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Optimization of power grid
material warehousing and supply
chain distribution path planning
based on improved PSO algorithm
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Jianfeng Wu?

With the deepening of smart grid construction, the complexity of power grid material warehousing
and emergency distribution continues to increase, which puts higher demands on efficient and
scalable optimization models. In response to the problems of insufficient search efficiency and weak
adaptability to dynamic disaster scenarios in traditional methods, this study proposes an optimization
model that integrates a multi-strategy collaborative adaptive chaotic particle swarm optimization
algorithm and an improved imperialist competitive algorithm. The experiment is conducted based

on multiple types of emergency scenarios, and the results show that the accuracy of material
classification of the model is as high as 98.73%, and the delivery time is shortened from 6.78 h to

4.56 h in earthquake scenarios. In the solution of the supply chain distribution path, the single iteration
calculation is only 0.45s, which combines stability and efficiency. This model improves the search
diversity of inventory parameter optimization by introducing multi-strategy chaotic disturbances

and adaptive inertia weights, and combines fishbone warehouse layout to enhance picking efficiency.
In the path planning stage, research is conducted to enhance the adaptability of algorithms to
complex constraints and dynamic environments through immune penalty correction mechanisms and
pheromone adaptive balancing strategies. Research results denote that this model has significant
advantages in multi-objective optimization, warehouse layout planning, and emergency logistics
path scheduling. This study provides feasible technical solutions for smart grid material management
and emergency distribution, as well as new methodological references for complex supply chain
optimization research.

Keywords Warehouse optimization, Path planning, Particle swarm optimization algorithm, Imperialist
competitive algorithm, Multi-objective optimization, Metaheuristics, Resilience logistics

With the acceleration of the construction of new power systems, the complexity and dynamism of power grid
material management have significantly increased, and traditional warehousing and logistics models are facing
multiple challenges!. The variety of material categories is complex, covering thousands of categories such as power
transmission and transformation equipment, emergency repair tools, etc., leading to confusion in classification
and low storage efficiency?™*. The demand for emergency response has surged, and the contradiction between
high equipment repair time requirements and insufficient inventory dynamic allocation capabilities in disaster
scenarios such as typhoons and earthquakes is prominent®. In addition, the supply chain collaboration is
fragmented, resulting in a lack of real-time linkage between inventory status and distribution path planning,
as well as significant errors in manual inventory counting, leading to high logistics costs®®. In this context,
studying the optimization of power grid material warehousing and supply chain distribution path planning
not only helps to improve the operational management level of power grid enterprises, but also enhances the
power grid’s material guarantee capability in emergency situations. In terms of warehouse optimization, L.
Peng et al. proposed a multi-warehouse joint replenishment and distribution algorithm based on trade credit
to address the issue of multi-warehouse joint replenishment and distribution. The experiment showed that this
method could reduce total costs and achieve joint management of multiple warehouses’. X. Hu et al. designed
a nonlinear programming model based on system layout planning and utilized genetic algorithm optimization
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method to solve the problem of unreasonable layout of e-commerce warehouses affecting logistics efficiency. The
experiment showed that the optimization rate of this method was 39.25%, which can reduce handling costs and
improve picking efficiency'’. J. N. Das et al. proposed an interdependent Pareto ant colony optimization (ACO)
model based on deep embedding clustering to address the optimization problems of warehouse allocation and
carton configuration in e-commerce logistics. The experiment denoted that the model could provide optimal or
non-dominated solutions in all cases, effectively balancing transportation costs and carton volume!!.

In terms of supply chain transportation path optimization, Y. Wang et al. designed a multi-objective mixed
integer linear programming model based on geographic information system with epsilon constraints to
solve the problem of hazardous chemical transportation path optimization. The experiment showed that the
model could consider the influence of buildings and perform well'2. X. Hu et al. designed a multi-objective
path optimization model to address the coordination problem between government and enterprise goals in
multimodal transportation path optimization. The model balanced government carbon reduction and enterprise
cost control objectives, and introduced fuzzy demand to handle demand fluctuations. An improved sparrow
search algorithm was applied to address the problem. The experiment indicated that the multi-objective path
optimization model could significantly reduce carbon dioxide emissions while moderately increasing costs'>.
D. Mahat et al. proposed using ACO algorithm to solve the optimization problems of mechanical engineering
supply chain and logistics. Experiment demonstrated that the ACO algorithm had significant effects in inventory
management, transportation route optimization, and production scheduling, which can reduce inventory costs,
optimize transportation routes, and improve production efficiency'*.

In other aspects, V. H. S. Pham et al. proposed a hybrid whale optimization algorithm (hGWOA) by
combining whale optimization algorithm with grey wolf optimizer to optimize supply chain transportation
routes. The results indicated that in scenarios involving scale and complexity, the supply chain network
optimized by hGWOA outperformed other algorithms in optimizing delivery distance'®. J. Qezelbash Chamak
et al. proposed a branch cutting algorithm for fast mixed integer programming to quickly respond to the needs
of disaster emergency scenarios. The results indicated that this method improved the efficiency of establishing
response plans'®.

The specific scientific shortcomings of previous methods are as follows: (1) Traditional Particle Swarm
Optimization (PSO) and variants rely on fixed or empirical parameters, making it difficult to adapt to dynamic
environments and multi-objective coupled optimization; (2) In high-dimensional space, particles are prone to
local optima and population diversity drops sharply; (3) Although Independent Component Analysis (ICA)
and ACO improve convergence accuracy, they are difficult to deal with nonlinear coupling and multi constraint
problems; Hybrid algorithms are mostly a combination of heuristic structures, lacking a unified optimization
framework and convergence analysis; (4) Reinforcement learning is not combined with data-driven approaches,
resulting in poor adaptability to dynamic scenarios; Pure data-driven methods have high training costs and
unstable convergence.

The prior PSO improvements had the following limitations: (1) insufficient adaptive mechanisms, lack of
dynamic scene adaptation in improvements such as inertia weighting, and difficulty in balancing global search
and local convergence; (2) The mixed strategy lacks synergy, and multiple algorithms are simply stacked, which
can easily lead to conflicts and slow convergence and poor stability; (3) The maintenance of diversity is weak, and
initialization methods (such as anti initialization) are difficult to avoid population convergence during iterations;
(4) Weak theoretical support, lack of convergence and stability analysis, and poor scenario universality.

The reasons for the poor performance of existing multi-objective or adaptive hybrid methods are as follows:
Firstly, traditional multi-objective PSO algorithms and their variants often rely on fixed or empirically set
parameters, which have poor adaptability to dynamic environments and multi-objective coupled optimization.
Secondly, the lack of real-time data interaction makes it difficult to cope with dynamic constraints and changes
in target priority. Therefore, it cannot achieve better results.

