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The sharing of patient-level data necessary for covariate-adjusted survival analysis between medical 
institutions is difficult due to privacy protection restrictions. We propose a privacy-preserving 
framework that estimates balanced Kaplan–Meier curves from distributed observational data without 
exchanging raw data. Each institution sends only the low-dimensional representation obtained 
through dimensionality reduction of the covariate matrix. Analysts reconstruct the aggregated 
dataset, perform propensity score matching, and estimate survival curves. Experiments using 
simulation datasets and five publicly available medical datasets showed that the proposed method 
consistently outperformed single-site analyses. This method can handle both horizontal and vertical 
data distribution scenarios and enables the collaborative acquisition of reliable survival curves with 
minimal communication and no disclosure of raw data.
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In medical research, survival outcomes are one of the most important factors for evaluating treatment effects. 
When estimating treatment effects for survival outcomes from observational data such as electronic medical 
records, confounding bias is unavoidable because treatment assignment is not random1,2. To mitigate such biases 
and ensure the validity of results, it is essential to appropriately adjust for covariates related to both treatment 
assignment and outcomes. Specific adjustment methods include multivariate regression, propensity score 
matching, inverse probability weighting, and stratification, which are standardly used3,4, and these methods 
have been shown to reduce confounding bias in observational data5,6.

Such methods require enough cases and diverse covariates to effectively adjust for confounding, as 
demonstrated in simulation studies7–9. However, data from a single site may suffer from insufficient case numbers 
and biased patient characteristics, which reduce estimation accuracy and limit external validity. Therefore, 
integrating data distributed across multiple sites, countries, and regions to analyze them as a large cohort has 
become essential for improving the reliability of confounding adjustment10–14. On the other hand, sharing raw 
data is challenging due to privacy concerns and regulations. Therefore, establishing a framework that allows for 
the analysis of multi-site data while maintaining privacy is an urgent task.

Representative methods in survival time analysis include the Cox proportional hazards model15 and the 
Kaplan–Meier (KM) curve16. Since the Cox model is a multivariate regression framework, bias can be adjusted in 
a model-based manner by simultaneously incorporating covariates. In recent years, numerous frameworks have 
been proposed for estimating the Cox model from distributed data while maintaining privacy. First, few-shot 
algorithms have been proposed where each facility sends only minimal statistics such as event counts, partial 
likelihood gradients, and Hessian to the server, and parameters are estimated centrally17,18. Additionally, a one-
shot algorithm has been proposed where each facility reduces the dimension of the covariate matrix and shares 
it, and the server integrates and redistributes the parameters, ultimately enabling each institution to calculate 
local parameters19. The advantage of these algorithms is that they can adjust the effects of covariates using only 
the model, without using external indicators such as propensity scores. In addition, a method has been proposed 
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that uses information from each institution to estimate propensity scores, applies inverse probability weighting 
or matching, and then shares weighted or matched aggregate statistics to estimate hazard ratios20,21. These studies 
enhance the robustness of the model by combining propensity score-based confounding adjustment with Cox 
model estimation. Such research suggests that the requirement to simultaneously achieve covariate adjustment 
and Cox model estimation under privacy protection is being met to a certain extent.

While the Cox model performs regression analysis, the KM curve visually represents survival probability, 
making it an intuitive indicator for medical professionals to understand22,23. Major reporting guidelines also 
recommend presenting KM curves adjusted for covariate24. Under privacy protection, it is necessary to estimate 
KM curves without sharing raw data. Previously proposed methods have been limited to estimating unadjusted 
KM curves with differential privacy applied to distributed data25,26, leaving confounding bias unaddressed. As a 
result, their practicality is limited from the perspectives of clinical decision-making and guideline compliance. 
In other words, there is still no method available to estimate covariate-balanced KM curves, which are highly 
valued in clinical settings, while protecting privacy using distributed data.

To address this gap, this study focuses on data collaboration quasi-experiments (DC-QE)27, one of the 
distributed data analysis methods. DC-QE is attracting attention as a one-shot framework that enables covariate 
adjustment and causal effect estimation without sharing raw data. In this method, each institution shares privacy 
protected representations instead of raw data to perform propensity score analysis. While DC-QE has been 
shown to be effective for estimating the average treatment effect for binary and continuous outcomes, it is not 
designed for survival outcomes.

In this study, we propose a new method for estimating covariate-balanced KM curves under privacy protection. 
The proposed method extends the existing DC-QE framework for privacy preserving quasi-experiments to 
survival outcomes, enabling collaboration without directly sharing distributed samples or covariates. The main 
contributions of this study are as follows.

•	 We proposed the first privacy-preserving framework for estimating covariate-balanced KM curves based on 
propensity scores in a distributed data environment.

•	 Through collaboration across the distributed samples, the proposed method identified appropriately matched 
pairs between the treatment and control groups. Furthermore, through collaboration across the distributed 
covariates, bias can be effectively reduced, and more accurate survival curves can be estimated.

•	 Numerical simulation results using an artificial dataset and five open medical datasets show that the proposed 
method outperforms the analysis performed on the local dataset alone.

