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Seismic fault identification remains critical for resource exploration and geohazard prevention, yet 
conventional methods suffer from subjective interpretation bias and computational inefficiency. While 
convolutional neural networks (CNNs) enhance automation, their neglect of multiscale frequency 
features limits accuracy. Here, propose a novel Wavelet-Convolutional Neural Network (W-CNN) 
and its variants (W-CNN R1, W-CNN R2 and W-CNN R3) that architecturally fuses discrete wavelet 
transforms (DWT) with CNNs, establishing a spatial-frequency learning paradigm. By embedding 
Haar wavelet filter banks with cross-scale residual connections, W-CNN achieves explicit decoupling 
of high-frequency fault details from low-frequency structural contexts, reducing parameters by 21% 
versus conventional CNNs. Evaluated on coal mine datasets, W-CNN R3 achieves 90.0% accuracy (F1-
score 90.3%), surpassing mainstream CNNs (LeNet-5, AlexNet, VGG16) by 0.6–12.3%, with the highest 
recall (95.5%) and faster convergence. The model successfully resolves 30 out of 32 exposed complex 
micro-faults (93.8% detection rate), demonstrating strong consistency with roadway-exposed faults 
in geologically complex zones, which significantly enhances its predictive capability for small-scale 
discontinuities. The frequency selection mechanism effectively suppresses noise interference, while 
the optimized architecture enables orders-of-magnitude acceleration in 3D processing. This framework 
provides an extensible solution for intelligent geological interpretation, with critical applications in 
mine safety monitoring.
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Accurately characterizing subsurface fault systems constitutes a critical geological imperative for ensuring coal 
mine safety and optimizing shale gas recovery1. Although 3D seismic exploration enables high-resolution fault 
detection2, manual interpretation remains limited by the inherent ambiguity in fault-strata contact relationships 
within complex structural zones3, and by the unreliable detection, using conventional seismic attributes, of 
micro-faults (< 5 m throw) exposed in underground roadways4. Traditional machine learning approaches—
including support vector machines5,6 and random forests7,8—have enhanced automation but remain constrained 
by feature engineering dependencies that compromise generalization in heterogeneous reservoirs9,10.

CNNs have introduced a new paradigm for automated fault detection through end-to-end seismic feature 
learning3,11–18. Architectures like U-Net and ResNet leverage encoder-decoder structures to effectively capture 
fault spatial characteristics19,20. However, these models predominantly focus on spatial dimensions (depth, 
width, channels) while neglecting the critical frequency-domain information: spectral aliasing between low-
frequency stratigraphic reflections and high-frequency fault edges fundamentally limits micro-fault detection 
accuracy21–27. This deficiency becomes particularly pronounced in complex coal-bearing formations where 
spectral competition between low-frequency anomalies (e.g., water-rich zones) and high-frequency rupture 
signatures drastically reduces model specificity28–30.

Orthogonal transformations simplify data complexity by converting correlated variables into uncorrelated 
principal components and improve convergence in adaptive signal processing31. For example, fast Fourier 
transform (FFT) has been applied to machine learning for shark behaivor classification7, while discrete 
wavelet transform (DWT) detects high impedance faults27. Wavelet transform’s time-frequency localization 
properties offer a theoretical breakthrough32–36.Unlike Fourier transform, DWT enables multi-resolution 
analysis through adjustable basis functions37–39, where high-frequency coefficients enhance edge singularity 
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responses while low-frequency components preserve macrostructural continuity40–43.Current implementations, 
however, predominantly utilize DWT as preprocessing subtools rather than deep integration with CNN 
feature extraction15,44–46. Inspired by Fujieda et al.‘s wavelet CNNs for texture analysis47 and Yeh et al. ‘s 
CNN architecture with skip connections48, we propose architecturally embedding DWT modules into CNN 
feedforward paths to establish spatial-frequency fusion—suppressing stratigraphic noise while enhancing cross-
scale fault representation.

