www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Semantic decentralized
authentication for loT-based
e-learning using Hedera Hashgraph
and Knowledge Graphs
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The integration of Internet of Things (loT) devices in e-learning systems necessitates robust, scalable,
and secure authentication procedures to provide dependable sharing of academic records among
remote educational institutions. Conventional centralized systems experience scalability limitations,
singular points of failure, and heightened susceptibility to hackers, especially in resource-limited

loT settings. This paper presents a decentralized authentication framework based on Hedera
Hashgraph and Knowledge Graphs (KGs) to tackle these issues. The architecture incorporates a GAN-
based cryptography module for the generation of dynamic symmetric keys, enhancing resistance
against predictive and inference-based attacks. Knowledge Graphs facilitate semantic validation of
identification features and improve interoperability among institutions via the Hedera Consensus
Service (HCS). The quantitative assessment indicates that the Hedera + KG + GAN model attains
a17.1% increase in throughput, an 11-12% reduction in processing time, up to a 20% decrease

in execution time for substantial data volumes, a 6-15% decline in energy consumption, and an
approximate 23% reduction in authentication delay during periods of high network utilization
relative to the leading competing frameworks. The suggested method provides a scalable, safe, and
semantically enriched authentication mechanism for loT-enabled e-learning ecosystems, creating a
solid foundation for next-generation decentralized educational platforms.
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The incorporation of IoT technologies with e-learning systems has become a revolutionary model in the modern
digital age, reshaping the educational environment. The expansion of networked smart devices has enabled the
establishment of intelligent learning environments, allowing real-time access to educational resources, dynamic
interactions, and customized learning experiences'. The increasing demand for distributed educational platforms
propels the integration of IoT in education?.

This technological breakthrough presents substantial technical and security challenges, as traditional
authentication methods, typically dependent on centralized architectures, are insufficient for the scale and
complexity of IoT-driven ecosystems®. Distributed ledger technologies, including Hedera Hashgraph, provide
effective solutions via decentralized consensus and fault-tolerant processes, guaranteeing scalability and security*.
Simultaneously, Knowledge Graphs (KGs) improve semantic interoperability by organizing educational data
with relational metadata, an essential characteristic for resource-limited IoT settings’.

The importance of IoT integration in e-learning transcends simple technology implementation; it cultivates
an interactive, data-driven, and inclusive educational environment. IoT-enabled gadgets, including wearable
sensors and smart tablets, provide real-time monitoring of learning progress, performance evaluation,
and immersive experiences via augmented reality®. In higher education, these technologies enable global
collaboration, permitting students to securely exchange academic credentials among schools’. From a societal
standpoint, the IoT has the capacity to mitigate educational inequalities in underprivileged areas, where
access to conventional classrooms is restricted, thus fostering educational equity®. However, the lack of strong
authentication systems presents considerable concerns, including eroding trust in digital educational platforms
due to susceptibility to cyber threats’.
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Notwithstanding its transformative promise, the implementation of IoT in e-learning encounters significant
hurdles and constraints. A key issue is the scalability of authentication systems; centralized architectures,
dependent on individual servers, are vulnerable to single points of failure, which become more evident as the
user and device count rises'’. Moreover, IoT devices are limited by restricted computational power, energy
resources, and storage capacity, making the implementation of modern cryptographic algorithms difficult!’.

Security concerns, including man-in-the-middle attacks, data eavesdropping, and privacy breaches, are
especially significant in educational environments where sensitive information, such as academic records, is
maintained'?. Additional challenges stem from the diversity of IoT communication protocols and the absence
of semantic interoperability among institutions, which obstructs smooth credential transfer'®. Recent studies
indicate that IoT applications in education often encounter security problems, emphasizing the necessity for
new solutions'*.

This research is motivated by the pressing necessity to tackle these difficulties. Distributed solutions like
Hedera Hashgraph, utilizing the Gossip-about-Gossip consensus algorithm for enhanced throughput and
minimal latency, offer a feasible foundation for decentralized authentication in IoT settings'®>. Moreover,
Knowledge Graphs provide the semantic modeling of intricate interactions among learners, courses, and
certificates, hence improving robustness against adversarial attacks'®. The incorporation of machine learning-
driven cryptography, namely GANs, which produce dynamic and attack-resistant cryptographic keys, enhances
this methodology'”. The increasing necessity for secure and scalable authentication frameworks in IoT-based
educational environments justifies this research!.

The main aim of this project is to provide a decentralized semantic authentication system for IoT-based
e-learning, utilizing Hedera Hashgraph and Knowledge Graphs. Specific objectives encompass the formulation
of protocols for user registration, authentication, and the semantic transfer of credentials; the evaluation of
performance metrics including throughput, response time, and energy consumption; and the assessment of
security resilience against sophisticated cyber threats. The principal innovation is the amalgamation of GAN-
based encryption with Hedera’s asynchronous Byzantine Fault Tolerance (aBFT) consensus and KG-driven
semantic analysis, resulting in a harmonious equilibrium of security and efficiency.

This research advances the subject by proposing a distributed educational architecture in which institutions
function as nodes within a Hedera network, enhanced with Knowledge Graphs to guarantee semantic
interoperability and reduce single points of failure. It formulates registration and authentication algorithms
employing GANs to produce attack-resistant cryptographic keys, in conjunction with a secure credential
transfer protocol that obviates the necessity for repeated authentication. Comprehensive simulations reveal
substantial enhancements in throughput and response time relative to conventional blockchain and centralized
systems, alongside a rigorous threat model evaluating resilience against sophisticated attackers. This study
ultimately provides a scalable solution for IoT-based e-learning environments, improving educational fairness
and optimizing energy usage for resource-limited devices.

In comparison to the most robust baseline schemes, the suggested Hedera + KG + GAN architecture attains
a throughput increase of 17.1% (4310 TPS), a reduction in processing time by 11-12%, and a decrease in
execution time by up to 20% for medium and large data volumes. IoT devices exhibit a 6-15% reduction in
energy consumption, while the authentication workflow achieves an approximately 23% decrease in elapsed
time during periods of heavy network demand. The numerical indications demonstrate that the suggested
architecture continuously and significantly surpasses the top-performing existing frameworks, affirming its
scalability and practical usefulness in extensive IoT-based e-learning environments.

This study is structured to ensure a logical transition from theoretical underpinnings to empirical validation.
Section 2 examines the literature, focusing on pivotal technologies including Hedera Hashgraph, Knowledge
Graphs, and GAN-based cryptography. Section 3 outlines the suggested paradigm, specifying the procedures for
registration, authentication, and credential transfer with algorithmic accuracy. Section 4 examines blockchain
and cryptography functions, detailing the fundamental algorithms that support the architecture. Section 5
assesses the efficacy and security of the proposed system via comprehensive simulation-based tests. Ultimately,
Sect. 6 closes the study and delineates avenues for future research.

Related work

Decentralized authentication for IoT-based e-learning systems has garnered heightened interest owing to the
constraints of centralized methodologies. This section categorizes existing research into three theme areas and
highlights the research gaps that necessitate the suggested paradigm.

Blockchain-based authentication in e-learning

Numerous studies have utilized blockchain to attain decentralized authentication in educational settings. A
blockchain-based solution was proposed in'® to address single points of failure in centralized systems, albeit
it resulted in elevated computing costs for IoT devices. The study in?” introduced a lightweight authentication
system designed for IoT contexts, enhancing response time yet exhibiting deficiencies in interoperability among
institutions.

A Hyperledger Fabric-based access control system was developed in?! to augment the secrecy of academic
credentials via selective access permissions. While proficient at protecting credentials, its consortium structure
restricts scalability and the sharing of semantic data among universities.

Blockchain-based solutions enhance data integrity and privacy; yet, they encounter issues related to latency,
energy consumption, and interoperability. These constraints warrant the investigation of other distributed
ledgers, such as Hedera Hashgraph, which offer enhanced throughput and efficient consensus for IoT-based
e-learning.

