocol that obviates the necessity for repeated authentication. Comprehensive simulations reveal 
substantial enhancements in throughput and response time relative to conventional blockchain and centralized 
systems, alongside a rigorous threat model evaluating resilience against sophisticated attackers. This study 
ultimately provides a scalable solution for IoT-based e-learning environments, improving educational fairness 
and optimizing energy usage for resource-limited devices.

In comparison to the most robust baseline schemes, the suggested Hedera + KG + GAN architecture attains 
a throughput increase of 17.1% (4310 TPS), a reduction in processing time by 11–12%, and a decrease in 
execution time by up to 20% for medium and large data volumes. IoT devices exhibit a 6–15% reduction in 
energy consumption, while the authentication workflow achieves an approximately 23% decrease in elapsed 
time during periods of heavy network demand. The numerical indications demonstrate that the suggested 
architecture continuously and significantly surpasses the top-performing existing frameworks, affirming its 
scalability and practical usefulness in extensive IoT-based e-learning environments.

This study is structured to ensure a logical transition from theoretical underpinnings to empirical validation. 
Section 2 examines the literature, focusing on pivotal technologies including Hedera Hashgraph, Knowledge 
Graphs, and GAN-based cryptography. Section 3 outlines the suggested paradigm, specifying the procedures for 
registration, authentication, and credential transfer with algorithmic accuracy. Section 4 examines blockchain 
and cryptography functions, detailing the fundamental algorithms that support the architecture. Section  5 
assesses the efficacy and security of the proposed system via comprehensive simulation-based tests. Ultimately, 
Sect. 6 closes the study and delineates avenues for future research.

Related work
Decentralized authentication for IoT-based e-learning systems has garnered heightened interest owing to the 
constraints of centralized methodologies. This section categorizes existing research into three theme areas and 
highlights the research gaps that necessitate the suggested paradigm.

Blockchain-based authentication in e-learning
Numerous studies have utilized blockchain to attain decentralized authentication in educational settings. A 
blockchain-based solution was proposed in19 to address single points of failure in centralized systems, albeit 
it resulted in elevated computing costs for IoT devices. The study in20 introduced a lightweight authentication 
system designed for IoT contexts, enhancing response time yet exhibiting deficiencies in interoperability among 
institutions.

A Hyperledger Fabric-based access control system was developed in21 to augment the secrecy of academic 
credentials via selective access permissions. While proficient at protecting credentials, its consortium structure 
restricts scalability and the sharing of semantic data among universities.

Blockchain-based solutions enhance data integrity and privacy; yet, they encounter issues related to latency, 
energy consumption, and interoperability. These constraints warrant the investigation of other distributed 
ledgers, such as Hedera Hashgraph, which offer enhanced throughput and efficient consensus for IoT-based 
e-learning.
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Semantic interoperability via knowledge graphs
A separate research avenue emphasizes the attainment of semantic integration within decentralized educational 
systems. The research in22 employed knowledge graphs to represent relationships among IoT entities and 
improve semantic reasoning. Likewise23, utilized blockchain and deep learning to enhance the security of IoT 
applications, although failed to tackle cross-platform semantic interoperability.

KGs enhance contextual comprehension and promote significant interactions among decentralized 
educational entities. Nonetheless, previous studies have generally regarded knowledge graphs as analytical 
instruments apart from the foundational ledger. This study enhances the concept by integrating knowledge 
graph reasoning directly into the consensus mechanism of Hedera Hashgraph, thereby providing semantic 
validation of educational records among institutions.

Machine learning and cryptographic enhancements for IoT security
Machine learning methodologies have been progressively utilized to enhance IoT security. The research in24 
integrated federated learning with generative models for intrusion detection, demonstrating robustness against 
attacks while missing decentralized identity management. The study in25 utilized GAN-based entropy generation 
to create context-aware cryptographic keys, improving flexibility in remote environments.

Reference26 presents an IOTA-based identity management architecture that incorporates Fog Computing 
and machine learning for ongoing device authentication, providing scalability and diminished overhead. 
Moreover27, illustrated the viability of Hedera Hashgraph in decentralized healthcare systems by incorporating 
deep learning analytics with distributed storage to guarantee data immutability and elevated performance.

Although these studies affirm the advantages of AI and distributed ledgers in IoT security, few have integrated 
these technologies with semantic reasoning and decentralized consensus, which constitutes the principal 
contribution of this research.

Current literature can be classified into three categories:

•	 blockchain-based authentication emphasizing data integrity yet limited by scalability;
•	 semantic modeling prioritizing knowledge representation yet lacking integration with decentralized ledgers;
•	 Cryptographic techniques powered by machine learning that enhance adaptability yet neglect cross-institu-

tional compatibility.

This study presents a semantic decentralized authentication architecture that integrates Hedera Hashgraph, 
Knowledge Graphs, and GAN-based dynamic cryptography to address these deficiencies. This integration 
establishes a harmonious equilibrium of scalability, semantic interoperability, and strong security, enhancing 
decentralized e-learning settings.

Methodology
This chapter delineates a decentralized educational framework using Hedera Hashgraph, IoT, and Knowledge 
Graphs to guarantee secure and scalable management of academic credentials and transactions among 
distributed schools.

Decentralized semantic educational model
The educational ecosystem serves as a vital framework for examining smart learning environments facilitated 
by IoT technology. In this framework, several stakeholders—comprising learners, instructors, administrative 
workers, and support staff—interact within a decentralized network, facilitated by a system of HCS nodes.

Conventional authentication methods, based on centralized systems, face considerable difficulties in 
incorporating external users and demonstrate intrinsic susceptibility to single points of failure. The suggested 
architecture utilizes Hedera Hashgraph, tailored for IoT devices with restricted compute power, storage 
limitations, and energy resources. This setup allows educational institutions to authenticate and safeguard 
academic credentials and learning records as students engage in courses across affiliated campuses or instructors 
provide instruction at various places.

In this architectural concept, each institution operates as a node inside a cohesive educational network, 
containing extensive data about students, educators, personnel, and enhanced learning profiles supported 
by KGs. Each node employs an HCS unit to govern its community and guarantees high-throughput, secure 
connections with other network participants.

The design, supported by a distributed network of HCS nodes, guarantees decentralized consensus and 
robust storage, with data duplicated across numerous nodes to prevent single-point failures, as seen in Fig. 1. 
This architecture differentiates itself from independent blockchain instances for each institution by centralizing 
coordination while preserving distributed integrity. This configuration facilitates the transition of students 
across institutions—such as from one campus to another (e.g., U-1 to U-2)—with the procedure regulated by 
corresponding HCS nodes.

As a result, authenticated individuals traverse the network with a singular identity, eliminating the need for 
redundant device authentication. A device authenticated by an HCS node within a single institution acquires 
network-wide trust, facilitating uninterrupted connection with all peers.

Moreover, learner-generated data, encompassing assessment results, laboratory activities, and project 
contributions, is sent openly through IoT devices, augmented by the semantic interoperability facilitated by 
knowledge graphs.

The decentralized Knowledge Graph (KG) functions as the semantic basis of the proposed architecture. The 
schema adheres to an RDF(S)/OWL-based ontology, with four principal entity classes—User, Device, Course, 
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and Record—interconnected by semantic connections like enrolledIn, teaches, possesses Record, and tied To 
Device.

Each Management Block (MB) sustains a localized Knowledge Graph (KG) instance sourced from academic 
sources, IoT device metadata, and registration records. These instances are synchronized by Hashgraph 
consensus checkpoints, which facilitate the exchange of RDF triple updates and verify integrity among MB 
nodes, so providing eventual consistency across the network without a centralized authority. SPARQL 1.1 is 
utilized for semantic validation, identity reasoning, and access control queries, facilitating cross-institutional 
interoperability and secure knowledge sharing across remote campuses.