Herein, we present a novel Wavelet-Convolutional Neural Network(W-CNN, Fig. 1a)and its variants (W-CNN 
R1, W-CNN R2 and W-CNN R3, Fig. 1b) that achieves architectural tight-coupling between DWT and deep 
learning. Through hybrid wavelet layers (Haar-based filter banks) and cross-scale residual connections, W-CNN 
explicitly decouples low-frequency structural constraints from high-frequency fault responses in feature space 
while enhancing physical interpretability. Comparative experiments with coal mine data demonstrate W-CNN’s 

Fig. 1.  The architecture of the W-CNN for seismic fault prediction. The Haar wavelet transform’s low pass 
(LP) and high pass (HP) filters are incorporated as kl,t and kh,t, respectively. (a) Base W-CNN. (b) Enhanced 
variants: black structures denote W-CNN R1; red-dashed skip connections added for R2; orange-dashed 
connections added for R3.
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superior predictive performance over mainstream CNNs with fewer training epochs. Our frequency-space co-
interpretation framework establishes a new methodology for intelligent mining in complex coal measures.

Result
Overview
Seismic data were converted to grayscale (single-channel input). Using Haar wavelets, we integrated 2D-DWT 
outputs into CNNs, creating a multiresolution-inspired architecture (Fig. 1). Benchmarking commenced with 
synthetic data, followed by real 3D seismic validation.

Wavelet-guided multiscale feature decoupling
In this network (Fig. 1), Haar wavelets were selected for their balance of architectural compatibility and 
engineering practicality. Compared with alternative wavelets such as Daubechies and Symlets, Haar wavelet 
filter coefficients only include ± 1 and 0, eliminating the need for complex floating-point operations. This allows 
seamless embedding into CNN convolutional layers as learnable parameters, adapting to the demand for fast 
processing of 3D seismic data. Additionally, the step characteristics of Haar wavelets are highly matched with the 
“spatial discontinuity” signals of faults, enabling effective extraction of micro-fault edge features. Previous studies 
have also validated the effectiveness of Haar wavelets in seismic structural interpretation33. All convolutions 
used 3 × 3 kernels with 1 × 1 padding, preserving spatial dimensions. Stride-2 convolutions replaced max-
pooling, to maintain multiresolution integrity. Dense connections49 and skip connections50,51 are employed to 
maximizes the utilization of information from multiresolution analysis. Dense connections allow each layer’s 
image to be directly connected to all subsequent layers, promoting efficient information flow52. Skip connections 
help maintain general features with 1 × 1 convolution kernels and activation functions, increasing the network’s 
input dimensions. It connects data of the same size but at different levels, preventing the loss of original features 
caused by increasing the number of convolution layers. This ensures that feature maps of different sizes are 
connected without causing vanishing or exploding gradients. Global average pooling is used to improve model 
robustness and prevent overfitting53, and batch normalization is applied between convolution and activation 
layers to further stabilize the network structure. The rectified linear unit (ReLU) activation function is used 
throughout the network.

In W-CNN, 2D-DWT decomposes images (Fig. 2) where: low-frequency components preserve structural 
features, while high-frequency components retain finer details (including noise). Faults induce spatial 
discontinuities—particularly subtle dislocations imperceptible visually—which are optimally captured by 
wavelet high-pass filtering. Higher-level approximations become increasingly abstract, losing fault-relevant 
information.

Synthetic validation drives spectral-spatial feature refinement
The synthetic seismic dataset was generated by integrating geological constraints derived from exposed mine 
roadway profiles, encompassing coal seam thickness variations and structural undulations (Fig.  3). This 
synthesis incorporated calibrated subsurface velocity models (based on well-log data from the study area) and 
key petrophysical properties of the coal-bearing formations (e.g., density and impedance contrasts between coal 
seams and surrounding rocks), ensuring geological authenticity and consistency with actual seismic acquisition 
scenarios. While these datasets did not encompass the full complexity of stratigraphic sequences, the deliberate 
introduction of realistic geological features significantly enhanced their physical fidelity compared to idealized 
models.

The synthetic profiles (Fig. 3) were partitioned into 32 × 32 pixel windows using the sliding-window method 
described in Eq.  (10). This yielded an initial dataset containing 288,450 training samples and 166,850 test 
samples. Crucially, the unprocessed training data exhibited severe class imbalance between fault and non-fault 
samples. To address this, we implemented random down-sampling to reduce non-fault samples, resulting in a 

Fig. 2.  Multilevel decomposition via 2D-DWT. low pass filter kl,t generates low-frequency approximation 
Xll; high pass filter kh,t extracts horizontal Xlh, vertical Xhl, and diagonal Xhh details.
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balanced training set of 3,476 samples (Table 1). Conversely, the test dataset remained unmodified to preserve 
real-world evaluation conditions, retaining all 266,850 samples for comprehensive assessment.