Scientific Reports |

(2026) 16:3225 | https://doi.org/10.1038/s41598-025-33206-0 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Semantic interoperability via knowledge graphs

A separate research avenue emphasizes the attainment of semantic integration within decentralized educational
systems. The research in?? employed knowledge graphs to represent relationships among IoT entities and
improve semantic reasoning. Likewise?’, utilized blockchain and deep learning to enhance the security of IoT
applications, although failed to tackle cross-platform semantic interoperability.

KGs enhance contextual comprehension and promote significant interactions among decentralized
educational entities. Nonetheless, previous studies have generally regarded knowledge graphs as analytical
instruments apart from the foundational ledger. This study enhances the concept by integrating knowledge
graph reasoning directly into the consensus mechanism of Hedera Hashgraph, thereby providing semantic
validation of educational records among institutions.

Machine learning and cryptographic enhancements for loT security

Machine learning methodologies have been progressively utilized to enhance IoT security. The research in?!
integrated federated learning with generative models for intrusion detection, demonstrating robustness against
attacks while missing decentralized identity management. The study in?* utilized GAN-based entropy generation
to create context-aware cryptographic keys, improving flexibility in remote environments.

Reference?® presents an IOTA-based identity management architecture that incorporates Fog Computing
and machine learning for ongoing device authentication, providing scalability and diminished overhead.
Moreover?, illustrated the viability of Hedera Hashgraph in decentralized healthcare systems by incorporating
deep learning analytics with distributed storage to guarantee data immutability and elevated performance.

Although these studies affirm the advantages of Al and distributed ledgers in IoT security, few have integrated
these technologies with semantic reasoning and decentralized consensus, which constitutes the principal
contribution of this research.

Current literature can be classified into three categories:

o blockchain-based authentication emphasizing data integrity yet limited by scalability;

« semantic modeling prioritizing knowledge representation yet lacking integration with decentralized ledgers;

« Cryptographic techniques powered by machine learning that enhance adaptability yet neglect cross-institu-
tional compatibility.

This study presents a semantic decentralized authentication architecture that integrates Hedera Hashgraph,
Knowledge Graphs, and GAN-based dynamic cryptography to address these deficiencies. This integration
establishes a harmonious equilibrium of scalability, semantic interoperability, and strong security, enhancing
decentralized e-learning settings.

Methodology

This chapter delineates a decentralized educational framework using Hedera Hashgraph, IoT, and Knowledge
Graphs to guarantee secure and scalable management of academic credentials and transactions among
distributed schools.

Decentralized semantic educational model

The educational ecosystem serves as a vital framework for examining smart learning environments facilitated
by IoT technology. In this framework, several stakeholders—comprising learners, instructors, administrative
workers, and support staff—interact within a decentralized network, facilitated by a system of HCS nodes.

Conventional authentication methods, based on centralized systems, face considerable difficulties in
incorporating external users and demonstrate intrinsic susceptibility to single points of failure. The suggested
architecture utilizes Hedera Hashgraph, tailored for IoT devices with restricted compute power, storage
limitations, and energy resources. This setup allows educational institutions to authenticate and safeguard
academic credentials and learning records as students engage in courses across affiliated campuses or instructors
provide instruction at various places.

In this architectural concept, each institution operates as a node inside a cohesive educational network,
containing extensive data about students, educators, personnel, and enhanced learning profiles supported
by KGs. Each node employs an HCS unit to govern its community and guarantees high-throughput, secure
connections with other network participants.

The design, supported by a distributed network of HCS nodes, guarantees decentralized consensus and
robust storage, with data duplicated across numerous nodes to prevent single-point failures, as seen in Fig. 1.
This architecture differentiates itself from independent blockchain instances for each institution by centralizing
coordination while preserving distributed integrity. This configuration facilitates the transition of students
across institutions—such as from one campus to another (e.g., U-1 to U-2)—with the procedure regulated by
corresponding HCS nodes.

As a result, authenticated individuals traverse the network with a singular identity, eliminating the need for
redundant device authentication. A device authenticated by an HCS node within a single institution acquires
network-wide trust, facilitating uninterrupted connection with all peers.

Moreover, learner-generated data, encompassing assessment results, laboratory activities, and project
contributions, is sent openly through IoT devices, augmented by the semantic interoperability facilitated by
knowledge graphs.

The decentralized Knowledge Graph (KG) functions as the semantic basis of the proposed architecture. The
schema adheres to an RDF(S)/OWL-based ontology, with four principal entity classes—User, Device, Course,
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Fig. 1. Architecture of the Decentralized Semantic Educational Network.
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Fig. 2. ToT-Based E-Learning Deployment Architecture.

and Record—interconnected by semantic connections like enrolledIn, teaches, possesses Record, and tied To
Device.

Each Management Block (MB) sustains a localized Knowledge Graph (KG) instance sourced from academic
sources, IoT device metadata, and registration records. These instances are synchronized by Hashgraph
consensus checkpoints, which facilitate the exchange of RDF triple updates and verify integrity among MB
nodes, so providing eventual consistency across the network without a centralized authority. SPARQL 1.1 is
utilized for semantic validation, identity reasoning, and access control queries, facilitating cross-institutional
interoperability and secure knowledge sharing across remote campuses.

To ensure scalability and reduce reasoning latency, RDF triples in Knowledge Graphs are stored and queried
using efficient triple-store frameworks like Apache Jena TDB and Blazegraph. These systems employ SPARQL
indexing and in-memory reasoning to expedite semantic queries, guaranteeing rapid and reliable access in
extensive distributed contexts. Furthermore, semantic information are intermittently stored at the Management
Block (MB) level to mitigate cross-node inference overhead while maintaining data integrity and synchronization
throughout the educational network.

Figure 2 depicts the deployment architecture of the proposed IoT-based e-learning ecosystem. The
environment comprises several IoT devices, including smart classroom sensors (temperature, occupancy, and
motion), wearable learning trackers, camera-equipped instructional kiosks, Raspberry Pi-based learning hubs,
and student tablets.

Each device interacts with a local Management Block (MB) via lightweight protocols like MQTT and CoAP.

The MB conducts semantic preprocessing of the gathered data and transmits authenticated transactions via
secure channels to the HCS.

This communication framework facilitates rapid authentication, secure data transmission, and effective
synchronization among educational institutions.
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Knowledge graph synchronization protocol

The continual development and alignment of Knowledge Graph (KG) instances throughout various educational
institutions are essential for maintaining system reliability and data integrity. The HCS oversees this entire
process, primarily based on Hashgraph distributed ledger technology.

The synchronization mechanism is implemented using an authoritative, deterministic method. Initially,
RDF triple updates produced at each Management Block (MB) node are structured as Compact Semantic Delta
Messages. These messages encapsulate fundamental alterations inside the KG. Secondly, each MB node, the
exclusive authorized entity, disseminates these semantic deltas as an event across the Hashgraph consensus
network through HCS. The Hashgraph algorithm guarantees Deterministic Ordering via its aBFT (asynchronous
Byzantine Fault Tolerance) virtual voting mechanism, which produces a universally accepted, definitive sequence
for all update occurrences.

As a result, all MB nodes receive and implement the identical ordered sequence of updates, ensuring that
the KG instance develops uniformly throughout all participating institutions. This robust, predictable ordering
effectively obviates the need for reconciliation or conflict resolution processes. Potential conflicts are inherently
handled at the consensus layer prior to application, as each node exclusively processes updates that have the
final, agreed-upon sequence and timestamp.

Hedera hashgraph consensus architecture

The decentralized consensus mechanism supporting the educational network is enabled by the Hedera
Hashgraph framework, setting it apart from conventional blockchain architectures. This method employs a
Directed Acyclic Graph (DAG) framework, in which transactions appear as events interconnected via a gossip
protocol, in contrast to the linear block chaining typical of traditional systems. The framework includes a header
with timestamps and cryptographic signatures, along with a body that contains transaction lists enhanced by
semantic metadata sourced from KGs, as depicted in Fig. 3.

Hedera Hashgraph utilizes an aBFT consensus method, engineered to facilitate transaction throughput above
10,000 transactions per second (TPS) while ensuring lower latency relative to conventional blockchain systems.
This architecture avoids the energy-intensive proof-of-work requirements, potentially reducing resource
consumption. The gossip-about-gossip protocol guarantees fair event sequencing among network nodes,
enhancing scalability and dependability in resource-limited IoT settings. Figure 3 illustrates that the DAG design
facilitates the efficient distribution of learning-related transactions, including student records and assessment
data, with immutable storage ensured by the network’s consensus mechanism.