Method
Data collaboration quasi-experiment for survival outcomes
The algorithm proposed in this study consists of two stages: data aggregation and estimation of covariate-balanced 
survival curves. In the first phase, collaborative representations are created by analysts from dimension-reduced 
site-specific data and publicly shared anchor data. In the second stage, covariate-balanced survival curves are 
estimated using propensity score matching (PSM) and Kaplan-Meier estimation from these representations. 
Figure 1 shows an overview of the proposed algorithm.
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Fig. 1.  Outline of the proposed method. This method obtains privacy-preserving survival analysis for 
distributed data without iterative cross-sites communications.
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Problem settings
In this paper, we define two roles participating in DC-QE: analysts and users. Users provide data, while analysts 
are responsible for processing and analyzing aggregated information. Each user k (k = 1, . . . , c) has a private 
covariate matrix Xk ∈ Rnk× m, an observed time vector tk ∈ Rnk , an event indicator vector δ k ∈ {0,1}nk , 
and a binary treatment variable Zk ∈ {0,1}nk  indicating the treatment group and control group. Here, n 
denotes the sample size and m denotes the number of covariates. Furthermore, we assume that the covariate 
dataset is managed by c institutions and divided horizontally, and is also divided vertically into d parties with 
different covariates due to physical or operational reasons. Therefore, the covariate matrix X  is divided as 
follows:

	

X =




X1,1 X1,2 . . . X1,d

X2,1 X2,2 . . . X2,d

...
...

. . .
...

Xc,1 Xc,2 . . . Xc,d


 � (1)

The (k, l)-th party holds a dataset Xk,l ∈ Rnk× ml  where n =
∑ c

k=1nk  and m =
∑ d

l=1ml.
The estimation targets are the covariate-balanced survival function S1 (t) and S0 (t) for each of the 

treatment and control group. Under such a distributed setting, it is expected that each party individually will 
face bias and error in estimation results due to a lack of covariates and insufficient sample size. Furthermore, 
although the most accurate analysis can be performed by aggregating data from all parties, this is difficult to 
implement due to restrictions and mechanisms related to privacy protection.

Phase 1: construction of collaboration representation
DC-QE adopts the data collaboration framework28 for data aggregation. In data collaboration, the collaboration 
representation used for analysis is constructed from dimensionally reduced intermediate representations.

First, each user generates and shares an anchor dataset Xanc ∈ Rr× m, where r is the number of samples 
in the anchor dataset. The anchor dataset is a publicly shareable dataset composed of either publicly available or 
randomly generated dummy data. This is used to compute the reconstruction function gk  (described below). 
Next, each user constructs an intermediate representation, as follows:

	 X̃k,l = fk,l (Xk,l) ∈ Rnk× m̃k,l , � (2)

	 X̃anc
k,l = fk,l

(
Xanc

:,l
)

∈ Rr× m̃k,l , � (3)

where fk, l is a row-wise linear or nonlinear dimensionality reduction function applied to the local covariate 
block Xk,l at (k, l)-th party. In this study, as a concrete example, fk,l is implemented by applying principal 
component analysis (PCA) to Xk,l and retaining the first m̃k,l principal component scores for each individual; 
thus X̃k,l consists of these PCA scores. Other dimensionality reduction methods, such as locality preserving 
projections or nonnegative matrix factorization, can also be used within the same framework. Here, m̃k,l denotes 
the reduced dimensions. We use X:,l to denote the collection of the l-th covariate block across all institutions. 
In other words, X:,l corresponds to the same set of variables (for example, the same laboratory measurements) 
observed at multiple institutions and stored locally as Xk,l at each site. Function fk, l is kept private for 
each user and differs across users. Through this process, each party generates an intermediate representation, 
enabling it to provide only low-dimensional representations to analysts without directly disclosing its private 
data. Subsequently, each user shares only the intermediate representations X̃k,l and X̃anc

k,l , with the analyst. To 
handle survival outcomes and treatment indicator, each party additionally shares ti, δ i and Zi. Importantly, 
the original covariate data Xk,l were not directly shared.

The analyst then constructs a collaboration representation from shared intermediate representations. Each 
party’s intermediate representation X̃k  is expressed in its own local coordinate system, so even the anchor 
representations X̃anc

k are not aligned across institutions. The remedy is to map all intermediate representations 
into a common coordinate system. Concretely, if we construct a shared coordinate matrix H  and linear mapping 
functions gk  such that gk

(
X̃anc

k

)
≈ H for the anchor data, then each party’s space can be aligned to H  and 

can be integrated. The singular value decomposition (SVD) is employed to derive H , following Imakura et al. 
(2020)28. The details are described below.

The goal is to find linear mapping function gk  such that the projected anchor datasets satisfy 
gk

(
X̃anc

k

)
≈ gk′

(
X̃anc

k′
)

 for k ̸= k′ . Assuming that the mapping function gk  from intermediate 
representations to collaboration representations is a linear transformation function, we write

	 X̌anc
k = gk

(
X̃k

)
= X̃kGk, X̌anc

k = gk

(
X̃anc

k

)
= X̃anc

k Gk, � (4)

where Gk ∈ Rm̃k× m̌ is the matrix representation of gk , and X̃k = [X̃k,1, X̃k,2, . . . , X̃k,d]. These 
transformations can be determined by solving a least-squares problem:

	
min

G1,... ,Gc,H

∑ c

k=1

∥∥H − X̃anc
k Gk

∥∥2
F

. � (5)
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This problem is difficult to solve directly. However, an approximate solution can be derived using SVD. We 
compute a low-rank SVD