Existing research is mostly conducted under a single optimization objective or deterministic assumption, and
insuflicient consideration is given to uncertain factors such as dynamic demand fluctuations, path disturbances,
and sudden situations under multi-objective coupling conditions, which limits the practical applicability of
algorithms in complex supply chain scenarios. To improve the efficiency and adaptability of power grid material
warehousing and supply chain distribution, a power grid material warehousing optimization method based
on Multi-strategy Collaborative Adaptive Chaotic Particle Swarm Optimization (MSC-PSO) and a supply
chain distribution path planning method based on Improved Imperialist Competitive Algorithm (IICA) were
proposed, and the MSC-PSO-IICA model was formed. To address the high uncertainty and multi-constraint
scheduling problem of power grid logistics in the event of emergencies, this study formalizes the research
problem as a multi-objective stochastic optimization model, with optimization objectives including: (1)
Based on existing heuristic scheduling models, factors such as demand fluctuations, path interruptions, and
scheduling delays are modeled in the form of probability distributions, thus forming a formal description of
multi-objective stochastic optimization. This breaks away from the previous modeling methods that relied on
empirical weights and deterministic scenarios, and provides a mathematical foundation for emergency supply
chain optimization. (2) The concept of “chaotic perturbation +adaptive inertial weight+immune selection” is
theoretically abstracted as a verifiable evolutionary update strategy. By constructing the Lyapunov function, the
probabilistic convergence condition is given, proving that the mechanism can maintain population diversity
in high-dimensional constrained spaces and overcome the problems of local convergence and unstable results
of the original algorithm. (3) On the basis of the original engineering design integrating PSO and ICA/ACO,
a hierarchical complexity analysis of the search process is carried out, and the worst time complexity limits for
the path planning stage and warehouse optimization stage are given. It is proved that compared with traditional
hybrid swarm intelligence algorithms, the algorithm reduces computational costs and improves scalability
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without sacrificing accuracy. (4) Construct a multi-objective optimization function that integrates path, cost,
response through weighted decomposition and Pareto frontier screening methods.

Method and materials

Optimization method for power grid material warehousing based on MSC-PSO algorithm

In the construction and operation of the power grid, the management of power grid material warehousing and
supply chain distribution are crucial for cost control and power supply guarantee!”'8. However, traditional power
grid material warehousing and supply chain distribution have many shortcomings, such as the coexistence of
inventory backlog and shortage, unreasonable distribution path planning, resulting in high logistics costs, low
resource utilization, and slow emergency response'®. To cope with the complexity of the power grid material
storage system, the MSC-PSO algorithm is proposed. The MSC-PSO algorithm can effectively balance the global
search capability and local convergence speed of the algorithm by adaptively adjusting the particle velocity and
position update rules. Meanwhile, the chaotic perturbation strategy is used to jump out of the local optimal
solution and achieve the efficient search of the global optimal solution. The MSC-PSO algorithm has a unique
multi-strategy fusion mechanism and chaotic disturbance characteristics, which can dynamically adjust the
inventory and classification of power grid materials, thereby optimizing the warehousing system. The multi-
strategy chaos mechanism refers to introducing multiple chaotic mapping strategies such as Logistic and Tent
into the population initialization and search disturbance process, and improving the solution space coverage
through multi mapping synergy to avoid premature convergence. This mechanism mixes different chaotic
sequences to enable particles to obtain adaptive perturbation amplitudes at different stages, enhancing search
diversity and the ability to escape local optima. The dynamic adjustment module structure of the MSC-PSO
algorithm for power grid material inventory is shown in Fig. 1.

In Fig. 1, the dynamic adjustment module of power grid material inventory consists of three parts: data
integration layer, intelligent optimization core layer, and execution feedback layer. The data integration layer
collects various key parameters in real-time through Internet of Things sensors, enterprise management systems,
and historical operation and maintenance data, and integrates external environmental parameters (such as
meteorological disaster warning, regional load fluctuations) to construct input data packets. The formula for
calculating safety stock is denoted in Eq. (1)%.

Ss=a-o-VL (1)

In Eq. (1), Ss means the safety stock level. o represents the safety stock factor (determined by the importance of
materials, such as 95% service level corresponding to & = 1.65). o means the standard deviation of demand.L
means the procurement lead time (constant value). By quantifying inventory buffer, it can cope with demand
fluctuations and supply chain delays. The optimization core layer first uses Tent chaotic mapping to initialize the
particle swarm, uniformly covering the solution space such as replenishment cycle, safety stock threshold, and
economic batch size. The calculation formula for chaotic sequence values is shown in Eq. (2).

Yr+1 = B - min(yx, 1 — yi) ()
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Fig. 1. Dynamic adjustment module for power grid material inventory.
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In Eq. (2), yx+1 means the chaotic sequence value of the k£ + 1th iteration. yx represents the chaotic sequence
value of the k th iteration. /3 represents the chaotic parameter (usually taken as /3 to ensure traversal). The
calculation formula for Tent chaotic mapping is shown in Eq. (3)*2.

Y 0<yr <d
YTent = { 1d7yk Yk (3)

In Eq. (3), Yrent represents the result of Tent chaotic mapping. d represents a constant with a value range of
0 < d < 1. Studying the generation of uniformly distributed initial solutions through Tent chaotic mapping can
avoid particle swarm aggregation in local areas. Then, global exploration and local development are balanced

through adaptive inertia weight. The calculation method of inertia weight is shown in Eq. (4)*.
(wmax — wmin) ok
Wk = Wmax — (4)
Kmax

In Eq. (4), wy, represents the inertia weight of the k th iteration. wmax = 0.9 means the upper limit of weight.
Wypin = 0.4 means the lower limit of weight. K'max represents the maximum number of iterations. In the
initial stage, the focus is on global optimization of multi-level warehouse collaborative replenishment strategies,
while in the later stage, the emphasis is on matching demand fluctuations. The Metropolis criterion, which
simulates the annealing mechanism, is also introduced to accept the suboptimal solution with probability and
circumvent the local optimal trap due to the coupling of regional inventories. The acceptance probability of the
Metropolis criterion is calculated as shown in Eq. (5)*.

1, ifAf<0
P]vletropolis = exp ( i) , if Af >0 (5)

- kBo Tnow

In Eq. (5), Pumetropolis means the probability of accepting a new solution. A f represents the difference between
the objective function of the new solution and the current solution. kB, stands for Boltzmann constant, used
to control the scale of acceptance probability. Tr0. represents the current temperature parameter and reflects
the search stage of the algorithm. The initial temperature is high and gradually decreases with iteration. The
optimization results are analyzed using Pareto front analysis to generate a multi-objective replenishment plan
(such as minimizing inventory costs and stockout risks), which automatically triggers supplier orders through
blockchain smart contracts. The weight method transforms a multi-objective problem into a single objective
problem by assigning weights to each objective function. The formula for calculating the comprehensive
objective function is denoted in Eq. (6)%.