Consensus security under limited node diversity
At the outset of the e-learning network’s deployment, the quantity of participating institutions (Management
Blocks) may be restricted, thus heightening the risk of majority-control or Sybil assaults.

To address this, the suggested architecture employs a hybrid consensus technique wherein initial operations
depend on a trusted quorum configuration validated by institutional credentials from partner universities.

Every participating member bank is authenticated using a cross-signed certificate before to entering the
Hedera network, and a two-thirds (%) quorum requirement is necessary for transaction validation.

Voting rights are periodically redistributed among members to avert the dominance of a specific group of
nodes, and integrity is maintained through the cross-validation of event signatures.

Upon achieving adequate node diversity, the system effortlessly shifts to the completely decentralized
asynchronous Byzantine Fault Tolerant (aBFT) consensus of Hedera Hashgraph, preserving identical security
assurances devoid of centralized supervision.

Block(E1)
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Fig. 3. Hedera Hashgraph DAG Structure with Semantic Metadata.
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Semantic user registration protocol
The registration step creates a fundamental system for integrating users—students, professors, and staff—into
the decentralized semantic educational network, utilizing the strong infrastructure of the Hedera Hashgraph
network. This protocol, carefully implemented under the supervision of the university acting as a Management
Block, effectively incorporates GANSs for the creation of robust cryptographic key pairs and KGs for thorough
semantic identity representation.

The registration procedure begins when a user submits a request via an IoT device, sending preliminary
identity information straight to the university (MB), which acts as the central coordinator in this ecosystem.

The MB, possessing substantial computational capability, utilizes a pre-trained GAN model that has been
offline trained on extensive historical educational datasets. Section 4 summarizes the particular training settings
and hyperparameters of the GAN model to ensure reproducibility and clarity.

The training employs a minimax loss function, as specified in Eq. 1.

L = E|log D(real keys)] + E[log(1 — D (G( fake keys)))] (1)

The offline training phase of the GAN model requires about 100 epochs to attain steady convergence and produce
a reliable key-generation function. During the registration process, the pre-trained model is utilized solely for
efficient inference to generate new public (Pki) and private (Ptki) key pairs, hence minimizing computational
burden on IoT devices.

These keys are augmented with semantic identifiers (IDi), carefully formulated as RDF triples (e.g., User_i:
enrolledInCourse_j.:hasGradeGrade_m), which improve interoperability and data consistency among various
educational institutions.

Furthermore, symmetric keys (Ski) are derived via a secure SHA-256 hashing procedure that integrates the
semantic identifier (IDi), GAN-generated entropy, and the distinct MAC address of the IoT device, thereby
establishing a lightweight encryption framework ideally tailored for the resource-limited contexts characteristic
of IoT devices.

Upon generation, these authenticated transactions are transmitted by the MB to the HCS for aBFT consensus,
as detailed in Algorithm 1, thereby guaranteeing the secure addition of data to the immutable DAG structure
for enduring storage and integrity. Subsequently, the MB conveys the encrypted key sets and IDs to the user’s
IoT device via a highly secure encrypted channel, enabling seamless identity transfer throughout the network
without the necessity for repetitive re-authentication. This advanced method, illustrated in Fig. 4, enhances
security, scalability, and operational efficiency in remote learning environments, establishing a robust framework
for educational data management.
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Fig. 4. Flowchart of Semantic User Registration Protocol.
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Input: User_request (registration request from user via loT device), University, (MB for university k), HNet
(Hedera network)

Output: Pki (public key for user i), Ptki (private key for user i), IDi (semantic identifier for user i), Ski (symmetric
key for user i)

1. Begin

2. for each University, € HNet do // Iterate over all MBs in the Hedera network

3. for each User_request from S, I, St € University, do // Iterate over user requests in university k (Uk) via
10T device

4. Load Pre-Trained GAN Model: The GAN is trained offline once, here only inference is used to generate
keys.

5. Generate Pki, Ptki, IDi: Utilize G to produce Pki and Ptki,; construct IDi as KG RDF triple (e.g., User;
cenrolledin Course; . :hasGrade Gradey,) for semantic interoperability.

6. Compute Ski: Calculate Ski = SHA256(IDi + GAN_entropy + MAC_IoT _device_i) to derive a
symmetric key for lightweight encryption.

7. Submit to HCS: University,, broadcasts transaction (Pki, IDi) to HCS for aBFT consensus, append to

DAG ifvalidated.

8. Send to User: University, transmits Pki, Ptki, IDi, Ski to User i € Uk via IoT device through an
encrypted channel.

9. end for

10. end for

11. End

Algorithm 1. Semantic User Registration Algorithm.

The GAN model utilized for cryptographic key generation is trained exclusively offline before system
deployment. The training dataset comprises anonymized educational identity tuples, encompassing semantic
user roles, course-enrollment linkages, device identifiers, temporal authentication patterns, and knowledge
graph-based contextual attributes. This dataset is utilized exclusively at the administrative root node to generate
a singular global GAN model. Subsequent to training, only the generator’s refined inference weights are securely
disseminated to all Management Blocks (MBs) through authenticated update channels, with no MB engaging
in independent training. During operation, MBs utilize the generator only for inference, hence maintaining a
distinct separation between offline training and online execution. To reduce reverse-engineering threats, noise
based on differential privacy is utilized during training, and the raw training data is never disclosed beyond the
root node.

Semantic authentication protocol

Algorithm 2, “Semantic Device and Transaction Authentication in Hedera Network,” outlines a comprehensive
authentication protocol inside a decentralized educational framework. The program, supervised by the
university’s Management Block, authenticates IoT-generated learning transactions (Ti) through an advanced
semantic methodology. The process commences when a user initiates a transaction (Ti) via an IoT device,
transmitting it to the university (MB), which functions as the central coordinator. The MB obtains Ti and
authenticates the semantic identification (IDi) through a KG query, precisely aligning RDF triples (e.g., User_i:
enrolledInCourse_j) to provide accurate identity verification.

Subsequently, the public key (Pki), initially produced by a GAN, is authenticated through a secure public
key infrastructure overseen by the MB, followed by the decryption of Ti utilizing a symmetric key (Ski) and
a comprehensive integrity evaluation performed via SHA-256 hashing. Following successful validation, the
authenticated transaction (AuthTi) is re-encrypted with KG metadata by the MB and submitted to the HCS for
aBFT consensus, thereby ensuring secure appending to the Hedera Hashgraph DAG. The revised network (HNet),
upon reaching agreement, alerts the MB, which subsequently communicates the successful authentication to the
IoT device, ensuring secure, immutable storage and improved interoperability throughout the ecosystem.

Figure 5 visually delineates this comprehensive procedure, showcasing the six-step authentication flow and
underscoring the essential integration of KG validation and HCS consensus under the supervision of the MB.
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Fig. 5. Semantic Device and Transaction Authentication Process.

Input: IDi (semantic identifier from KG), Ti (learning transaction from loT device), Ski (symmetric key), Pki
(public key from GAN), University, (MB at source university)
Output: AuthTi (authenticated transaction), HNet (updated Hedera network)

1. University, (MB) receives Ti from IoT _device // Receive transaction from user via IoT device

2. If query KG(IDi) matches registered triple (e.g., User; :enrolledin Course;) then // Semantic validation

3. Verify Pki using GAN-trained PKI // Check authenticity with adversarial-resistant key

4. Decrypt Ti using Ski // Extract transaction data with symmetric key

5. If Dec(Ti) is valid and integrity intact (SHA256 check) then // Verify data integrity

6. Generate AuthTi = Enc(Ti, Ski + KG_metadata) // Re-encrypt with semantic metadata

7. University, (MB) submits AuthTi to HCS for aBFT consensus // Broadcast for consensus and DAG
append

8. Update HNet with AuthTi // Store in Hedera network

9. University, (MB) notifies IoT device of success // Send confirmation to device

10. Else

11. Universityy (MB) rejects Ti and logs anomaly with KG context // Reject and record with semantic details

12. Endif

13. Else

14. Universityy (MB) rejects Ti and logs anomaly // Invalid 1D

15. Endif

Algorithm 2. Semantic Device and Transaction Authentication Algorithm.