	
[
X̃anc

1 , X̃anc
2 , . . . , X̃anc

c

]
≈ U1Σ1V T

1 , � (6)

where Σ1 ∈ Rm̌×m̃ is a diagonal matrix containing the largest singular values, and U1 and V1 are column-
orthogonal matrices corresponding to the left and right singular vectors, respectively. We set the shared 
coordinate matrix as H = U1. Then each transformation matrix Gk  is calculated as follows:

	 Gk =
(
X̃anc

k

)†
U1, � (7)

where † denotes the Moore–Penrose pseudoinverse. By construction, the transformed anchor data satisfy

	 X̌anc
k = X̃anc

k Gk ≈ H ≈ X̃anc
k′ = X̌anc

k′ , � (8)

which means that the anchor data from all organizations are aligned in the common collaboration space. Using 
these transformations, the final collaboration representation X̌  is given by:

	

X̌ =




X̌1
X̌2
...

X̌c


 ∈ Rn× m̌. � (9)

Phase 2: estimation of covariate-balanced survival curves
In the second phase, the analyst performs PSM and survival curve estimation from X̌, t, δ and Z. The 
propensity score on the collaboration representation is defined as

	 α i = Pr (zi = 1|x̌i) , � (10)

where x̌i denotes the value of the i-th patient in the collaboration representation X̌ . Using methods such 
as logistic regression, the analyst can estimate α i from the aggregated X̌  and Z  obtained during the first 
phase. This enables the estimation of individual propensity scores without sharing raw private data. Now that 
the propensity scores are calculated, we can make a dataset by matching samples with similar propensity scores 
in the treatment and control groups using PSM. From this dataset, we can estimate the survival curves for each 
group using the Kaplan–Meier estimator16.

Through these steps, our proposed method enables the integration of information from multiple parties and 
the estimation of treatment effects on survival outcomes while preserving privacy. Although the proposed method 
is based on the DC-QE algorithm, it differs because the outcome of interest is the survival curve. Consequently, 
survival time data were included among the shared information, and Kaplan–Meier estimation was employed 
for treatment effect estimation. The pseudocode for the proposed method is presented in Algorithm 1.
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Algorithm 1.  Proposed method.

Privacy preservation of proposed method
In this section, we describe how privacy and confidentiality are preserved using the proposed method. Similar 
to prior works on data collaboration analysis19,29, our approach incorporates two layers of privacy protection to 
safeguard sensitive data, Xk,l.

 

•	    First Layer: Under this protocol, no participant other than the data owner has access to Xk,l, and transfor-
mation function fk,l remains private. Because neither the inputs nor the outputs of fk,l are shared with the 
other participants, fk,l remains confidential. Consequently, others cannot infer the original data Xk,l from 
the shared intermediate representation X̃k,l.

•	     Second Layer: The second layer of protection stems from the fact that fk,l is a dimensionality reduction 
function. Even if fk,l were leaked, the original data Xk,l could not be reconstructed from X̃k,l because of 
the dimensionality reduction properties. This privacy guarantee aligns with the concept of ϵ -DR (Dimen-
sionality Reduction) privacy30.  

 
However, it should be noted that some aggregate statistical properties, such as the means or variances of 

the original data, could potentially leak through the anchor data. This is a potential risk inherent to the data 
collaboration framework.

Common settings and evaluation scheme
To validate the effectiveness of the proposed method, three benchmark methods are established for comparison.

	a.	 Central Analysis (CA):

	In CA, the analyst has access to the entire dataset, including covariates X , treatment assignments Z , survival 
times t, and event indicators δ , and estimates survival curves based on this complete information. As there 
are no data-sharing constraints, CA represents the ideal baseline.

	b.	 Local Analysis (LA):
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	In LA, each user independently analyzes their own data without sharing any information externally. Each user 
possesses only their own dataset—covariates Xk , treatment Zk , survival times tk , and event indicators δ k  
—and estimates survival curves solely based on this limited information.

	c.	 Local Matching and Central Analysis (LMCA):

	Since survival curve estimation requires t, δ , and Z , under the considered setting, it is possible to perform 
survival curve estimation by sharing only these variables after local matching. Specifically, each user conducts 
PSM independently using their own Xk  and Zk , then shares only the matched survival times tmatched

k , 
event indicators δ matched

k , and treatment indicotors Zmatched
k  with the analyst, without sharing the original 

covariates Xk . Thus, privacy is preserved using this method.

In this study, it is desirable that the results of the proposed method are closer to those obtained by CA than to 
those obtained by LA.

The experimental conditions were as follows: The anchor dataset Xanc was generated using random numbers 
sampled uniformly within the range defined by the minimum and maximum values of the entire dataset. This 
type of anchor data was also employed in Imakura and Sakurai28. The number of samples in the anchor dataset 
r was set to be equal to the total number of samples n. PCA was applied to each participant as a dimensionality 
reduction function. PCA is one of the most widely used techniques for reducing dimensionality.