F(x)=Y_w:fi(x) (6)

In Eq. (6), F (z) represents the comprehensive objective function. w; represents the weight of the i th objective
function. f; (x) is the value of the i th objective function. The execution layer has a built-in dynamic allocation
network that adjusts delivery priorities in real-time based on inventory saturation and demand urgency. The
execution feedback layer updates the algorithm parameter library through reverse iteration by monitoring
indicators such as inventory turnover rate, stockout rate, and emergency response timeliness, for example,
adjusting the safety stock weight coefficient based on historical stockout events. The formula for updating the
algorithm parameter library is shown in Eq. (7).

Qlnew = Qlold + v (Sactual - Sthrcshold) (7)

In Eq. (7), otnew represents the updated algorithm parameter library. ao1a represents the algorithm parameter
library before the update. -y represents learning rate (dynamically adjusting step size). Sactual represents the
statistical value of historical stockout events. Sinreshold represents the out-of-stock tolerance threshold. This
method can dynamically optimize the safety stock factor based on actual stockout feedback. The calculation
formula for inventory turnover rate is shown in Eq. (8)%.

COGS

T 7 8
%([initial + Iﬁnal) ( )

Rturnover =

In Eq. (8), Rturnover represents inventory turnover rate. COGS represents the cost of material outflow. Jinitial
and Igna represent the initial and final inventory levels, respectively. This module also provides geographic
information system visualization dashboards, real-time mapping of regional inventory heat maps, transfer
path topologies, and warning signals (such as transformer inventory in a warehouse below a safety threshold),
supporting dynamic intervention by management personnel. The structure of the intelligent classification
module for power grid materials using the MSC-PSO algorithm is shown in Fig. 2.

As shown in Fig. 2, the intelligent classification module for power grid materials is a multidimensional
dynamic classification system based on a chaotic weight matrix. The data preprocessing part integrates multi-
source information such as material attribute data (value, specifications), operation and maintenance data (failure
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Fig. 2. Structure of intelligent classification module for power grid materials.

rate, replacement frequency), environmental data (regional disaster risk), etc., cleans outliers through fuzzy logic
algorithms, and extracts demand periodic features using time series analysis. The intelligent classification engine
adopts the chaos disturbance strategy in the MSC-PSO algorithm. Firstly, a random weight sequence within the
(0, 1) interval is generated through Logistic chaotic mapping, and the calculation formula is denoted in Eq. (9)%.

Zii1 =X Z1- (1= Zy) )

In Eq. (9), Zi+1 represents the chaotic state value of the k + 1th iteration. Zj represents the chaotic state
value of the k th iteration. A\ represents chaos control parameters. The calculation formula for constructing
a multidimensional classification matrix (covering multiple dimensions such as cost, emergency level, and
demand volatility) is shown in Eq. (10).

D
d=1

In Eq. (10), M, » means the comprehensive rating matrix of material m in the n th classification dimension.
w dk> represents the dynamic weight of the d th dimensional feature (generated by chaotic mapping). fa(Sm,»)

represents the dth dimensional feature normalization function (Min-Max normalization). This matrix can
quantify the classification priority of materials in a multidimensional feature space. Next, based on adaptive
learning factors, it dynamically adjusts the classification threshold, such as increasing the emergency weight
coefficients of insulators and repair tools during typhoon season. The calculation formula for the adaptive
learning factor is shown in Eq. (11).

8k = Spyin + (dmax — Spyjn) e "" (11)

In Eq. (11), dx means the learning factor of the k th iteration. dmax and dmax represent the max and mini
values of the adaptive learning factor, respectively. 7 represents the attenuation coefficient, which is used to
control the learning rate and adjust the amplitude. e represents natural logarithm. The materials are dynamically
classified into four categories: Class A refers to high-value and high stress acute materials, such as transformers;
Class B refers to medium turnover and medium risk materials, such as cables; Class C refers to low value and
conventional materials, such as screw consumables; Class D refers to uncertain demand materials, such as ice
melting devices. Class A materials are tracked in real-time using radio frequency identification technology
and dynamic safety stock is set up. Class D materials are linked with the data interface of the meteorological
department to trigger a pre-procurement agreement. The module also has a built-in self-learning mechanism,
which optimizes the chaotic weight matrix in reverse through classification accuracy to enhance the classification
robustness in disaster scenarios. The process of optimizing the storage of power grid materials using the MSC-
PSO algorithm is shown in Fig. 3.

As shown in Fig. 3, the MSC-PSO algorithm first integrates multi-source data and extracts features, and
then generates an initial particle swarm based on Tent chaotic mapping. Each particle represents a combination
of replenishment cycle, safety stock threshold, and economic batch strategy to cover the global solution space.
The fitness function integrates multi-objective weights and dynamically adjusts the evaluation criteria based on
the disaster level. The algorithm balances global exploration and local optimization through adaptive inertia
weights, and introduces the Metropolis criterion to accept suboptimal solutions and avoid local optima. The
Pareto front solution set generated iteratively is filtered and triggers automatic replenishment of smart contracts.
Finally, the parameters are updated in reverse based on actual data to enhance the dynamic adaptability of the
strategy. To ensure the efficiency of subsequent material transportation and reduce the sorting time of goods
in the warehouse, a fishbone storage layout design was adopted. The layout of fishbone type storage shelves for
power grid materials is shown in Fig. 4.

As shown in Fig. 4, the V-shaped main channel extends from the central storage area to both sides to form
a fishbone spine, with parallel branch channels distributed on both sides. Class A high-value materials (such as
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transformers) are located adjacent to both sides of the main channel, Class B medium frequency materials (such
as cable stacks) are located in the proximal branch channel, Class C consumables (such as hardware boxes) are
placed on remote through shelves, and Class D emergency materials (such as ice melting devices) are stored
in the end movable shelf area. This layout can shorten the distance of material picking and walking, while also
facilitating dynamic adjustment of stored materials. The pseudocode of the MSC-PSO algorithm is shown below.

Distribution path planning of power grid material supply chain based on IICA

The MSC-PSO algorithm, as a multi-strategy fusion adaptive chaotic PSO algorithm, achieves dynamic
adjustment and classification of power grid material inventory through adaptive strategies and chaotic
disturbance strategies. The fishbone storage layout method is helpful for the rapid sorting of goods. The
warehouse coordinates, material allocation ratios, and node demand information output by the first stage
warehouse optimization module will serve as inputs and constraints for the second stage IICA path planning,
used to initialize the distribution network structure and path search space. This ensures that path planning
operates under the constraints of warehouse layout, achieving dynamic collaboration and coupling optimization
between warehousing and distribution processes. To improve the efficiency of subsequent power grid material
supply chain distribution and reduce transportation costs, the IICA was adopted to plan the distribution path
of power grid material supply chain. To improve the performance of the IICA, an immune cost function was
introduced to integrate the path cost of material distribution, emergency response priority, and inventory

Scientific Reports |

(2025) 15:45132 | https://doi.org/10.1038/s41598-025-33293z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Input:

Maxlter // Maximum number of iterations

N // Population size (500)

w_max, w_min // Inertial weight upper and lower bounds

pm // Chaos disturbance probability (0.05)

F(x) // Multi objective fitness function (cost, time, energy consumption, etc.)
Output:

Pareto Set  // Final non dominated solution set

1: Initialize population X = {x1, x2, -*+, XN} by chaotic mapping

2: Initialize velocities V randomly

3: Evaluate fitness F(xi) and record personal best pbest and global best gbest
4: for t =1 to Maxlter do

5:  Update inertia weight:
W=Ww max - (wW_max - w_min) * (t/ MaxIter)

6: for each particle xi do
7: Update velocity:

vi=w *vi+cl * rand() * (pbest i - xi)

+ ¢2 * rand() * (gbest - xi)

8: Update position:

xi=xi+vi
9: With probability pm apply chaotic perturbation:

if rand() < pm then

xi = Chaos(xi)

end if
10: Apply immune selection to maintain diversity:

xi = ImmuneSelect(xi, Pareto_Set)
11: end for
12:  Evaluate fitness F(xi)
13:  Update pbest and Pareto Set via non-dominated sorting
14:  Update gbest based on Pareto dominance and crowding distance
15: end for

16: return Pareto Set

MSC-PSO Algorithm.

constraints into a multi-objective optimization function?. This function can suppress premature convergence of
the algorithm by dynamically adjusting the antibody concentration threshold. The structure of the immune cost
function is shown in Fig. 5.

As shown in Fig. 5, the immune cost function constructs a multi-objective optimization framework by
integrating path cost, emergency response priority, and inventory constraints. Immune penalty correction is
a constraint correction strategy based on immune cloning theory, which applies adaptive penalty factors to
candidate solutions that do not meet the constraints through antigen recognition and antibody affinity
evaluation. This mechanism automatically weakens the competitiveness of infeasible solutions during the search
process and enhances the search density in the vicinity of feasible solutions, thereby improving the algorithm’s
constraint handling ability and feasible domain convergence speed. The path cost integrates transportation
distance, fuel consumption, and fixed vehicle costs to form a basic economic indicator. The emergency response
adopts an exponential time window penalty function to quantify the urgency of delayed delivery of materials.
Inventory constraints are dynamically adjusted for storage capacity deviations through an over capacity penalty
mechanism. On this basis, the immune mechanism introduced by the immune cost function can enhance the
global optimization ability. The immune cost function utilizes the information entropy of antibody similarity
to evaluate population diversity, combined with a dynamically decaying concentration threshold to suppress
high concentration antibody reproduction and prevent premature convergence. Among them, the concentration
threshold gradually decreases with the increase of iteration times, allowing moderate convergence in the initial
stage and strengthening diversity preservation in the later stage. The problem of transforming multi-objective
optimization into maximizing a composite cost function is studied by adaptively balancing path economy,
emergency timeliness and inventory stability through dynamic weighting coefficients, and immunizing the cost
function. Under the framework of the IICA, this mechanism is embedded in the assimilation and competition
stages to drive antibody cloning, mutation, and population updates, ultimately achieving efficient search for
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the global optimal delivery path. The algorithm also integrates ACO to form a material distribution path
optimization module. The structure of the path optimization module is indicated in Fig. 6.

In Fig. 6, the flowchart of the material distribution path optimization module begins with network parameter
initialization, covering distribution nodes, vehicle capacity, and emergency rule configuration. Subsequently,
a dynamic pheromone matrix is constructed to map path cost, inventory constraints, and emergency priority
to the search gradient of ant colony algorithm. The calculation formula for pheromone is shown in Eq. (12)*.

Sy (8) = Gy (¢ —1) - (1= ) + Ay (12)

In Eq. (12), <zy (t) represents the pheromone concentration of path (x,y) at time ¢, indicating the historical
optimization accumulation of this path. 1 represents the volatility coefficient of pheromones (0 < ¢ < 1),
which controls the decay rate of historical pheromones. Its initial value is small to maintain diversity, and it
increases later to accelerate convergence. Acty*“ represents the pheromone increment of elite path to path
(z,y), and the calculation formula is denoted in Eq. (13).
elite R
A% = Costpen

(13)
In Eq. (13), k represents the pheromone intensity constant. Costpest represents the comprehensive value of
the optimal path. The path generation stage simulates the heuristic behavior of ants, performs path segment
crossover and pheromone guided mutation operations within the framework of imperial competition, and
dynamically generates candidate delivery solutions. Each ‘ant’ represents a colony, and the formula for calculating
the probability of path selection is denoted in Eq. (14).

9 r
o LSy (0] (0]
Y e @) 8] (14)
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In Eq. (14), Pf@; represents the probability of the k'thant choosing path (z, y) from node x, which is determined

by both the pheromone and heuristic functions. 8., stands for heuristic function, usually taking the reciprocal
of the path (6., = 7), representing the natural attraction of the path (x,) (such as higher attraction with

ryY

shorter distance). ¥ represents the pheromone factor (with a range of values), which controls the weight of
pheromone concentration. The larger the value, the stronger the path dependence on historical experience. I'
represents the heuristic factor (with a range of values), which controls the weight of the heuristic function. If
the value is too large, it can easily fall into local optima. Anum represents the set of nodes currently accessible
to Ant num, initially consisting of all unvisited nodes, and dynamically updated along the path. The multi-
objective evaluation module can also call the immune cost function to quantify transportation economy,
inventory stability, and emergency timeliness indicators, combined with Pareto front screening and antibody
concentration monitoring mechanisms to avoid local optimal traps. The heuristic function 6., can be extended
to a multi-objective function, such as combining transportation costs, inventory deviation, and emergency
timeliness. The calculation formula is shown in Eq. (15).

Ory = w1 - doy + w2 - InvPenalty + ws - EmergDelay (15)

In Eq. (15), InvPenaltyrepresents the penalty cost for inventory deviation. EmergDelay stands for emergency
delivery delay penalty. w1, w2, and w3 represent corresponding weights, which are adaptively adjusted by
Pareto front. The pheromone update process is based on the elite empire path to strengthen the concentration
of pheromones in the critical path, and balances global exploration and local development through adaptive
volatility coefficient. The pheromone adaptive balancing mechanism dynamically adjusts the weight ratio of PSO
global information and IICA competitive information by constructing an pheromone update function based
on performance differences. This mechanism enhances the exploration ability in the early stage of search and
improves the utilization depth in the later stage of convergence, achieving an adaptive balance of global local
search intensity, thereby improving the overall stability and convergence efficiency of the hybrid algorithm.
The algorithm periodically adjusts the target weights and the size of the empire cluster, and ultimately outputs
the optimal path for power grid material supply chain distribution when meeting the convergence threshold
or resource constraints. The MSC-PSO-IICA model was constructed by integrating the above-mentioned
warehouse optimization and path optimization methods. The structure of the MSC-PSO-IICA model is denoted
in Fig. 7.