Semantic transfer protocol

Algorithm 3, “Semantic Transfer Protocol in Hedera Network,” delineates a secure and efficient method for
the transmission of student and teacher records among universities in a decentralized educational framework.
The protocol, executed under the control of the university operating as a Management Block, utilizes semantic
validation and sophisticated cryptographic mechanisms. The procedure commences when a user submits a
transfer request for user i from the source university (University_k) to the destination university (University_l)
through an IoT device, which transmits the request to University_k (MB source) for processing. The MB at
University_k receives the transfer request and verifies the IDi using a detailed KG query, aligning RDF triples
(e.g., User_i: enrolledIn Course_j) to provide precise identity confirmation.

Records (Si or Ii) are encrypted with a GAN-generated symmetric key (Ski), with the public key (Pki)
authenticated and the transaction safely endorsed by the MB. The MB transmits these encrypted records through
the HCS across the Hedera network (HNet) to University_l (MB destination), which decrypts them using Ski
and performs a comprehensive integrity verification employing SHA-256.

Following successful validation, the MB at University_l produces enhanced records (TransSi or Transli) with
KG metadata, which are then submitted to HCS for aBFT consensus, thereby assuring secure appending to the
DAG and subsequent updates in HNet. This procedure ensures a smooth, unalterable transfer without requiring
re-authentication, with University_I notifying University_k, which subsequently tells the IoT device and user of
the successful transfer. The workflow is depicted in Fig. 6, illustrating the Semantic Transfer Protocol Between
Universities.
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Input: 1Di, Ti, Ski, Pki, University,, University,, HNet
Output: TransSi (transferred student records), Transli (transferred instructor records), HNet (updated Hedera
network)

~

Universityy (MB at source university) receives transfer request for user i from Uk to Ul via IoT _device

// Receive request from user via IoT device

2. If query KG(IDi) matches registered triple (e.g., User; :enrolledin Course;) then // Semantic validation

3. Encrypt Si or 1i using Ski from GAN // Encrypt records with symmetric key

4. Verify Pki using GAN-trained PKI and sign transfer // Authenticate with adversarial-resistant key

5. University, (MB) broadcasts encrypted (Si or 1i) to University, (MB) via HCS over HNet // Transmit
via Hedera network

6. University, (MB) decrypts using shared Ski and verifies integrity (SHA256) // Validate records

7. If Dec(Si or i) is valid then // Check validity

8. Generate TransSi or Transli with KG _metadata // Enrich with semantic data

9. University, (MB) submits TransSi or Transli to HCS for aBFT consensus // Append to DAG at
destination

10. Update HNet with TransSi or Transli // Store in Hedera network

11. University, (MB) notifies University, (MB) and loT device of successful transfer // Confirm transfer

12. Else

13. University, (MB) rejects transfer and logs anomaly with KG context // Reject with semantic details

14. Endif

15. Else

16. University, (MB) rejects transfer and logs anomaly // Invalid ID

17. Endif

Algorithm 3. Semantic Transfer Protocol Algorithm.

Blockchain and cryptographic operations

This section introduces two essential algorithms that facilitate the secure and efficient administration of
transactions and cryptographic keys in a decentralized educational framework. Algorithm 4, “Transaction
Submission and Consensus in Hedera DAG,” coordinates the submission of learning transactions (Ti) to the
Hedera Hashgraph, with the university serving as a Management Block utilizing HCS nodes for enhanced
functionality.

The process commences when a user initiates a Ti through an IoT device, transferring it to the university
(MB), which conducts semantic validation of the identifier (IDi) through rigorous KG queries, verifying
conformity with RDF triples (e.g., User_i: hasRecordTi). Transactions are encrypted using a GAN-generated
symmetric key (Ski) and signed with a public key (Pki) by the MB, subsequently disseminated via a gossip
protocol to HCS nodes for aBFT consensus. Upon achieving agreement, the MB guarantees that transactions are
added to the DAG, updating the Hedera network (HNet) with semantic metadata, thus ensuring immutability
and integrity throughout the ecosystem.
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Input: Ti, IDi, Ski, Pki, University, (MB)
Output: ConfirmedTi (consensus-approved transaction), HNet

University, (MB) receives Ti from IoT device // Receive transaction from user via loT device
Validate 1Di via KG query (e.g., match RDF triple User; :hasRecord Ti)
Encrypt Ti with Ski and sign with Pki (GAN-verified)

University, (MB) broadcasts encrypted Ti to HCS nodes via gossip protocol
HCS performs aBFT consensus on events

If consensus achieved (fair ordering in DAG) then

Append ConfirmedTi to Hedera DAG

Update HNet with semantic metadata

. University, (MB) notifies loT _device of confirmation

10. Else

11. University, (MB) rejects Ti and logs anomaly

12. Endif

X0 N W~

Algorithm 4. Transaction Submission and Consensus in Hedera DAG.

Furthermore, Algorithm 5, “Cryptographic Key Management and Renewal,” pertains to the lifetime of
cryptographic keys to ensure enduring security, conducted under the supervision of the university (MB). The
MB periodically assesses key expiration using usage data, retraining a GAN with updated user context from KG
to provide reissued keys (Pki/, Ptkis, Skir).

The new symmetric key (.Ski/ ) is generated using SHA-256, integrating GAN entropy and context hash,
with integrity confirmed via KG by the MB. Legitimate renewals are disseminated by the MB to HCS for aBFT
consensus and recorded in HNet, whereas compromised keys initiate revocation and alerts that are transmitted
throughout the network. Collectively, these algorithms, overseen by the MB, improve security and scalability,
specifically designed for resource-limited IoT devices, hence enabling a robust and effective e-learning
framework.

To guarantee dependable identity and key management in operational networks, each Management Block
(MB) upholds a Distributed Revocation List (DRL) that is synchronized among participating nodes via the
Hedera consensus service. Upon the revocation or modification of a user’s key or identity attribute, the associated
record is disseminated throughout the DRL, enabling all nodes to implement the most current authorization
status independently of a centralized authority. This decentralized revocation technique facilitates safe user
migration, key expiration, and real-time access control modifications while maintaining network integrity.

Input: Current Pki, Ptki, Ski, User_context (from KG), University_k (MB)
Output: Renewed Pki , Ptki ,Ski , Revocation_status

University, (MB) periodically evaluates key expiration based on usage threshold
Train GAN on updated User_context (e.g., RDF triples for access patterns)

Generate renewed Pki', Ptki' using GAN Generator

Compute Ski' = SHA256(Ski + GAN _entropy + User_context_hash)

Verify renewal with KG integrity check

If valid, University, (MB) broadcasts renewal transaction to HCS for aBFT consensus
Update keys in HNet DAG and University, (MB) notifies IoT device

If compromised, University, (MB) revokes keys and logs in KG

Set Revocation_status = true and University, (MB) propagates alert

0% N AW~

Algorithm 5. Cryptographic Key Management and Renewal.

Performance and security evaluation

This section delineates a comprehensive assessment methodology for the proposed decentralized authentication
system, highlighting its performance metrics like execution time, throughput, and power consumption, in
addition to its security and authentication robustness.

To assess the architecture’s efficacy, extensive simulation tests are conducted using a hybrid simulation
environment that integrates the Hedera Hashgraph simulator with the OMNeT + + network simulator on a
Linux platform.

The Hedera simulator emulates the aBFT consensus mechanism, whereas OMNeT + + facilitates the modeling
of IoT device interactions within a distributed educational network. The experimental equipment utilizes a
testing machine equipped with an Intel Core i5-1035G1 CPU functioning at 1.0 GHz, featuring a 6 MB cache
and 8 GB of RAM, thereby providing a robust computational framework for the simulations.

The suggested mechanism utilizes the HCS for transaction validation, together with KG-informed semantic
metadata and GAN-generated cryptographic keys to replicate authentic e-learning scenarios.