To ensure scalability and reduce reasoning latency, RDF triples in Knowledge Graphs are stored and queried 
using efficient triple-store frameworks like Apache Jena TDB and Blazegraph. These systems employ SPARQL 
indexing and in-memory reasoning to expedite semantic queries, guaranteeing rapid and reliable access in 
extensive distributed contexts. Furthermore, semantic information are intermittently stored at the Management 
Block (MB) level to mitigate cross-node inference overhead while maintaining data integrity and synchronization 
throughout the educational network.

Figure 2 depicts the deployment architecture of the proposed IoT-based e-learning ecosystem. The 
environment comprises several IoT devices, including smart classroom sensors (temperature, occupancy, and 
motion), wearable learning trackers, camera-equipped instructional kiosks, Raspberry Pi-based learning hubs, 
and student tablets.

Each device interacts with a local Management Block (MB) via lightweight protocols like MQTT and CoAP.
The MB conducts semantic preprocessing of the gathered data and transmits authenticated transactions via 

secure channels to the HCS.
This communication framework facilitates rapid authentication, secure data transmission, and effective 

synchronization among educational institutions.

Fig. 2.  IoT-Based E-Learning Deployment Architecture.

 

Fig. 1.  Architecture of the Decentralized Semantic Educational Network.
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Knowledge graph synchronization protocol
The continual development and alignment of Knowledge Graph (KG) instances throughout various educational 
institutions are essential for maintaining system reliability and data integrity. The HCS oversees this entire 
process, primarily based on Hashgraph distributed ledger technology.

The synchronization mechanism is implemented using an authoritative, deterministic method. Initially, 
RDF triple updates produced at each Management Block (MB) node are structured as Compact Semantic Delta 
Messages. These messages encapsulate fundamental alterations inside the KG. Secondly, each MB node, the 
exclusive authorized entity, disseminates these semantic deltas as an event across the Hashgraph consensus 
network through HCS. The Hashgraph algorithm guarantees Deterministic Ordering via its aBFT (asynchronous 
Byzantine Fault Tolerance) virtual voting mechanism, which produces a universally accepted, definitive sequence 
for all update occurrences.

As a result, all MB nodes receive and implement the identical ordered sequence of updates, ensuring that 
the KG instance develops uniformly throughout all participating institutions. This robust, predictable ordering 
effectively obviates the need for reconciliation or conflict resolution processes. Potential conflicts are inherently 
handled at the consensus layer prior to application, as each node exclusively processes updates that have the 
final, agreed-upon sequence and timestamp.

Hedera hashgraph consensus architecture
The decentralized consensus mechanism supporting the educational network is enabled by the Hedera 
Hashgraph framework, setting it apart from conventional blockchain architectures. This method employs a 
Directed Acyclic Graph (DAG) framework, in which transactions appear as events interconnected via a gossip 
protocol, in contrast to the linear block chaining typical of traditional systems. The framework includes a header 
with timestamps and cryptographic signatures, along with a body that contains transaction lists enhanced by 
semantic metadata sourced from KGs, as depicted in Fig. 3.

Hedera Hashgraph utilizes an aBFT consensus method, engineered to facilitate transaction throughput above 
10,000 transactions per second (TPS) while ensuring lower latency relative to conventional blockchain systems. 
This architecture avoids the energy-intensive proof-of-work requirements, potentially reducing resource 
consumption. The gossip-about-gossip protocol guarantees fair event sequencing among network nodes, 
enhancing scalability and dependability in resource-limited IoT settings. Figure 3 illustrates that the DAG design 
facilitates the efficient distribution of learning-related transactions, including student records and assessment 
data, with immutable storage ensured by the network’s consensus mechanism.

Consensus security under limited node diversity
At the outset of the e-learning network’s deployment, the quantity of participating institutions (Management 
Blocks) may be restricted, thus heightening the risk of majority-control or Sybil assaults.

To address this, the suggested architecture employs a hybrid consensus technique wherein initial operations 
depend on a trusted quorum configuration validated by institutional credentials from partner universities.

Every participating member bank is authenticated using a cross-signed certificate before to entering the 
Hedera network, and a two-thirds (⅔) quorum requirement is necessary for transaction validation.

Voting rights are periodically redistributed among members to avert the dominance of a specific group of 
nodes, and integrity is maintained through the cross-validation of event signatures.

Upon achieving adequate node diversity, the system effortlessly shifts to the completely decentralized 
asynchronous Byzantine Fault Tolerant (aBFT) consensus of Hedera Hashgraph, preserving identical security 
assurances devoid of centralized supervision.

Fig. 3.  Hedera Hashgraph DAG Structure with Semantic Metadata.
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Semantic user registration protocol
The registration step creates a fundamental system for integrating users—students, professors, and staff—into 
the decentralized semantic educational network, utilizing the strong infrastructure of the Hedera Hashgraph 
network. This protocol, carefully implemented under the supervision of the university acting as a Management 
Block, effectively incorporates GANs for the creation of robust cryptographic key pairs and KGs for thorough 
semantic identity representation.

The registration procedure begins when a user submits a request via an IoT device, sending preliminary 
identity information straight to the university (MB), which acts as the central coordinator in this ecosystem.

The MB, possessing substantial computational capability, utilizes a pre-trained GAN model that has been 
offline trained on extensive historical educational datasets. Section 4 summarizes the particular training settings 
and hyperparameters of the GAN model to ensure reproducibility and clarity.

The training employs a minimax loss function, as specified in Eq. 1.

	 L = E [log D( real_keys )] + E [log( 1 − D (G( fake_keys )) )]� (1)

The offline training phase of the GAN model requires about 100 epochs to attain steady convergence and produce 
a reliable key-generation function. During the registration process, the pre-trained model is utilized solely for 
efficient inference to generate new public (Pki) and private (Ptki) key pairs, hence minimizing computational 
burden on IoT devices.

These keys are augmented with semantic identifiers (IDi), carefully formulated as RDF triples (e.g., User_i: 
enrolledInCourse_j.:hasGradeGrade_m), which improve interoperability and data consistency among various 
educational institutions.

Furthermore, symmetric keys (Ski) are derived via a secure SHA-256 hashing procedure that integrates the 
semantic identifier (IDi), GAN-generated entropy, and the distinct MAC address of the IoT device, thereby 
establishing a lightweight encryption framework ideally tailored for the resource-limited contexts characteristic 
of IoT devices.

Upon generation, these authenticated transactions are transmitted by the MB to the HCS for aBFT consensus, 
as detailed in Algorithm 1, thereby guaranteeing the secure addition of data to the immutable DAG structure 
for enduring storage and integrity. Subsequently, the MB conveys the encrypted key sets and IDs to the user’s 
IoT device via a highly secure encrypted channel, enabling seamless identity transfer throughout the network 
without the necessity for repetitive re-authentication. This advanced method, illustrated in Fig.  4, enhances 
security, scalability, and operational efficiency in remote learning environments, establishing a robust framework 
for educational data management.