The analyst estimates propensity scores using logistic regression, which is commonly adopted in the literature 
on propensity scores. Following the approach of Kawamata et al.27, the logistic regression model used in the 
experiments consisted of a linear combination of the collaboration representation and an intercept term for the 
proposed method, whereas for central and local analyses, the model consisted of a linear combination of the 
covariates and an intercept term. Caliper matching was employed for matching, where the caliper width was set 
to 0.2 times the standard deviation of the logit of the estimated propensity scores, as recommended by Austin31.

The performance of each method was evaluated from two perspectives: covariate balance and the accuracy 
of survival curve estimation. For covariate balance, we used three metrics: the sample size of the matched pairs 
created through PSM, the inconsistency of the estimated propensity scores, and the balance of covariates after 
matching. For survival curve estimation, we compared the accuracy of the estimated survival curves across 
different methods.

Inconsistency of propensity score with CA
To evaluate the accuracy of the estimated propensity scores, we used the following inconsistency measures:

	
InconsistencywithCA

(
ê, ê

CA)
=

√
1
n

Σ n
i=1(êi − êCA

i )2
, � (11)

where ê = [ê1, . . . , ên]T  denotes the estimated propensity scores, and ê
CA =

[
êCA

1 , . . . , êCA
n

]T  denotes the 
propensity scores estimated by CA. A smaller value indicates that the estimated propensity scores were closer to 
those obtained by CA.

Covariate balance
To evaluate covariate balance improvement through PSM, we used the standardized mean difference (SMD), a 
commonly adopted metric32, defined as:

	

dj = x̄
j
T

−x̄
j
C√

s
j
T

−s
j
C

2

, � (12)

where x̄j
T  and sj

T  are the mean and standard deviation of covariate xj  in the treatment group, and x̄j
C  and 

sj
Care those in the control group, respectively. For the overall covariate balance assessment, we employed the 

maximum absolute standardized mean difference (MASMD), defined as:

	
MASMD (d) = max

j

∣∣dj
∣∣ , � (13)

where d = [d1, . . . , dm]. Similar to the SMD, the MASMD measures the bias in covariate distributions between 
the treatment and control groups, with smaller values indicating better covariate balance.

Accuracy of estimated survival curve
To assess how faithfully each distributed or local method reproduces the survival curves obtained by central 
analysis (CA), we evaluated the closeness between the estimated survival curves and the CA-estimated 
curves. Here, CA is treated as a realistic benchmark corresponding to conventional centralized propensity 
score matching analysis. It should be emphasized that CA itself is an estimator, not the true survival function. 
Therefore, the “gap” metric described later specifically quantifies proximity to CA, while comparison to the 
true survival function is separately evaluated using metrics based on RMST. Let Ŝm,z (t) denote the estimated 
survival curve for treatment group z ∈ {0,1} obtained by method m, and let ŜCA,z (t) be the corresponding 
curve from the central analysis.

The gap between the survival curves of method m and CA for group z was defined as:
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Gap(m,z)

CA =
√

1
T

∑
T
i=1

(
Ŝm,z (ti) − ŜCA, z (ti)

)2
, � (14)

where Ŝm,z (t) = [Ŝm,z (t0) , . . . , ŜCA, z(tT )]. A smaller Gap value indicates that the survival curve 
estimated by method m approximates the survival curve derived from the central analysis of the corresponding 
treatment group. In real-world data experiments, this CA-based Gap serves as a direct measure of how well each 
distributional method reproduces the covariate-balanced survival curve obtained under centralized PSM.

Metrics based on restricted mean survival time (RMST)
RMST provides not only a numerical summary of survival curves but also a clear definition of the effect we 
aim to estimate: the average survival time up to a clinically relevant time point τ  in each treatment group and 
their difference[34,35]. For a prespecified truncation time τ > 0, the restricted mean survival time (RMST) for 
group z under method m is defined as

	 µ̂ m,z =
´ τ

0 Ŝm,z (t) dt. � (15)

The corresponding RMST difference for method m is

	 ∆̂ m (τ ) = µ̂ m,1 (τ ) − µ̂ m,0 (τ ) . � (16)

We use this quantity to define two additional performance measures: (i) the agreement with the central analysis, 
and (ii) the bias with respect to the true survival functions in the simulation study.

	1.	 Difference of RMST difference relative to the central analysis:

	Using the RMST difference obtained by the central propensity score matching analysis (CA) ∆̂ CA (τ ), we 
quantify how closely each comparison method approximates the estimated results as follows:

	
DCA

m (τ ) =
∣∣∣∆̂ m (τ ) − ∆̂ CA (τ )

∣∣∣ . � (17)

	A value of DCA
m (τ ) close to zero indicates that method m yields RMST differences with covariate balance 

comparable to that of central analysis. In real world data experiments, since the true survival function is un-
known, only comparisons based on this CA are available.