As shown in Fig. 7, the MSC-PSO-IICA model is an intelligent optimization framework that integrates
multiple strategies and achieves global optimization of power grid material warehousing and distribution
through a hierarchical collaborative mechanism. The data integration layer collects real-time warehouse
data (inventory levels, demand fluctuations) and path parameters (distribution nodes, vehicle capacity), and
integrates external environmental information such as meteorological warnings. The preprocessing of data
adopts fuzzy logic to clean outliers and extract periodic demand features from time series. In the warehouse
optimization module of the MSC-PSO algorithm, a multi-population adaptive collaborative strategy is studied,
using Tent chaotic mapping to generate uniformly distributed initial solutions to cover the solution space, and
dynamically balancing global search (such as cross warehouse allocation) and local development (safety stock
matching) through adaptive inertia weights. The Metropolis criterion, which introduces simulated annealing
mechanism, accepts suboptimal solutions to avoid local optima caused by regional inventory coupling. The
optimization results are filtered by Pareto front and trigger automatic replenishment of blockchain smart
contracts. The warehouse goods are arranged in a fishbone structure to shorten the movement time of goods
inside the warehouse. In the path planning module of the IICA, the immune cost function is used to integrate
path cost, emergency response priority, and inventory constraints. The antibody concentration threshold is
used to dynamically suppress premature convergence, and the dynamic pheromone matrix of the ant colony
algorithm is combined to guide path search. Then the pheromone accumulation of the critical path is reinforced
by the elite empire path. The storage optimization module and path planning module achieve two-way data
linkage through a collaborative feedback layer. Warehouse inventory status updates the inventory constraints
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Fig. 7. Structure of MSC-PSO-IICA model.
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Input:

Output:
Updated particle positions and velocities

// population size
Maxlter // maximum iterations
w_max, w_min // inertia weight bounds
cl,c2 // acceleration coefficients

// chaos perturbation probability

1: Initialize particles Xi and velocities Vi
2: Evaluate fitness F(Xi) and record pbest and gbest
3: for t = 1 to Maxlter do

4:  Compute adaptive inertia weight:
W =Ww_max - (W_max - w_min) * (t/ MaxIter)

5:  for each particle Xi do
6: Update velocity:

Vi=w * Vi+cl *rand() * (pbest_i- Xi)

+ ¢2 * rand() * (gbest - Xi)

7: Update position:

Xi=Xi+ Vi
8: if rand() < pm then
9: Xi= ChaosMap(Xi) // chaotic perturbation
10: end if
11:  end for
12:  Re-evaluate F(Xi) and update pbest and gbest
13: end for

14: return Xi, Vi

Adaptive PSO Mechanism.

of path planning in real time, while the distribution results inversely optimize the safety inventory parameters.
MSC-PSO-IICA helps to reduce the cost of warehousing and improve the efficiency of material distribution
in emergency situations through chaotic perturbation, immune mechanism and multi-objective collaborative
strategy.

This article proposes a dynamic inertia weight and chaotic disturbance collaborative adjustment strategy
based on the intensity of disaster scene disturbances in adaptive PSO, which achieves an adaptive balance
between global exploration and local convergence in search. In the immune ICA module, this article constructs
a path correction mechanism that combines immune memory and dynamic antibody selection, significantly
enhancing the stability and path recovery ability of the algorithm under disaster uncertainty. The pseudocode
for adaptive PSO and immune ICA is as follows.

Result

Performance analysis of MSC-PSO algorithm

A high-performance experimental platform was established to assess the performance of the MSC-PSO algorithm.
The CPU of the experimental platform was Intel i5-13600KF, the GPU was NVDIA GeForce RTX 4070 Ti, the
memory was 32GB DDR4 3200 MHz, and the hard drive was 1 TB PCIE 3.0. The software environment was
based on Ubuntu 22.04 system, integrating Python 3.10 development environment (NumPy, Pandas, PyTorch
library), Arduino IDE embedded development tool, and Gazebo simulation platform. Real time performance
monitoring was achieved through Prometheus + Grafana, and a zero cost open source development ecosystem
was built using VS Code and Git to meet the parallel computing needs of MSC-PSO algorithm with a particle
size of 500. To ensure the stability of the algorithm, the main parameter values were based on the empirical
settings of typical swarm intelligence algorithms. At the same time, ablation experiments were conducted to
verify the rationality of the selected parameter settings, as shown in Table 1.

According to Table 1, under the original parameter combination of inertia weight (0.9 -0.4), mutation
probability of 0.05, and population size of 500, the algorithm achieved optimal performance in terms of
convergence iteration times, delivery cost, and solution time. The input parameters of MSC-PSO algorithm are
denoted in Table 2.
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Input:

Empires // set of empires in ICA

Maxlter

B // assimilation coefficient

ImmuneRate // probability of immune correction
Output:

Updated empire states and solutions

1: Initialize empires and colonies
2: Evaluate fitness and identify imperialists
3: for t =1 to Maxlter do

4.  for each empire e do
5: Assimilation of colonies:
Colony = Colony + B * rand() * (Imperialist - Colony)
6: Revolution (random exploration):
Colony = Revolution(Colony)
7: if rand() < ImmuneRate then
8: Colony = ImmuneCorrection(Colony)
// immune memory selects historical elite solutions
9: end if
10: Update empire power and compare colony with imperialist
11: end for
12:  Imperialistic competition among empires
13: end for

14: return Updated Empires

Immune-Enhanced ICA Mechanism.

Test ID | Inertial weight (max, min) | Mutation probability (pm) | Population size | Average solution time (s) | Average delivery cost ($)
Al 0.9,0.4 0.05 500 1.17 23,451
A2 0.9,0.6 0.05 500 1.35 23,890
A3 0.8,0.4 0.05 500 1.22 23,580
Bl 0.9,0.4 0.01 500 1.20 23,510
B2 0.9,0.4 0.10 500 1.40 23,950
C1 0.9,0.4 0.05 100 0.60 24,500
C2 0.9,0.4 0.05 300 0.85 23,720
C3 0.9,0.4 0.05 700 1.60 23,480

Table 1. Results of MSC-PSO optimal parameter ablation experiment.

The dataset used the Grid Supply Chain dataset, which includes 100 suppliers and 500 delivery points.
This dataset was chosen because it covers all kinds of key data of grid material supply, such as the demand,
inventory, transport cost, emergency response priority and other information of different materials, and also
contains a variety of grid material supply scenarios, which can comprehensively and comprehensively assess
the performance of the MSC-PSO algorithm. The comparative algorithm adopted Constrained Particle Swarm
Optimization-based Model Predictive Control (CPSO-MPC) algorithm and Particle Swarm Optimization Back
Propagation Artificial Neural Network (PSO-BP-ANN) algorithm?®"*2. The optimal storage solution time and
computational resource utilization of each algorithm are shown in Fig. 8.