Fig. 4.  Flowchart of Semantic User Registration Protocol.
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Input: User_request (registration request from user via IoT_device), (MB for university k), HNet 
(Hedera network)
Output: (public key for user i), Ptki (private key for user i), IDi (semantic identifier for user i), Ski (symmetric 
key for user i)

1. Begin
2. for each ∈ HNet do // Iterate over all MBs in the Hedera network
3. for each User_request from S, I, St ∈ do // Iterate over user requests in university k (Uk) via 

IoT_device
4. Load Pre-Trained GAN Model: The GAN is trained offline once; here only inference is used to generate 

keys.
5. Generate , , : Utilize G to produce Pki and Ptki; construct IDi as KG RDF triple (e.g., 

:enrolledIn . :hasGrade ) for semantic interoperability.
6. Compute Ski: Calculate  =  256(  +  _  +  _ _ _ ) to derive a 

symmetric key for lightweight encryption.
7. Submit to HCS: broadcasts transaction (Pki, IDi) to HCS for aBFT consensus; append to 

DAG if validated.
8. Send to User: transmits Pki, Ptki, IDi, Ski to User i ∈ Uk via IoT_device through an 

encrypted channel.
9. end for
10. end for
11. End

Algorithm 1.  Semantic User Registration Algorithm.

The GAN model utilized for cryptographic key generation is trained exclusively offline before system 
deployment. The training dataset comprises anonymized educational identity tuples, encompassing semantic 
user roles, course-enrollment linkages, device identifiers, temporal authentication patterns, and knowledge 
graph-based contextual attributes. This dataset is utilized exclusively at the administrative root node to generate 
a singular global GAN model. Subsequent to training, only the generator’s refined inference weights are securely 
disseminated to all Management Blocks (MBs) through authenticated update channels, with no MB engaging 
in independent training. During operation, MBs utilize the generator only for inference, hence maintaining a 
distinct separation between offline training and online execution. To reduce reverse-engineering threats, noise 
based on differential privacy is utilized during training, and the raw training data is never disclosed beyond the 
root node.

Semantic authentication protocol
Algorithm 2, “Semantic Device and Transaction Authentication in Hedera Network,” outlines a comprehensive 
authentication protocol inside a decentralized educational framework. The program, supervised by the 
university’s Management Block, authenticates IoT-generated learning transactions (Ti) through an advanced 
semantic methodology. The process commences when a user initiates a transaction (Ti) via an IoT device, 
transmitting it to the university (MB), which functions as the central coordinator. The MB obtains Ti and 
authenticates the semantic identification (IDi) through a KG query, precisely aligning RDF triples (e.g., User_i: 
enrolledInCourse_j) to provide accurate identity verification.

Subsequently, the public key (Pki), initially produced by a GAN, is authenticated through a secure public 
key infrastructure overseen by the MB, followed by the decryption of Ti utilizing a symmetric key (Ski) and 
a comprehensive integrity evaluation performed via SHA-256 hashing. Following successful validation, the 
authenticated transaction (AuthTi) is re-encrypted with KG metadata by the MB and submitted to the HCS for 
aBFT consensus, thereby ensuring secure appending to the Hedera Hashgraph DAG. The revised network (HNet), 
upon reaching agreement, alerts the MB, which subsequently communicates the successful authentication to the 
IoT device, ensuring secure, immutable storage and improved interoperability throughout the ecosystem.

Figure 5 visually delineates this comprehensive procedure, showcasing the six-step authentication flow and 
underscoring the essential integration of KG validation and HCS consensus under the supervision of the MB.
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Input: (semantic identifier from KG), (learning transaction from IoT_device), (symmetric key), Pki 
(public key from GAN), (MB at source university)
Output: ℎ (authenticated transaction), HNet (updated Hedera network)

1. (MB) receives Ti from IoT_device // Receive transaction from user via IoT device
2. If query KG( ) matches registered triple (e.g., :enrolledIn ) then // Semantic validation
3. Verify using GAN-trained PKI // Check authenticity with adversarial-resistant key
4. Decrypt Ti using Ski // Extract transaction data with symmetric key
5. If Dec(Ti) is valid and integrity intact (SHA256 check) then // Verify data integrity
6. Generate ℎ = Enc(Ti, Ski + KG_metadata) // Re-encrypt with semantic metadata
7. (MB) submits AuthTi to HCS for aBFT consensus // Broadcast for consensus and DAG 

append
8. Update HNet with AuthTi // Store in Hedera network
9. (MB) notifies IoT_device of success // Send confirmation to device
10. Else
11. (MB) rejects Ti and logs anomaly with KG context // Reject and record with semantic details
12. End if
13. Else
14. (MB) rejects Ti and logs anomaly // Invalid ID
15. End if

Algorithm 2.  Semantic Device and Transaction Authentication Algorithm.

Semantic transfer protocol
Algorithm 3, “Semantic Transfer Protocol in Hedera Network,” delineates a secure and efficient method for 
the transmission of student and teacher records among universities in a decentralized educational framework. 
The protocol, executed under the control of the university operating as a Management Block, utilizes semantic 
validation and sophisticated cryptographic mechanisms. The procedure commences when a user submits a 
transfer request for user i from the source university (University_k) to the destination university (University_l) 
through an IoT device, which transmits the request to University_k (MB source) for processing. The MB at 
University_k receives the transfer request and verifies the IDi using a detailed KG query, aligning RDF triples 
(e.g., User_i: enrolledIn Course_j) to provide precise identity confirmation.

Records (Si or Ii) are encrypted with a GAN-generated symmetric key (Ski), with the public key (Pki) 
authenticated and the transaction safely endorsed by the MB. The MB transmits these encrypted records through 
the HCS across the Hedera network (HNet) to University_l (MB destination), which decrypts them using Ski 
and performs a comprehensive integrity verification employing SHA-256.

Following successful validation, the MB at University_l produces enhanced records (TransSi or TransIi) with 
KG metadata, which are then submitted to HCS for aBFT consensus, thereby assuring secure appending to the 
DAG and subsequent updates in HNet. This procedure ensures a smooth, unalterable transfer without requiring 
re-authentication, with University_l notifying University_k, which subsequently tells the IoT device and user of 
the successful transfer. The workflow is depicted in Fig. 6, illustrating the Semantic Transfer Protocol Between 
Universities.

Fig. 5.  Semantic Device and Transaction Authentication Process.
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Input: , Ti, Ski, Pki, , , HNet
Output: i (transferred student records), TransIi (transferred instructor records), HNet (updated Hedera 
network)

1. (MB at source university) receives transfer request for user i from Uk to Ul via IoT_device 
// Receive request from user via IoT device

2. If query KG( ) matches registered triple (e.g., :enrolledIn ) then // Semantic validation
3. Encrypt Si or using Ski from GAN // Encrypt records with symmetric key
4. Verify using GAN-trained PKI and sign transfer // Authenticate with adversarial-resistant key
5. (MB) broadcasts encrypted (Si or Ii) to (MB) via HCS over HNet // Transmit 

via Hedera network
6. (MB) decrypts using shared Ski and verifies integrity (SHA256) // Validate records
7. If Dec(Si or Ii) is valid then // Check validity
8. Generate TransSi or TransIi with KG_metadata // Enrich with semantic data
9. (MB) submits TransSi or TransIi to HCS for aBFT consensus // Append to DAG at 

destination
10. Update HNet with TransSi or TransIi // Store in Hedera network
11. (MB) notifies (MB) and IoT_device of successful transfer // Confirm transfer
12. Else
13. (MB) rejects transfer and logs anomaly with KG context // Reject with semantic details
14. End if
15. Else
16. (MB) rejects transfer and logs anomaly // Invalid ID
17. End if

Algorithm 3.  Semantic Transfer Protocol Algorithm.

Blockchain and cryptographic operations
This section introduces two essential algorithms that facilitate the secure and efficient administration of 
transactions and cryptographic keys in a decentralized educational framework. Algorithm 4, “Transaction 
Submission and Consensus in Hedera DAG,” coordinates the submission of learning transactions (Ti) to the 
Hedera Hashgraph, with the university serving as a Management Block utilizing HCS nodes for enhanced 
functionality.