The GAN employed for dynamic key generation was trained using anonymized educational identity data.
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Parameter Value

Channel Wireless

Radio range/Mobility Random/Uniform
Propagation Log-distance path loss
Protocol IEEE 802.15.4

Speed of members 2,4,6,8m/s

Number of MBs/Users/IoT devices | 100/50,000/10,000
Simulation time 2700 s

Traffic type Variable bit rate
Covered area 15 km x 15 km

Packet size

32-1024 bytes

Packet length to HNet 64 bytes
KG metadata overhead 16 bytes
GAN key generation cost 32 bytes

Table 1. Simulation parameters for the proposed Mechanism.

The training was executed for 100 epochs, utilizing a batch size of 32 and a learning rate of 0.001, employing
the Adam optimizer. The generator and discriminator networks each consisted of three hidden layers employing
ReLU activation and dropout regularization to reduce overfitting. These settings were selected empirically to
guarantee consistent convergence and reproducibility throughout multiple training iterations.

The system is configured with default parameters outlined in Table 1, with the simulation conducted for
45 min to process 3,000 learning transactions, and performance metrics are averaged over 50 independent
simulation runs to ensure statistical reliability. The Hedera simulator is designed to depict a network of 100
universities operating as Management Blocks (MBs), each managing 500 users (comprising students and faculty)
and 100 IoT devices, resulting in a cumulative total of 50,000 users.

The hybrid simulation environment combines a customized Hedera Hashgraph emulator, developed with
the Hedera SDK and incorporating an integrated gossip and aBFT consensus module, with the OMNeT ++ 6.0
network simulator. The Hedera emulator replicates event propagation intervals between 50 and 75 ms with
message payloads of 512 bytes, whereas OMNeT + +is configured with a baseline latency of 20 ms, a bandwidth
of 2 Mbps, and a queue capacity of 50 packets per node.

The energy consumption of IoT devices follows a two-state model, demonstrating 120 mW during
transmission, 80 mW during reception, and 10 mW in idle mode, as shown by commercial IoT microcontroller
specifications. These settings create a uniform methodology for evaluating performance and energy efficiency
across diverse workloads.

Table 1 outlines the simulation parameters utilized in the proposed mechanism, including a wireless channel,
random/uniform radio range and mobility, log-distance path loss propagation, IEEE 802.15.4 protocol, member
velocities of 2, 4, 6, and 8 m/s, a coverage area of 15 km x 15 km, variable bit rate traffic, a simulation duration of
2700 s, and packet sizes ranging from 64 to 1024 bytes, as well as specific overheads for KG metadata (16 bytes)
and GAN key generation cost (32 bytes).

The performance of the proposed architecture is assessed in comparison to six contemporary authentication
mechanisms: KDA-EL, utilizing an Ethereum-based blockchain; BAF?, employing a centralized IoT
authentication framework; BAK?®, implementing a dynamic key protocol; EduCert-Chain?!, a notarized
certificate verification system based on Hyperledger Fabric; an IOTA-based authentication system for IoT in
satellite networks®®; and Hedera + DL?, a high-throughput Hedera Hashgraph system integrated with deep
learning analytics.

The evaluation is based on four critical metrics: throughput, which measures the total number of learning
transactions efficiently processed within the MB network; response time, reflecting the latency from the initiation
of transactions by IoT devices to their confirmation by the MBs; power consumption, assessing the average
energy expended by IoT devices during transaction documentation; and security and authentication analysis,
which scrutinizes the system’s resilience against threats such as man-in-the-middle and replay attacks, alongside
its authentication effectiveness through entropy analysis of GAN-generated keys and KG integrity assessments.

The results are derived from completed simulation runs utilizing the configuration parameters provided in
Table 1. Each dataset embodies genuine measurements obtained from the hybrid Hedera-OMNeT + + simulation
environment.

Performance evaluation
This article delineates the performance assessment of the proposed decentralized authentication architecture,
concentrating chiefly on throughput and processing efficiency across diverse system loads. The evaluation
contrasts the Hedera+KG + GAN-enhanced approach with six contemporary authentication frameworks to
elucidate its scalability and operational benefits.

Figure 7 depicts the throughput comparison between the proposed architecture and six established
authentication techniques. The proposed model attains a maximum throughput of 4310 TPS, markedly
surpassing all baseline systems. The IOTA-based approach and the Hedera+ DL configuration exhibit modest
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throughput, but Hyperledger + IPFS and BAK display diminished processing capacity owing to their intricate
validation pipelines and more burdensome consensus mechanisms.

Among the assessed methods, KDA-EL (Ethereum-based) and the centralized BAF mechanism demonstrate
the lowest throughput, mostly attributable to Ethereum’s computational overhead and the single-node constraint
characteristic of centralized systems. The results underscore the scalability and computational efficiency of the
proposed authentication framework, bolstered by Hederas aBFT consensus, GAN-facilitated symmetric key
generation, and Knowledge Graph-informed semantic validation.

Figure 8 illustrates the processing time performance across IoT device densities varying from 1,000 to 10,000
nodes. The proposed architecture consistently produces the minimal processing time, rising considerably
from 127 ms at 1,000 devices to 193 ms at 10,000 devices. This stability demonstrates the efficacy of the aBFT
Hashgraph consensus, the diminished metadata overhead facilitated by Knowledge Graph semantic filtering,
and the streamlined key operations generated by the GAN entropy model.

The IOTA-based and Hedera + DL frameworks exhibit increased delays owing to DAG traversal, tip-selection
uncertainty, and supplementary synchronization demands. Hyperledger, IPFS, and BAK experience additional
processing delays in high-density scenarios because to the intricacies of state endorsement, bottlenecks in the
ordering service, and block-based batching. The Ethereum-based KDA-EL and centralized BAF methods exhibit
the most significant delays, measuring 368 ms and 342 ms, respectively, suggesting inadequate fit for dense IoT
implementations.

The dual analysis in Figs. 7 and 8 indicates that the proposed system exhibits significantly reduced processing
overhead and enhanced scalability relative to existing methods. These performance attributes validate its
appropriateness for extensive, resource-limited IoT-based e-learning settings.
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Performance metrics analysis

This subsection evaluates the efficacy of the proposed decentralized authentication methodology, focusing
on execution time and power consumption, which are pivotal metrics of system responsiveness and resource
efficiency in extensive IoT-enabled e-learning contexts.

The total execution time 7t comprises four sequential operations: transmission of learning data, symmetric
encryption of the data, asymmetric encryption of the GAN-generated symmetric key, and the duration needed
by the Management Block (MB) to log the transaction onto the Hedera Hashgraph. The notion for execution
time is articulated in Eq. (2):

Yt =T (Trns) + T (Encsym (Trns)) + T (Encasym (Sk)) + T (M Brec (Trns)) (2)

T (Trns) denotes the time required to transmit learning data across the network, 7' (Encsym( Trns )) signifies

the duration for symmetric encryption of the learning data utilizing GAN-generated keys, T' (Encasym(Sk))
represents the time for asymmetric encryption of the symmetric key augmented by KG-based authentication,
and T (M Brec(Trns)) indicates the time taken by the Management Block to document transactions into the
Hedera Hashgraph employing aBFT consensus.

The assessment section offers a detailed analysis of the four main components, revealing that the Management
Block recording time (T(MBrec)) is the predominant contributor to overall execution overhead in high-load
conditions.

Figure 9 depicts the execution time of the proposed architecture in comparison to six baseline authentication
frameworks over data volumes from 25 KB to 3200 KB. For minimal data sizes (e.g., 25-50 KB), the execution
time of the proposed model is marginally greater or comparable to lightweight Directed Acyclic Graph (DAG)-
based methodologies, such as the IOTA-based and Hedera + Deep Learning setups. This pattern is anticipated,
as fixed startup overheads—such as the aBFT gossip setup, KG consistency verification, and symmetric key
creation via the GAN module—represent a greater share of the total processing duration when payloads are
minimal.

As the data amount escalates, the computational benefits of the suggested design become increasingly evident.
The suggested system exhibits superior scalability compared to all evaluated techniques, owing to efficient aBFT-
driven event ordering, diminished semantic metadata overhead, and the lightweight characteristics of GAN-
driven symmetric encryption. As a result, its execution time increases at a markedly slower pace and maintains
the lowest value among all assessed schemes for medium to large data quantities (200-3200 KB).