According to Fig. 8 (a), the MSC-PSO algorithm had the shortest average solution time (1.17s), significantly
better than the CPSO-MPC algorithm (2.28s) and PSO-BP-ANN algorithm (2.98s). The time curve tended
to stabilize with the increase of iteration times, indicating that the algorithm has fast convergence speed and
high stability. The PSO-BP-ANN algorithm had a higher computational complexity due to the fusion of neural
network backpropagation mechanism, resulting in a longer solution time than the MSC-PSO algorithm.
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Parameter name Description Typical range/Example
Inertia weight Dynamically adjusted weight balancing global and local search 0.4t00.9

Acceleration coefficients | Weights for individual and social experience in velocity update 1.5t02.0

Swarm size Number of particles for parallel search 30 to 500

Max iterations Termination condition balancing computation and precision 50 to 200

Dimensions Number of variables to optimize (e.g., control or inventory parameters) 3 or higher

Chaotic mapping Generates uniform initial solutions to avoid particle clustering 0.5

Pareto threshold Fitness tolerance for selecting non-dominated solutions 0.1t00.5

Annealing temperature | Controls suboptimal solution acceptance with initial temperature and decay | Initial 100, decay 0.95
Collaborative weight Dynamic coupling weight between inventory and routing planning 0.3t0 1.0

Table 2. Input parameters of MSC-PSO algorithm.
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Fig. 8. Comparison of optimal storage solution time and computing resource utilization for various
algorithms.
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Fig. 9. Comparison of optimized warehousing costs and inventory turnover rates using different algorithms.

According to Fig. 8 (b), the MSC-PSO algorithm had the lowest average CPU rate (27.31%) and the highest
resource utilization efficiency. Its usage curve fluctuated smoothly, indicating that the algorithm has good
hardware load control. The PSO-BP-ANN algorithm had a CPU usage rate of up to 46.47% due to synchronous
updates of multi-layer network parameters, far exceeding other algorithms. The CPSO-MPC algorithm had the
second highest occupancy rate (35.82%), which is related to the structural complexity of its model predictive
control. MSC-PSO can achieve the best balance between solving efficiency and resource consumption through
algorithm structure optimization, and is suitable for industrial scenarios with high real-time requirements and
limited hardware resources. The optimized warehousing costs and inventory turnover rates using different
algorithms are shown in Fig. 9.
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According to Fig. 9 (a), the optimized MSC-PSO algorithm had the lowest warehousing cost, with an
average daily cost of $1751, which was 52.51% lower than the PSO-BP-ANN algorithm ($3687). In Fig. 9 (b),
the optimization effect of the algorithm on inventory turnover was positively correlated with its cost control
capability. The MSC-PSO algorithm had the highest turnover rate, with an average turnover rate of 97.14%, which
was 3.25% points higher than the CPSO-MPC algorithm (about 93.89%). The PSO-BP-ANN algorithm had the
lowest turnover rate of 82.24%, reflecting its inadequate adaptability to demand fluctuations in replenishment
strategies. The adaptive inertia weight measurement of MSC-PSO algorithm can effectively balance cost control
and turnover improvement, avoiding premature convergence to suboptimal solutions. The MSC-PSO algorithm
could reduce warehousing costs and improve inventory turnover to cope with various unexpected situations.
The MSC-PSO algorithm also combined a fishbone warehouse structure to improve the efficiency of dynamic
adjustment of goods in the warehouse. To verify the performance of MSC-PSO algorithm in multi-objective and
uncertain scenarios, a comparative experiment was conducted with Nondominated Sorting Genetic Algorithm
IT (NSGA-II) and Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D) on the same
dataset and termination conditions. The comparison indicators included Pareto coverage, Hypervolume (HV),
average delivery cost, average solution time, convergence algebra, and cost volatility. The results are shown in
Table 3.

According to Table 3, the Pareto coverage and HV of MSC-PSO were significantly higher, indicating that it
can find a wider and better set of non dominated solutions among cost time energy consumption objectives.
The average delivery cost and variance of MSC-PSO were the lowest, indicating that the algorithm can not only
find low-cost solutions, but also had better operational stability. In contrast, NSGA-II performed the worst in
terms of cost fluctuations and convergence speed, indicating that it is prone to premature convergence or slow
convergence under the constraint coupling and uncertain disturbances of this problem. From the perspective
of computational efficiency, MSC-PSO also had advantages in convergence algebra and average solution time,
indicating that the proposed adaptive weights and multi-strategy perturbations accelerate the convergence
process without significantly increasing computational overhead. Statistical tests show that MSC-PSO has
statistically significant advantages in key indicators (HV, average cost) (p<0.05), supporting its superiority
over the two typical multi-objective algorithms in the simulation scenario presented in this paper. Overall, the
experiment has verified the effectiveness, stability, and scalability of MSC-PSO in multi-objective and uncertain
emergency logistics scheduling problems. To demonstrate the efficiency improvement of cargo adjustment in
fishbone warehouse structure, a comparison was made between the traditional rectangular warehouse cargo
arrangement and the fishbone warehouse cargo arrangement in terms of cargo access frequency. The comparison
results are shown in Fig. 10.

From Fig. 10 (a), the traditional rectangular warehouse goods arrangement method had no obvious
regularity in the frequency of goods access and retrieval. This indicated that the storage location of goods was not
effectively matched with the frequency of use, and high-frequency goods were not concentrated in convenient
areas, resulting in frequent crossing of handling equipment across different areas and limited overall access
efficiency. As shown in Fig. 10 (b), high-frequency goods were concentrated on both sides of the main channel
(such as near the V-shaped spine), while low-frequency goods were stored on the remote branch shelves, forming
a gradient distribution of “high-frequency concentration and low-frequency dispersion”. The combination of
fish bone warehouse cargo arrangement method and cargo classification method can significantly shorten the
average handling distance of high-frequency goods.

Analysis of the practical application effect of MSC-PSO-IICA model
The MSC-PSO algorithm could quickly obtain the optimal solution for warehouse adjustment by dynamically
adjusting and optimizing the layout of goods, which not only reduced warehousing costs but also improved
handling efficiency. To verify the practical application effect of the MSC-PSO-IICA model, actual tests were
conducted in a certain power grid material warehouse. The accuracy of the MSC-PSO-IICA model for classifying
different types of materials and the average transportation time within the warehouse are shown in Fig. 11.
According to Fig. 11 (a), the MSC-PSO-IICA model achieved classification accuracies of 98.73%, 96.58%,
94.12%, and 91.45% for Classes A, B, C, and D materials, respectively, all higher than CPSO-MPC and PSO-
BP-ANN. Its advantage lies in the precise identification of high-frequency material priorities and dynamic
weight adaptation through multi-strategy collaborative optimization. According to Fig. 11 (b), the average
transportation time for Class A material under the MSC-PSO-IICA model was only 12.45 s, which is 18.79%

Indicator MSC-PSO | NSGA-II MOEA/D
Pareto coverage rate (%) 96.78+1.15 |89.12+2.30 |91.45+1.88
HV 0.842+0.009 | 0.776+0.018 | 0.803+0.014
Average delivery cost ($) 23,451+310 | 26,780+870 | 25,500+620
Average solution time (s/time) | 1.17+0.06 2.05+0.12 1.62+0.09
Convergent Algebra 45+4 78+7 60+5