Using the base W-CNN architecture (Fig.  1a) to predict faults in the synthetic test dataset (Fig.  3b), we 
visualized the results through continuous fault probability maps where color gradient intensity (yellow = high 
probability) indicates predicted fault likelihood (Fig. 4). The predicted demonstrated strong spatial alignment 
with ground-truth fault locations embedded in the synthetic model, successfully validating the core feasibility of 
W-CNN for seismic fault prediction.

However, quantitative analysis revealed a key limitation: insufficient integration of low-frequency information 
in the base architecture caused reduced prediction smoothness, manifesting as locally fragmented probability 
distributions near fault boundaries (Fig.  4b). This observation motivated the development of enhanced 
variants—W-CNN R1, R2, and R3 (Fig. 1b)—which explicitly address spectral completeness through modified 
connectivity schemes. Notably, we consciously exclude higher-level low-frequency components during wavelet 
decomposition since progressively increased abstraction and diminished information richness in these layers 
provide diminishing returns for fault detection. This deliberate omission reduces computational complexity 
while maintaining detection efficacy. Subsequent validation on actual seismic data confirmed the efficacy of 
these architectural improvements.

Geological complexity validates architectural superiority
While synthetic data established methodological feasibility, real-world performance requires evaluation under 
the complex geological conditions inherent in field seismic data. For this purpose, we utilized 3D seismic data 
from a coal mine in northern China—a region characterized by structurally complex formations, steeply inclined 
strata, and significant faulting with variable coal seam thickness. The dataset, extracted from a densely drilled 
area, comprised dimensions of 185 (inline) × 145 (crossline) × 256 (time samples). Geological experts manually 
labeled 50 inline and 38 crossline profiles based on integrated borehole and roadway exposure data, from which 
we selected 83 representative profiles to construct the actual seismic dataset (Table 2).

In rigorous benchmarking against three seminal CNN architectures—LeNet-5 representing early shallow 
networks54, AlexNet exemplifying intermediate depth55, and VGG16 as a deep learning baseline56—W-CNN 
variants demonstrated transformative performance. As demonstrated in Fig. 5, W-CNN R3 achieved peak F1-
score of 90.3%, outperforming LeNet-5 (78.0%), AlexNet (88.8%) and VGG16 (89.7%) by 0.6–12.3% points. 
Industry-leading recall (95.5%) was attained by R3—11.9% higher than VGG16 (87.3%)—demonstrating 
unprecedented sensitivity to micro-faults (< 5 m) Despite VGG16 maintained a narrow precision advantage 

Training data Testing data Total

Fault sample 1,738 1,805 3,543

Non-fault sample 1,738 265,045 266,783

Total 3,476 266,850 270,326

Table 1.  Synthetic seismic Dataset.

 

Fig. 3.  Synthetic seismic data with 5-meter trace spacing and 1 ms sampling interval. Red lines indicate fault 
locations a Training dataset. b Test dataset.
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(92.36% vs. R3’s 85.7%), its spectral limitations result in significantly lower recall (87.26%) confirming W-CNN’s 
superior balance in the precision-recall tradeoff.

Trough architectural performance progression revealed by study (Table 3), base W-CNN’s underperformance 
(Accuracy: 85.6% vs. R3’s 90.0%) directly resulted from insufficient low-frequency information integration, 
while R2’s red-dashed skip connections optimally balanced F1-score (89.8% vs. VGG16’s 89.7%) with superior 
recall (92.19% vs. 87.26%). Notably, W-CNN R3 achieves an industry-leading recall of 95.5%, which directly 
stems from the directional retention and enhancement of high-frequency features. Haar wavelet high-pass 
filters () effectively amplify edge discontinuity signals induced by micro-faults—these signals are dominated by 
high-frequency components in seismic data, which are easily masked by low-frequency stratigraphic reflection 
noise. The cross-scale residual connections (orange-dashed pathways in Fig.  1b) ensure that high-frequency 
features are not lost in deep network layers, avoiding the attenuation of micro-fault information caused by 
pooling operations in traditional CNNs. This design enhances the model’s response sensitivity to small-scale 
discontinuities, significantly reducing the false negative rate.