	2.	 Difference of RMST difference relative to the true survival function (simulation study only):

	In synthetic data experiments, the true covariate-balanced survival function Strue
z (t) can be defined from the 

data generation process for z ∈ {0,1} (see the Method Section). The corresponding true RMST and its dif-
ference are as follows:

	 µ true
z (τ ) =

´ τ

0 Strue
z (t) dt, ∆ true (τ ) = µ true

1 (τ ) − µ true
0 (τ ) . � (18)

For each method m, we define the difference of RMST difference relative to the true effect as follows:

	
Dtrue

m (τ ) =
∣∣∣∆̂ m (τ ) − ∆ true (τ )

∣∣∣ . � (19)

This value Dtrue
m (τ ) quantity directly measures how accurately method m recovers the difference in true 

RMST suggested by the data generation model.
As with other metrics, we report the mean and standard deviation across repeated trials. A value closer to 

zero indicates smaller bias and less variability, suggesting the estimator is more stable across simulation datasets.
For all RMST-based metrics, the truncation time τ  was determined from the data in both synthetic and real 

data analyses. Specifically, for each scenario or dataset, the minimum value of the maximum observed time in 
the treatment and control groups was set as τ , using all samples prior to resampling or matching.

All numerical experiments were conducted on a Windows 11 machine equipped with an Intel(R) Core(TM) 
i7-1255U @ 1.70 GHz processor and 16 GB RAM, using Python 3.8.

Experiment I: synthetic data
Simulation settings
We conducted validation experiments using synthetic data. The synthetic dataset contained 1,000 samples, 
each with six covariates, simulated baseline covariates, treatment assignments, and event times. Covariates 
xi =

[
x1

i , . . . , x6
i

]
 are generated from a multivariate normal distribution.

	 xi ∼ N (0, S) , (i = 1, . . . , 1,000) , � (20)
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where N (0, S) denotes a normal distribution with mean zero, and the covariance matrix S is given by

	

S =




1 0.5 0.5 0 0 0
0.5 1 0.5 0 0 0
0.5 0.5 1 0 0 0
0 0 0 1 0.5 0.5
0 0 0 0.5 1 0.5
0 0 0 0.5 0.5 1


 . � (21)

The probability that a patient i receives treatment ( zi = 1) is given by:

	
Pr (zi = 1|xi) = 1

1+
(
exp

(∑ 6
j=1

− 1
3 x

j
i

)) . � (22)

Event times (survival outcomes) were simulated based on the method proposed in Bender et al.33, using a 
Weibull distribution. Specifically, survival times were generated according to

	
Ti ∼

(
− log(uniform(0,1))

λ exp
(

Σ 6
j=1− 1

3 xi+γ Z
)

) 1
v

, � (23)

where λ  is the scale parameter, v is the shape parameter of the Weibull distribution, and γ  represents the 
marginal treatment effect. In the experiments, we set λ = 2, v = 2 and γ = −1. Thus, the survival times 
depend on both covariates X  and the treatment Z .

To introduce right censoring, the censoring time was independently generated from an Exponential 
distribution

	 Ci ∼ Exp (λC) . � (24)

In the experiments, we set λC = 0.3. The observed time and event indicator were then defined as

	 T ∗ = min (Ti, Ci) , δ i = I(Ti ≤ Ci). � (25)

This setup ensures that the treatment assignment depends on covariate X  and that the covariates also directly 
affect survival outcomes. Therefore, the covariates act as confounders when estimating the causal effect of 
treatment on survival. Without adjusting for these confounders, the estimated survival curves might have been 
biased.

In addition, for defining the “true” covariate-balanced survival curve and RMST used in the evaluation, we 
generated potential event time T

(0)
i  and T

(1)
i  by fixing Zi = 0 and Zi = 1 in the above Weibull distribution 

and computed the marginal survival functions

	 Strue
z (t) = Pr

(
T (z) > t

)
, z ∈ {0,1} , � (26)

via Monte Carlo simulation (N = 100,000) over the covariate distribution. The corresponding true RMST and 
their difference ∆true (τ) were obtained by numerical integration of Strue

z (t) on [0, τ ].

How to partition the data
For data distribution, we assumed horizontal and vertical partitioning with c = 2 institutions and d = 2 
partitions.

	
X =

[
X1,1 X1,2
X2,1 X2,2

]
, Xi,j ∈ R500× 5. � (27)

The datasets were randomly divided such that each institution had an equal number of samples. Each experiment 
was repeated 100 times.

In this setting, we compare the results for the following cases: In this simulation dataset, the distribution 
of covariates does not depend on sample i and the samples are randomly split; to eliminate redundancy in 
the results, we represent the results of the (1,1)-th user in the individual analysis. Because the same results are 
expected from left-side and right-side collaboration, as well as from upper-side and lower-side collaboration, 
left-side collaboration (L-clb), upper-side collaboration (T-clb), and overall collaboration (W-clb) are considered 
as the three proposed methods. (L-clb, T-clb, and W-clb) are considered as the results of the proposed method 
(DC-QE), and the left collaboration (L-clb) is considered as the result of LMCA. Here, m̃k,l = 2 and m̌ = 3 
for left-side collaboration, and m̌ = 6 for upper and overall collaboration.

Experiment II: real-world medical data
We further evaluated the performance of the proposed method using five publicly available medical datasets, as 
listed in Table 1. The datasets included four survival analysis datasets from the survival package in R and a real-
world Right Heart Catheterization (rhc) dataset.
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We evaluated the performance of the proposed method by comparing it with LA, CA, and LMCA. Each 
dataset was horizontally partitioned into c = 3 users ( d = 1), and the samples were randomly divided such that 
each user held approximately the same number of samples. Each experiment was repeated 20 times.