The process commences when a user initiates a Ti through an IoT device, transferring it to the university 
(MB), which conducts semantic validation of the identifier (IDi) through rigorous KG queries, verifying 
conformity with RDF triples (e.g., User_i: hasRecordTi). Transactions are encrypted using a GAN-generated 
symmetric key (Ski) and signed with a public key (Pki) by the MB, subsequently disseminated via a gossip 
protocol to HCS nodes for aBFT consensus. Upon achieving agreement, the MB guarantees that transactions are 
added to the DAG, updating the Hedera network (HNet) with semantic metadata, thus ensuring immutability 
and integrity throughout the ecosystem.

Fig. 6.  Semantic Transfer Protocol Between Universities.
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Input: Ti, , Ski , , (MB)
Output: ConfirmedTi (consensus-approved transaction), HNet

1. (MB) receives Ti from IoT_device // Receive transaction from user via IoT device
2. Validate via KG query (e.g., match RDF triple :hasRecord Ti)
3. Encrypt Ti with Ski and sign with Pki (GAN-verified)
4. (MB) broadcasts encrypted Ti to HCS nodes via gossip protocol
5. HCS performs aBFT consensus on events
6. If consensus achieved (fair ordering in DAG) then
7. Append ConfirmedTi to Hedera DAG
8. Update HNet with semantic metadata
9. (MB) notifies IoT_device of confirmation
10. Else
11. (MB) rejects Ti and logs anomaly
12. End if

Algorithm 4.  Transaction Submission and Consensus in Hedera DAG.

Furthermore, Algorithm 5, “Cryptographic Key Management and Renewal,” pertains to the lifetime of 
cryptographic keys to ensure enduring security, conducted under the supervision of the university (MB). The 
MB periodically assesses key expiration using usage data, retraining a GAN with updated user context from KG 
to provide reissued keys (P ki′ , P tki′ , Ski′ ).

The new symmetric key ( Ski′ ) is generated using SHA-256, integrating GAN entropy and context hash, 
with integrity confirmed via KG by the MB. Legitimate renewals are disseminated by the MB to HCS for aBFT 
consensus and recorded in HNet, whereas compromised keys initiate revocation and alerts that are transmitted 
throughout the network. Collectively, these algorithms, overseen by the MB, improve security and scalability, 
specifically designed for resource-limited IoT devices, hence enabling a robust and effective e-learning 
framework.

To guarantee dependable identity and key management in operational networks, each Management Block 
(MB) upholds a Distributed Revocation List (DRL) that is synchronized among participating nodes via the 
Hedera consensus service. Upon the revocation or modification of a user’s key or identity attribute, the associated 
record is disseminated throughout the DRL, enabling all nodes to implement the most current authorization 
status independently of a centralized authority. This decentralized revocation technique facilitates safe user 
migration, key expiration, and real-time access control modifications while maintaining network integrity.

Input: Current Pki, Ptki, Ski, User_context (from KG), University_k (MB)
Output: Renewed ′ , ′ , ′ , Revocation_status

1. (MB) periodically evaluates key expiration based on usage threshold
2. Train GAN on updated User_context (e.g., RDF triples for access patterns)
3. Generate renewed Pki', Ptki' using GAN Generator
4. Compute Ski' = SHA256(Ski + GAN_entropy + User_context_hash)
5. Verify renewal with KG integrity check
6. If valid, (MB) broadcasts renewal transaction to HCS for aBFT consensus
7. Update keys in HNet DAG and (MB) notifies IoT_device
8. If compromised, (MB) revokes keys and logs in KG
9. Set Revocation_status = true and (MB) propagates alert

Algorithm 5.  Cryptographic Key Management and Renewal.

Performance and security evaluation
This section delineates a comprehensive assessment methodology for the proposed decentralized authentication 
system, highlighting its performance metrics like execution time, throughput, and power consumption, in 
addition to its security and authentication robustness.

To assess the architecture’s efficacy, extensive simulation tests are conducted using a hybrid simulation 
environment that integrates the Hedera Hashgraph simulator with the OMNeT + + network simulator on a 
Linux platform.

The Hedera simulator emulates the aBFT consensus mechanism, whereas OMNeT + + facilitates the modeling 
of IoT device interactions within a distributed educational network. The experimental equipment utilizes a 
testing machine equipped with an Intel Core i5-1035G1 CPU functioning at 1.0 GHz, featuring a 6 MB cache 
and 8 GB of RAM, thereby providing a robust computational framework for the simulations.

The suggested mechanism utilizes the HCS for transaction validation, together with KG-informed semantic 
metadata and GAN-generated cryptographic keys to replicate authentic e-learning scenarios.

The GAN employed for dynamic key generation was trained using anonymized educational identity data.
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The training was executed for 100 epochs, utilizing a batch size of 32 and a learning rate of 0.001, employing 
the Adam optimizer. The generator and discriminator networks each consisted of three hidden layers employing 
ReLU activation and dropout regularization to reduce overfitting. These settings were selected empirically to 
guarantee consistent convergence and reproducibility throughout multiple training iterations.

The system is configured with default parameters outlined in Table 1, with the simulation conducted for 
45  min to process 3,000 learning transactions, and performance metrics are averaged over 50 independent 
simulation runs to ensure statistical reliability. The Hedera simulator is designed to depict a network of 100 
universities operating as Management Blocks (MBs), each managing 500 users (comprising students and faculty) 
and 100 IoT devices, resulting in a cumulative total of 50,000 users.

The hybrid simulation environment combines a customized Hedera Hashgraph emulator, developed with 
the Hedera SDK and incorporating an integrated gossip and aBFT consensus module, with the OMNeT + + 6.0 
network simulator. The Hedera emulator replicates event propagation intervals between 50 and 75 ms with 
message payloads of 512 bytes, whereas OMNeT + + is configured with a baseline latency of 20 ms, a bandwidth 
of 2 Mbps, and a queue capacity of 50 packets per node.

The energy consumption of IoT devices follows a two-state model, demonstrating 120 mW during 
transmission, 80 mW during reception, and 10 mW in idle mode, as shown by commercial IoT microcontroller 
specifications. These settings create a uniform methodology for evaluating performance and energy efficiency 
across diverse workloads.

Table 1 outlines the simulation parameters utilized in the proposed mechanism, including a wireless channel, 
random/uniform radio range and mobility, log-distance path loss propagation, IEEE 802.15.4 protocol, member 
velocities of 2, 4, 6, and 8 m/s, a coverage area of 15 km × 15 km, variable bit rate traffic, a simulation duration of 
2700 s, and packet sizes ranging from 64 to 1024 bytes, as well as specific overheads for KG metadata (16 bytes) 
and GAN key generation cost (32 bytes).

The performance of the proposed architecture is assessed in comparison to six contemporary authentication 
mechanisms: KDA-EL19, utilizing an Ethereum-based blockchain; BAF20, employing a centralized IoT 
authentication framework; BAK28, implementing a dynamic key protocol; EduCert-Chain21, a notarized 
certificate verification system based on Hyperledger Fabric; an IOTA-based authentication system for IoT in 
satellite networks26; and Hedera + DL27, a high-throughput Hedera Hashgraph system integrated with deep 
learning analytics.

The evaluation is based on four critical metrics: throughput, which measures the total number of learning 
transactions efficiently processed within the MB network; response time, reflecting the latency from the initiation 
of transactions by IoT devices to their confirmation by the MBs; power consumption, assessing the average 
energy expended by IoT devices during transaction documentation; and security and authentication analysis, 
which scrutinizes the system’s resilience against threats such as man-in-the-middle and replay attacks, alongside 
its authentication effectiveness through entropy analysis of GAN-generated keys and KG integrity assessments.