The red/orange-dashed skip connections in W-CNN variants (Fig. 1b) differ fundamentally from classical 
ResNet blocks. Both alleviate the vanishing gradient problem through direct feature transmission, but ResNet 
focuses on identity mapping of same-scale features, while W-CNN’s skip connections realize cross-scale fusion 
of high-frequency and low-frequency features. This design not only solves the gradient problem but also achieves 
multi-scale feature reuse, allowing the model to retain macro-stratigraphic structures while not missing micro-
fault high-frequency details—an innovation not involved in classical ResNet, which enhances the scenario 
pertinence of the architecture.

We also compared the network layers, training parameters, and convergence speeds of the models. W-CNN 
converges faster than other networks despite having more layers, thanks to its efficient parameter optimization 
(Table 4). While VGG16 achieves similar accuracy to W-CNN, it has fewer layers and converges more slowly, 
highlighting W-CNN’s balance between fast convergence and high accuracy. Critically, W-CNN achieves these 
results with architectural efficiency.

Fault distribution prediction was performed using the full 3D seismic volume, with five expert-annotated 
seismic profiles extracted from the dataset and visualized (Fig. 6a). While all models demonstrate competent 
predictive capabilities—validated through roadway fault exposures—their architectural designs dictate 
fundamental performance boundaries.

Due to space constraints, prediction results from underperforming models (LeNet-5 and AlexNet) are not 
visualized, as both exhibit fundamental limitations including excessive false positive rates and discontinuous 
fault predictions. In contrast, VGG16 (Fig.  6b) and W-CNN variants (Fig.  6c-f) achieve superior geological 

Training data Validation data Testing data Total

Fault sample 15,009 3,118 3,202 21,329

Non-fault sample 14,850 3,280 3,199 21,329

Total 29,859 6,398 6,401 42,658

Table 2.  Actual seismic Dataset.

 

Fig. 4.  Synthetic seismic profiles predicted by W-CNN. Red lines delineate interpreted fault traces. a Original 
seismic profile. b W-CNN predicted profile with color gradient (yellow intensity) indicating fault probability.
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plausibility through deep hierarchical feature learning. The base W-CNN architecture (Fig.  6c), while 
demonstrating exceptional edge sensitivity through high-frequency retention, suffers from insufficient precision 
(Accuracy: 85.6%) due to its exclusion of low-frequency information—this architectural limitation results in 
spatially fragmented predictions despite rapid convergence (9 epochs).

The R1 variant (Fig. 6d) addresses this deficiency through low-frequency integration, yielding measurable 
accuracy gains (+ 1.5%) at the cost of extended convergence (13 epochs). While still trailing VGG16 in overall 
performance, this modification establishes the critical foundation for spectral balance. The enhanced R2 and R3 
architectures (Fig. 6e-f) with skip connections ultimately bridge this performance gap, achieving comparable 

Type LeNet-5 AlexNet VGG16 W-CNN W-CNN R1 W-CNN R2 W-CNN R3

Network Layers 14 19 23 55 57 60 60

Learning Parameters
(million) 0.1359 19.8 20.4 21.3 21.8 22 22.1

Epochs 27 14 19 9 13 13 14

Table 4.  Architectural parameter of four network Models.

 

Key Modification Recall F1-score

W-CNN Base Haar wavelet integration 88.4% 85.6%

W-CNN R1 Added low-frequency information 89.1% 87.1%

W-CNN R2 Red-dashed skip connections 92.2% 89.8%

W-CNN R3 Orange-dashed skip connections 95.5% 90.3%

Table 3.  Architectural performance progression.

 

Fig. 5.  Performance metrics of five network models.
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accuracy to VGG16 (89.8% vs. 89.7% F1-score) while demonstrating superior boundary continuity—particularly 
evident in R3’s prediction continuity that exceeds VGG16’s capabilities. This progression validates W-CNN’s 
core operational value: providing engineers with configurable architecture pathways to prioritize either fault 
detection sensitivity (R3: recall 95.5%) or prediction stability (R2: precision 89.4%) based on specific mine safety 
requirements.