Cost standard deviation ($) 310 870 620

Table 3. Performance comparison of MSC-PSO with NSGA-II and MOEA/D (30 independent operation
results, Mean + Standard Deviation). Note: All algorithms were independently run 30 times under the same
evaluation function and random seed strategy; Using a two sample t-test on HV and average cost, MSC-PSO
showed significant differences compared to the two control methods at p <0.05.
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Fig. 10. Comparison of goods access frequency between rectangular warehouse layout and fishbone
warehouse layout.
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Fig. 11. Comparison of material classification accuracy and in-warehouse average transportation time among
different algorithms.

less than CPSO-MPC (15.33 s), thanks to the collaborative design of path optimization and fishbone layout.
From this, the MSC-PSO-IICA model achieves a dual breakthrough of high-precision classification and efficient
transportation through a joint optimization mechanism of classification and transportation. To improve the
transparency and reproducibility of the experiment, this study built a test scenario based on the emergency
logistics dispatching records of a provincial power grid in recent three years, including four types of emergencies,
namely typhoon, earthquake, mountain fire and rainstorm. Each algorithm ran under the same node layout, the
same number of vehicles, and consistent capacity constraints, and adopted a unified parameter upper limit and
termination condition. To avoid accidental effects, all results were based on the average of 30 times independent
runs and had a stable trend. Delivery cost and delivery time were core evaluation indicators that reflect the
overall resource scheduling efficiency and response speed, respectively, and could comprehensively measure the
scheduling performance of the algorithm under emergency conditions. The distribution costs and delivery times
of the MSC-PSO-IICA model in response to different types of emergencies in the power grid material supply
chain are shown in Table 4.

According to Table 4, MSC-PSO-IICA showed significant advantages in distribution cost and response time
over the comparison algorithm in four types of emergencies (typhoon, earthquake, mountain fire and rainstorm).
By conducting a two sample t-test on the results of 30 independent runs, the comparison algorithm with “*”
significantly outperformed MSC-PSO-IICA under the condition of p<0.05, indicating that its performance
improvement is statistically significant and not caused by random fluctuations. In typhoon scenarios, the
delivery cost of MSC-PSO-IICA was $23,451, which is $4443 lower than CPSO-MPC ($27894) and $8706 lower
than PSO-BP-ANN ($32157). The delivery time was also reduced by 2.22 h and 4.34 h respectively, indicating
that the model can achieve better route planning under frequent wind and disaster conditions. In earthquake
scenarios, MSC-PSO-IICA controlled the delivery time to 5.67 h, which is 2.22 h faster than CPSO-MPC, and
the cost was significantly lower, indicating that the algorithm has stronger adaptability to road congestion and
changes in warehouse accessibility caused by earthquakes. In the mountain fire and rainstorm scenarios, the
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Type of emergency | Algorithm Delivery cost (dollar) | Delivery time (h)
MSC-PSO-IICA | 23,451 4.56
Typhoon CPSO-MPC 27,894* 6.78*
PSO-BP-ANN 32,157 8.90*
MSC-PSO-IICA | 25,671 5.67
Earthquake CPSO-MPC 30,121* 7.89*
PSO-BP-ANN 35,672* 9.87*
MSC-PSO-IICA | 20,341 3.45
Wildfire CPSO-MPC 24,563 5.60*
PSO-BP-ANN 29,781* 7.65*
MSC-PSO-IICA | 19,895 321
Heavy Rain CPSO-MPC 23,451* 5.32%
PSO-BP-ANN 28,562 7.43*

W

Table 4. Distribution costs and delivery times of power grid material supply chain. Note: Values with
indicate significant difference (p <0.05) compared to the results of MSC-PSO-IICA over multiple runs.
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Fig. 12. Optimal supply chain distribution paths planned by different algorithms in earthquake scenarios.

method also obtained the lowest distribution cost and the shortest response time. The cost of the rainstorm
scenario (US $19895) was US $8667 lower than that of PSO-BP-ANN, and the time was 4.22 h lower, reflecting
the robustness of the algorithm under continuous dynamic disturbance. Further analysis of Table 4 reveals
that MSC-PSO-IICA not only dominates on average, but also maintains a stable performance improvement
trend in different disaster scenarios without significant fluctuations. This robustness stems from the two-stage
collaborative mechanism of the model structure: the adaptive chaotic search in the first stage can quickly identify
effective warehouse layouts in disaster scenarios, reducing overall delivery mileage from the source. The second
stage of immune IICA improves the adaptability of path planning to disaster disturbances through dynamic
deviation correction, thereby maintaining fast convergence in complex environments. In contrast, CPSO-MPC
and PSO-BP-ANN exhibited more significant performance fluctuations when disaster intensity changes, further
verifying the reliability, robustness, and generalization ability of MSC-PSO-IICA in uncertain environments.
Taking earthquake scenarios as an example, the optimal distribution path of the supply chain planned by various
methods is shown in Fig. 12.

According to Fig. 12 (a), the total length of the earthquake scene distribution path planned by the MSC-PSO-
IICA model was 157 km, with smooth and coherent path trajectories and no redundant turns, indicating its
excellent global obstacle avoidance ability. As shown in Fig. 12 (b), the total length of the CPSO-MPC algorithm
path was 162 km. Although it avoided all obstacles, it increased redundant distance to reduce turning, resulting
in a longer delivery path. As shown in Fig. 12 (c), the PSO-BP-ANN model had a total path length of 179 km,
with multiple jagged turns in the end region of the trajectory, and some sections were too close to obstacles,
posing a safety hazard. The immune cost function of the PSO-BP-ANN model ensured the minimum distance
between obstacles and vehicles by introducing path smoothness and safety distance penalty terms. The fused
ant colony algorithm could quickly converge to the shortest path in complex terrain, reducing path redundancy.
It can be seen that the MSC-PSO-IICA model, with its multi-strategy collaborative optimization, can plan the
supply chain distribution path with the least number of obstacle detours and the smoothest trajectory in sudden
disaster scenarios. In other aspects, the actual application effects of the MSC-PSO-IICA model are denoted in
Table 5.