Conversely, alternative systems such as Hyperledger + IPFS, BAK, and KDA-EL encounter significant
increases in execution time attributable to endorsement delays, block-based validation, and more intensive
cryptographic processes. The centralized BAF solution demonstrates the most pronounced growth trajectory,
underscoring its restricted scalability with increased payloads.

The results indicate that while the proposed architecture exhibits comparable performance to certain
lightweight methods for minimal data units, it significantly outperforms them as data volume escalates, rendering
it exceptionally effective for practical e-learning workflows that manage larger learning objects.

Furthermore, the total power consumption (¢ P) is determined by multiplying the execution duration by
the power consumption rate of IoT devices, as specified in Eq. (3):

9P =Ytx HE 3)

2501
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Fig. 9. Execution Time vs. Data Size.
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7t signifies the overall execution time obtained from Eq. (2), whereas HE indicates the power consumption rate
of IoT devices, quantified in energy units per unit time (e.g., megajoules per second).

Figure 10 illustrates the power usage of the proposed authentication architecture in comparison to six
existing techniques across varying transaction volumes, from 100 to 5000 transactions. The findings indicate
that the suggested Hedera+ KG + GAN model continuously attains the minimal power usage per transaction.
This is mainly because to its decreased execution time, efficient symmetric-key operations produced by the GAN
module, and reduced metadata overhead facilitated by Knowledge Graph-based semantic optimization.

Network performance and resilience analysis

This subsection offers a comprehensive analysis of the fundamental performance attributes of the Hedera-based
consensus protocol, concentrating on synchronization frequency, bandwidth overhead, and network resilience.
These evaluations are essential for measuring the system’s operational efficiency and resilience under distributed
workload conditions.

Synchronization frequency and consensus latency

The document asserts that KG instances are synchronized by Hashgraph consensus checkpoints. The frequency
of these checkpoints is fundamentally linked to the network’s Consensus Latency, which determines the duration
necessary for a newly submitted semantic update event to attain aBFT finality across all Management Block (MB)
nodes. In our hybrid simulation scenario, the event propagation intervals required to attain final, immutable
consensus were recorded between 30 ms and 50 ms. The minimal latency facilitates swift checkpointing, ensuring
that the Strong Eventual Consistency (SEC) of the Knowledge Graph is consistently maintained, rendering the
system appropriate for real-time e-learning engagements.

Bandwidth overhead of RDF triple updates
An analysis of the bandwidth overhead related to RDF triple updates within the consensus network was
conducted. The communication overhead is reduced by employing Compact Semantic Delta Messages and
the efficient Gossip-about-Gossip protocol of Hashgraph. This protocol demonstrates sub-linear complexity,
successfully separating communication costs from the total number of nodes }y.

The fixed overhead for KG metadata per update operation is 16 bytes. Moreover, the Effective Sync Bandwidth
for the complete 100-node network was quantified at 13 KB per checkpoint.

This outcome signifies that bandwidth utilization is remarkably minimal. Since the overhead is not linearly
dependent on J, the bandwidth expense for smaller networks remains below this minimal range, hence
affirming the scalability and efficiency of the protocol for resource-constrained IoT applications.

Network partition and Worst-Case convergence

The system’s robustness against network failures, including partitions or node disconnections, depends on
the predictable characteristics of the Hashgraph consensus. When an MB node experiences a temporary
disconnection, it persists in buffering its local semantic updates. Upon reconnection, the buffered changes are
replayed and submitted to the consensus Directed Acyclic Graph (DAG). The protocol utilizes deterministic
ordering and conflict resolution (as outlined in Sect. 3.2), ensuring Strong Eventual Consistency (SEC)
throughout the system. A distinct conflict resolution process is unnecessary. The Most Adverse Convergence
The length required to reprocess and validate the final consensus order for all buffered events dictates time. This
rate is constrained by the network’s consensus latency of 50 to 75 ms per event, facilitating rapid recovery and
deterministic convergence to the universally accepted state.
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Query Type Measured Latency (ms)

Identity Lookup 1.9-3.1 ms

Multi-hop Reasoning | 5.8-7.4 ms

Access-Control 7.2-9.8 ms

Table 2. SPARQL query latency Measurements.
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Fig. 11. Authentication Delay Time vs. Network Utilization Percent.

SPARQL query latency
Table 2 presents explicit measurements of SPARQL query latency, illustrating the responsiveness of the semantic
validation layer. The system demonstrates low-latency outcomes for essential query operations, leveraging
efficient SPARQL indexing and the optimized retrieval of RDF triples:

These measurements validate the system’s capacity to sustain high responsiveness even throughout intricate
semantic validation and access-control assessments.

Authentication performance assessment

This section assesses the authentication functionalities of the proposed system, which amalgamates Hedera
Hashgraph with asynchronous Byzantine Fault Tolerance (aBFT) and Knowledge Graph (KG) optimization
in a distributed multi-university context. The suggested system commences the authentication workflow by
communication between student IoT devices and their assigned Management Block (MB). The verification
process entails matching the device’s user ID with the stored KG-backed identity metadata and decrypting
the associated symmetric key (Sk), which was previously created by the GAN module. All identities and
cryptographic materials are secured within the MB to avert unlawful physical access or tampering, while MB-
to-MB authentication facilitates smooth inter-university learning mobility. The performance of the network is
assessed according to the peak rate of verified learning transactions executed at each university.

Figure 11 illustrates the correlation between network use and the duration of authentication across the assessed
methodologies. At low utilization rates (10-30%), the suggested mechanism exhibits performance akin to that of
lightweight decentralized systems. As network load escalates due to increased transaction volumes and student
mobility, traditional architectures—specifically KDA-EL, BAF, and Hyperledger-based models—demonstrate
significantly elevated delays caused by consensus congestion, block-generation limitations, and centralized
verification bottlenecks. The suggested architecture consistently achieves reduced authentication times at all
utilization levels, leveraging Hedera’s parallel aBFT event ordering, KG-assisted metadata minimization, and
effective symmetric-key operations.

Conventional authentication methods often exhibit discrepancies in regulations and identity formats
throughout colleges, necessitating that students again enroll or verify their identities when moving between
institutions. These differences cause further delays, particularly during periods of high network congestion.
The proposed architecture eradicates redundancies by offering a cohesive, lightweight authentication layer
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that enhances cross-university identity validation, thereby markedly boosting responsiveness and operational
efficiency in distributed e-learning settings.

Security validation experiments
A thorough series of security validation experiments was performed to assess the resilience of the proposed
authentication architecture against prevalent adversarial techniques, such as replay attacks, eavesdropping, man-
in-the-middle (MITM) manipulation, identity forgery, and key-generation vulnerabilities. This study evaluates
the performance of the Hedera-based authentication workflow and the GAN-driven symmetric key generation
module under actual threat situations.

Adbversarial resilience summary
The findings on the system’s resilience to primary attack vectors are encapsulated in Table 3. All trials conducted
validate the 100% effectiveness of the integrated defensive mechanisms against these threats.

Cryptographic strength assessment

A dataset of 10,000 GAN-generated 256-bit keys was evaluated using Shannon entropy and min-entropy metrics
accordance with NIST SP 800 -22/90B recommendations. The obtained entropy values (7.98 bits/byte and
7.92 bits/byte, respectively) suggest robust unpredictability, non-repetition, and resistance to brute-force and
predictive assaults.