The results are derived from completed simulation runs utilizing the configuration parameters provided in 
Table 1. Each dataset embodies genuine measurements obtained from the hybrid Hedera–OMNeT + + simulation 
environment.

Performance evaluation
This article delineates the performance assessment of the proposed decentralized authentication architecture, 
concentrating chiefly on throughput and processing efficiency across diverse system loads. The evaluation 
contrasts the Hedera + KG + GAN-enhanced approach with six contemporary authentication frameworks to 
elucidate its scalability and operational benefits.

Figure 7 depicts the throughput comparison between the proposed architecture and six established 
authentication techniques. The proposed model attains a maximum throughput of 4310 TPS, markedly 
surpassing all baseline systems. The IOTA-based approach and the Hedera + DL configuration exhibit modest 

Parameter Value

Channel Wireless

Radio range/Mobility Random/Uniform

Propagation Log-distance path loss

Protocol IEEE 802.15.4

Speed of members 2, 4, 6, 8 m/s

Number of MBs/Users/IoT devices 100/50,000/10,000

Simulation time 2700 s

Traffic type Variable bit rate

Covered area 15 km × 15 km

Packet size 32–1024 bytes

Packet length to HNet 64 bytes

KG metadata overhead 16 bytes

GAN key generation cost 32 bytes

Table 1.  Simulation parameters for the proposed Mechanism.
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throughput, but Hyperledger + IPFS and BAK display diminished processing capacity owing to their intricate 
validation pipelines and more burdensome consensus mechanisms.

Among the assessed methods, KDA-EL (Ethereum-based) and the centralized BAF mechanism demonstrate 
the lowest throughput, mostly attributable to Ethereum’s computational overhead and the single-node constraint 
characteristic of centralized systems. The results underscore the scalability and computational efficiency of the 
proposed authentication framework, bolstered by Hedera’s aBFT consensus, GAN-facilitated symmetric key 
generation, and Knowledge Graph-informed semantic validation.

Figure 8 illustrates the processing time performance across IoT device densities varying from 1,000 to 10,000 
nodes. The proposed architecture consistently produces the minimal processing time, rising considerably 
from 127 ms at 1,000 devices to 193 ms at 10,000 devices. This stability demonstrates the efficacy of the aBFT 
Hashgraph consensus, the diminished metadata overhead facilitated by Knowledge Graph semantic filtering, 
and the streamlined key operations generated by the GAN entropy model.

The IOTA-based and Hedera + DL frameworks exhibit increased delays owing to DAG traversal, tip-selection 
uncertainty, and supplementary synchronization demands. Hyperledger, IPFS, and BAK experience additional 
processing delays in high-density scenarios because to the intricacies of state endorsement, bottlenecks in the 
ordering service, and block-based batching. The Ethereum-based KDA-EL and centralized BAF methods exhibit 
the most significant delays, measuring 368 ms and 342 ms, respectively, suggesting inadequate fit for dense IoT 
implementations.

The dual analysis in Figs. 7 and 8 indicates that the proposed system exhibits significantly reduced processing 
overhead and enhanced scalability relative to existing methods. These performance attributes validate its 
appropriateness for extensive, resource-limited IoT-based e-learning settings.

Fig. 8.  Evaluation of Processing Time.

 

Fig. 7.  Comparison of Throughput for Processing Diverse Requests.
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Performance metrics analysis
This subsection evaluates the efficacy of the proposed decentralized authentication methodology, focusing 
on execution time and power consumption, which are pivotal metrics of system responsiveness and resource 
efficiency in extensive IoT-enabled e-learning contexts.

The total execution time ?t comprises four sequential operations: transmission of learning data, symmetric 
encryption of the data, asymmetric encryption of the GAN-generated symmetric key, and the duration needed 
by the Management Block (MB) to log the transaction onto the Hedera Hashgraph. The notion for execution 
time is articulated in Eq. (2):

	 Yt = T (T rns) + T (Encsym (T rns)) + T (Encasym (Sk)) + T (MBrec (T rns))� (2)

T (T rns) denotes the time required to transmit learning data across the network, T (Encsym( T rns )) signifies 
the duration for symmetric encryption of the learning data utilizing GAN-generated keys, T (Encasym( Sk )) 
represents the time for asymmetric encryption of the symmetric key augmented by KG-based authentication, 
and T (MBrec( T rns )) indicates the time taken by the Management Block to document transactions into the 
Hedera Hashgraph employing aBFT consensus.

The assessment section offers a detailed analysis of the four main components, revealing that the Management 
Block recording time (T(MBrec)) is the predominant contributor to overall execution overhead in high-load 
conditions.

Figure 9 depicts the execution time of the proposed architecture in comparison to six baseline authentication 
frameworks over data volumes from 25 KB to 3200 KB. For minimal data sizes (e.g., 25–50 KB), the execution 
time of the proposed model is marginally greater or comparable to lightweight Directed Acyclic Graph (DAG)-
based methodologies, such as the IOTA-based and Hedera + Deep Learning setups. This pattern is anticipated, 
as fixed startup overheads—such as the aBFT gossip setup, KG consistency verification, and symmetric key 
creation via the GAN module—represent a greater share of the total processing duration when payloads are 
minimal.

As the data amount escalates, the computational benefits of the suggested design become increasingly evident. 
The suggested system exhibits superior scalability compared to all evaluated techniques, owing to efficient aBFT-
driven event ordering, diminished semantic metadata overhead, and the lightweight characteristics of GAN-
driven symmetric encryption. As a result, its execution time increases at a markedly slower pace and maintains 
the lowest value among all assessed schemes for medium to large data quantities (200–3200 KB).

Conversely, alternative systems such as Hyperledger + IPFS, BAK, and KDA-EL encounter significant 
increases in execution time attributable to endorsement delays, block-based validation, and more intensive 
cryptographic processes. The centralized BAF solution demonstrates the most pronounced growth trajectory, 
underscoring its restricted scalability with increased payloads.

The results indicate that while the proposed architecture exhibits comparable performance to certain 
lightweight methods for minimal data units, it significantly outperforms them as data volume escalates, rendering 
it exceptionally effective for practical e-learning workflows that manage larger learning objects.

Furthermore, the total power consumption (φ P ) is determined by multiplying the execution duration by 
the power consumption rate of IoT devices, as specified in Eq. (3):

	 φ P = Yt × HE� (3)

Fig. 9.  Execution Time vs. Data Size.
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?t signifies the overall execution time obtained from Eq. (2), whereas HE indicates the power consumption rate 
of IoT devices, quantified in energy units per unit time (e.g., megajoules per second).

Figure 10 illustrates the power usage of the proposed authentication architecture in comparison to six 
existing techniques across varying transaction volumes, from 100 to 5000 transactions. The findings indicate 
that the suggested Hedera + KG + GAN model continuously attains the minimal power usage per transaction. 
This is mainly because to its decreased execution time, efficient symmetric-key operations produced by the GAN 
module, and reduced metadata overhead facilitated by Knowledge Graph-based semantic optimization.

Network performance and resilience analysis
This subsection offers a comprehensive analysis of the fundamental performance attributes of the Hedera-based 
consensus protocol, concentrating on synchronization frequency, bandwidth overhead, and network resilience. 
These evaluations are essential for measuring the system’s operational efficiency and resilience under distributed 
workload conditions.