According to Table 5, the MSC-PSO-IICA model demonstrated comprehensive optimization capabilities in
smart grid logistics scenarios. In terms of multi-objective optimization, the Pareto front coverage rate reached
96.78%, indicating that it has almost global coverage in the dual objective balance optimization of cost and
carbon emissions. The path planning capability led with a dynamic adjustment success rate of 98.24%, which
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Parameter category Parameter name Value | Application scenario

Multi-objective optimization Pareto front coverage (%) 96.78 | Multi-objective balance (cost & carbon emissions) optimization

Path planning Dynamic path adjustment success rate (%) 98.24 | Real-time obstacle avoidance in typhoon scenarios (GIS + LSTM integration)
Inventory management Inventory turnover rate improvement (%) 32.15 | Smart replenishment strategy for B/C-class supplies

Energy consumption optimization | Transportation energy reduction (%) 22.73 | Multi-modal energy synergy optimization (truck-drone collaboration)
Computational efficiency Single iteration time (seconds) 0.45 | Solving efficiency for logistics optimization problems

Solution quality Global optimum deviation (Std. Dev.) 0.08 | Solution stability in complex multimodal scenarios

Emergency response Material mismatch rate (%) 1.23 | Precise matching of D-class emergency supplies (with RFID verification)
Algorithm robustness High-dimensional convergence success rate (%) | 89.12 | Global convergence in 500-dimensional node optimization

Table 5. Actual application effect of MSC-PSO-IICA model.

can efficiently avoid collapsed road sections in typhoon scenarios. Inventory management was jointly modeled
through classification coding and demand forecasting, resulting in a 32.15% increase in turnover rate for Class
B and Class C materials. In terms of energy consumption optimization, the multimodal transport collaborative
control model reduced transportation energy consumption by 22.73%. In terms of computational efficiency,
solving the optimal path for supply chain distribution in a single iteration only took 0.45 s. Combined with the
stability advantage of the global optimal solution deviation degree (0.08), the algorithm’s efficient convergence
ability has been verified. The emergency response and robustness performance were equally outstanding, with a
mismatch rate of only 1.23% for Class D materials and a convergence success rate of 89.12% for 500 dimensional
node optimization. In summary, MSC-PSO-IICA has achieved industry-leading levels in efficiency, energy
consumption, stability, and emergency response through multi-strategy collaborative design, providing reliable
technical support for the refinement, dynamism, and low-carbon development of smart grid logistics.

Discussion

The MSC-PSO-IICA method proposed in this study outperforms traditional PSO, immune computing, and
neural network optimization methods in various types of emergency event scenarios. However, these numerical
results themselves cannot fully reflect the management value and engineering applicability of the model in
actual power grid emergency logistics scenarios. Therefore, this section conducts in-depth discussions on
operational management insights, trade-offs between computation and scalability, model interpretability and
implementation costs, potential risks and limitations, and future development directions, in response to the
scientific and mature requirements of algorithm deployment in complex supply chain scenarios.

From the perspective of management and operation, the experimental results show that MSC-PSO-IICA
can maintain stable low-cost and short-term advantages under conditions of significant changes in disaster
intensity. Its significance lies not only in numerical optimization itself, but also in supporting the emergency
decision-making process of power grid enterprises. The two-stage structure of the model corresponds to the
dual decision-making mechanism of “warehouse preparation path scheduling” in the actual emergency process
of enterprises. Therefore, its performance differences in different disaster scenarios can provide enterprises
with more refined stocking strategies, more reliable emergency material distribution suggestions, and more
responsive path selection schemes. In addition, the warehouse layout and allocation results output by the model
can assist managers in identifying key warehouse nodes and sensitive distribution paths, which helps to establish
a more robust regional backup system.

In terms of balancing computational efficiency, model scalability, and adaptability, the advantage of MSC-
PSO-IICA mainly lies in its dynamic adaptability to unexpected events, but there is also a certain resource
overhead. Compared to single metaheuristic algorithms, hybrid structures bring stronger global local search
complementarity, but also increase the synchronization cost between iterations. Therefore, when the node size
rapidly expands or the scheduling frequency significantly increases, the computational cost of the model will
increase accordingly, and it is necessary to determine the appropriate group size and update strategy based
on task requirements. In addition, for more complex constraint scenarios such as high-dimensional disaster
disturbances, cross regional distribution, and time window constraints, although the current structure can be
adapted through parameter adjustments, its scalability still relies on deeper structural optimization.

In terms of interpretability and implementation cost, although the results of MSC-PSO-IICA can provide
intuitive path and cost output, the search logic and immune enhancement mechanism of the intermediate
process are difficult to fully explain to non-technical personnel. This may increase communication costs
and technical dependencies in algorithm deployment. In addition, the model needs to continuously update
warehouse data, disaster information, and real-time traffic. In practical applications, there are problems such as
inconsistent data interfaces, missing data, or insufficient real-time performance, which bring additional costs to
model maintenance.

Regarding potential risks and limitations, there are still several points that need to be pointed out in this study:
(1) When the scale of the problem expands, the number of constraints increases, or real-time optimization is
required, high-frequency decision-making scenarios may not fully meet real-time requirements. (2) The model
performs well under specific supply chain structures and parameter settings, but its scalability is limited when
migrating across industries or scenarios. (3) The model obtains a solution set through a complex interactive
search process, and its interpretability still needs further enhancement.
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In response to the above limitations, future research can be conducted in the following directions: (1) Research
should be conducted on lightweight hybrid optimization framework to reduce computational burden. At the
same time, it should explore the implementation methods based on distributed computing or edge computing,
so that the algorithm has better real-time response capability. (2) An adaptive parameter adjustment mechanism
is constructed, and transfer learning and metaheuristic scheduling strategies are explored to improve cross-
domain scalability and robustness. (3) An interpretable optimization framework is introduced, such as rule-
based extraction, sensitivity analysis, and evolution path visualization, to provide decision-making basis for
algorithm output.

Overall, although MSC-PSO-IICA has demonstrated significant advantages in experiments, its true
scientific value lies in providing an emergency supply chain scheduling framework that can integrate multi
strategy optimization features. By further simplifying the model, enriching application scenarios, and improving
interpretability, this model is expected to have higher application value in the field of power grid and even
broader emergency logistics.

Conclusion

This study aimed to solve the problems of high cost, low resource utilization, and slow emergency response in
the storage and supply chain distribution of power grid materials. It proposed an optimization method for power
grid material storage based on MSC-PSO algorithm and a supply chain distribution path planning method based
on IICA, and constructed the MSC-PSO-IICA model. The MSC-PSO algorithm effectively balanced global
search and local convergence speed through multi-strategy fusion, and used chaotic disturbances to jump out
of local optimal solutions, achieving dynamic adjustment and classification optimization of power grid material
inventory. The findings denoted that the algorithm had the shortest average solution time of 1.17s, the lowest
average CPU rate of 27.31%, and the optimized average daily storage cost was $1751, which is 52.51% lower than
the PSO-BP-ANN algorithm. The average inventory turnover rate was 97.14%, which was 3.25% points higher
than the CPSO-MPC algorithm. When dealing with typhoon, earthquake, fire, rainstorm and other emergencies,
the MSC-PSO-IICA model was significantly better than the comparison algorithm in terms of distribution cost
and time. For example, in a typhoon scenario, the delivery cost of the MSC-PSO-IICA model was $23,451,
which was $4443 and $8706 less than CPSO-MPC and PSO-BP-ANN, respectively. The delivery time was 4.56 h,
which is 2.22 h and 4.34 h shorter than the two models. The MSC-PSO-IICA model can reduce the storage and
transportation costs of power grid materials and improve transportation efficiency. However, the accuracy of the
MSC-PSO-IICA model is limited by the quality of historical data. In the future, blockchain smart contracts will
be used to achieve data interoperability across the entire supply chain from suppliers-warehousing-distribution,
further compressing the supply chain response cycle.
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