Results
Experiment I: synthetic data
The results of the CA, LA, LMCA, and the three proposed methods (DC-QE (T-clb, L-clb, and W-clb)) are 
shown in Table 2. The inconsistency metric quantifies the closeness of the estimated propensity scores to those 
obtained through CA. Among all the methods, DC-QE (T-clb) achieved the smallest inconsistency at 0.0480, 
indicating that the estimated propensity scores were extremely close to those from the central analysis. This 
was followed by DC-QE (W-clb) at 0.0857 and DC-QE (L-clb) at 0.1033. In contrast, LA and LMCA exhibited 
inconsistency values of approximately 0.17, suggesting that without collaborative techniques, whether through 
simple local analysis or sharing only matched data, the estimated propensity scores deviated substantially from 
those obtained via central analysis. The particularly low inconsistencies observed for DC-QE (T-clb) and DC-QE 
(W-clb) indicate that the proposed method effectively approximates the central analysis by leveraging additional 
covariate information.

Regarding the covariate balance, as measured using the MASMD metric, CA achieved the lowest value of 
0.1211, reflecting the best covariate balance. LA and LMCA exhibited larger MASMD values (0.6820 and 0.6720, 
respectively), implying that when propensity score estimation and matching were performed independently 
for each user, covariate balance was not sufficiently achieved. In contrast, the proposed method (DC-QE) 
consistently achieved smaller MASMD values than LA across all collaboration settings, demonstrating that even 
in a distributed environment, our method can achieve a covariate balance closer to that of centralized analysis.

The proximity of the estimated survival curve and the CA curve were evaluated for both the treatment group 
and the control group using the Gap metric. DC-QE (W-clb) achieved the smallest gap in both the treatment 
and control groups (0.0259 and 0.0275, respectively), followed by DC-QE (L-clb) and DC-QE (T-clb), both 
of which significantly outperformed LA and LMCA. This demonstrates that the collaborative approach can 
faithfully reproduce Kaplan-Meier curves obtained from centralized PSM. These results suggest that DC-QE 
(W-clb) benefits from both an increased number of samples through sample-level collaboration and enhanced 
covariate information through covariate-level collaboration, resulting in survival curve estimates that closely 
approximate those of a centralized analysis.

Furthermore, we evaluated how well each method reproduces the RMST difference estimated by CA using 
the difference of RMST difference relative to CA. Among the distributed methods, DC-QE (W-clb) showed the 
smallest deviation from the CA (mean 0.0425), while DC-QE (T-clb) and DC-QE (L-clb) achieved very similar 
values (approximately 0.05). In contrast, LA and LMCA exhibited much larger errors (approximately 0.10–0.11). 
These results confirm that the proposed DC-QE framework can recover the covariate-balanced estimand from 
CA with substantially smaller errors than other local methods.

In synthetic data environments, the data generation process defines the true covariate-adjusted RMST 
difference. Therefore, we calculated the difference of RMST difference relative to the true survival function. Since 

Method Sample size after matching MASMD Inconsistency Gap(T) Gap(C) DCA
Dtrue

LA 370.18 (20.71) 0.6820 (0.1059) 0.1705 (0.014) 0.0430 (0.0159) 0.0547 (0.0196) 0.1096 (0.0526) 0.1656 (0.0686)

LMCA (L-clb) 739.84 (28.66) 0.6720 (0.0791) 0.1792 (0.0149) 0.0322 (0.0133) 0.0477 (0.0149) 0.1036 (0.0416) 0.1632 (0.047)

DC-QE (T-clb) 310.16 (21.88) 0.1847 (0.0508) 0.0480 (0.0124) 0.0382 (0.0156) 0.0396 (0.0145) 0.0530 (0.0409) 0.0886 (0.0609)

DC-QE (L-clb) 690.20 (74.26) 0.3404 (0.1538) 0.1033 (0.0518) 0.0262 (0.0137) 0.0331 (0.0152) 0.0526 (0.0408) 0.0998 (0.0576)

DC-QE (W-clb) 668.18 (51.51) 0.2772 (0.1210) 0.0857 (0.0404) 0.0259 (0.0111) 0.0275 (0.0121) 0.0425 (0.0315) 0.0854 (0.0502)

CA (reference) 624.58 (29.81) 0.1211 (0.0229) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000) 0.0690 (0.0449)

Table 2.  Means and standard errors (in parentheses) of performance measures in experiment I. (Gap(C): 
Gap for control group, Gap(T): Gap for treatment group, DCA: Difference of RMST difference relative to 
CA, Dtrue: Difference of RMST difference relative to the true survival function, LA: local analysis, LMCA: 
local matching and central analysis, CA: central analysis. The best result is bold, and the second-best result is 
underlined).

 

Dataset n m Description Criteria for Z

Colon 888 13 Chemotherapy data for stage B/C colon cancer Zi = 1 if sex is 1(male)

Lung 167 7 NCCTG lung catheter dataset Zi = 1 if sex is 1(male)

pbc 276 17 Mayo Clinic primary biliary cirrhosis dataset Zi = 1 if age > 60

Veteran 137 4 Veterans’ Administration lung cancer study Zi = 1 if age > 60

rhc 5,735 53 RHC data for critically ill patients Zi = 1 if RHC was used

Table 1.  Datasets used in experiment II.
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PSM was performed on finite samples, the estimated CA still exhibited bias (mean 0.0690) relative to the true 
value. However, all DC-QE variants reduced bias compared to LA and LMCA. Among distributed methods, DC-
QE (W-clb) achieved the smallest bias (0.0854), followed closely by DC-QE (T-clb) (0.0886). In contrast, DC-QE 
(L-clb) exhibited slightly larger bias (0.0998). LA and LMCA exhibited even larger biases (approximately 0.16).