Quantum attack resistance evaluation

Quantum threats were integrated into the upgraded threat model by simulating quantum adversaries that target
the long-term storage of educational credentials, which require sustained verifiability. The system’s dependence
on SHA-256 for hashing and symmetric key generation offers intrinsic resistance to Grover’s approach,
necessitating around 2'*® operations for a comprehensive search, which remains computationally impractical
even with quantum enhancement. The susceptibility of asymmetric components, particularly Ed25519
signatures utilized in Hedera consensus, to Shor’s algorithm was assessed via simulation of a hybrid configuration
incorporating post-quantum alternatives, such as Dilithium—a lattice-based signature scheme from the NIST
post-quantum cryptography standardization initiative. In 1,000 simulated credential storage transactions,
the post-quantum-enhanced system successfully denied all key-recovery attempts under presumed quantum
capabilities (e.g., a 1,000-qubit quantum computer). In the absence of post-quantum enhancements, traditional
Ed25519 demonstrated theoretical susceptibility; yet, the daily dynamic regeneration of GAN-generated
keys substantially reduced risk by constraining exposure periods. These findings validate the architecture’s
preparedness for quantum-resistant long-term credential storage and advocate for complete transition to post-
quantum cryptographic primitives in operational implementations.

Extended security validation of GAN-based key generation

A comprehensive security review was performed to justify the integration of GAN-based key generation into the
proposed authentication architecture, focusing on the robustness, context-awareness, and attack resistance of the
generated keys. This study contrasts the performance of keys generated using GANs with that of a conventional
Cryptographically Secure Pseudo-Random Number Generator (CSPRNG), which acts as the established
benchmark for secure key production.

o Cross-Context Key Variation Test: Keys were produced for 500 users utilizing diverse device identifiers,
semantic features, and Knowledge Graph (KG) profiles. The mean Hamming distance between cross-con-
text keys was 128.6 bits for the GAN-based approach, in contrast to 127.9 bits for the CSPRNG. The results
demonstrate that the GAN mechanism preserves robust statistical randomness while simultaneously embod-
ying significant semantic and device-level variability. This capacity improves identity distinction in decentral-
ized educational settings.

o Partial-State Leakage Resistance: Simulated seed leaking was developed to assess robustness to entropy-state
exposure. Sequences created by CSPRNG displayed significant correlation patterns (p=0.18) under condi-
tions of partial seed compromise, while keys produced by GANs revealed minimal correlation (p=0.02). This
result indicates enhanced resilience of the GAN methodology against leakage-based inference attacks.

« Adversarial Reconstruction Testing: An adversary utilizing model inversion was taught to recreate intrinsic
aspects of key creation. In this adversarial context, CSPRNG keys allowed for partial reconstruction with an

Attack Vector

Key Defense Mechanism Result and Resilience

Replay Attack

Complete packet rejection (replayed packets rejected due to

aBFT-based Timestamp Ordering & KG-Validated State inconsistency between valid KG state and timestamp ordering)

MITM Manipulation | SHA-256 Integrity Verification & KG Semantic Constraint

Packet detection and discard (each manipulated packet detected by
integrity verification and KG semantic constraint evaluation)

Eavesdropping

Payload decryption infeasible (confidentiality confirmed; decryption

GAN-Derived Symmetric Key (Sk;) & KG-Bound Private Key impossible without the associated KG-bound private key pair)

Identity Forgery Semantic Reasoning Engine & Ontology Constraint Violation

All forged identities rejected (semantic reasoning engine rejected all
forged identities due to ontology-level constraint violations)

Table 3. Resilience against primary attack Vectors.
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accuracy of 11.3%, while GAN-derived keys restricted reconstruction accuracy to under 1%. This illustrates
improved resilience against predictive and machine-learning-based reconstructive attacks.

o Temporal Uniqueness Under High Load: The GAN module produced 100,000 sequentially generated keys
without any duplication, while consistently maintaining stable entropy values. This confirms the method’s
temporal unpredictability and its appropriateness for high-load authentication contexts prevalent in extensive
e-learning systems.

The GAN component is not designed to supplant CSPRNGs as the principal cryptographic primitive. All
essential assurances—such as confidentiality, unpredictability, and forward secrecy—remain dependent
on existing symmetric and asymmetric cryptographic techniques. The GAN module operates as a context-
sensitive randomness augmentation layer, producing semantically enhanced key material that corresponds with
KG features to improve identity distinction among diverse IoT devices. It thus enhances rather than replaces
traditional sources of cryptographic randomness.

Side-channel attack validation
To empirically validate side-channel mitigations (e.g., constant-time operations in GAN key generation and
masking in symmetric key derivation), we executed the protocols on actual hardware.

Experimental setup A Raspberry Pi 4 (emulating a microcontroller board) and an ESP32 (emulating an Inter-
net of Things user device) were interconnected using MQTT. The GAN model was implemented using Tensor-
Flow Lite for enhanced efficiency. A total of 1000 traces were gathered for each experiment.

Timing attacks The execution duration for key decryption was assessed using Python’s time.perf_counter(). In
the absence of mitigation, the timing fluctuated by 15% depending on the input (correct versus incorrect pass-
word), thereby disclosing information. Through constant-time comparisons (e.g., utilizing hmac.compare_di-
gest), variation decreased to less than 1%, thus thwarting attacks (t-test p-value > 0.05).

Power analysis Power traces during GAN inference were captured using a ChipWhisperer-Lite kit. Differential
power analysis (DPA) on baseline traces recovered the key in 200 samples (correlation 0.45). With masking
(random noise added to intermediate values), correlation dropped to 0.08, preventing key recovery even after
1000 traces.

Real loT hardware validation

To enhance the extensive Hedera—~OMNeT + + simulation environment and to fortify the empirical basis of the
suggested authentication system, a supplementary assessment was conducted using representative low-power
IoT devices. This experiment aimed to validate the practical viability of device-side cryptographic operations on
resource-limited microcontrollers, verifying that the suggested design is compatible with diverse IoT platforms
typically utilized in e-learning settings.

Experimental setup
The following IoT devices were used to evaluate execution time, cryptographic overhead, and power consumption:

« Raspberry Pi 4 Model B (1.5 GHz quad-core Cortex-A72, 4 GB RAM).
o ESP32-WROOM microcontroller (dual-core Xtensa LX6, 240 MHz, 520 KB SRAM).
o Arduino Nano 33 IoT (ARM Cortex-M0+, 48 MHz, 32 KB RAM).

All devices interfaced with the Management Block (MB) over MQTT over Wi-Fi (802.11n). The MB conducted
GAN-based key inference, registration processes, and interactions with the Hedera SDK, whilst IoT devices
solely executed symmetric-key encryption/decryption and SHA-256 hashing.

Device-side cryptographic processing time
As GAN inference occurs just at the MB, the IoT devices implement only lightweight cryptographic primitives.
Table 4 presents the recorded processing times for SHA-256 hashing, AES-128 decryption, and transaction
preparation on each device.

These results confirm that the authentication and transaction-processing routines introduce minimal
computational overhead and are well within the capabilities of constrained microcontrollers.

Operation Raspberry Pi4 | ESP32 Arduino Nano 33 IoT
SHA-256 hash (256-byte input) 0.42 ms 121ms |4.73ms

AES-128 decryption (256-byte block) 0.18 ms 0.83 ms 3.95 ms

Transaction preparation (MQTT publish) | 9-12 ms 15-22 ms | 24-33 ms

Table 4. Device-side cryptographic processing Time.
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Device TX Power RX Power | Idle Power
Raspberry Pi 4 2.8-32W 2.1-23W |09-1.1W
ESP32 120-160 mW | 80-95 mW | 22-35 mW
Arduino Nano 33 IoT | 35-45 mW 25-32mW | 9-12mW

Table 5. Power consumption of evaluated IoT Devices.

Message 1:

U — MB: {ID;, Request}

(The user submits a semantic identifier and a registration request.)

Message 2:

MB — HNet: {Pk;, Ptk Ski}enc

(The management backend forwards the GAN-generated key triple to the Hedera network.)

Message 3:

HNet — U: {Pk;, Ptk ID;, Ski}si

(The network returns the finalized credential set encrypted under the symmetric key shared with the user.)

Initial Beliefs

The formal reasoning relies on the following initial assumptions:
U believes fresh(nonce)

U believes MB controls (Pk, Ptk;)

U <> MB

BAN Logic Derivation

Using the Message-Meaning, Nonce-Verification, and Jurisdiction rules, the following conclusions are obtained:
U believes MB said (Pki, Ptk;)

U believes fresh(Ptk;)

U believes MB believes U <y MB

MB believes fresh(Ptk;)

Table 6. Idealized registration protocol and BAN logic Derivation.