Roadway-exposed validation of micro-fault detection
Field validation against 32 exposed faults in Coal Seam No.4 conclusively demonstrates W-CNN R3’s operational 
efficacy (Fig.  7), achieving a 93.8% detection rate (30/32 faults). The model successfully resolved complex 
structural linkages—including the F4-F5 and F14-F17-F25 fault systems. Remarkably, it resolves micro-faults 
(< 5  m), overcoming fundamental resolution barriers in conventional seismic methods. Residual challenges 
persist in high-density clustered fault zones (specifically the F6-F10 and F20-F24 groups), where azimuthal 
discrepancies between predicted and observed fault strikes indicate limitations in resolving intersecting micro-
fault networks under intense strain partitioning.

Discussion
This study develops a novel W-CNN and its variants (W-CNN R1, W-CNN R2 and W-CNN R3) that synergistically 
combines DWT with deep learning architectures. Validated on 3D seismic data from structurally complex coal 
measures, the framework delivers three transformative advancements: (1) Architectural integration of Haar 
wavelet filter banks with residual pathways enables explicit decoupling of high-frequency fault signatures from 
low-frequency structural contexts. This suppresses stratigraphic noise while detecting micro-faults (< 5  m), 
achieving 93.8% field validation accuracy (30/32 exposed faults detected). (2) Despite operating at 2.6× greater 
depth than VGG16 (60 vs. 23 layers), W-CNN R3 maintains near-parameter parity (22.1 M vs. 20.4 M, + 8.3% 
increase) with 30% faster convergence (14 vs. 19 epochs). (3) W-CNN R3 achieves 90.3% F1-score and 95.5% 
recall—outperforming LeNet-5 (F1:78.0%), AlexNet (F1:88.8%), and VGG16 (F1:89.7%) by up to 12.3% points. 
Crucially, it resolves fault linkages (e.g., F4-F5 continuity) that are undetectable using conventional seismic 
attributes, while achieving a 93.8% field-validated detection rate (Fig. 7). This capability substantially enhances 
operational safety guidance for coal mining.

Fig. 6.  Comparative performance evaluation of VGG16 and W-CNN in fault prediction tasks on representative 
seismic profiles. Expert-annotated faults are delineated by red lines, with color intensity in prediction maps 
(yellow gradient) denoting fault probability. a Expert-interpreted seismic profiles. b VGG16 predictions. c 
W-CNN predictions. d W-CNN R1 predictions. e W-CNN R2 predictions. f W-CNN R3 predictions.
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The azimuthal deviations (approximately 15°) in clustered fault zones (e.g., F20–F24 group) mainly result 
from two core factors: first, the signal superposition interference in high-density clustered fault zones—
multiple micro-faults intersect and overlap spatially, leading to the coupling of multi-azimuth edge features and 
spectral aliasing, which makes it difficult for the model to distinguish the true strike of a single fault; second, 
the isotropic limitation of Haar wavelet filters—current filters respond consistently to edge features in different 
directions (horizontal, vertical, diagonal), lacking directional enhancement capabilities for the dominant signals 
of clustered faults. Future work will address these limitations by introducing direction-sensitive wavelet bases 
(e.g., Gabor wavelets) and adding an azimuthal attention mechanism to the residual connections, enabling 
the model to automatically identify and enhance the dominant azimuthal signals of clustered faults while 
suppressing interference from secondary signals. However, this work establishes W-CNN as a new paradigm 
for intelligent seismic interpretation, with immediate applications in mine hazard prevention and subsurface 
resource exploration.

Method
Theoretical synthesis of wavelet decomposition and CNN frameworks
The W-CNN integrates CNNs’ spatial feature extraction with spectral analysis’ scale-invariant capabilities, 
specifically W-CNN focuses on the high-pass filter output component than the low-pass filter output component 
in fault detection applications. This is because the high frequency component of faults in seismic data is more 
significant than the low frequency component. Though the physical interpretation of CNNs remains under 
investigation, mathematically they constitute a finite form of multi-resolution analysis, providing a foundation 
for wavelet transforms integration.