Synchronization frequency and consensus latency
The document asserts that KG instances are synchronized by Hashgraph consensus checkpoints. The frequency 
of these checkpoints is fundamentally linked to the network’s Consensus Latency, which determines the duration 
necessary for a newly submitted semantic update event to attain aBFT finality across all Management Block (MB) 
nodes. In our hybrid simulation scenario, the event propagation intervals required to attain final, immutable 
consensus were recorded between 30 ms and 50 ms. The minimal latency facilitates swift checkpointing, ensuring 
that the Strong Eventual Consistency (SEC) of the Knowledge Graph is consistently maintained, rendering the 
system appropriate for real-time e-learning engagements.

Bandwidth overhead of RDF triple updates
An analysis of the bandwidth overhead related to RDF triple updates within the consensus network was 
conducted. The communication overhead is reduced by employing Compact Semantic Delta Messages and 
the efficient Gossip-about-Gossip protocol of Hashgraph. This protocol demonstrates sub-linear complexity, 
successfully separating communication costs from the total number of nodes N .

The fixed overhead for KG metadata per update operation is 16 bytes. Moreover, the Effective Sync Bandwidth 
for the complete 100-node network was quantified at 13 KB per checkpoint.

This outcome signifies that bandwidth utilization is remarkably minimal. Since the overhead is not linearly 
dependent on N , the bandwidth expense for smaller networks remains below this minimal range, hence 
affirming the scalability and efficiency of the protocol for resource-constrained IoT applications.

Network partition and Worst-Case convergence
The system’s robustness against network failures, including partitions or node disconnections, depends on 
the predictable characteristics of the Hashgraph consensus. When an MB node experiences a temporary 
disconnection, it persists in buffering its local semantic updates. Upon reconnection, the buffered changes are 
replayed and submitted to the consensus Directed Acyclic Graph (DAG). The protocol utilizes deterministic 
ordering and conflict resolution (as outlined in Sect.  3.2), ensuring Strong Eventual Consistency (SEC) 
throughout the system. A distinct conflict resolution process is unnecessary. The Most Adverse Convergence 
The length required to reprocess and validate the final consensus order for all buffered events dictates time. This 
rate is constrained by the network’s consensus latency of 50 to 75 ms per event, facilitating rapid recovery and 
deterministic convergence to the universally accepted state.

Fig. 10.  Power Consumption vs. Number of Transactions.
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SPARQL query latency
Table 2 presents explicit measurements of SPARQL query latency, illustrating the responsiveness of the semantic 
validation layer. The system demonstrates low-latency outcomes for essential query operations, leveraging 
efficient SPARQL indexing and the optimized retrieval of RDF triples:

These measurements validate the system’s capacity to sustain high responsiveness even throughout intricate 
semantic validation and access-control assessments.

Authentication performance assessment
This section assesses the authentication functionalities of the proposed system, which amalgamates Hedera 
Hashgraph with asynchronous Byzantine Fault Tolerance (aBFT) and Knowledge Graph (KG) optimization 
in a distributed multi-university context. The suggested system commences the authentication workflow by 
communication between student IoT devices and their assigned Management Block (MB). The verification 
process entails matching the device’s user ID with the stored KG-backed identity metadata and decrypting 
the associated symmetric key (Sk), which was previously created by the GAN module. All identities and 
cryptographic materials are secured within the MB to avert unlawful physical access or tampering, while MB-
to-MB authentication facilitates smooth inter-university learning mobility. The performance of the network is 
assessed according to the peak rate of verified learning transactions executed at each university.

Figure 11 illustrates the correlation between network use and the duration of authentication across the assessed 
methodologies. At low utilization rates (10–30%), the suggested mechanism exhibits performance akin to that of 
lightweight decentralized systems. As network load escalates due to increased transaction volumes and student 
mobility, traditional architectures—specifically KDA-EL, BAF, and Hyperledger-based models—demonstrate 
significantly elevated delays caused by consensus congestion, block-generation limitations, and centralized 
verification bottlenecks. The suggested architecture consistently achieves reduced authentication times at all 
utilization levels, leveraging Hedera’s parallel aBFT event ordering, KG-assisted metadata minimization, and 
effective symmetric-key operations.

Conventional authentication methods often exhibit discrepancies in regulations and identity formats 
throughout colleges, necessitating that students again enroll or verify their identities when moving between 
institutions. These differences cause further delays, particularly during periods of high network congestion. 
The proposed architecture eradicates redundancies by offering a cohesive, lightweight authentication layer 

Fig. 11.  Authentication Delay Time vs. Network Utilization Percent.

 

Query Type Measured Latency (ms)

Identity Lookup 1.9–3.1 ms

Multi-hop Reasoning 5.8–7.4 ms

Access-Control 7.2–9.8 ms

Table 2.  SPARQL query latency Measurements.
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that enhances cross-university identity validation, thereby markedly boosting responsiveness and operational 
efficiency in distributed e-learning settings.

Security validation experiments
A thorough series of security validation experiments was performed to assess the resilience of the proposed 
authentication architecture against prevalent adversarial techniques, such as replay attacks, eavesdropping, man-
in-the-middle (MITM) manipulation, identity forgery, and key-generation vulnerabilities. This study evaluates 
the performance of the Hedera-based authentication workflow and the GAN-driven symmetric key generation 
module under actual threat situations.

Adversarial resilience summary
The findings on the system’s resilience to primary attack vectors are encapsulated in Table 3. All trials conducted 
validate the 100% effectiveness of the integrated defensive mechanisms against these threats.

Cryptographic strength assessment
A dataset of 10,000 GAN-generated 256-bit keys was evaluated using Shannon entropy and min-entropy metrics 
accordance with NIST SP 800 − 22/90B recommendations. The obtained entropy values (7.98 bits/byte and 
7.92 bits/byte, respectively) suggest robust unpredictability, non-repetition, and resistance to brute-force and 
predictive assaults.

Quantum attack resistance evaluation
Quantum threats were integrated into the upgraded threat model by simulating quantum adversaries that target 
the long-term storage of educational credentials, which require sustained verifiability. The system’s dependence 
on SHA-256 for hashing and symmetric key generation offers intrinsic resistance to Grover’s approach, 
necessitating around 2¹²⁸ operations for a comprehensive search, which remains computationally impractical 
even with quantum enhancement. The susceptibility of asymmetric components, particularly Ed25519 
signatures utilized in Hedera consensus, to Shor’s algorithm was assessed via simulation of a hybrid configuration 
incorporating post-quantum alternatives, such as Dilithium—a lattice-based signature scheme from the NIST 
post-quantum cryptography standardization initiative. In 1,000 simulated credential storage transactions, 
the post-quantum-enhanced system successfully denied all key-recovery attempts under presumed quantum 
capabilities (e.g., a 1,000-qubit quantum computer). In the absence of post-quantum enhancements, traditional 
Ed25519 demonstrated theoretical susceptibility; yet, the daily dynamic regeneration of GAN-generated 
keys substantially reduced risk by constraining exposure periods. These findings validate the architecture’s 
preparedness for quantum-resistant long-term credential storage and advocate for complete transition to post-
quantum cryptographic primitives in operational implementations.

Extended security validation of GAN-based key generation
A comprehensive security review was performed to justify the integration of GAN-based key generation into the 
proposed authentication architecture, focusing on the robustness, context-awareness, and attack resistance of the 
generated keys. This study contrasts the performance of keys generated using GANs with that of a conventional 
Cryptographically Secure Pseudo-Random Number Generator (CSPRNG), which acts as the established 
benchmark for secure key production.

•	 Cross-Context Key Variation Test: Keys were produced for 500 users utilizing diverse device identifiers, 
semantic features, and Knowledge Graph (KG) profiles. The mean Hamming distance between cross-con-
text keys was 128.6 bits for the GAN-based approach, in contrast to 127.9 bits for the CSPRNG. The results 
demonstrate that the GAN mechanism preserves robust statistical randomness while simultaneously embod-
ying significant semantic and device-level variability. This capacity improves identity distinction in decentral-
ized educational settings.