Experiment II: real-world medical data
We further evaluated the performance of the proposed method using five publicly available medical datasets. 
Table 3 summarizes the mean and standard deviation of the four evaluation metrics for each dataset (colon, lung, 
pbc, veteran, and rhc). Across all datasets, the proposed method (DC-QE) consistently demonstrated superior or 
at least comparable performance relative to LA and LMCA in terms of inconsistency metric, MASMD, and Gap 
metric. These results suggest that DC-QE can achieve an accuracy close to that of the CA even under distributed 
data settings.

Specifically, compared to LA, DC-QE achieved substantially smaller MASMD values and inconsistency levels 
that were close to those of CA. Moreover, for the Gap metric, which measures survival curve estimation accuracy, 
DC-QE consistently outperformed LA, particularly for the control group (Gap(C)), where the estimated survival 
curves were often much closer to those obtained by central analysis.

When compared with LMCA, DC-QE generally achieved smaller inconsistencies and Gap values. However, 
for MASMD, no consistent pattern was observed; in some datasets, LMCA exhibited smaller MASMD values 
than DC-QE. This indicates that while DC-QE outperforms LMCA in terms of treatment effect estimation 
accuracy and survival curve estimation, the advantage of covariate balance is dataset-dependent.

Since the true survival function is unknown in the real datasets, we focused on the difference of RMST 
difference relative to CA. DCA varies across datasets, likely reflecting differences in sample size, observation 
period, and confounding strength specific to each real dataset. For multiple datasets (lung, veterans, rhc), DC-
QE showed the smallest bias in DCA. In the other two data sets (colon and pbc), LMCA showed a slightly 
smaller deviation than DC-QE, but DC-QE still significantly improved LA.

Figure 2 shows the survival curves estimated using each method. Overall, the proposed method (DC-QE) 
yields survival curves that are visually closer to those obtained by the CA than to those obtained by LA and 
LMCA. This tendency was particularly evident in datasets with relatively small sample sizes, such as the lung, 
pbc, and veteran datasets. In these datasets, although LA and LMCA show noticeable deviations from the 
survival curves obtained using CA, the proposed method can approximate the central analysis survival curves 
with higher accuracy.

Discussion
In this study, we propose a novel method for estimating covariate-balanced survival curve in distributed 
data environments while preserving privacy by extending the DC-QE to survival analysis. In synthetic data 
experiments, the proposed method significantly improved covariate balance and inconsistency metrics compared 

MASMD Inconsistency Gap(T) Gap(C) DCA

Colon

LA 0.115(0.027) 0.083(0.021) 0.028(0.008) 0.031(0.011) 37.567(29.292)

LMCA 0.070(0.023) 0.075(0.013) 0.009(0.003) 0.009(0.004) 22.915(13.898)

DC-QE 0.073(0.017) 0.016(0.008) 0.008(0.003) 0.007(0.003) 23.583(11.290)

CA (reference) 0.048(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

Lung

LA 0.311(0.116) 0.137(0.042) 0.102(0.040) 0.106(0.048) 95.063(58.425)

LMCA 0.178(0.060) 0.133(0.027) 0.052(0.023) 0.035(0.016) 32.585(26.802)

DC-QE 0.218(0.078) 0.080(0.021) 0.040(0.016) 0.021(0.009) 22.746(17.723)

CA (reference) 0.181(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

pbc

LA 0.625(0.157) 0.139(0.024) 0.111(0.044) 0.164(0.089) 515.906(377.043)

LMCA 0.379(0.110) 0.166(0.033) 0.049(0.021) 0.123(0.050) 354.231(231.089)

DC-QE 0.288(0.094) 0.044(0.012) 0.049(0.019) 0.080(0.030) 414.033(170.772)

CA (reference) 0.243(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

Veteran

LA 0.296(0.128) 0.128(0.038) 0.117(0.068) 0.106(0.039) 43.691(24.374)

LMCA 0.182(0.083) 0.115(0.026) 0.070(0.027) 0.034(0.014) 29.725(12.249)

DC-QE 0.169(0.069) 0.057(0.029) 0.051(0.018) 0.020(0.008) 18.715(12.229)

CA (reference) 0.243(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

rhc

LA 0.086(0.011) 0.066(0.006) 0.018(0.007) 0.021(0.008) 22.177(13.679)

LMCA 0.064(0.009) 0.074(0.002) 0.007(0.002) 0.007(0.002) 6.595(4.420)

DC-QE 0.073(0.016) 0.025(0.008) 0.007(0.002) 0.006(0.002) 6.273(4.062)