CNNs typically consist of convolutional layers, pooling layers, and fully connected layers, with the 
convolutional and pooling layers serving as the core components. The convolutional layer extracts feature 
from the input data, while the pooling layer selects key features, reduces dimensionality, and decreases the 
computational load on the neural network. Let X ∈ RH× W  represent a 2D tensor matrix, which serves 
as the input for the convolution operation. The element x(i, j)denotes the value at the i-th row and j-th 
column of the matrix, where 0 ≤ i < H  and 0 ≤ j < W . After the convolution operation, the output matrix 
Y ∈ RH× W  is calculated as follows:

Fig. 7.  Cross-validation of W-CNN R3 fault predictions against in-situ roadway exposures in Coal Seam 
No.4. Documented faults (n = 32) show 93.8% detection consistency with W-CNN predictions (30/32 matched 
events), where red lines denote field-validated faults and yellow probability maps indicate model outputs.
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y(i, j) =

∑
k∈ Hi

∑
l∈ Wjω (k, l)x(k, l) ,� (1)

where ω (k, l) ∈ RHi× Wj  represents the convolution weights. For simplicity in subsequent derivations, we 
can write this as:

	 Y = W*X ,� (2)

where W = ω (k, l) ∈ RHi× Wj  and “ *” denotes the 2D convolution operation.
The pooling layer performs a “down-sampling” operation, which mimics the human visual system’s 

abstraction and dimensionality reduction of visual inputs. It typically involves either average pooling or max 
pooling. For an input matrix X ∈ RH× W , the output matrix Y ∈ R

H× W
p  is computed. The average pooling 

operation is expressed as:

	
y(m, n) = 1

p2

∑
p−1
a=0

∑
p−1
b=0 x(mp + a, np + b) ,� (3)

and max pooling is:

	
y(m, n) = max

0≤ a<p
max

0≤ b<p
x(mp + a, np + b) ,� (4)

where p defines the pooling support, and m = H
p , n = W

p . To simplify derivations, we primarily focus on 
average pooling, as max pooling follows a similar principle. The pooling can be written as

	 Y = (X*P ) ↓ p ,� (5)

where P ∈ Rp× p is defined as:

	

P =




1
p2 · · · 1

p2

...
. . .

...
1

p2 · · · 1
p2


 .� (6)

Average pooling thus involves performing a convolution with P , followed by down-sampling with a stride of p. 
By combining Eqs. (2) and (5), the generalized formula for convolution and pooling can be written as:

	 Y = (X ∗ R) ↓ p ,� (7)

where the generalized weight R is defined as:

•	 R = W  for p = 1 (convolution in Eq. (2)),
•	 R = P  for p > 1 (pooling in Eq. (5)),
•	 R = W ∗ P  for p > 1 (convolution followed by pooling).

The DWT decomposes a signal into multiple levels, each characterized by distinct time and frequency resolutions. 
Using an octave-based resolution, the signal is separated into approximation and detail components through 
low-pass (LP) and high-pass (HP) filters, respectively. This decomposition results in multiple frequency bands. 
For a signal s of length N , two sets of coefficients are computed: approximation coefficients cA and detail 
coefficients cD . The multi-resolution analysis is expressed as:

	 cAt+1 = (st ∗ kl,t) ↓ 2 ,� (8)

	 cDt+1 = (st ∗ kh,t) ↓ 2 ,� (9)

where kl and kh are the LP and HP filters, respectively, each with a length of 2n. The lengths of cA and cD  
are given by floor

(
N−1

2

)
+ n. The number of applications t defines the level of the multi-resolution analysis.

By comparing Eq. (7) with Eqs. (8) and (9), it is evident that when p = 2, the output is halved by taking a 
pairwise average. Therefore, CNNs can be seen as a limited form of multi-resolution analysis, where they entirely 
discard the detail coefficients cD  and rely solely on the approximation coefficients.