•	 Partial-State Leakage Resistance: Simulated seed leaking was developed to assess robustness to entropy-state 
exposure. Sequences created by CSPRNG displayed significant correlation patterns (ρ = 0.18) under condi-
tions of partial seed compromise, while keys produced by GANs revealed minimal correlation (ρ = 0.02). This 
result indicates enhanced resilience of the GAN methodology against leakage-based inference attacks.

•	 Adversarial Reconstruction Testing: An adversary utilizing model inversion was taught to recreate intrinsic 
aspects of key creation. In this adversarial context, CSPRNG keys allowed for partial reconstruction with an 

Attack Vector Key Defense Mechanism Result and Resilience

Replay Attack aBFT-based Timestamp Ordering & KG-Validated State Complete packet rejection (replayed packets rejected due to 
inconsistency between valid KG state and timestamp ordering)

MITM Manipulation SHA-256 Integrity Verification & KG Semantic Constraint Packet detection and discard (each manipulated packet detected by 
integrity verification and KG semantic constraint evaluation)

Eavesdropping GAN-Derived Symmetric Key (Ski) & KG-Bound Private Key Payload decryption infeasible (confidentiality confirmed; decryption 
impossible without the associated KG-bound private key pair)

Identity Forgery Semantic Reasoning Engine & Ontology Constraint Violation All forged identities rejected (semantic reasoning engine rejected all 
forged identities due to ontology-level constraint violations)

Table 3.  Resilience against primary attack Vectors.
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accuracy of 11.3%, while GAN-derived keys restricted reconstruction accuracy to under 1%. This illustrates 
improved resilience against predictive and machine-learning-based reconstructive attacks.

•	 Temporal Uniqueness Under High Load: The GAN module produced 100,000 sequentially generated keys 
without any duplication, while consistently maintaining stable entropy values. This confirms the method’s 
temporal unpredictability and its appropriateness for high-load authentication contexts prevalent in extensive 
e-learning systems.

The GAN component is not designed to supplant CSPRNGs as the principal cryptographic primitive. All 
essential assurances—such as confidentiality, unpredictability, and forward secrecy—remain dependent 
on existing symmetric and asymmetric cryptographic techniques. The GAN module operates as a context-
sensitive randomness augmentation layer, producing semantically enhanced key material that corresponds with 
KG features to improve identity distinction among diverse IoT devices. It thus enhances rather than replaces 
traditional sources of cryptographic randomness.

Side-channel attack validation
To empirically validate side-channel mitigations (e.g., constant-time operations in GAN key generation and 
masking in symmetric key derivation), we executed the protocols on actual hardware.

Experimental setup  A Raspberry Pi 4 (emulating a microcontroller board) and an ESP32 (emulating an Inter-
net of Things user device) were interconnected using MQTT. The GAN model was implemented using Tensor-
Flow Lite for enhanced efficiency. A total of 1000 traces were gathered for each experiment.

Timing attacks  The execution duration for key decryption was assessed using Python’s time.perf_counter(). In 
the absence of mitigation, the timing fluctuated by 15% depending on the input (correct versus incorrect pass-
word), thereby disclosing information. Through constant-time comparisons (e.g., utilizing hmac.compare_di-
gest), variation decreased to less than 1%, thus thwarting attacks (t-test p-value > 0.05).

Power analysis  Power traces during GAN inference were captured using a ChipWhisperer-Lite kit. Differential 
power analysis (DPA) on baseline traces recovered the key in 200 samples (correlation 0.45). With masking 
(random noise added to intermediate values), correlation dropped to 0.08, preventing key recovery even after 
1000 traces.

Real IoT hardware validation
To enhance the extensive Hedera–OMNeT + + simulation environment and to fortify the empirical basis of the 
suggested authentication system, a supplementary assessment was conducted using representative low-power 
IoT devices. This experiment aimed to validate the practical viability of device-side cryptographic operations on 
resource-limited microcontrollers, verifying that the suggested design is compatible with diverse IoT platforms 
typically utilized in e-learning settings.

Experimental setup
The following IoT devices were used to evaluate execution time, cryptographic overhead, and power consumption:

•	 Raspberry Pi 4 Model B (1.5 GHz quad-core Cortex-A72, 4 GB RAM).
•	 ESP32-WROOM microcontroller (dual-core Xtensa LX6, 240 MHz, 520 KB SRAM).
•	 Arduino Nano 33 IoT (ARM Cortex-M0+, 48 MHz, 32 KB RAM).

All devices interfaced with the Management Block (MB) over MQTT over Wi-Fi (802.11n). The MB conducted 
GAN-based key inference, registration processes, and interactions with the Hedera SDK, whilst IoT devices 
solely executed symmetric-key encryption/decryption and SHA-256 hashing.

Device-side cryptographic processing time
As GAN inference occurs just at the MB, the IoT devices implement only lightweight cryptographic primitives. 
Table  4 presents the recorded processing times for SHA-256 hashing, AES-128 decryption, and transaction 
preparation on each device.

These results confirm that the authentication and transaction-processing routines introduce minimal 
computational overhead and are well within the capabilities of constrained microcontrollers.

Operation Raspberry Pi 4 ESP32 Arduino Nano 33 IoT

SHA-256 hash (256-byte input) 0.42 ms 1.21 ms 4.73 ms

AES-128 decryption (256-byte block) 0.18 ms 0.83 ms 3.95 ms

Transaction preparation (MQTT publish) 9–12 ms 15–22 ms 24–33 ms

Table 4.  Device-side cryptographic processing Time.
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Power consumption measurements
Power consumption during transmission (TX), reception (RX), and idle states was assessed using a USB inline 
power meter for the Raspberry Pi 4 and an INA219 current sensor for the ESP32 and Arduino Nano 33 IoT. The 
recorded values are consolidated in Table 5.

These empirical measurements correspond with and enhance the simulation energy values presented in 
Sect. 4. Consequently, the energy model in the simulation framework has been revised and corroborated based 
on these actual device measurements.

End-to-End latency
End-to-end registration and authentication latency (IoT device → MB → Hedera → MB → device) was measured:

•	 Raspberry Pi: 41–47 ms.
•	 ESP32: 55–68 ms.
•	 Arduino Nano 33 IoT: 92–110 ms.

These figures demonstrate that even resource-limited devices can effectively engage in the proposed Hedera-
based decentralized authentication process.

The findings indicate that IoT devices may effectively execute the lightweight symmetric cryptographic 
operations mandated by the proposed design. GAN inference is not executed on IoT devices, hence alleviating 
the computational load on microcontrollers. The assessed power consumption and latency confirm the viability 
of implementing the system on actual IoT nodes. These hardware experiments augment the extensive simulation 
and enhance the practical validity of the suggested solution.

Formal security verification
This section provides a formal security verification of the proposed protocols utilizing BAN logic and the 
Dolev–Yao adversary model. The analysis evaluates mutual authentication, secrecy, integrity, and freshness in 
the registration and key distribution processes.

BAN logic analysis
The semantic user-registration protocol (Algorithm 1) is formally represented in BAN logic. Table 6 delineates 
the resultant message sequence, initial beliefs, and the ensuing logical derivation procedures.

The study indicates that mutual authentication is established, as both parties trust each other’s involvement 
and the integrity of the exchanged keys. Key freshness is maintained, inhibiting replay and the reuse of stale 

Message 1:
U MB: {ID , Request}
(The user submits a semantic identifier and a registration request.)
Message 2:
MB HNet: {Pk , Ptk , Sk
(The management backend forwards the GAN-generated key triple to the Hedera network.)
Message 3:
HNet U: {Pk , Ptk , ID , Sk
(The network returns the finalized credential set encrypted under the symmetric key shared with the user.)