CA(reference) 0.056(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

Table 3.  Means and standard errors (in parentheses) of performance measures in experiment II. (Gap(C): Gap 
for control group, Gap(T): Gap for treatment group, DCA: RMST difference relative to the central analysis, 
LA: local analysis, LMCA: local matching and central analysis, CA: central analysis. The best results are 
highlighted).
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to LA and LMCA. DC-QE (W-clb) estimated survival curves closer to the centralized analysis with larger sample 
sizes. The proposed method most faithfully reproduced both the RMST difference obtained under centralized 
PSM and the true RMST difference defined in the data generation process. In contrast, LA and LMCA exhibited 
much larger deviations. Furthermore, experiments using open datasets confirmed the effectiveness of the 
proposed method across multiple datasets with varying sample sizes and numbers of covariates. The proposed 
method generated survival curves most similar to the central analysis results. While the difference of RMST 
difference relative to CA fluctuated across datasets and was occasionally slightly smaller for LMCA, DC-QE 

Fig. 2.  Survival curves in Experiment II. (a) to (e) plot the results of survival curves for each dataset. The 
X-axis represents time, and the Y-axis represents survival probability. In the legend, solid lines represent the 
results of the treatment group, and dashed lines represent the results of the control group for each comparison 
method.
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simultaneously improved covariate balance and survival curve proximity, achieving better performance than 
LA.

Unlike simply applying parametric or semiparametric models, such as the Cox model, to distributed 
environments, the survival analysis approach proposed in this study uniquely combines PSM with the Kaplan–
Meier estimator. Nonparametric methods have the advantage of flexibly estimating survival curves based on 
observed data without requiring prior assumptions about the form of survival time distribution. This flexibility 
allows them to mitigate bias more effectively when confounders have complex effects. Thus, even in observational 
studies in which confounding structures are complicated or the number of covariates is large, the proposed 
method offers the important advantage of accurately estimating survival curves without being constrained by 
strong model assumptions.

Because DC-QE estimates propensity scores through an integrated framework, even in distributed 
environments, it facilitates an improved covariate balance between the treatment and control groups. Moreover, 
although the range of covariate information available for matching may vary depending on the data distribution 
setting, the proposed method leverages the anchor data along with dimensionality reduction and reconstruction 
mechanisms, effectively enabling the use of a broader range of covariate information. Consequently, even when 
individual institutions cannot secure enough samples or covariates on their own, reliable estimation can be 
achieved by performing matching based on globally integrated information.

We adopted PSM as a covariate balance adjustment method. However, other adjustment techniques based on 
propensity scores are also available, such as inverse probability weighting and stratification. A major advantage of 
DC-QE is its flexibility; once the propensity scores are estimated, the framework can be extended to incorporate 
alternative adjustment methods, such as weighting or stratification, within the context of survival analysis. In 
practice, it may be beneficial to consider methods other than matching, depending on the characteristics of the 
survival data. Combining DC-QE with more robust covariate adjustment techniques can further enhance its 
performance and broaden its applicability.

Several limitations must also be acknowledged. First, even centralized PSM analysis (CA) in simulations 
retains non-negligible bias relative to the true RMST-based estimand, meaning that all comparative methods—
including our distributed approach—are evaluated against the Kaplan–Meier estimator under finite sample size 
and right censoring, a “realistic but imperfect benchmark.” However, since CA, which aggregates all individual-
level data to perform PSM, represents the most natural practical analysis procedure and can be considered the 
gold standard that distributed analysis should approximate, this study adopted CA as the primary comparison 
method. From this perspective, it is more important to assess how well DC-QE reproduces the same estimand as 
CA and suppresses additional errors arising from data partitioning; as a supplementary check, the simulation also 
reports the difference of RMST difference relative to the true survival function. Second, RMST-related metrics 
in real data are influenced by differences in observation design across datasets, such as follow-up duration and 
censoring rates. This reflects the fact that RMST captures the explicit quantity “mean survival time up to time 
τ ,” and the reliability with which this quantity can be estimated naturally varies across datasets. Therefore, in 
this study we interpret DCA (τ ) and Dtrue (τ ) not as standalone performance metrics, but as one component 
within a multifaceted evaluation alongside MASMD, survival curve gap, and discrepancy from CA.

Future research directions include extending the framework to handle cases where the treatment variable 
Z  takes multiple values or where time-dependent covariates are involved, and integrating the framework 
with existing techniques such as differential privacy to establish stronger privacy guarantees. In the current 
implementation, propensity scores are estimated using logistic regression. Incorporating more flexible machine 
learning-based propensity score estimation methods could further enhance the method’s ability to handle 
nonlinear confounding structures.

Conclusion
In conclusion, the proposed method, which extends DC-QE to survival analysis, is shown to significantly 
improve confounder adjustment compared to LA and achieve covariate-balanced KM curve estimates that 
closely approximate those obtained by central analysis. Our approach enables a more accurate estimation even 
in situations where data sharing between facilities or institutions is challenging, making it highly applicable to 
medical and public health research, which requires balancing privacy preservation with analytical accuracy. In 
future work, we plan to enhance the practical utility of this method by applying and extending it to more diverse 
environments and analytical objectives, such as real-world clinical settings and regional public health data.

Data availability
All data used in this study are either reproducible synthetic data or publicly available data. Synthetic data can be 
generated using the methods and parameter settings described in the Methods section. The real-world bench-
mark datasets—lung, veteran, and pbc from the survival package and rhc from the Hmisc package—are all open 
access and can be obtained from R packages. The datasets used and analysed during the current study are avail-
able from the corresponding author on reasonable request.
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