Power consumption measurements
Power consumption during transmission (TX), reception (RX), and idle states was assessed using a USB inline
power meter for the Raspberry Pi 4 and an INA219 current sensor for the ESP32 and Arduino Nano 33 IoT. The
recorded values are consolidated in Table 5.

These empirical measurements correspond with and enhance the simulation energy values presented in
Sect. 4. Consequently, the energy model in the simulation framework has been revised and corroborated based
on these actual device measurements.

End-to-End latency
End-to-end registration and authentication latency (IoT device > MB - Hedera > MB > device) was measured:

« Raspberry Pi: 41-47 ms.
o ESP32:55-68 ms.
e Arduino Nano 33 IoT: 92-110 ms.

These figures demonstrate that even resource-limited devices can effectively engage in the proposed Hedera-
based decentralized authentication process.

The findings indicate that IoT devices may effectively execute the lightweight symmetric cryptographic
operations mandated by the proposed design. GAN inference is not executed on IoT devices, hence alleviating
the computational load on microcontrollers. The assessed power consumption and latency confirm the viability
of implementing the system on actual IoT nodes. These hardware experiments augment the extensive simulation
and enhance the practical validity of the suggested solution.

Formal security verification

This section provides a formal security verification of the proposed protocols utilizing BAN logic and the
Dolev-Yao adversary model. The analysis evaluates mutual authentication, secrecy, integrity, and freshness in
the registration and key distribution processes.

BAN logic analysis
The semantic user-registration protocol (Algorithm 1) is formally represented in BAN logic. Table 6 delineates
the resultant message sequence, initial beliefs, and the ensuing logical derivation procedures.

The study indicates that mutual authentication is established, as both parties trust each other’s involvement
and the integrity of the exchanged keys. Key freshness is maintained, inhibiting replay and the reuse of stale
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Fig. 12. Throughput comparison of the four authentication configurations.

keys. The protocol mitigates replay and impersonation attacks by guaranteeing freshness and authenticated key
associations.

Dolev-Yao model verification

The suggested protocols underwent formal analysis utilizing the Dolev-Yao symbolic adversary model as
implemented in ProVerif2.04. This paradigm posits that the attacker has complete control over the communication
channel, enabling them to intercept, alter, falsify, and replay communications, whereas cryptographic primitives
like SHA-256 and GAN-derived entropy sources are seen as perfect and unassailable. The formal representation
of the system comprises five concurrent processes: the User, the Management Backend (MB), the Hedera
Consensus Service nodes, the adversarial process, and the key-generation reasoner tasked with modeling GAN-
based entropy formation.

The ProVerif specification incorporates queries for secrecy and authentication to validate fundamental
security features. The confidentiality of the private transfer key Ptk. is assessed via the query attacker(Ptk_i),
whereas injective mutual authentication is validated by the correspondence assertion query inj-
event (endAuth(U)) ==> inj — event (beginAuth(U )). These inquiries guarantee that the attacker
cannot extract sensitive key material and that each finalized authentication is linked to a distinct genuine
initiation event.

The analytical results demonstrate that the protocol fulfills all designated security features. No attack traces
resulting in breaches of confidentiality or authentication failures were identified throughout 500 symbolic
verification tests. The verification process maintained efficiency, averaging about two seconds per execution
on a normal Intel workstation. An enhanced model integrating hybrid post-quantum cryptographic primitives
was simulated to assess long-term robustness. Under Grover-style quadratic search assumptions, no decrease in
effective security below the 128-bit threshold was noted, demonstrating the protocol’s resilience against potential
quantum adversaries.

Ablation study

An ablation experiment was conducted to measure the contribution of each architectural component, focusing
solely on throughput performance. The experiment assesses four configurations related to the progressive
integration of Hedera Hashgraph, Knowledge Graph semantic processing, and the whole suggested design. The
results depicted in Fig. 12 demonstrate distinct behavioral variations corresponding to the structural function of
each module within the authentication sequence.

The Hedera + Standard Cryptography setup attains a baseline throughput of roughly 3710 TPS, demonstrating
the efficacy of Hedera’s aBFT consensus in the absence of semantic reasoning or sophisticated key-generation
techniques. The implementation of the Knowledge Graph layer in the Hedera+KG configuration results in
a slight reduction in throughput to 3425 TPS, reflecting the anticipated overhead from semantic validation
and triple-matching processes. Nonetheless, the performance remains elevated owing to Hedera’s rapid event
sequencing and minimal latency in gossip dissemination.

Substituting Hedera with a traditional blockchain while maintaining semantic reasoning results in a significant
reduction, with the Blockchain + KG configuration attaining 3000 TPS. This affirms that the block-generation
latency and consensus restrictions of the blockchain impose intrinsic throughput limitations, regardless of the
continual processing expense from KG reasoning.

The complete system configuration, incorporating Hedera, KG, and the GAN-driven cryptographic pipeline,
achieves peak performance at 4310 TPS, surpassing all previous configurations. This suggests that the synergistic
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impacts of Hedera’s consensus efficiency, KG-assisted lightweight metadata filtering, and GAN-based symmetric
key generation augment throughput rather than reduce it.

The ablation results indicate that although each component exhibits distinct computational characteristics,
Hedera’s consensus model is the primary factor in throughput scalability, and the fully integrated design attains
the ideal equilibrium within the architecture.

Conclusion

The proposed semantic decentralized authentication architecture, which incorporates Hedera Hashgraph,
distributed Knowledge Graphs, and GAN-driven dynamic cryptography, provides a scalable, energy-efficient,
and semantically interoperable solution specifically designed for IoT-based e-learning environments. The
architecture integrates Hedera’s high-throughput asynchronous Byzantine Fault Tolerant consensus, ontology-
driven semantic reasoning, and adaptive machine-learning-enhanced key generation, resulting in 4310
transactions per second, reductions in latency, execution time, and energy consumption by 11-23%, and
facilitates seamless cross-institutional credential portability while exhibiting robust resilience against predictive,
inference-based, and traditional cryptographic attacks. The experimentally substantiated advantages over the
most robust existing blockchain-based and centralized benchmarks demonstrate that the Hedera+KG + GAN
paradigm routinely surpasses state-of-the-art alternatives, rather than only their mean performance.

Notwithstanding the encouraging efficacy of the proposed Hedera-based authentication and e-learning
integrity system, some significant obstacles persist unaddressed. These constraints correspond with the wider
unresolved challenges recently emphasized in security fortification, blockchain-oriented behavioral forensics,
and privacy-conscious machine-learning evaluation, as indicated in works such as?-3.

To advance this high-performing research prototype into the core infrastructure of next-generation global
decentralized education, future efforts must vigorously pursue fully decentralized on-device GAN execution
utilizing federated distillation or secure-enclave inference to eradicate any remaining trust assumptions;
incorporate recursive zero-knowledge proofs with SPARQL-based Knowledge Graph reasoning to facilitate
verifiable yet entirely private cross-institutional credentials and semantic queries; establish formal cryptographic
proofs of security for GAN-generated key material against model-inversion, membership-inference, and
adaptive chosen-ciphertext threats; conduct continent-scale deployments involving hundreds to thousands
of universities and drive standardization of the resulting DID methods, verifiable credential schemas, and
HCS topic specifications through W3C, IMS Global, and European learning-technology bodies; migrate
all cryptographic primitives to NIST-approved post-quantum algorithms to counter harvest-now-decrypt-
later quantum risks; extend the Knowledge Graph ontology with real-time behavioral biometrics and deploy
continuous authentication models operating directly on Hedera event streams; perform comprehensive carbon-
footprint benchmarking and transition toward carbon-aware or carbon-negative consensus mechanisms; and
rigorously validate the system under nation-state-level adversarial models including long-range, adaptive Sybil,
and eclipse attacks using game-theoretic analysis and red-team exercises.

Effectively achieving these ambitious objectives will elevate the proposed framework from a distinguished
academic contribution to the globally embraced, privacy-preserving, quantum-resistant, and environmentally
sustainable foundation of inclusive decentralized education for billions of learners in the coming decades.

Data availability
The datasets used and/or analyzed during the current study availablefrom the corresponding author on reason-
able request.
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