Initial Beliefs
The formal reasoning relies on the following initial assumptions:
U believes fresh(nonce)
U believes MB controls (Pk , Ptk )
U MB

BAN Logic Derivation
Using the Message-Meaning, Nonce-Verification, and Jurisdiction rules, the following conclusions are obtained:
U believes MB said (Pk , Ptk )
U believes fresh(Ptk )
U believes MB believes U MB
MB believes fresh(Ptk )

Table 6.  Idealized registration protocol and BAN logic Derivation.

 

Device TX Power RX Power Idle Power

Raspberry Pi 4 2.8–3.2 W 2.1–2.3 W 0.9–1.1 W

ESP32 120–160 mW 80–95 mW 22–35 mW

Arduino Nano 33 IoT 35–45 mW 25–32 mW 9–12 mW

Table 5.  Power consumption of evaluated IoT Devices.
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keys. The protocol mitigates replay and impersonation attacks by guaranteeing freshness and authenticated key 
associations.

Dolev–Yao model verification
The suggested protocols underwent formal analysis utilizing the Dolev–Yao symbolic adversary model as 
implemented in ProVerif 2.04. This paradigm posits that the attacker has complete control over the communication 
channel, enabling them to intercept, alter, falsify, and replay communications, whereas cryptographic primitives 
like SHA-256 and GAN-derived entropy sources are seen as perfect and unassailable. The formal representation 
of the system comprises five concurrent processes: the User, the Management Backend (MB), the Hedera 
Consensus Service nodes, the adversarial process, and the key-generation reasoner tasked with modeling GAN-
based entropy formation.

The ProVerif specification incorporates queries for secrecy and authentication to validate fundamental 
security features. The confidentiality of the private transfer key Ptki is assessed via the query attacker(P tk_i), 
whereas injective mutual authentication is validated by the correspondence assertion query inj-
event (endAuth( U )) ==> inj − event (beginAuth( U )). These inquiries guarantee that the attacker 
cannot extract sensitive key material and that each finalized authentication is linked to a distinct genuine 
initiation event.

The analytical results demonstrate that the protocol fulfills all designated security features. No attack traces 
resulting in breaches of confidentiality or authentication failures were identified throughout 500 symbolic 
verification tests. The verification process maintained efficiency, averaging about two seconds per execution 
on a normal Intel workstation. An enhanced model integrating hybrid post-quantum cryptographic primitives 
was simulated to assess long-term robustness. Under Grover-style quadratic search assumptions, no decrease in 
effective security below the 128-bit threshold was noted, demonstrating the protocol’s resilience against potential 
quantum adversaries.

Ablation study
An ablation experiment was conducted to measure the contribution of each architectural component, focusing 
solely on throughput performance. The experiment assesses four configurations related to the progressive 
integration of Hedera Hashgraph, Knowledge Graph semantic processing, and the whole suggested design. The 
results depicted in Fig. 12 demonstrate distinct behavioral variations corresponding to the structural function of 
each module within the authentication sequence.

The Hedera + Standard Cryptography setup attains a baseline throughput of roughly 3710 TPS, demonstrating 
the efficacy of Hedera’s aBFT consensus in the absence of semantic reasoning or sophisticated key-generation 
techniques. The implementation of the Knowledge Graph layer in the Hedera + KG configuration results in 
a slight reduction in throughput to 3425 TPS, reflecting the anticipated overhead from semantic validation 
and triple-matching processes. Nonetheless, the performance remains elevated owing to Hedera’s rapid event 
sequencing and minimal latency in gossip dissemination.

Substituting Hedera with a traditional blockchain while maintaining semantic reasoning results in a significant 
reduction, with the Blockchain + KG configuration attaining 3000 TPS. This affirms that the block-generation 
latency and consensus restrictions of the blockchain impose intrinsic throughput limitations, regardless of the 
continual processing expense from KG reasoning.

The complete system configuration, incorporating Hedera, KG, and the GAN-driven cryptographic pipeline, 
achieves peak performance at 4310 TPS, surpassing all previous configurations. This suggests that the synergistic 

Fig. 12.  Throughput comparison of the four authentication configurations.
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impacts of Hedera’s consensus efficiency, KG-assisted lightweight metadata filtering, and GAN-based symmetric 
key generation augment throughput rather than reduce it.

The ablation results indicate that although each component exhibits distinct computational characteristics, 
Hedera’s consensus model is the primary factor in throughput scalability, and the fully integrated design attains 
the ideal equilibrium within the architecture.

Conclusion
The proposed semantic decentralized authentication architecture, which incorporates Hedera Hashgraph, 
distributed Knowledge Graphs, and GAN-driven dynamic cryptography, provides a scalable, energy-efficient, 
and semantically interoperable solution specifically designed for IoT-based e-learning environments. The 
architecture integrates Hedera’s high-throughput asynchronous Byzantine Fault Tolerant consensus, ontology-
driven semantic reasoning, and adaptive machine-learning-enhanced key generation, resulting in 4310 
transactions per second, reductions in latency, execution time, and energy consumption by 11–23%, and 
facilitates seamless cross-institutional credential portability while exhibiting robust resilience against predictive, 
inference-based, and traditional cryptographic attacks. The experimentally substantiated advantages over the 
most robust existing blockchain-based and centralized benchmarks demonstrate that the Hedera + KG + GAN 
paradigm routinely surpasses state-of-the-art alternatives, rather than only their mean performance.

Notwithstanding the encouraging efficacy of the proposed Hedera-based authentication and e-learning 
integrity system, some significant obstacles persist unaddressed. These constraints correspond with the wider 
unresolved challenges recently emphasized in security fortification, blockchain-oriented behavioral forensics, 
and privacy-conscious machine-learning evaluation, as indicated in works such as29–31.

To advance this high-performing research prototype into the core infrastructure of next-generation global 
decentralized education, future efforts must vigorously pursue fully decentralized on-device GAN execution 
utilizing federated distillation or secure-enclave inference to eradicate any remaining trust assumptions; 
incorporate recursive zero-knowledge proofs with SPARQL-based Knowledge Graph reasoning to facilitate 
verifiable yet entirely private cross-institutional credentials and semantic queries; establish formal cryptographic 
proofs of security for GAN-generated key material against model-inversion, membership-inference, and 
adaptive chosen-ciphertext threats; conduct continent-scale deployments involving hundreds to thousands 
of universities and drive standardization of the resulting DID methods, verifiable credential schemas, and 
HCS topic specifications through W3C, IMS Global, and European learning-technology bodies; migrate 
all cryptographic primitives to NIST-approved post-quantum algorithms to counter harvest-now-decrypt-
later quantum risks; extend the Knowledge Graph ontology with real-time behavioral biometrics and deploy 
continuous authentication models operating directly on Hedera event streams; perform comprehensive carbon-
footprint benchmarking and transition toward carbon-aware or carbon-negative consensus mechanisms; and 
rigorously validate the system under nation-state-level adversarial models including long-range, adaptive Sybil, 
and eclipse attacks using game-theoretic analysis and red-team exercises.

Effectively achieving these ambitious objectives will elevate the proposed framework from a distinguished 
academic contribution to the globally embraced, privacy-preserving, quantum-resistant, and environmentally 
sustainable foundation of inclusive decentralized education for billions of learners in the coming decades.

Data availability
The datasets used and/or analyzed during the current study availablefrom the corresponding author on reason-
able request.
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