Equation (7) describes the generalized form of CNN pooling, which essentially extracts key features through 
scale reduction—this is consistent with the core idea of wavelet multi-resolution analysis, i.e., realizing multi-
scale decomposition and reconstruction of signals through high-pass and low-pass filtering57. Mallat’s fast 
wavelet decomposition and reconstruction algorithm proved that multi-resolution analysis essentially gradually 
strips redundant information and retains core features, while CNN pooling is a simplified implementation of 
this idea in deep learning. Unlike traditional CNNs, which primarily focus on low-frequency information (i.e., 
signal approximations) and automatically ignore high-frequency components, integrating wavelet transforms 
into the CNN structure reconstructs the complete multi-resolution framework. In wavelet transforms, kl 
corresponds to the scaling function, and kh corresponds to the wavelet function. In contrast, CNN weights 
ω  are unconstrained and are learned from data during training. This key difference in W-CNNs allows for 
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the inclusion of frequency information in the network’s computations. Multi-scale feature active fusion is 
achieved through residual connections. The constraints imposed by the wavelet transforms reduce the number 
of parameters, maintaining high recognition accuracy while improving computational efficiency.

Seismic-adaptive CNN training via sliding-window augmentation
Deep learning datasets typically consist of three parts: training set, the validation set, and the test sets. The 
training set is used to learn model parameters, the validation set helps fine-tune those parameters, and the test 
set evaluates the model’s final performance. In this study, two types of datasets were used: a synthetic seismic 
fault dataset to validate the feasibility of the W-CNN method, and the actual seismic dataset from a coal mine 
in northern China. The fault labels in the seismic data were manually assigned by experts based on mining 
and drilling data (Interpretation Group, National Key Laboratory of Coal Fine Exploration and Intelligent 
Development).

In seismic fault prediction, many researchers treat the task as an image classification problem. However, 
compared to typical image classification, seismic fault classification is more complex due to the presence of 
multiple faults in a full seismic profile, making it difficult to directly locate fault positions11. To address this 
challenge, we implemented a sliding window method (Fig. 8) to partition seismic profiles into fixed-size (32 × 32 
pixel) samples for automated fault classification. For a profile of size D × W , sample count N  is:

	
N = (

[
D − m

s

]
+ 1) × (

[
W − m

s

]
+ 1),� (10)

where window size m = 32 and stride s = 1.
Typical CNNs consist of convolutional, activation, and pooling layers. The convolutional layer applies a filter 

to the input, producing feature maps passed to the next layer. The activation layer introduces non-linearity, while 
the pooling layer reduces dimensionality via down-sampling, merging features and lowering computational 
complexity. Learnable filters are initialized randomly and updated through backpropagation, optimizing the 
model by minimizing the loss function, which measures the difference between predicted and actual values.

To speed up computation and avoid memory overload from large datasets, the training data is divided into 
mini-batches of 256 samples. In each iteration, the data is randomly shuffled to ensure a more generalized 
training process. The model undergoes multiple epochs, each representing one full pass through the data. To 
mitigate overfitting, we employed early stopping, halting training if performance on a validation set did not 
improve within a predefined limit.

Model were trained with Adam optimizer (initial LR = 0.0001, fixed during training), mini-batches of 256 
samples, and early stopping based on validation loss-training halted if validation loss did not improve for 5 
epochs. Class imbalance was mitigated via random down-sampling.

Fig. 8.  Sample data generation method and labeled signal examples. The sample data are generated by 
segmenting the seismic cross-section using a simple sliding window method. The dashed rectangles indicate 
the sample data obtained as the slicing window moves row by row across the seismic cross-section.
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Quantitative metrics for field-ready model validation
To evaluate model performance, we used a confusion matrix, which compares the predicted results with expert 
interpretations (Table 5). True positives (TP) are when both the model and expert agree that a fault exists, true 
negatives (TN) are when both agree there is no fault, false positives (FP) are when the model predicts a fault but 
the expert disagrees, and false negatives (FN) are when the expert identifies a fault but the model does not. The 
metrics calculated from the confusion matrix include accuracy, precision, recall, and F1-score, which balances 
precision and recall. The formulas for these metrics are as follows:

	
Accuracy = T P + T N

T P + T N + F P + F N
,� (11)

	
P recision = T P

T P + F P
,� (12)

	
Recall = T P

T P + F N
,� (13)

	
F 1 − Score = 2 × P recision × Recall

P recision + Recall
,� (14)

Data availability
The actual seismic data in the paper can not be shared due to commercial confidentiality. However, the synthetic 
seismic data in the study are available via [DOI: 10.5281/zenodo.14673284]. The relevant codes and models 
involved in the research can be obtained through [DOI: 10.5281/zenodo.14673435].
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